September 20, 2003 Preliminary

Document Title

Multi-Chip Package MEMORY 256M Bit (16Mx16) Nand Flash / 64M Bit (4Mx16) Burst UtRAM

Revision History

Revision No. History Draft Date Remark

0.0 Initial Draft

- 256Mb NAND C-Die_Ver 2.6 - 64Mb UtRAM B-Die(Burst)_Ver 0.4

0.1 Revised November 19, 2003 Preliminary

J.1 Revised <UtRAM>

- Deleted PAR support in 64Mb UtRAM
- Changed IsB1 from $150\mu A$ into $180\mu A$
- Changed ISBD from 20µA into 25µA
- Changed tCSLH in SYNCHRONOUS AC CHARACTER-ISTICS from 5ns into 10ns

<NAND Flash>

- Changed NVB(Valid Block Number)from 2013(Min) Blocks to 2018(Min) Blocks
- Changed tWC from 45(min)ns to 50(min)ns

Note : For more detailed features and specifications including FAQ, please refer to Samsung's web site. http://samsungelectronics.com/semiconductors/products/products_index.html

The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have any questions, please contact the SAMSUNG branch office near you.

Multi-Chip Package MEMORY 256M Bit (16Mx16) Nand Flash / 64M Bit (4Mx16) Burst UtRAM

FEATURES

<Common>

• Operating Temperature : -25°C ~ 85°C

 Package: 111-ball FBGA Type - 10x11mm, 0.8mm pitch, 1.4mm (Max.) Thickness

<NAND>

Power Supply Voltage: 1.7~1.95V

• Organization

- Memory Cell Array: (16M + 512K)bit x16bit

Data Register: (256 + 8)bit x16bit
Automatic Program and Erase

- Page Program : (256 + 8)Word - Block Erase : (8K + 256)Word

• Page Read Operation

- Page Size : (256 + 8)Word

- Random Access : 10µs(Max.)

- Serial Page Access : 50ns(Min.)

• Fast Write Cycle Time

- Program time : 200µs(Typ.)

- Block Erase Time: 2ms(Typ.)

• Command/Address/Data Multiplexed I/O Port

• Hardware Data Protection

- Program/Erase Lockout During Power Transitions

• Reliable CMOS Floating-Gate Technology

- Endurance : 100K Program/Erase Cycles

- Data Retention : 10 Years

• Command Register Operation

• Intelligent Copy-Back

• Unique ID for Copyright Protection

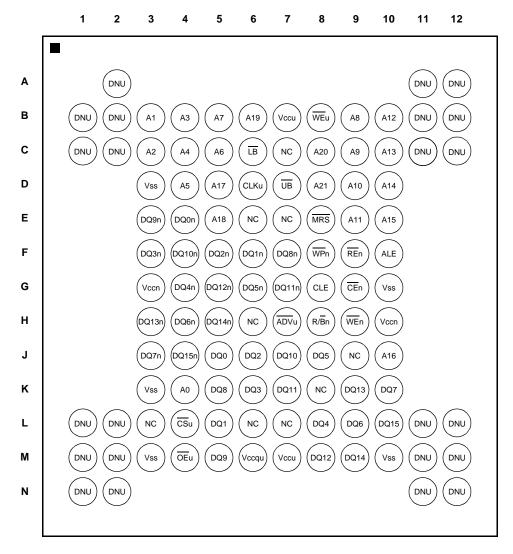
<UtRAM>

- Process Technology: CMOS
- Organization: 4M x16 bit
- Power Supply Voltage: Vcc 2.7~3.1V / Vccq 1.7~2.0V
- Three State Outputs
- Compatible with Low Power SRAM
- Supports MRS (Mode Register Set)
- Supports Asynchronous Read/Write Operation in Asynchronousmode
- Supports Synchronous Burst Read and Asynchronous Write Operation in Synchronous mode
- Synchronous Burst Read Operation
- Supports 4 word / 8 word / 16 word Burst Read mode
- Supports Linear Burst type & Interleave Burst type
- Latency support : 3, 4, 5, 6 (depends on clock frequency)
- Max. Burst Clock Frequency: 54MHz

GENERAL DESCRIPTION

The K5Q5764G0M is a Multi Chip Package Memory which combines 256Mbit Nand Flash Memory, 64Mbit Unit Transistor CMOS RAM.

