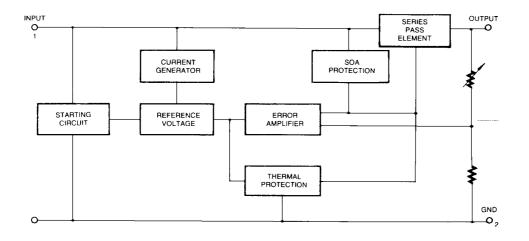
KA340TXX FIXED VOLTAGE REGULATOR (POSITIVE)

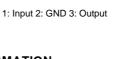
3-TERMINAL 1A POSITIVE VOLTAGE REGULATORS

The KA340TXX series ot three.terminai positive voltage regulators are available in TO-220 package and with several fixed output voltages, providing better performance than 78XX series regulators


FEATURES

- Maximum output current: 1.5A
- Output voltage of 5, 6, 8, 9, 10,11, 12,15, 18, 24V
- Superior line and load regulation than 78XX series
- Output transistor SOA protection
- Internal short-circuit current limit
- Thermal overload protection

ORDERING INFORMATION


Device	Package	Operating Temperature
KA340TXX	TO-220	0 ~ + 125°C

SEMICONDUCTOR ©1999 Fairchild Semiconductor Corporation

Rev. B

KA340TXX FIXED VOLTAGE REGULATOR (POSITIVE)

ABSOLUTE MAXIMUM RATING T_A=25°C unless otherwise specified)

Characteristic	Symbol	Value	Unit
Input Voltage (for V ₀ = 5V)	VI	35	V
Thermal Resisstance Junction-Cases	R _{EJC}	5	°C/W
Thermal Resistance Junction-Air	R _{EJA}	65	°C/W
Operating Temperature Range	T _{OPR}	0 ~ +125	°C
Storage Temperature	T _{STG}	-65 ~ + 150	°C

KA340T05 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $0^{\circ}C \leq T_{j} \leq 125^{\circ}C, \, V_{l}$ = 10V, I_{0} =0.5A, unless otherwise specified)

Characteristic	Symbol		Test Conditions	Min	Тур	Max	Unit
		T _J = 25°C	, 5Ma ≤ I ₀ ≤1.0A	4.80	5.00	5.20	
Output Voltage	Vo	$5mA \le I_0 \le V_1 = 7.5V$	≦ 1.0A, PD ≤15W to 20V	4.75		5.25	V
		T _J = 25°C	, V _I = 7V to 25V		3	50	
		$V_1 = 8V$ to	20V			50	
Line Regulation	ΔV_{O}		$V_1 = 8V$ to $12V$			25	mV
		I _O ≤1A	$V_1 = 7.5V$ to 20V $T_3 = 25^{\circ}C$			50	
			5mA ≤ I ₀ ≤1.5A		10	50	
Load Regulation	ΔV_{O}		$0.25A \leq I_O \leq 0.75A$			25	mV
		$5mA \le I_O \le 1A$				50	
			$T_J = 25^{\circ}C$			8	
			$0^\circ C \leq T_J \leq 125^\circ C$			8.5	
		$5mA \le I_0 \le$	≦1A			0.5	
Quiescent Currnet Change	ΔI_Q	$T_J = 25^{\circ}C$ $I_0 \le 1A, V_1 = V_1 = 7V$ to	= 7.5V to 20V			1.0 1.0	mA
Output Noise Voltage	V _N				40	1.0	μV
	- 11	f = 120Hz T _J = 25°C	$T_A = 25^{\circ}C, f = 10Hz \text{ to } 100KHz$ $f = 120Hz, V_I = 8V \text{ to } 18V$ $T_J = 25^{\circ}C$		80		
		f = 120Hz, $0^{\circ}C \le T_{J} \le$	$V_{\rm f} = 8V$ to $18V$ $\approx 125^{\circ}{\rm C}$	62			
Dropout Voltage	VD	l _o = 1A, T	」= 25°C		2.0		V
Peak Output Current	I _{PK}	T _J = 25°C			2.2		А
Short-Circuit Currnet	I _{SC}	V _I = 35V,			250		mA
Average T _C of V _O	$\Delta V_0 / \Delta T$	$I_0 = 5mA$			±0.6		mV/ °C
Output Resistance	Ro	f = 1KHz			17		mΩ

 * Load and line regulation are specified at a constant junction temperature. Changes in V_o due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

KA340TXX FIXED VOLTAGE REGULATOR (POSITIVE)

