

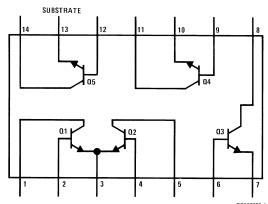
October 1998

LM3045/LM3046/LM3086 Transistor Arrays

General Description

The LM3045, LM3046 and LM3086 each consist of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially-connected pair. The transistors are well suited to a wide variety of applications in low power system in the DC through VHF range. They may be used as discrete transistors in conventional circuits however, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. The LM3045 is supplied in a 14-lead cavity dual-in-line package rated for operation over the full military temperature range. The LM3046 and LM3086 are electrically identical to the LM3045 but are supplied in a 14-lead molded dual-in-line package for applications requiring only a limited temperature range.

Features


- Two matched pairs of transistors V_{BE} matched ±5 mV Input offset current 2 µA max at I_C = 1 mA
- Five general purpose monolithic transistors
- Operation from DC to 120 MHz
- Wide operating current range
- Low noise figure: 3.2 dB typ at 1 kHz
- Full military temperature range (LM3045): -55°C to +125°C

Applications

- General use in all types of signal processing systems operating anywhere in the frequency range from DC to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers

Schematic and Connection Diagram

Dual-In-Line and Small Outline Packages

Top View
Order Number LM3045J, LM3046M, LM3046N or LM3086N
See NS Package Number J14A, M14A or N14A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. $(T_A = 25^{\circ}C)$

LM3045		LM3046/I	LM3046/LM3086		
Each	Total	Each	Total	Units	
Transistor	Package	Transistor	Package		
300	750	300	750	mW	
		300	750	mW	
		Derate a	at 6.67	mW/°C	
300	750			mW	
Derate	at 8			mW/°C	
15		15		V	
20		20		V	
20		20		V	
5		5		V	
50		50		mA	
-55°C to +125°C		−40°C to	+85°C		
−65°C to	+150°C	−65°C to	+85°C		
260°C		260°C			
		215°C			
		220°C			
	Each Transistor 300 300 Derate 15 20 20 5 50 -55°C to -65°C to	Each Transistor Total Package 300 750 300 750 Derate at 8 15 20 20 5 50 -55°C to +125°C -65°C to +150°C	Each Transistor Total Package Each Transistor 300 750 300 300 Derate at	Each Transistor Total Package Each Transistor Total Package 300 750 300 750 300 750 Derate at 6.67 300 750 Derate at 6.67 300 750 Derate at 6.67 20 20 20 20 20 20 5 5 5 50 50 -55°C to +125°C -40°C to +85°C -65°C to +150°C 260°C 260°C 225°C 2215°C 2215°C	

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices

Electrical Characteristics

(T_A = 25°C unless otherwise specified)

Parameter		Limits			Limits			
	Conditions		LM3045, LM3046			LM3086		
		Min	Тур	Max	Min	Тур	Max	1
Collector to Base Breakdown Voltage (V _{(BR)CBO})	$I_{\rm C} = 10 \ \mu \text{A}, \ I_{\rm E} = 0$	20	60		20	60		V
Collector to Emitter Breakdown Voltage	$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$	15	24		15	24		V
(V _{(BR)CEO})								
Collector to Substrate Breakdown	$I_{\rm C} = 10 \ \mu A, \ I_{\rm CI} = 0$	20	60		20	60		V
Voltage (V _{(BR)CIO})								
Emitter to Base Breakdown Voltage (V _{(BR)EBO})	I_{E} 10 μ A, I_{C} = 0	5	7		5	7		V
Collector Cutoff Current (I _{CBO})	V _{CB} = 10V, I _E = 0		0.002	40		0.002	100	nA
Collector Cutoff Current (I _{CEO})	V _{CE} = 10V, I _B = 0			0.5			5	μA
Static Forward Current Transfer	$V_{CE} = 3V$ $I_{C} = 10 \text{ mA}$		100			100		
Ratio (Static Beta) (h _{FE})	$I_C = 1 \text{ mA}$	40	100		40	100		1
	$I_C = 10 \mu\text{A}$		54			54		
Input Offset Current for Matched	$V_{CE} = 3V$, $I_{C} = 1$ mA		0.3	2				μΑ
Pair Q_1 and $Q_2 I_{O1} - I_{IO2} $								
Base to Emitter Voltage (V _{BE})	$V_{CE} = 3V$ $I_{E} = 1 \text{ mA}$		0.715			0.715		V
	I _E = 10 mA		0.800			0.800		
Magnitude of Input Offset Voltage for	$V_{CE} = 3V$, $I_{C} = 1$ mA		0.45	5				mV
Differential Pair V _{BE1} - V _{BE2}								
Magnitude of Input Offset Voltage for Isolated	$V_{CE} = 3V$, $I_{C} = 1$ mA		0.45	5				mV
Transistors V _{BE3} - V _{BE4} , V _{BE4} - V _{BE5} ,								
V _{BE5} – V _{BE3}								
Temperature Coefficient of Base to	$V_{CE} = 3V, I_{C} = 1 \text{ mA}$		-1.9			-1.9		mV/°C
Emitter Voltage $\left(\frac{\Delta V_{BE}}{\Delta T}\right)$								
(<u>A</u> T <i>)</i>								