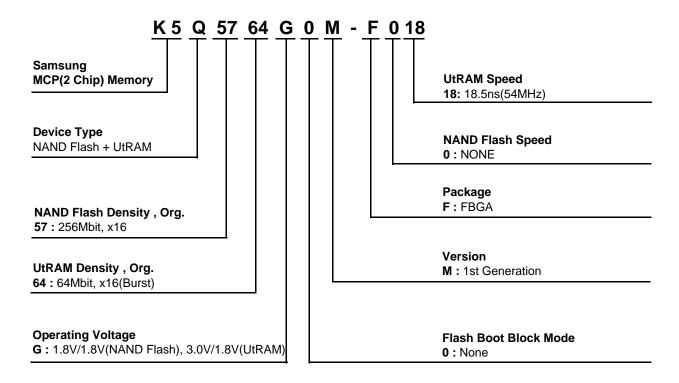
256Mbit NAND Flash memory is organized as 16M x16 bits and 64Mbit UtRAM is organized as 4M x16 bits.


In 256Mbit NAND Flash, a 264-word page program can be typically achieved within 200us and an 8K-word block erase can be typically achieved within 2ms. In serial read operation, a word can be read by 50ns. DQ pins serve as the ports for address and data input/output as well as command inputs. Even the write-intensive systems can take advantage of FLASH's extended reliability of 100K program/erase cycles with real time mapping-out algorithm. These algorithms have been implemented in many mass storage applications.

In 64Mb burst UtRAM, the device supports DPD(Deep Power Down) mode for power saving. DPD mode is controlled by MRS pin. The device supports MRS(Mode Register Set) and synchronous burst read mode.

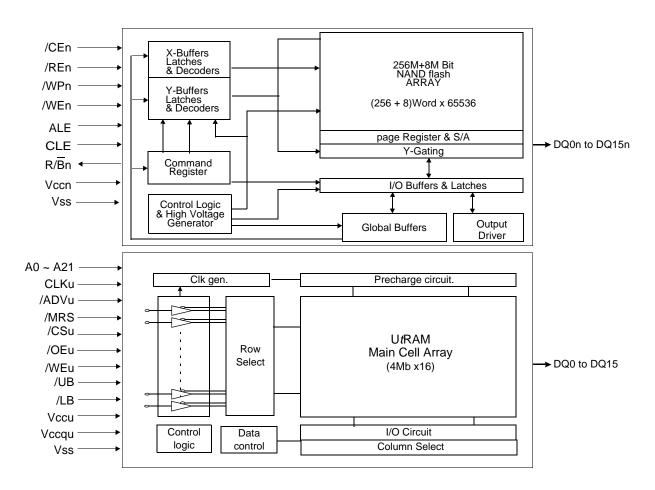
The K5Q5764G0M is suitable for use in data memory of mobile communication system to reduce not only mount area but also power consumption. This device is available in 111-ball FBGA Type.

PIN CONFIGURATION



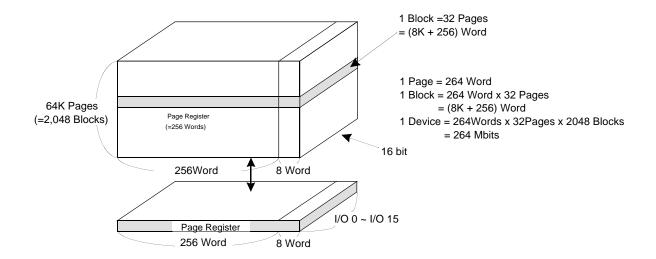
111-FBGA: Top View (Ball Down)