Characteristic	Symbol		Test Conditions	Min	Тур	Max	Unit
		T _J = 25°C	, 5Ma ≤ I ₀ ≤1.0A	5.75	6.00	6.26	
Output Voltage	Vo	$5mA \le I_0 \le V_1 = 8.5V$	≦1.0A, PD≤15W to 21V	5.70		6.30	V
		T _J = 25°C	, V _I = 7V to 25V		3	60	
		$V_1 = 9V$ to	21V			60	
Line Regulation	ΔV_{O}		$V_I = 9V$ to 13V			30	mV
		I _O ≤1A	$V_1 = 8.5V$ to 21V			60	
			$T_J = 25^{\circ}C$		40		
	ΔV_{O}		$5\text{mA} \le I_0 \le 1.5\text{A}$		10	60	
Load Regulation			0.25A ≤ I ₀ ≤ 0.75A			30	mV
		5mA ≤ I ₀ ≤				60	
			$T_J = 25^{\circ}C$			8	4
			$0^{\circ}C \leq T_{J} \leq 125^{\circ}C$			8.5	
		$5mA \le I_0 \le$				0.5	
Quiescent Currnet	ΔI_{Q}	$T_J = 25^{\circ}C$				1.0	mA
Change		$I_0 \le 1A, V_1 = 8.5V \text{ to } 22V$		-			
	-	$V_1 = 8V$ to				1.0	
Output Noise Voltage	V _N	$T_A = 25^{\circ}C$, f = 10Hz to 100KHz			45		μV
			, V _I = 9V to 19V	59	75		
		$T_J = 25^{\circ}C$					
			V = 9V to 19V	59			
		$0^{\circ}C \leq T_{J} \leq$	125°C				
Dropout Voltage	VD	I ₀ = 1A, T	$I_{O} = 1A, T_{J} = 25^{\circ}C$		2.0		V
Peak Output Current	I _{PK}	$T_J = 25^{\circ}C$			2.2		А
Short-Circuit Currnet	I _{SC}	$V_1 = 35V, -$	T _A = 25°C		250		mA
Average TC of V_{O}	$\Delta V_0 / \Delta T$	$I_0 = 5mA$			±0.7		mV/ °C
Output Resistance	Ro	f = 1KHz			18		mΩ

KA340T06 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $0^{\circ}C \leq T_{j} \leq 125^{\circ}C, \, V_{I}$ = 11V, I_{O} =0.5A, unless otherwise specified)

FAIRCHILD

KA340T08 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, V_i = 14V, I_0 =0.5A, unless otherwise specified)

Characteristic	Symbol	т	est Conditions	Min	Тур	Max	Unit
		T _J = 25°C,	$5mA \le I_0 \le 1.0A$	7.70	8.00	8.30	
Output Voltage	Vo	$5mA \le I_0 \le V_1 = 10.5V$	1.0A , PD ≤15W to 23V	7.60		8.40	V
		T _J = 25°C,	$V_I = 7V$ to $25V$		3	80	
		V _I =11V to	23V			80	
Line Regulation	ΔV_{O}		$V_1 = 11.5V$ to 17V			40	mV
		$I_{O} \leq 1A$	$V_1 = 10.5V$ to 23V			80	
			$T_{J} = 25^{\circ}C$			00	
			$5mA \le I_0 \le 1.5A$		10	80	
Load Regulation	ΔV_{O}		$0.25A \leq I_0 \leq 0.75A$			40	mV
		$5mA \le I_0 \le$	1A			80	
			$T_J = 25^{\circ}C$			8	mA
			0°C ≤TJ ≤125°C			8.5	
		$5mA \le I_0 \le$	1A			0.5	
Quiescent Currnet		$T_{i} = 25^{\circ}C$				10	4
Change	ΔI_Q	$I_0 \le 1A, V_1 = 10.5V \text{ to } 23V$				1.0	mA
		$V_1 = 10.5V \text{ to } 25V$				1.0	
Output Noise Voltage	V _N	$T_{A} = 25^{\circ}C,$	f = 10Hz to 100KHz		52		μV
			V _I = 11.5V to 21.5V		=0		
		$T_{J} = 25^{\circ}C$		56	72		
		f = 120Hz,	V = 11V to 21.5V	= 0			
		$0^{\circ}C \leq T_{J} \leq$	125°C	56			
Dropout Voltage	VD	I ₀ = 1A, T _J			2.0		V
Peak Output Current	I _{PK}	T _{.1} = 25°C			2.2		А
Short-Circuit Currnet	I _{SC}	V _I = 35V, T	a = 25°C		250		mA
Average TC of Vo	$\Delta V_0 / \Delta T$	$I_0 = 5mA$	···		±0.9		mV/ °C
Output Resistance	Ro	f = 1KHz			20		mΩ

Load and line regulation are specified at a constant jundtion temperature. Changes in V_0 due to heating effects must be taken into account spearately. Pulse testing with low duty cycle is used.

