LAW005-Series Power Modules; dc-dc Converters: 36 Vdc to 75 Vdc Input; 5 W The LAW005-Series Power Modules use advanced, surfacemount technology and deliver high-quality, compact, dc-dc conversion at an economical price. # **Applications** - Communication equipment - Computer equipment #### **Features** - Small footprint: 32 mm x 20 mm (1.25 in. x 0.8 in.) - Low profile: 10.7 mm (0.42 in.) - Wide input voltage range: 36 Vdc to 75 Vdc - Input-to-output isolation: 1500 Vdc - Operating ambient temperature range: -25 °C to +71 °C with no derating - 12.5 W per cubic inch - Metal case - Burn in 4 hours @ 50 °C, full load - Output overcurrent protection, unlimited duration - Output overvoltage protection - *UL** 1950 Recognized, *CSA*[†] C22.2 No. 950-95 Certified, *VDE*[‡] 0805 (EN60950, IEC950) Licensed - CE mark meets 73/23/EEC and 93/68/EEC directives[§] - Within FCC Class A radiated limits # **Options** ■ Short pins: 2.8 mm ± 0.25 mm (0.110 in. ± 0.010 in.) # **Description** The LAW005-Series Power Modules are low-profile dc-dc converters that operate over an input voltage range of 36 Vdc to 75 Vdc and provide precisely regulated single or dual outputs. The –25 °C to +71 °C operating temperature range makes it ideal for electronic data processing applications. The outputs are isolated from the inputs, allowing versatile polarity configurations and grounding connections. The modules have a maximum power rating of 5 W and a typical full-load efficiency of 80%. Built-in filtering for both input and output minimizes the need for external filtering. - * UL is a registered trademark of Underwriters Laboratories, Inc. - \dagger CSA is a registered trademark of Canadian Standards Association. - ‡ VDE is a trademark of Verband Deutscher Elektrotechniker e.V. - § This product is intended for integration into end-use equipment. All the required procedures for CE marking of end-use equipment should be followed. (The CE mark is placed on selected products.) ### **Absolute Maximum Ratings** Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability. | Parameter | Symbol | Min | Max | Unit | |---|-----------|-----------------|------|------| | Input Voltage: | | | | | | Continuous | Vı | 0 | 80 | Vdc | | Transient (100 ms) | VI, trans | 0 | 100 | V | | Operating Ambient Temperature* (natural convection) | Та | - 25 | 71 | °C | | Storage Temperature | Tstg | – 55 | 105 | °C | | I/O Isolation Voltage | _ | _ | 1500 | Vdc | ^{*} At Io = Io, max, derate linearly to 0 W at 100 °C. Unit guaranteed to start at -40 °C. All parameters will be within specification at TA = -25 °C. ## **Electrical Specifications** Unless otherwise indicated, specifications apply over all operating input voltage and resistive load from –25 °C to +71 °C. **Table 1. Input Specifications** | Parameter | Symbol | Min | Тур | Max | Unit | |--|------------------|-----|-------|-----|------------------| | Operating Input Voltage | Vı | 36 | 48 | 75 | Vdc | | Input Current
(VI = 0 V to VI, max; IO = IO, max) | II, max | _ | 250 | _ | mA | | Inrush Transient | i ² t | _ | 0.008 | _ | A ² s | | Input Reflected-ripple Current (See Figure 1.) | lı . | _ | 5 | _ | mAp-p | #### **Fusing Considerations** CAUTION: This power module is not internally fused. An input line fuse must always be used. This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of a sophisticated power architecture. To preserve maximum flexibility, internal fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a normal-blow fuse with a maximum rating of 5 A (see Safety Considerations section). Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can be used. Refer to the fuse manufacturer's data for further information. # **Electrical Specifications** (continued) **Table 2. Output Specifications** | Parameter | Device | Symbol | Min | Тур | Max | Unit | |---|----------|-----------------|--------|-------|--------|-----------| | Output Voltage Set Point | LAW005F | Vo, set | 3.26 | 3.3 | 3.33 | Vdc | | $(V_1 = 48 \text{ V}; I_0 = I_0, \text{max}; T_A = 25 \text{ °C})$ | LAW005A | Vo, set | 4.95 | 5.00 | 5.05 | Vdc | | | LAW005B | Vo, set | 11.88 | 12.00 | 12.12 | Vdc | | | LAW005C | Vo, set | 14.85 | 15.00 | 15.15 | Vdc | | | LAW005BK | Vo1, set | 11.88 | 12.00 | 12.12 | Vdc | | | | Vo2, set | 11.88 | 12.00 | 12.12 | Vdc | | | LAW005CL | Vo1, set | 14.85 | 15.00 | 15.15 | Vdc | | | | VO2, set | 14.85 | 15.00 | 15.15 | Vdc | | Output Voltage | LAW005F | Vo | 3.17 | _ | 3.43 | Vdc | | (Over all line, load, and temperature | LAW005A | Vo | 4.80 | _ | 5.20 | Vdc | | conditions until end of life; see Figure 3.) | LAW005B | Vo | 11.52 | _ | 12.48 | Vdc | | · , | LAW005C | Vo | 14.40 | _ | 15.60 | Vdc | | | LAW005BK | V01 | 11.52 | _ | 12.48 | Vdc | | | | Vo ₂ | -11.52 | _ | -12.48 | Vdc | | | LAW005CL | Vo ₁ | 14.40 | | 15.60 | Vdc | | | | V02 | -14.40 | _ | -15.60 | Vdc | | Output Regulation: | | | | | | | | Line $(V_1 = 36 \text{ V to } 75 \text{ V})$ | All | _ | _ | _ | 0.2 | %Vo | | Load (Io = 25% Io, max) | LAW005F | | | | 0.5 | %Vo | | 2000 (10 2070 10, many | LAW005A | _ | _ | _ | 0.5 | %Vo | | | LAW005B | | _ | _ | 0.5 | %Vo | | | LAW005C | _ | _ | _ | 0.5 | %Vo | | Load (Io = 50% Io, max to Io, max) | LAW005BK | _ | _ | _ | 1.0 | %Vo | | 2000 (10 00 70 10, max to 10, max) | LAW005CL | _ | _ | _ | 1.0 | %Vo | | Temperature ($T_A = -25 ^{\circ}\text{C}$ to +71 $^{\circ}\text{C}$) | All | _ | _ | _ | 0.2 | %Vo | | Output Ripple and Noise Voltage | | | | | | | | (see Figure 2.): | | | | | | | | RMS | All | | | _ | 10 | mVrms | | Peak-to-peak (5 Hz to 20 MHz) | All | _ | _ | _ | 75 | mVp-p | | External Load Capacitance | LAW005F | | | _ | 1000 | μF | | External Load Gapatitation | LAW005A | | | _ | 1000 | μF | | | LAW005B | _ | _ | _ | 220 | μF | | | LAW005C | _ | _ | _ | 150 | μF | | | LAW005BK | _ | _ | _ | 47 | μF | | | LAW005CL | _ | _ | _ | 47 | μF | | Output Current | LAW005F | lo | 0.050 | _ | 1.0 | A | | (At Io < Io, min, the modules may exceed | LAW005A | lo | 0.050 | _ | 1.0 | A | | output ripple specifications.) | LAW005B | lo | 0.024 | _ | 0.47 | A | | output rippio opositications.) | LAW005C | lo | 0.020 | _ | 0.40 | A | | | LAW005BK | lo ₁ | 0.012 | _ | 0.43 | A | | | | lo ₂ | 0.012 | _ | 0.23 | A | | | LAW005CL | lo ₂ | 0.012 | _ | 0.19 | A | | | | lo ₂ | 0.010 | _ | 0.19 | A | | Output Current-limit Inception | All | lo | _ | 165 | _ | %IO, max | | (Vo = 90% x Vo, set) | All | 10 | | 100 | _ | 7010, max | | Output Short-circuit Current
(duration typ. 8 ms before shutdown;
Vo ≤ 60% Vo, nom) | All | lo | _ | 300 | _ | %IO, max | Tyco Electronics Corp. 3 # **Electrical Specifications** (continued) Table 2. Output Specifications (continued) | Parameter | Device | Symbol | Min | Тур | Max | Unit | |--|----------|--------|-----|------|-----|----------| | Efficiency | LAW005F | η | 71 | 73 | _ | % | | (V _I , nom; Io = Io, max; $T_A = 25$ °C; see Figure 3.) | LAW005A | η | 74 | 78 | _ | % | | | LAW005B | η | 77 | 80 | _ | % | | | LAW005C | η | 78 | 82 | _ | % | | | LAW005BK | η | 77 | 80 | _ | % | | | LAW005CL | η | 78 | 80 | _ | % | | Dynamic Response | | | | | | | | $(\Delta Io/\Delta t = 1 \text{ A}/10 \mu \text{s}, \text{ V}_{I} = \text{V}_{I}, \text{ nom}, \text{ TA} = 25 \text{ °C})$: | | | | | | | | Load Change from Io = 50% to 75% of Io, max: | | | | | | | | Peak Deviation | All | _ | _ | 1 | _ | %Vo, set | | Settling Time (Vo < 10% peak deviation) | All | _ | _ | 0.15 | _ | ms | | Load Change from Io = 50% to 25% of Io, max: | | | | | | | | Peak Deviation | All | _ | _ | 1 | _ | %Vo, set | | Settling Time (Vo < 10% peak deviation) | All | _ | _ | 0.15 | _ | ms | #### **Table 3. Isolation Specifications** | Parameter | Min | Тур | Max | Unit | |-----------------------|-----|------|-----|------| | Isolation Capacitance | _ | 1000 | _ | pF | | Isolation Resistance | 100 | _ | _ | MΩ | #### **Table 4. General Specifications** | Parameter | Min | Тур | Max | Unit | |-----------|-----|-----------|-----------|---------| | Weight | _ | 18 (0.64) | 20 (0.71) | g (oz.) | 4 Tyco Electronics Corp. ## **Test Configurations** Note: Input reflected-ripple current is measured with a simulated source impedance of 12 μ H. Capacitor Cs offsets possible battery impedance. Current is measured at the input of the module. Figure 1. Input Reflected-Ripple Test Setup Note: Use a 0.1 µF ceramic capacitor. Scope measurement