DUAL 5V MULTIFUNCTION VOLTAGE REGULATOR - STANDBY OUTPUT VOLTAGE PRECISION 5V ± 2% - OUTPUT 2 TRACKED TO THE STANDBY OUT-PUT - OUTPUT 2 DISABLE FUNCTION FOR STANDBY MODE - VERY LOW QUIESCENT CURRENT, LESS THAN 260µA, IN STANDBY MODE - OUTPUT CURRENTS: $I_{01} = 50 \text{mA}$, $I_{02} = 500 \text{mA}$ - VERY LOW DROPOUT (max 0.4V/0.6V) - OPERATING TRANSIENT SUPPLY VOLTAGE UP TO 40V - POWER-ON RESET CIRCUIT SENSING THE STANDBY OUTPUT VOLTAGE - POWER-ON RESET DELAY PULSE DEFINED BY THE EXTERNAL CAPACITOR - THERMAL SHUTDOWN AND SHORT CIRCUIT PROTECTIONS #### **DESCRIPTION** The L4937NPD is a monolithic integrated dual voltage regulators with two very low dropout outputs and additional functions such as power-on reset and input voltage sense. They are designed for supplying microcomputer controlled systems specially in automotive applications. #### PIN CONNECTION (top view) June 2000 1/9 ## **BLOCK DIAGRAM** ## THERMAL DATA | Symbol | Parameter | Value | Unit | |-----------------------|---------------------------------------|-------|------| | $R_{\text{thj-case}}$ | Thermal Resistance Junction-Case Max. | 1.5 | °C/W | ## **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |-----------------------------------|--|------------|------| | Vs | DC Supply Voltage | 28 | V | | | Transient Supply Voltage (T < 1s) | 40 | V | | T _j , T _{stg} | Junction and Storage Temperature Range | -55 to 150 | °C | | I _{EN} | Enable Input Current (V _{EN} ≤0.3V) | ±1 | mA | | V _{EN} | Enable Input Voltage | Vs | | | V _{RES} | Reset Output Voltage | 20 | V | | I _{RES} | Reset Output Current | 5 | mA | | P _D | Power Dissipation | 875 | mW | Note: The circuit is ESD protected according to MIL-STD-883C. ## **APPLICATION CIRCUIT** ## **ELECTRICAL CHARACTERISTICS** ($V_S = 14V$; $-40^{\circ}C \le T_J \le 125^{\circ}C$ unless otherwise specified) | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |-----------------------------------|--|---|----------|------------|-------------|--------------------------| | Vs | Operating Supply Voltage | | | | 25 | V | | V _{O1} | Standby Output Voltage | $ 6V \leq V_S \leq 25V \\ 1mA \leq I_{O1} \leq 50mA $ | 4.90 | 5.00 | 5.10 | V | | V ₀₂ - V ₀₁ | Output Voltage 2 Tracking Error | $ 6V \leq V_S \leq 25V \\ 5mA \leq I_{O2} \leq 500mA \\ Enable = LOW $ | -25 | | +25 | mV | | V_{DP1} | Dropout Voltage 1 | I _{O1} = 10mA
I _{O1} = 50mA | | 0.1
0.2 | 0.25
0.4 | V
V | | V _{IO1} | Input to Output Voltage
Difference in Undervoltage
Condition | Vs = 4V, I _{O1} = 35mA | | | 0.4 | ٧ | | V_{DP2} | Dropout Voltage 2 | IO1 = 100mA
I _{O1} = 500mA | | 0.2
0.3 | 0.3
0.6 | V | | V _{IO2} | Input to Output Voltage
Difference in Undervoltage
Condition | Vs = 4.6V, I _{O1} = 350mA | | | 0.6 | V | | V _{OL 1.2} | Line Regulation | $6V \le V_S \le 25V$
$I_{O1} = 1 \text{mA}; I_{O2} = 5 \text{mA}$ | | | 20 | mV | | V_{OLO1} | Load Regulation 1 | $1mA \le I_{O1} \le 50mA$ | | | 25 | mV | | V _{OLO2} | Load Regulation 2 | $5mA \le I_{O2} \le 500mA$ | | | 50 | mV | | I _{LIM1} | Current Limit 1 | V _{O1} = 4.5V
V _{O1} = 0V (note 1) | 55
25 | 100
50 | 200
100 | mA
mA | | I _{LIM2} | Current Limit 2 | $V_{O2} = 0V$ | 550 | 1000 | 1700 | mA | | I_{QSB} | Quiescent Current Standby Mode (output 2 disabled) | $I_{O1} = 0.3 \text{mA}; T_J < 100^{\circ}\text{C}$
$V_{EN} \ge 2.4 \text{V}$
$V_S = 14 \text{V}$
$V_S = 3.5 \text{V}$ | | 210
340 | 290
850 | μ Α
μ Α | | I _Q Quiescent Current | | I _{O1} = 50mA
I _{O1} = 500mA | | | 30 | mA | ## **ENABLE** | V _{ENL} | Enable Input LOW Voltage (output 2 active) | | -0.3 | | 1.5 | V | |---------------------|--|--|-----------|-----------|------------|----------| | V _{ENH} | Enable Input HIGH Voltage | | 2.4 | | 7 | V | | V _{ENhyst} | Enable Hysteresis | | 30 | 75 | 200 | mV | | I _{EN} | Enable Input Current | 0V < V _{EN} < 1.2V
2.5V < V _{EN} < 7V | –10
–1 | -1.5
0 | -0.5
+1 | μA
μA | #### **ELECTRICAL CHARACTERISTICS** (continued) #### RESET | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |------------------------|--|---|----------------------|------|----------------------|------| | V_{Rt} | Reset Low Threshold Voltage | | V _{o1} -0.4 | 4.7 | V _{o1} -0.1 | V | | V_{Rth} | Reset Threshold Hysteresis | | 50 | 100 | 200 | mV | | t _{RD} | Reset Pulse Delay | $C_T = 100 nF; t_R > 100 \mu s$ | 55 | 100 | 180 | ms | | t _{RR} | Reset Reaction Time | C _T = 100nF | 1 | 10 | 50 | μs | | V_{RL} | Reset Output LOW Voltage | $R_{RES} = 10 K\Omega$ to V_{01}