KA340T09 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, $V_I = 15V$, $I_0=0.5A$, unless otherwise specified)

Characteristic	Symbol		Test Conditions	Min	Тур	Max	Unit	
		T _J = 25°C	, 5mA ≤ I ₀ ≤1.0A	8.65	9.00	9.35		
Output Voltage	Vo	$5mA \le I_0 \le V_1 = 11.5$	≤1.0A, PD ≤15W / to 24V	8.60		9.40	V	
		$T_J = 25^{\circ}C$, V _I = 11.5V to 25V		3	90		
		V ₁ =12V to	o 24V			90		
Line Regulation	ΔV_{O}		V _I = 12V to 19V			45	mV	
		l _o ≤1A	$V_1 = 11.5V \text{ to } 24V$ $T_3 = 25^{\circ}C$			90		
			5mA ≤ I ₀ ≤1.5A		10	90		
Load Regulation	ΔV_{O}		0.25A ≤ I ₀ ≤0.75A			45	mV	
		$5mA \le I_0 \le 1A$				90		
			$T_J = 25^{\circ}C$			8		
			0°C ≤T, ≤ 125°C			8.5	1	
		5mA ≤ l _o s	≤1A			0.5		
Quiescent Currnet Change	ΔI_Q	$T_J = 25^{\circ}C$ $I_0 \le 1A, V_1 = 11.5V \text{ to } 24V$ $V_1 = 11.5V \text{ to } 25V$				1.0	mA	
Change						1.0		
Output Noise Voltage	V _N		C, f = 10Hz to 100KHz		58	1.0	μV	
Output Noise Voltage	۷N		$v_{1} = 10H2 to 100KH2$		50		μv	
		$T_{.1} = 25^{\circ}C$	· ·	56	72			
			, Vi = 12.5V to 22.5V					
		$0^{\circ}C \leq T_{J} \leq$		56				
Dropout Voltage	V _D	l _o = 1A, T	j = 25°C		2.0		V	
Peak Output Current	I _{PK}	$T_J = 25^{\circ}C$			2.2		А	
Short-Circuit Currnet	I _{sc}	$V_1 = 35V_1$	$T_A = 25^{\circ}C$		250		mA	
Average TC of Vo	$\Delta V_0 / \Delta T$	$I_0 = 5mA$			±1.0		mV/ °C	
Output Resistance	Ro	f = 1KHz			22		mΩ	

 * Load and line regulation are specified at a constant junction temperature. Changes in V_{fI} due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

KA340T10 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, $V_I = 16V$, $I_0=0.5A$, unless otherwise specified)

Characteristic	Symbol	1	Test Conditions	Min	Тур	Max	Unit
		T _J = 25°C,	$5mA \le I_0 \le 1.0A$	9.60	10.00	10.40	
Output Voltage	Vo	5mA ≤l ₀ ≤1 V ₁ = 12.5V	1.0A, PD ≤15W to 25V	9.50		10.50	V
		T _J = 25°C,	$V_{I} = 11.5V$ to 25V		3	100	
		V _I =13V to	25V			100	
Line Regulation	ΔV_{O}		V _I = 13V to 20V			50	mV
		l _o ≤1A	$V_1 = 12.5V \text{ to } 25V$ $T_3 = 25^{\circ}C$			100	
			$5mA \le I_0 \le 1.5A$		10	100	
Load Regulation	ΔV_{O}		$0.25A \le I_O \le 0.75A$			50	mV
		5mA ≤l ₀ ≤1	1A			100	
			$T_J = 25^{\circ}C$			8	
			0°C ≤ TJ≤125°C			8.5	
		$\begin{split} & 5\text{mA} \leq l_0 \leq 1\text{A} \\ & T_J = 25^\circ\text{C} \\ & l_0 \leq 1\text{A}, \ V_l = 12.6\text{V to } 25\text{V} \end{split}$				0.5	
Quiescent Currnet Change	ΔI_Q					1.0	mA
Output Noise Voltage	V _N	$V_1 = 12.6V$			58	1.0	
	N	f = 120Hz, T _J = 25°C	*		72		μV
		I = I20Hz, $0^{\circ}C \le T_{J} \le$	V₁ = 13V to 23V 125°C	56			
Dropout Voltage	V _D	$I_0 = 1A, T_J$	= 25°C		2.0		V
Peak Output Current	I _{PK}	$T_J = 25^{\circ}C$			2.2		A
Short-Circuit Currnet	I _{SC}	V _I = 35V, T	_A = 25°C		250		mA
Average TC of V_{O}	$\Delta V_O / \Delta T$	$I_0 = 5mA$			±1.1		mV/ °C
Output Resistance	Ro	f = 1KHz			24		mΩ