should be made using a BNC socket. Position the load between 50.8 mm and 76.2 mm (2 in. and 3 in.) from the module. Figure 2. Peak-to-Peak Output Noise Measurement Test Setup Note: All measurements are taken at the module terminals. When socketing, place Kelvin connections at module terminals to avoid measurement errors due to socket contact resistance. $$\eta = \left(\frac{[Vo(+) - Vo(-)]Io}{[VI(+) - VI(-)]II}\right) \times 100$$ % Figure 3. Output Voltage and Efficiency Measurement Test Setup Tyco Electronics Corp. #### **Safety Considerations** For safety-agency approval of the system in which the power module is used, the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standard, i.e., *UL* 1950, *CSA* C22.2 No. 950-95, and *VDE* 0805 (EN60950, IEC950). If the input source is non-SELV (ELV or a hazardous voltage greater than 60 Vdc and less than or equal to 75 Vdc), for the module's output to be considered meeting the requirements of safety extra-low voltage (SELV), all of the following must be true: - The input source is to be provided with reinforced insulation from any other hazardous voltages, including the ac mains. - One V_I pin and one V_O pin are to be grounded, or both the input and output pins are to be kept floating. - The input pins of the module are not operator accessible. - Another SELV reliability test is conducted on the whole system, as required by the safety agencies, on the combination of supply source and the subject module to verify that under a single fault, hazardous voltages do not appear at the module's output. **Note:** Do not ground either of the input pins of the module without grounding one of the output pins. This may allow a non-SELV voltage to appear between the output pins and ground. The power module has extra-low voltage (ELV) outputs when all inputs are ELV. The input to these units is to be provided with a maximum 5 A normal-blow fuse in the ungrounded lead. # **Outline Diagram** Dimensions are in millimeters and (inches). Tolerances: $x.x mm \pm 0.5 mm (x.xx in. \pm 0.02 in.)$ $x.xx mm \pm 0.25 mm (x.xxx in. \pm 0.010 in.)$ #### **Top View** #### **Side View** | Pin | Single | Duals | |-----|-----------------|-----------------| | 2 | Vı(–) | Vı(–) | | 3 | Vı(–) | Vı(–) | | 9 | NC [†] | Common | | 10 | NC [†] | NC [†] | | 11 | NC [†] | Vo(-) | | 14 | Vo(+) | Vo(+) | | 15 | NC [†] | NC [†] | | 16 | Vo(-) | Common | | 22 | Vı(+) | Vı(+) | | 23 | Vı(+) | Vı(+) | | | | | † No connection. #### **Bottom View** 8-1366(C).b Note: Pinouts are numbered to fit in a standard 24-pin DIP footprint. ^{*} Note insulation thickness when considering clearance from the PWB traces to the metal case. $[\]dagger$ Lead trim option: 2.8 mm \pm 0.25 mm (0.110 in. \pm 0.010 in.). #### **Recommended Hole Pattern** Component-side footprint. Dimensions are in millimeters and (inches). 8-1366(C).b # **Ordering Information** **Table 5. Device Codes** | Input Voltage | Output Voltage | Output Power | Device Code | Comcode | |---------------|----------------|--------------|-------------|-----------| | 48 Vdc | 3.3 Vdc | 3.3 W | LAW005F | 108070749 | | 48 Vdc | 5 Vdc | 5 W | LAW005A | 108070715 | | 48 Vdc | 12 Vdc | 5 W | LAW005B | 108070723 | | 48 Vdc | 15 Vdc | 5 W | LAW005C | 108070731 | | 48 Vdc | ±12 Vdc | 5 W | LAW005BK | 108070756 | | 48 Vdc | ±15 Vdc | 5 W | LAW005CL | 108070764 | Optional features may be ordered using the device code suffixes shown below. The feature suffixes are listed numerically in descending order. Please contact your Tyco Electronics' Account Manager or Field Application Engineer for pricing and availability. **Table 6. Device Options** | Option | Device Code Suffix | |--|--------------------| | Short pins: 2.8 mm ± 0.25 mm (0.110 in. ± 0.010 in.) | 8 | Tyco Electronics Corp. 7 Tyco Electronics Power Systems, Inc. 3000 Skyline Drive, Mesquite, TX 75149, USA +1-800-526-7819 FAX: +1-888-315-5182 (Outside U.S.A.: +1-972-284-2626, FAX: +1-972-284-2900 http://power.tycoeleectronics.com Tyco Electronics Corportation reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. @ 2001 Tyco Electronics Corporation, Harrisburg, PA. All International Rights Reserved. Printed in U.S.A.