

LCP150S

Application Specific Discretes A.S.D.™

PROGRAMMABLE TRANSIENT VOLTAGE SUPPRESSOR FOR SLIC PROTECTION

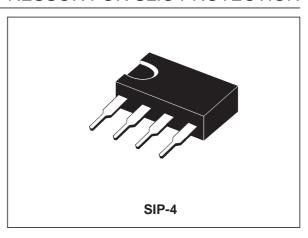
FEATURES

- DUAL PROGRAMMABLE TRANSIENT SUPPRESSOR
- HIGH SURGE CURRENT CAPABILITY.
 - I_{PP} = 50A, 10/1000 $\mu s.$
 - $-I_{PP} = 60 A, 5/310 \mu s.$
 - $I_{PP} = 150 \text{ A}, 2/10 \text{ }\mu\text{s}.$
- HOLDING CURRENT = 150 mA min.
- LOW GATE TRIGGERING CURRENT : I_{GT} = 15 mA max.

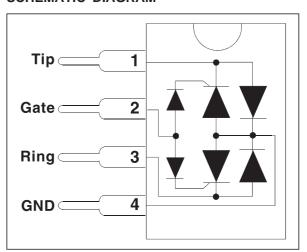
DESCRIPTION

This device has been especially designed to protect a subscriber line card interface (SLIC) against transient overvoltage.

Positive overloads are clipped with two diodes, while negative surges are suppressed by two protection thyristors, their breakdown voltage being is referenced to the -Vbat.


This component presents a very low gate triggering current (I_{GT}) in order to reduce the current consumption on the PC board during the firing phase.

COMPLIES WITH THE FOLLOWING STANDARDS:

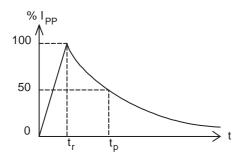

CCITT - K20	10/700μs	1kV
	5/310μs	25A
VDE 0433	10/700μs	2kV
	5/200μs	50A
VDE 0878	1.2/50μs	1.5kV
	1/20μs	40A
FCC part 68	2/10μs	2.5kV
	2/10μs	150A(*)
BELLCORE		
TR-NWT-001089:	2/10μs	2.5kV
	2/10μs	150A(*)
	10/1000μs	1kV
	10/1000μs	50A(*)
CNET	0.5/700μs	1kV
	0.2/310µs	25A

(*) with series resistors or PTC.

TM: ASD is trademarks of STMicroelectronics.

SCHEMATIC DIAGRAM

CONNECTION DIAGRAM

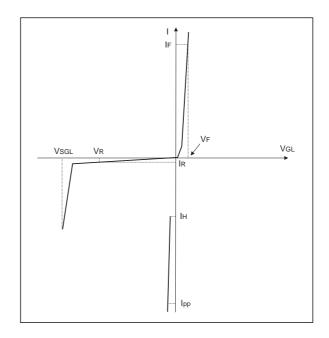

August 2001 - Ed: 3

LCP150S

ABSOLUTE MAXIMUM RATINGS (T_{amb} = 25 °C)

Symbol	Parameter		Value	Unit
Ірр	Peak pulse current (see note 1)	10/1000 μs 5/320 μs 2/10 μs	50 60 150	A
I _{TSM}	Non repetitive surge peak on-state current F = 50 Hz	tp = 10 ms t = 1 s	25 8	А
I _{GSM}	Maximum gate current (half sine wave tp = 10 ms)		2	А
V _{MLG} V _{MGL}	Maximum Voltage LINE/GND Maximum Voltage GATE/LINE		- 100 - 80	V
T _{stg} T _j	Storage temperature range Maximum operating junction temperature		- 55 to + 150 150	°C °C
TL	Maximum lead temperature for soldering during 10s		260	°C

Note 1: Pulse waveform $10/1000 \, \mu s$ $tr = 10 \, \mu s$ $5/320 \, \mu s$ $tr = 5 \, \mu s$ $2/10 \, \mu s$ $tr = 2 \, \mu s$, $tp = 1000 \ \mu s$ $tp = 320 \ \mu s$ $tp = 10 \ \mu s$


THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th (j-a)}	Junction-to-ambient	80	°C/W

2/6

ELECTRICAL CHARACTERITICS (T_{amb} = 25°C, unless otherwise specified)

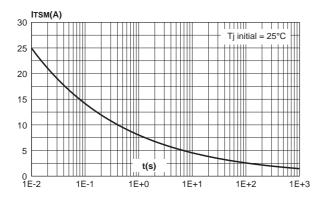
Symbol	Parameter
I _{GT}	Gate Trigger Current
lΗ	Holding Current
I _R	Reverse Leakage Current LINE/GND
I _{RG}	Reverse Leakage Current GATE/LINE
V_R	Reverse Voltage LINE/GND
VF	Forward Voltage LINE/GND
V _{GT}	Gate Trigger Voltage
V_{FP}	Peak Forward Voltage LINE/GND
V _{SGL}	Dynamic Switching Voltage GND/LINE
V _{gate}	GATE/GND Voltage
V_{LG}	LINE/GND Voltage
С	Off State Capacitance LINE/GND