 * Load and line regulation are specified at constant junction temperature. Change in V_o due to heating effects must be taken into account separately. Pulse testing with low duty is used.

FIXED VOLTAGE REGULATOR (POSITIVE)

KA340T11 ELECTRICAL CHARACTERISTICS

Characteristic	Symbol		Test Conditions	Min	Тур	Max	Unit
		$T_J = 25^{\circ}C$, 5mA ≤ I ₀ ≤1.0A	11.60	11.00	11.40	
Output Voltage	Vo	$5mA \le I_0$: V ₁ = 13.5	≤1.0A, PD ≤15W / to 26V	10.50		11.50	V
		$T_J = 25^{\circ}C$	$V_{\rm I} = 13.5 \text{V} \text{ to } 25 \text{V}$		3	110	
		V ₁ =14V te	o 26V			110	
Line Regulation	ΔV_{O}		$V_1 = 14V$ to 21V			55	mV
		I _O ≤1A	$V_1 = 13.5V$ to 26V			110	
			$T_J = 25^{\circ}C$			110	
	ΔV_{O}		$5mA \le I_0 \le 1.5A$		10	110	
Load Regulation			$0.25A \leq I_O {\leq} 0.75A$			55	mV
		$5mA \le I_0 \le 1A$				110	
			$T_J = 25^{\circ}C$			8	
			0°C ≤ TJ ≤125°C			8.5	
		$5mA \le I_0 \le 1A$				0.5	
Quiescent Currnet	ΔΙο	$T_J = 25^{\circ}C$				4.0	
Change	ΔlQ	$I_0 \le 1A$, $V_1 = 13.7V$ to 26V				1.0	mA
		$V_1 = 13.5V$ to 25V				1.0	
Output Noise Voltage	V _N	$T_A = 25^{\circ}C$	C, f = 10Hz to 100KHz		70		μΑ
			, V _I = 14V to 24V		70		
		$T_J = 25^{\circ}C$;	55	72		
		f = 120Hz	, V = 14V to 24V				
		$0^{\circ}C \le T_{J} \le$	125°C	55			
Dropout Voltage	V _D	l _o = 1A, T			2.0		V
Peak Output Current	I _{PK}	T _J = 25°C			2.2		A
Short-Circuit Currnet	I _{SC}		T _A = 25°C		250		mA
Average T_c of V_o	$\Delta V_0 / \Delta T$	$I_0 = 5mA$			±1.3		mV/ °C
Output Resistance	Ro	f = 1KHz			26		mΩ

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, $V_l = 18V$, $I_0 = 0.5A$, unless otherwise specified) *Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

FIXED VOLTAGE REGULATOR (POSITIVE)