PIN DESCRIPTION


Ball Name	Description	Ball Name	Description
A ₀ to A ₂₁	Address Input Balls (UtRAM)	R/Bn	Ready/Busy (Flash Memory)
DQ0n to DQ15n	Data Input/Output Balls (Flash Memory)	MRS	Mode Register Set (UtRAM)
DQ0 to DQ15	Data Input/Output Balls (UtRAM)	CEn	Chip Enable (Flash Memory)
WPn	Write Protection (Flash Memory)	CS u	Chip Select (UtRAM)
Vccn	Power Supply (Flash Memory)	CLKu	Clock (UtRAM)
Vccu	Power Supply (UtRAM)	ADVu	Address Input Valid (UtRAM)
Vccqu	Data Out Power (UtRAM)	WEn	Write Enable (Flash Memory)
Vss	Ground (Common)	WEu	Write Enable (UtRAM)
UB	Upper Byte Enable (UtRAM)	OE u	Output Enable (UtRAM)
LB	Lower Byte Enable (UtRAM)	REn	Read Enable (Flash Memory)
ALE	Address Latch Enable (Flash Memory)	NC	No Connection
CLE	Command Latch Enable (Flash Memory)	DNU	Do Not Use

ORDERING INFORMATION

FUNCTIONAL BLOCK DIAGRAM



256Mb(16M x 16) NAND Flash C-Die

Figure 1. NAND Flash ARRAY ORGANIZATION

	I/O 0	I/O 1	I/O 2	I/O 3	I/O 4	I/O 5	I/O 6	I/O 7	I/O8 to 15
1st Cycle	Ao	A1	A ₂	Аз	A4	A 5	A ₆	A7	L*
2nd Cycle	A 9	A10	A11	A12	A13	A14	A15	A16	L*
3rd Cycle	A17	A18	A 19	A20	A21	A22	A23	A24	L*

Column Address Row Address (Page Address)

NOTE: Column Address: Starting Address of the Register.

^{*} L must be set to "Low".

PRODUCT INTRODUCTION

The NAND Flash is a 264Mbit(276,824,064 bit) memory organized as 131,072 rows(pages) by 264 columns. Spare eight columns are located from column address of 256~263. A 264-word data register is connected to memory cell arrays accommodating data transfer between the I/O buffers and memory during page read and page program operations. The memory array is made up of 16 cells that are serially connected to form a NAND structure. Each of the 16 cells resides in a different page. A block consists of two NAND structured strings. A NAND structure consists of 16 cells. Total 135168 NAND cells reside in a block. The array organization is shown in Figure 1. The program and read operations are executed on a page basis, while the erase operation is executed on a block basis. The memory array consists of 4096 separately erasable 8K-Word blocks. It indicates that the bit by bit erase operation is prohibited on the NAND Flash.

The NAND Flash has addresses multiplexed into lower 8 IO's. The NAND Flash allows sixteen bit wide data transport into and out of page registers. This scheme dramatically reduces pin counts while providing high performance and allows systems upgrades to future densities by maintaining consistency in system board design. Command, address and data are all written through IO's by bringing WE to low while CEn is low. Data is latched on the rising edge of WE. Command Latch Enable(CLE) and Address Latch Enable(ALE) are used to multiplex command and address respectively, via the IO pins. Some commands require one bus cycle. For example, Reset command, Read command, Status Read command, etc require just one cycle bus. Some other commands like Page Program and Copy-back Program and Block Erase, require two cycles: one cycle for setup and the other cycle for execution. The 32M-word physical space requires 25 addresses, thereby requiring four cycles for word-level addressing: column address, low row address and high row address, in that order. Page Read and Page Program need the same four address cycles following the required command input. In Block Erase operation, however, only the three row address cycles are used. Device operations are selected by writing specific commands into the command register. Table 1 defines the specific commands of the NAND Flash.

