

Features

- ♦ Standard T-1 diameter package
- ♦ Wide viewing angle
- ♦ General purpose leads
- ♦ Reliable and rugged

Package Dimension:

Part NO.	Lens Color	Source Color	
LL-304YD3B-003	Yellow Diffused	Yellow	

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is $\pm 0.25(.010")$ mm unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm(.04") max
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice

Part No.	LL-304YD3B-003	Spec No.	S/N-01071213D	Page	2 of 4
----------	----------------	----------	---------------	------	---------------

Absolute Maximum Ratings at Ta=25℃

Parameter	MAX.	Uni t
Power Dissipation	100	mW
Peak Forward Current (1/10 Duty Cycle, O.1ms Pulse Width)	100	mA
Continuous Forward Current	50	mA
Derating Linear From 50°C	0.4	mA/°C
Reverse Voltage	5	V
Operating Temperature Range	-40°C to +80°C	
Storage Temperature Range	-40°C to +80°C	
Lead Soldering Temperature [4mm(.157") From Body]	260°C for 5 Seconds	

Electrical Optical Characteristics at Ta=25°C

Parameter	Symbol	Min.	Тур.	Max.	Uni t	Test Condition
Luminous Intensity	Iv		18		mcd	I _F =20mA (Note 1)
Viewing Angle	2 θ _{1/2}		51		Deg	(Note 2)
Peak Emission Wavelength	λр		588		nm	I _F =20mA
Dominant Wavelength	λd		591		nm	I _F =20mA (Note 3)
Spectral Line Half-Width	$\triangle \lambda$		35		nm	I _F =20mA
Forward Voltage	V _F	1.6	2.1	2.6	V	I _F =20mA
Reverse Current	I _R			100	μΑ	V _R =5V

Note:

- 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
- 2. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength (λ d) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Typical Electrical / Optical Characteristics Curves (25°C Ambient Temperature Unless Otherwise Noted)

Forward Current

Wave Length(nm)

Relative Luminous Intensity vs Forward Current

Beam Pattern

Relative Intensity (LOP @ MAX=1)