KA340T12 ELECTRICAL CHARACTERISTICS

Characteristic	Symbol		Test Conditions	Min	Тур	Max	Unit
		T _J = 25°C	, 5mA ≤ I ₀ ≤1.0A	11.50	12.00	12.50	
Output Voltage	Vo	5mA ≤ I ₀ ± V ₁ = 14.5\	≤1.0A, P _D ≤15W / to 27V	11.40		12.60	V
		$T_J = 25^{\circ}C$, $V_I = 14.5V$ to 30V			4	120	
		V ₁ =15V to	o 27V			120	
Line Regulation	ΔV_{O}		$V_1 = 16V$ to 22V			55	mV
		I _O ≤1A	$V_1 = 14.6V$ to 27V $T_{.1} = 25^{\circ}C$			120	
			5mA ≤ I ₀ ≤1.5A		12	120	
Load Regulation	ΔV_{O}		$0.25A \le I_O \le 0.75A$			60	mV
		5mA≤ I _O ≤1A				120	
			$T_J = 25^{\circ}C$			8	
			0°C ≤TJ ≤125°C			8.5	
		5mA≤ I₀≤	1A			0.5	
Quiescent Currnet Change	ΔI_Q	$T_J = 25^{\circ}C$ $I_0 \le 1A, V_1 = 14.8V \text{ to } 27V$				1.0	mA
		V ₁ = 14.5V to 30V				1.0	
Output Noise Voltage	V _N	$T_A = 25^{\circ}C$	C, f = 10Hz to 100KHz		75		μΑ
		f = 120Hz T _J = 25°C	$V_{\rm I} = 15V \text{ to } 25V$	55	72		
		f = 120Hz, $0^{\circ}C \leq T_{J} \leq$, ¥ = 15V to 25V ≤125°C	55			
Dropout Voltage	V _D	l _o = 1A, T			2.0		V
Peak Output Current	I _{PK}	T _{.1} = 25°C			2.2		A
Short-Circuit Currnet	I _{SC}	V _I = 35V,	T _A = 25°C		250		mA
Average T_C of V_O	$\Delta V_0 / \Delta T$	$I_0 = 5mA$			±1.5		mV/ °C
Output Resistance	Ro	f = 1KHz			28		mΩ

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, $V_1 = 189V$, $I_0 = 0.5A$, unless otherwise specified) *Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

FIXED VOLTAGE REGULATOR (POSITIVE)

KA340T15 ELECTRICAL CHARACTERISTICS

Characteristic	Symbol		Test Conditions	Min	Тур	Max	Unit
		T _J = 25°C	, $5mA \le I_0 \le 1.0A$	14.40	15.00	15.60	
Output Voltage	Vo	5mA ≤ I ₀ ≤ V ₁ = 17.5\	≤1.0A, PD ≤15W / to 30V	14.25		15.75	V
		T _J = 25°C	, V _I = 17.5V to 30V		4	150	
		V _I =18.5V	to 30V			150	
Line Regulation	ΔV_{O}		$V_1 = 20V$ to 26V			60	mV
		I _O ≤1A	$V_1 = 17.7V \text{ to } 30V$ $T_3 = 25^{\circ}C$			120	
			$5mA \le I_0 \le 1.5A$		12	150	
Load Regulation	ΔV_{O}		$0.25A \le I_O \le 0.75A$			75	mV
		$5mA \le I_O \le 1A$				150	
			$T_J = 25^{\circ}C$			8	
			$0^{\circ}C \leq T_{J} \leq 125^{\circ}C$			8.5	
		$5mA \le I_0 \le$	1A			0.5	
Quiescent Currnet Change	ΔI_Q	$T_J = 25^{\circ}C$ $I_O \le 1A, V_I = 17.5V \text{ to } 30V$				1.0	mA
		V ₁ = 11.5V to 25V				1.0	
Output Noise Voltage	V _N	$T_A = 25^{\circ}C$	c, f = 10Hz to 100KHz		90		μΑ
		f = 120Hz T _J = 25°C	, $V_{I} = 18.5V$ to 28.5V	54	70		
		f = 120Hz, $0^{\circ}C \le T_{J} \le$	N = 15V to 25V ≤125°C	54			
Dropout Voltage	V _D	I ₀ = 1A, T	, = 25°C		2.0		V
Peak Output Current	I _{PK}	T _J = 25°C			2.2		A
Short-Circuit Currnet	I _{SC}	-	T _A = 25°C		250		mA
Average T_C of V_O	$\Delta V_0 / \Delta T$	$I_0 = 5mA$			±1.8		mV/ °C
Output Resistance	Ro	f = 1KHz			29		mΩ

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, $V_1 = 23V$, $I_0 = 0.5A$, unless otherwise specified) *Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

FIXED VOLTAGE REGULATOR (POSITIVE)