Table 1. COMMAND SET

Function	1st. Cycle	2nd. Cycle	Acceptable Command during Busy
Read 1	00h	-	
Read 2	50h	-	
Read ID	90h	-	
Reset	FFh	-	0
Page Program	80h	10h	
Copy-Back Program	00h	8Ah	
Block Erase	60h	D0h	
Read Status	70h	-	0

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
	VIN/OUT	-0.6 to + 2.45	
Voltage on any pin relative to Vss	Vcc	-0.2 to + 2.45	V
	Vccq	-0.2 to + 2.45	
Temperature Under Bias	TBIAS	-40 to +125	°C
Storage Temperature	Тѕтс	-65 to +150	°C
Short Circuit Current	los	5	mA

NOTE:

- 1. Minimum DC voltage is -0.6V on input/output pins. During transitions, this level may undershoot to -2.0V for periods <30ns. Maximum DC voltage on input/output pins is Vcc,+0.3V which, during transitions, may overshoot to Vcc+2.0V for periods <20ns.
- 2. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltage reference to GND, Ta=-25 to 85°C)

Parameter	Symbol	Min	Тур.	Max	Unit
Supply Voltage	Vcc	1.7	1.8	1.95	V
Supply Voltage	Vccq	1.7	1.8	1.95	V
Supply Voltage	Vss	0	0	0	V

DC AND OPERATING CHARACTERISTICS (Recommended operating conditions otherwise noted.)

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit		
Operating	Sequential Read Ico		tRC=50ns, CE=VIL IOUT=0mA	-	8	15			
Current	Program	Icc2	-	-	8	15	mA		
	Erase	Icc3	-	-	8	15			
Stand-by C	urrent(TTL)	IsB1	CE=ViH, WP=0V/Vcc	-	-	1			
Stand-by C	urrent(CMOS)	IsB2	CE=Vcc-0.2, WP=0V/Vcc	-	10	50			
Input Leakage Current		ILI	VIN=0 to Vcc(max)	-	-	±10	μА		
Output Leakage Current		llo	Vout=0 to Vcc(max)			±10			
Lancet I Park V					I/O pins	Vccq-0.4	-	Vccq +0.3	
Input High \	voltage	ViH	Except I/O pins	Vcc-0.4	-	Vcc +0.3	V		
Input Low V	oltage, All inputs	VIL	-	-0.3	-	0.4			
Output High Voltage Level		h Voltage Level Voн Ioн=-100μA		VccQ-0.1	-	-			
Output Low Voltage Level		Vol	IoL=100uA	-	-	0.1			
Output Low	Current(R/B)	IoL(R/B)	VoL=0.1V	3	4	-	mA		

NOTE: VIL can undershoot to -0.4V and VIH can overshoot to VCC +0.4V for durations of 20 ns or less.

VALID BLOCK

Parameter	Symbol	Min	Тур.	Max	Unit
Valid Block Number	N∨B	2018	-	2048	Blocks

NOTE:

- 1. The NAND Flash may include invalid blocks when first shipped. Additional invalid blocks may develop while being used. The number of valid blocks is presented with both cases of invalid blocks considered. Invalid blocks are defined as blocks that contain one or more bad bits. Do not erase or program factory-marked bad blocks. Refer to the attached technical notes for a appropriate management of invalid blocks.
- 2. The 1st block, which is placed on 00h block address, is guaranteed to be a valid block, does not require Error Correction up to 1K Program/Erase cycles.
- 3. Minimum 1004 valid blocks are guaranteed for each contiguous 128Mb memory space.

AC TEST CONDITION

(Vcc=1.7V~1.95V, TA=-25 to 85°C unless otherwise noted)

	-
Parameter	Value
Input Pulse Levels	0V to VccQ
Input Rise and Fall Times	5ns
Input and Output Timing Levels	VccQ/2
Output Load (VccQ:1.8V +/-10%)	1 TTL GATE and CL=30pF

CAPACITANCE(TA=25°C, VCC=1.8V, f=1.0MHz)

Item	Symbol	Test Condition	Min	Max	Unit
Input/Output Capacitance	Cı/o	VIL=0V	-	10	pF
Input Capacitance	CIN	VIN=0V	-	10	pF

NOTE: Capacitance is periodically sampled and not 100% tested.