1 - PARAMETERS RELATED TO THE DIODE LINE/GND

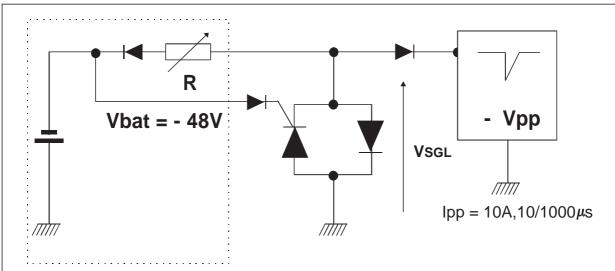
Symbol	Test Conditions	Max.	Unit
VF	Square pulse, Tp = $500 \mu s$, I _F = $5 A$	3	V
V _{FP}	$Ipp = 40 \text{ A}, 10/1000 \mu\text{s}.$	15	V

2 - PARAMETERS RELATED TO PROTECTION THYRISTOR

Symbol	Tests Conditions	Min.	Max.	Unit
I _{GT}	$V_{GND/LINE} = -48 \text{ V}$	0.2	15	mA
I _H	V _{GATE} = -48 V Note 2	150		mA
V _{GT}	at I _{GT}		2.5	V
I _{RG}	$Tc = 25^{\circ}C$ $V_{RG} = -75 V$ $Tc = 70^{\circ}C$ $V_{RG} = -75 V$		5 50	μA μA
Vsgl	V _{GATE} = -48 V Note 2		- 63	V


3 - PARAMETERS RELATIVE TO DIODE AND PROTECTION THYRISTOR

Symbol	Tests Conditions	Min.	Max.	Unit
I _R	$Tc = 25^{\circ}C$ $-1 < V_{GL} < -Vbat$ $V_{R} = -85 \text{ V}$ $Tc = 70^{\circ}C$ $-1 < V_{GL} < -Vbat$ $V_{R} = -85 \text{ V}$		5 50	μΑ μΑ
С	V _R = - 3 V F < 1MHz V _R = - 48 V F < 1MHz		150 80	pF pF


Note 2 : See test circuit for I_H and V_{SGL}.

57

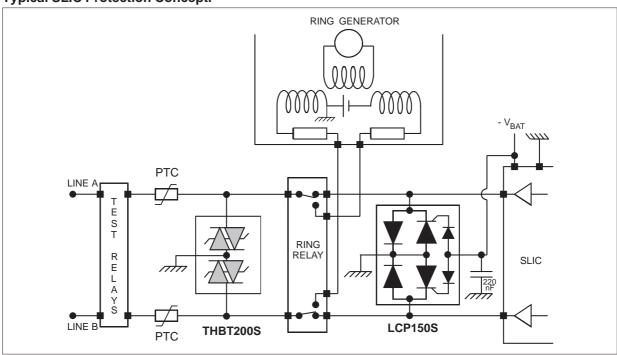
Fig. 1: Surge peak current versus overload duration (typical values).

FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT = GO - NOGO TEST.

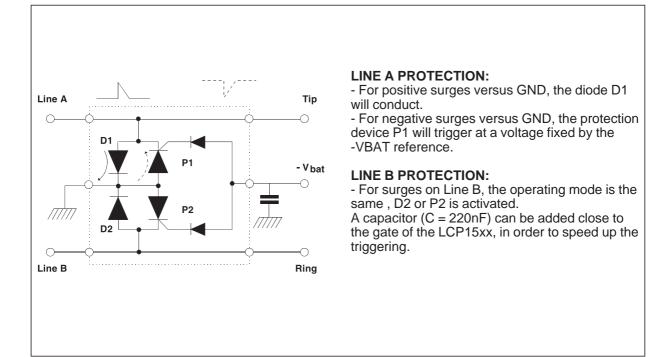
This is a GO-NOGO Test which allows to confirm the holding current (I_H) level in a functional test circuit.

This test can be performed if the reference test circuit can't be implemented.

TEST PROCEDURE:

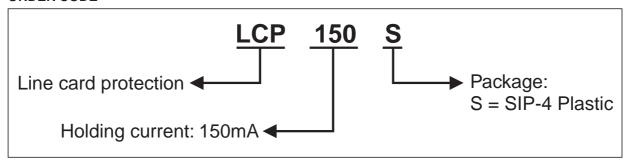

- 1) Adjust the current level at the IH value by short circuiting the AK of the D.U.T.
- 2) Fire the D.U.T with a surge Current : lpp = 10A , $10/1000 \,\mu s$.
- 3) The D.U.T will come back to the OFF-State within a duration of 50 ms max.

The V_{SGL} is measured just before firing

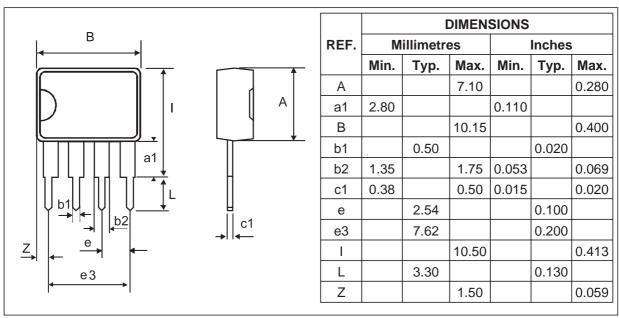

4/6

APPLICATION CIRCUIT

Typical SLIC Protection Concept.



FUNCTIONAL DESCRIPTION


57

ORDER CODE

PACKAGE MECHANICAL DATA

SIP-4

Marking: Logo, Date Code, LCP150S.

Packaging: Products supplied in antistatic tubes.

Weight: 0.55g

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-

proval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com