KA340T18 ELECTRICAL CHARACTERISTICS

Characteristic	Symbol		Test Conditions	Min	Тур	Max	Unit
		T _J = 25°C	, 5mA ≤ I_0 ≤1.0A	17.30	18.00	18.70	
Output Voltage	Vo	$5mA \le I_0 \le V_1 = 21V t$	≤1.0A, PD ≤15W o 33V	17.10		18.90	V
		T _J = 25°C	, V _I =21V to 33V		5	180	
		V ₁ =22V to	o 33V			180	
Line Regulation	ΔV_{O}		$V_1 = 24V$ to 30V			90	mV
		$I_{O} \leq 1A$	$V_I = 21V$ to $33V$			180	
			$T_J = 25^{\circ}C$				
			$5mA \le I_0 \le 1.5A$		12	180	_
Load Regulation	ΔV_{O}		$0.25A \leq I_O \leq 0.75A$			90	mV
		$5mA \le I_O \le 1A$				180	
			$T_J = 25^{\circ}C$			8	
			$0^{\circ}C \leq T_{J} \leq 125^{\circ}C$			8.5	
		$\begin{array}{l} 5mA \leq I_{O} \leq 1A \\ T_{J} = 25^{\circ}C \\ I_{O} \leq 1A, \ V_{I} = 21.5V \ to \ 33V \end{array}$				0.5	
Quiescent Currnet	ΔI_{O}					1.0	mA
Change	ΔiQ					1.0	
		$V_1 = 21V$ to 33V				1.0	
Output Noise Voltage	V _N	$T_A = 25^{\circ}C$	c, f = 10Hz to 100KHz		110		μΑ
		f = 120Hz	, $V_1 = 22V$ to $32V$	53	69		
		$T_J = 25^{\circ}C$:	53	69		
		f = 120Hz,	V = 22V to 32V	53			
		$0^{\circ}C \leq T_{J} \leq$	≤125°C	55			
Dropout Voltage	V _D	I ₀ = 1A, T	_J = 25°C		2.0		V
Peak Output Current	I _{PK}	$T_J = 25^{\circ}C$	$T_{1} = 25^{\circ}C$		2.2		Α
Short-Circuit Currnet	I _{SC}	$V_1 = 35V,$	$T_A = 25^{\circ}C$		250		mA
Average $T_{\rm C}$ of $V_{\rm O}$	$\Delta V_0 / \Delta T$	$I_0 = 5mA$			±2.2		mV/ °C
Output Resistance	Ro	f = 1KHz			32		mΩ

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, $V_1 = 27V$, $I_0 = 0.5A$, unless otherwise specified) *Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

FIXED VOLTAGE REGULATOR (POSITIVE)

KA340T24 ELECTRICAL CHARACTERISTICS

Characteristic	Symbol		Test Conditions	Min	Тур	Max	Unit
		T _J = 25°C	, 5mA ≤ I ₀ ≤1.0A	23.00	24.00	25.00	
Output Voltage	Vo	$5mA \le I_0 \le V_1 = 27V t$	≤1.0A, P _D ≤15W o 38V	22.80		25.20	V
		T _J = 25°C	, V _I =27V to 38V		5	240	
		V ₁ =28V to	o 38V			240	
Line Regulation	ΔV_{O}		$V_1 = 30V$ to $36V$			120	mV
		I _O ≤1A	$V_1 = 27V \text{ to } 38V$			240	
			$T_J = 25^{\circ}C$			240	
			$5mA \le I_0 \le 1.5A$		12	240	
Load Regulation	ΔV_{O}		0.25A ≤ I ₀ ≤0.75A			120	mV
		$5mA \le I_0 \le 1A$				240	
			$T_J = 25^{\circ}C$			8	
			0°C ≤ TJ ≤125°C			8.5	
		$5mA \le I_0 \le 1A$ $T_J = 25^{\circ}C$ $I_0 \le 1A, V_I = 28 V \text{ to } 38V$				0.5	
Quiescent Currnet	ΔI_Q					1.0	
Change						1.0	mA
		V ₁ =27 V to 38V				1.0	
Output Noise Voltage	V _N	$T_A = 25^{\circ}C$	c, f = 10Hz to 100KHz		170		μΑ
		f = 120Hz	, V _I = 28V to 38V	50	00		
		$T_J = 25^{\circ}C$		50	66		
		f = 120Hz,	Vi = 28V to 38V	50			
		$0^{\circ}C \leq T_{J} \leq$	≤125°C	50			
Dropout Voltage	V _D	I ₀ = 1A, T	_J = 25°C		2.0		V
Peak Output Current	I _{PK}	T _J = 25°C			2.2		А
Short-Circuit Currnet	I _{SC}		T _A = 25°C		250		mA
Average T _c of V _o	$\Delta V_0 / \Delta T$	$I_0 = 5mA$			±2.8		mV/ °C
Output Resistance	Ro	f = 1KHz			37		mΩ

(Refer to test circuit, $0^{\circ}C \le T_j \le 125^{\circ}C$, $V_I = 33V$, $I_O = 0.5A$, unless otherwise specified) *Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.