MODE SELECTION

CLE	ALE	CE	WE	RE	WP	Mode		
Н	L	L	F	Н	Х	Read Mode	Command Input	
L	Н	L	F	Н	Х	inead Mode	Address Input(4clock)	
Н	L	L		Н	Н	Write Mode	Command Input	
L	Н	L	F	Н	Н	ville Mode	Address Input(4clock)	
L	L	L	F	Н	Н	Data Input		
L	L	L	Н	T	Х	Data Output		
L	L	Х	Н	Н	Х	During Read(Busy	y)	
Х	Х	Х	Х	Х	Н	During Program(E	Busy)	
Х	Х	Х	Х	Х	Н	During Erase(Busy)		
Х	X ⁽¹⁾	Х	Х	Х	L	Write Protect		
Х	Х	Н	Х	Х	0V/Vcc ⁽²⁾	Stand-by		

NOTE

- 1. X can be VIL or VIH.
- 2. WP should be biased to CMOS high or CMOS low for standby.

Program/Erase Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	
Program Time	tprog	-	200	500	μs	
Number of Partial Program Cycles	Main Array	Nop	-	-	2	cycles
in the Same Page	Spare Array	нор	-	-	3	cycles
Block Erase Time		tBERS	-	2	3	ms

AC Timing Characteristics for Command / Address / Data Input

Parameter	Symbol	Min	Max	Unit
CLE Set-up Time	tcls	0	-	ns
CLE Hold Time	tclh	10	-	ns
CE Setup Time	tcs	0		ns
CE Hold Time	tсн	10	-	ns
WE Pulse Width	twp	25 (1)	-	ns
ALE Setup Time	tals	0	-	ns
ALE Hold Time	talh	10	-	ns
Data Setup Time	tos	20	-	ns
Data Hold Time	tDH	10	-	ns
Write Cycle Time	twc	50	-	ns
WE High Hold Time	twn	15	-	ns

NOTE:

AC Characteristics for Operation

Parameter	Symbol	Min	Max	Uni
Data Transfer from Cell to Register	tr	-	10	μs
ALE to RE Delay	tar	10	-	ns
CLE to RE Delay	tclr	10	-	ns
Ready to RE Low	trr	20	-	ns
RE Pulse Width	trp	25	-	ns
WE High to Busy	twB	-	100	ns
Read Cycle Time	trc	50	-	ns
CE Access Time	tcea	-	45	ns
RE Access Time	trea	-	35	ns
RE High to Output Hi-Z	trhz	-	30	ns
CE High to Output Hi-Z	tcHz	-	20	ns
RE or CE High to Output hold	toн	15	-	ns
RE High Hold Time	treh	15	-	ns
Output Hi-Z to RE Low	tır	0	-	ns
WE High to RE Low	twhr	60	-	ns
Device Resetting Time(Read/Program/Erase)	trst	-	5/10/500(1)	μs

NOTE :
1. If reset command(FFh) is written at Ready state, the device goes into Busy for maximum 5us.

^{1.} If tCS is set less than 10ns, tWP must be minimum 35ns, otherwise, tWP may be minimum 25ns.

NAND Flash Technical Notes

Invalid Block(s)

Invalid blocks are defined as blocks that contain one or more invalid bits whose reliability is not guaranteed by Samsung. The information regarding the invalid block(s) is so called as the invalid block information. Devices with invalid block(s) have the same quality level as devices with all valid blocks and have the same AC and DC characteristics. An invalid block(s) does not affect the performance of valid block(s) because it is isolated from the bit line and the common source line by a select transistor. The system design must be able to mask out the invalid block(s) via address mapping. The 1st block, which is placed on 00h block address, is fully guaranteed to be a valid block, does not require Error Correction.

