

808nm 400W QCW Lensed Laser Diode Array Part Number: LAR23P400

E2 PACKAGE

- Packaged 13-Bar Lensed Laser Diode Array
- Available Wavelengths 785-1064nm
- Other Powers Are Also Available

OPTICAL CHARACTERISTICS

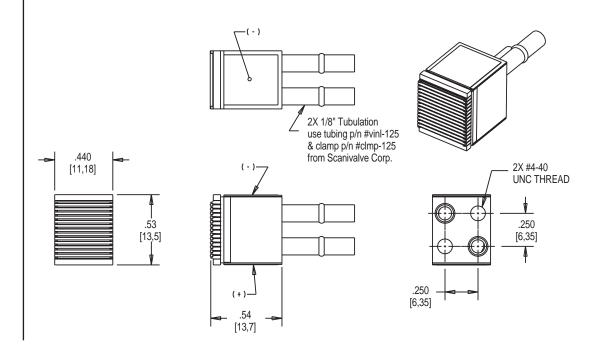
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
QCW Peak Power Output	55A, 150 µsec, 1 kHz	400			W
Operating Current	400W at 25°C Heat Sink		45	55	Α
Threshold Current	25°C Heat Sink		13	16	Α
Slope Efficiency	25°C Heat Sink	12.35	14.3		W/A
Efficiency	400W at 25°C Heat Sink	35	40		%
Number of Emitters			72 x 13		
Emitter Size			90 x 1		μm
Emitter Pitch			133.3		μm
Center Wavelength	400W at 25°C Heat Sink	792	808	812	nm
Wavelength Tolerance	400W at 25°C Heat Sink	± 1	± 3	± 4	nm
Spectral Width	400W at 25°C Heat Sink		3.0	4.0	nm
Wavelength Shift		0.23	0.25	0.27	nm/°C
Beam Divergence FWHM (1)			40x10	42x12	° X °
Polarization			TE		
Degradation Rate (2)	400W 150 μsec, 1 kHz		5		%/G shots

ELECTRICAL CHARACTERISTICS

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Built-in Voltage	25°C Heat Sink		20.8	22.1	V
Series Resistance	25°C Heat Sink		0.104	0.156	ohms
Operating Voltage	25°C Heat Sink, 400W		26.0	29.9	V

U.S. Patent Numbers: 5,734,672 5,913,108

NOTES


- (1) Lower beam divergence is also available.
- (2) Typical degradation rates are 5% in the first 10 million shots and 5% per billion shots thereafter.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	CONDITIONS		
Forward Current	70A		
Reverse Current	25μΑ		
Reverse Voltage	3V		
Operating Temperature Range (3)	-20°C to 50°C		
Storage Temperature Range	-40°C to 85°C		

MECHANICAL CHARACTERISTICS

PARAMETER	DIMENSIONS		
Package Weight	14.2 ± 0.2g		
Package Thermal Resistance	0.4°C/W		

NOTES

(3) A dry nitrogen environment should be provided by the user when storing and operating at temperatures below ambient dew point.

Copyright © 2000 Industrial Microphotonics Company. All Rights Reserved.

Industrial Microphotonics Company reserves the right to change product design and specification at any time without notice.

No license is granted by implication or otherwise under any patents or patent rights of Industrial Microphotonics Company, or others.

No responsibility is assumed for the use of these products, nor for any infringement on the rights of others resulting from the use of these products.

Laser diode product components are intended for use in a user-devised end system. However, these products are capable of emitting Class IV radiation. Extreme care must be exercised during their operation. Only persons familiar with the appropriate safety precautions should operate a laser product. Directly viewing the laser beam or exposure to specular reflections must be avoided. Serious injury may result if any part of the body is exposed to the beam. The eye is extremely sensitive to the infrared radiation and therefore, proper eyewear must be worn at all times. Use of optical instruments with these products may increase eye hazard. Always wear proper eye protection when operating.

DISTRIBUTORS

Australia

Adam Weigold, Managing Director Telephone: 61.8.8410.4599 Fax: 61.8.8410.4544 Email: photeng@ozemail.com.au Web:www.photon.on.net

France Optilas

Jean-Claude Sanudo Telephone: 33.01.60.79.59.85 Fax: 33.01.60.86.96.33 Email: Jean-Claude_Sanudo@fr.optilas.com Web: www.optilas.com

Germany, Austria, Switzerland

Polytec GmbH Mustafa Dinc Telephone: 49.7243.604.0 Fax: 49.7243.69944 Email: m.dinc@polytec.de Web: www.polytecpi.com

Israel

R.M. Photonics PO Box 1507 Ramat Modiim D.N. Modiim 73127 Israel Meir Chazon Telephone: 011.972.8.926.5733 Fax: 011.972.8.926.2021 E-mail: rmphoton@inter.net.il

Japan

Opto Science, Inc. Shinjiro Kato Telephone: 03.3356.1064 Fax: 03.3356.3466 Email: info@optoscience.com

Matsuo Sangyo Co.; Ltd.

K. Nakaki Telephone: 06.252.6381 Fax: 06.245.3923 telex: 5225235 Matsuo J

Tsukasa-Tec Inc.

Tadao Shoji Telephone: 81.298.53.7611 Fax: 81.298.53.7622 United Kingdom Laser 2000 (UK) LTD Guy Holmes Telephone: 44.1933.461666 Fax: 44.1933.461699 Email: sales@laser2000.co.uk Web: www.laser2000.co.uk

REV B-10/01 Industrial Microphotonics Company · 20 Point West Blvd. · St. Charles, MO 63301