

Features

- ♦ High intensity
- ♦ 1*3mm diameter package
- ♦ Wide viewing angle
- ♦ General purpose leads
- ♦ Reliable and rugged

Package Dimension:

Part NO.	Lens Color	Source Color		
LL-132HD2A-003	Red Diffused	Red		

Notes:

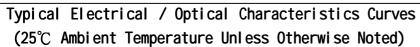
- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is $\pm 0.25(.010")$ mm unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm(.04") max
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice

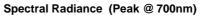
Part No.	LL-132HD2A-003	Spec No.	S/N-01052101D	Page	2 of 4
----------	----------------	----------	---------------	------	---------------

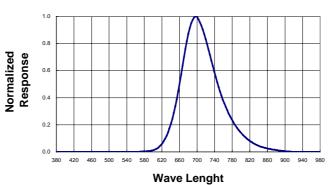
Absolute Maximum Ratings at Ta=25℃

Parameter	MAX.	Uni t	
Power Dissipation	100	mW	
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	100	mA	
Continuous Forward Current	50	mA	
Derating Linear From 50°C	0.4	mA/°C	
Reverse Voltage	5		
Operating Temperature Range	-40°C to +80°C		
Storage Temperature Range	-40°C to +80°C		
Lead Soldering Temperature [4mm(.157") From Body]	260°C for 5 Seconds		

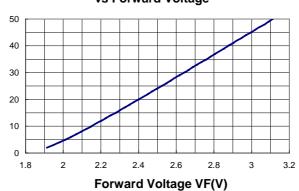
Electrical Optical Characteristics at Ta=25℃

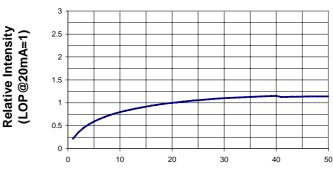

Parameter	Symbol	Min.	Тур.	Max.	Uni t	Test Condition
Luminous Intensity	Iv		0.4		mcd	I _F =20mA (Note 1)
Viewing Angle	2 H _{1/2}		165		Deg	(Note 2)
Peak Emission Wavelength	λр		700		nm	I _F =20mA
Dominant Wavelength	λd		635		nm	I _F =20mA (Note 3)
Spectral Line Half-Width	Δλ		24		nm	I _F =20mA
Forward Voltage	$V_{\scriptscriptstyle F}$		2. 35	2.80	V	I _F =20mA
Reverse Current	I _R			100	μΑ	V _R =5V

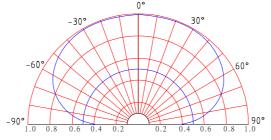

Note:


- 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
- 2. $\theta_{\rm 1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength (λ d) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Part No.	LL-132HD2A-003	Spec No.	S/N-01052101D	Page	3 of 4
----------	----------------	----------	---------------	------	---------------




Forward Current vs Forward Voltage


Relative Luminous Intensity vs Forward Current

Forward Current IF(mA)

Relative Intensity (LOP @ MAX=1)