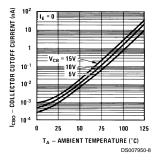
www.national.com

Electrical Characteristics (Continued)

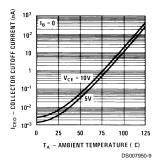
(T_A = 25°C unless otherwise specified)

Parameter			Limits	;		Limits			
	Conditions	LM3045, LM3046		/13046	LM3086			Units	
		Min	Тур	Max	Min	Тур	Max]	
Collector to Emitter Saturation Voltage (V _{CE(SAT)})	I _B = 1 mA, I _C = 10 mA		0.23			0.23		V	
Temperature Coefficient of Input Offset Voltage $\left(\frac{\Delta V_{10}}{\Delta T}\right)$	V _{CE} = 3V, I _C = 1 mA		1.1					μV/°C	

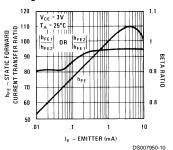
Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

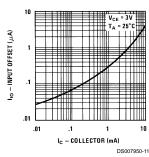

Note 2: The collector of each transistor of the LM3045, LM3046, and LM3086 is isolated from the substrate by an integral diode. The substrate (terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

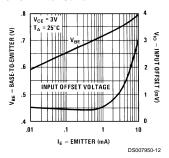
Electrical Characteristics

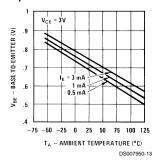

Parameter	Conditions	Min	Тур	Max	Units
Low Frequency Noise Figure (NF)	f = 1 kHz, V _{CE} = 3V,		3.25		dB
	I_C = 100 μA, R_S = 1 k Ω				
LOW FREQUENCY, SMALL SIGNAL EQUIVAL	ENT CIRCUIT CHARACTERIS	TICS			
Forward Current Transfer Ratio (h _{fe})	f = 1 kHz, V _{CE} = 3V,		110 (LM3045, LM3046)		
	I _C = 1 mA		(LM3086)		
Short Circuit Input Impednace (hie)			3.5		kΩ
Open Circuit Output Impedance (hoe)			15.6		μmho
Open Circuit Reverse Voltage Transfer Ratio			1.8 x 10 ⁻⁴		
(h _{re})					
ADMITTANCE CHARACTERISTICS					
Forward Transfer Admittance (Y _{fe})	$f = 1 MHz, V_{CE} = 3V,$		31 – j 1.5		
Input Admittance (Yie)	I _C = 1 mA		0.3+J 0.04		
Output Admittance (Yoe)			0.001+j 0.03		
Reverse Transfer Admittance (Y _{re})			See Curve		
Gain Bandwidth Product (f _T)	V_{CE} = 3V, I_{C} = 3 mA	300	550		
Emitter to Base Capacitance (C _{EB})	$V_{EB} = 3V$, $I_{E} = 0$		0.6		pF
Collector to Base Capacitance (C _{CB})	$V_{CB} = 3V, I_{C} = 0$		0.58		pF
Collector to Substrate Capacitance (C _{CI})	$V_{CS} = 3V, I_{C} = 0$		2.8		pF

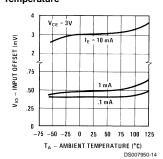
Typical Performance Characteristics

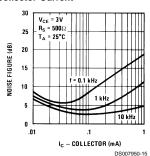

Typical Collector To Base Cutoff Current vs Ambient Temperature for Each Transistor