$V_S = 1.5 V$ | | | 0.4 | V | | I _{LRES} | Reset Output HIGH Leakage | V _{RES} = 5V | | | 1 | μΑ | | V _{CTh} | Delay Comparator Threshold | | | 2.0 | | V | | V _{CTh, hyst} | Delay Comparator Threshold
Hysteresis | | | 100 | | mV | Note: 1: Foldback characteristic #### **FUNCTIONAL DESCRIPTION** The L4937ND is based on the SGS-THOMSON Microelectronics modular voltage regulator approach. Several out-standing features and auxiliary functions are provided to meet the requirements of supplying the microprocessor systems used in automotive applications. Furthermore the device is suitable also in other applications requiring two stabilized voltages. The modular approach allows other features and functions to be realized easily when required. ## STANDBY REGULATOR The standby regulator uses an Isolated Collector Vertical PNP transistor as the regulating element. This structure allows a very low dropout voltage at currents up to 50mA. The dropout operation of the standby regulator is maintained down to 2V input supply voltage. The output voltage is regulated up to the transient input supply voltage of 40V. This feature avoids functional interruptions which could be generated by overvoltage pulses. The typical curve of the standby output voltage as a function of the input supply voltage is shown in fig. 1. The current consumption of the device (quiescent current) is less than $260\mu A$ when output 2 is disabled (standby mode). The dropout voltage is controlled to reduce the quiescent current peak in the undervoltage region and to improve the transient response in this region. The quiescent current is shown in fig. 2 as a function of the supply input voltage 2. #### **OUTPUT 2 VOLTAGE** The output 2 regulator uses the same output structure as the standby regulator, but rated for an output current of 500mA. The output 2 regulator works in tracking mode with the standby output voltage as a reference voltage when the output 2. The output 2 regulator can be switched off via the Enable input. Figure 1 : Output Voltage vs. Input Voltage. **Figure 3 :** Programmable Output 2 Voltage with External Resistors. #### RESET CIRCUIT The block circuit diagram of the reset circuit is shown in fig. 4. The reset circuit supervises the standby output voltage. The reset threshold of 4.7V is defined by the internal reference voltage and the standby output divider. The reset pulse delay time $t_{RD}, \; \text{is defined by the charge time of an external capacitor } C_T$: $$t_{RD} = \frac{C_T \times 2V}{2\mu A}$$ The reaction time of the reset circuit depends on the discharge time limitation of the reset capacitor C_T and is proportional to the value of C_T . The reaction time of the reset circuit increases the noise immunity. In fact, if the standby output voltage drops below the reset threshold for a time shorter than the reaction time t_{RR} , no reset output variation occurs. The nominal reset delay is generated for standby output voltage drops longer than the time necessary for the complete discharging of the capacitor C_T . This time is typically equal to $50\mu s$ if $C_T = 100nF$. The typical reset output waveforms are shown in fig. 5. 77 Figure 4 :Block Diagram of the Reset Circuit. Figure 5 : Typical Reset Output Waveforms. | DIM. | mm | | | | | | |--------|------------|-------|------|-------|-------|-------| | DIIVI. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | | Α | | | 3.6 | | | 0.142 | | a1 | 0.1 | | 0.3 | 0.004 | | 0.012 | | a2 | | | 3.3 | | | 0.130 | | a3 | 0 | | 0.1 | 0.000 | | 0.004 | | b | 0.4 | | 0.53 | 0.016 | | 0.021 | | С | 0.23 | | 0.32 | 0.009 | | 0.013 | | D (1) | 15.8 | | 16 | 0.622 | | 0.630 | | D1 | 9.4 | | 9.8 | 0.370 | | 0.386 | | Е | 13.9 | | 14.5 | 0.547 | | 0.570 | | е | | 1.27 | | | 0.050 | | | e3 | | 11.43 | | | 0.450 | | | E1 (1) | 10.9 | | 11.1 | 0.429 | | 0.437 | | E2 | | | 2.9 | | | 0.114 | | E3 | 5.8 | | 6.2 | 0.228 | | 0.244 | | G | 0 | | 0.1 | 0.000 | | 0.004 | | Η | 15.5 | | 15.9 | 0.610 | | 0.626 | | h | | | 1.1 | | | 0.043 | | L | 0.8 | | 1.1 | 0.031 | | 0.043 | | N | 10° (max.) | | | | | | | S | 8° (max.) | | | | | | | Т | | 10 | | | 0.394 | | # (1) "D and F" do not include mold flash or protrusions. - Mold flash or protrusions shall not exceed 0.15 mm (0.006"). - Critical dimensions: "E", "G" and "a3" ## **OUTLINE AND** MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2000 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com