Typical Collector To Emitter Cutoff Current vs Ambient Temperature for Each Transistor

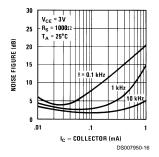

Typical Static Forward Current-Transfer Ratio and Beta Ratio for Transistors Q₁ and Q₂ vs Emitter Current


Typical Input Offset Current for Matched Transistor Pair Q₁ Q₂ vs Collector Current

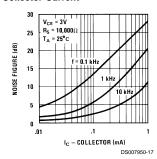

Typical Static Base To Emitter Voltage Characteristic and Input Offset Voltage for Differential Pair and Paired Isolated Transistors vs Emitter Current


Typical Base To Emitter Voltage Characteristic for Each Transistor vs Ambient Temperature

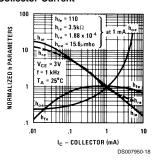
Typical Input Offset Voltage Characteristics for Differential Pair and Paired Isolated Transistors vs Ambient Temperature

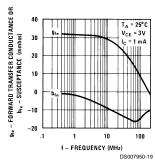


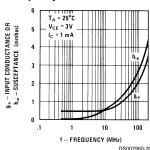
Typical Noise Figure vs Collector Current

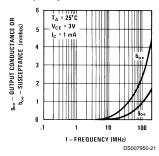


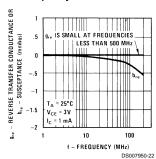
Typical Performance Characteristics (Continued)

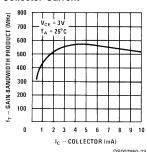

Typical Noise Figure vs Collector Current

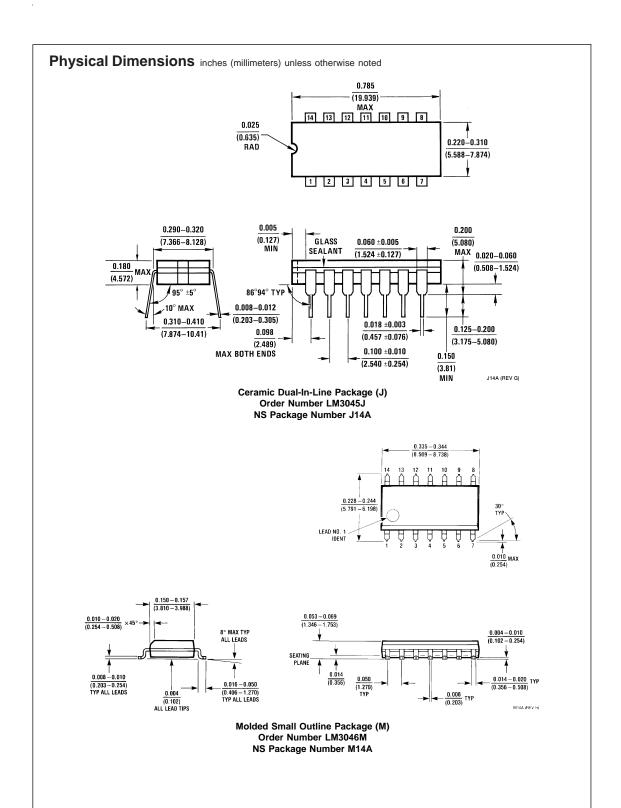

Typical Noise Figure vs Collector Current


Typical Normalized Forward Current Transfer Ratio, Short Circuit Input Impedance, Open Circuit Output Impedance, and Open Circuit Reverse Voltage Transfer Ratio vs Collector Current

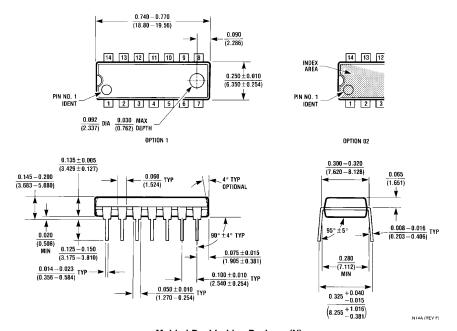

Typical Forward Transfer Admittance vs Frequency


Typical Input Admittance vs Frequency


Typical Output Admittance vs Frequency



Typical Reverse Transfer Admittance vs Frequency



Typical Gain-Bandwidth Product vs Collector Current

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Molded Dual-In-Line Package (N) Order Number LM3046N or LM3086N NS Package Number N14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507