Identifying Invalid Block(s)

All device locations are erased(FFF) except locations where the invalid block(s) information is written prior to shipping. The invalid block(s) status is defined by the 1st word in the spare area. Samsung makes sure that either the 1st or 2nd page sof every invalid block has non-FFFFh data at the column address of 256 and 261. Since the invalid block information is also erasable in most cases, it is impossible to recover the information once it has been erased. Therefore, the system must be able to recognize the invalid block(s) based on the original invalid block information and create the invalid block table via the following suggested flow chart(Figure 2). Any intentional erasure of the original invalid block information is prohibited.

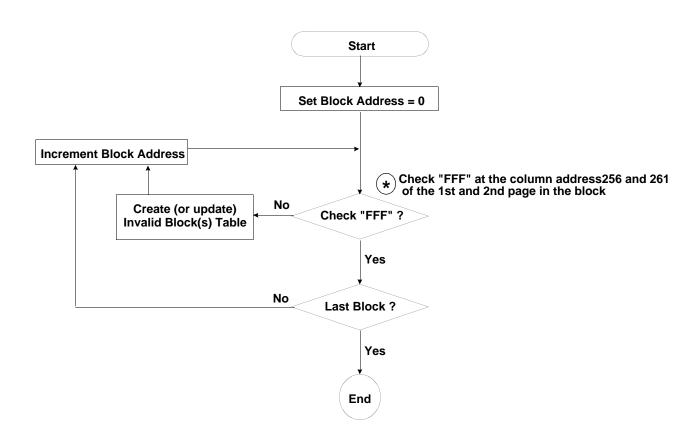
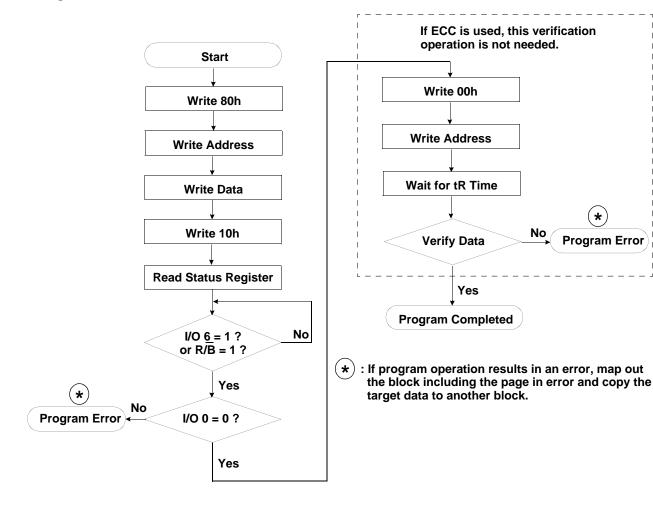


Figure 2. Flow chart to create invalid block table.

NAND Flash Technical Notes (Continued)

Error in write or read operation

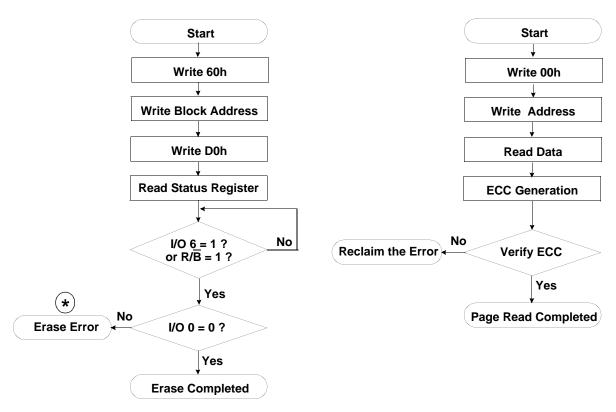

Within its life time, the additional invalid blocks may develop with NAND Flash memory. Refer to the qualification report for the actual data. The following possible failure modes should be considered to implement a highly reliable system. In the case of status read failure after erase or program, block replacement should be done. Because program status fail during a page program does not affect the data of the other pages in the same block, block replacement can be executed with a page-sized buffer by finding an erased empty block and reprogramming the current target data and copying the rest of the replaced block. To improve the efficiency of memory space, it is recommended that the read or verification failure due to single bit error be reclaimed by ECC without any block replacement. The said additional block failure rate does not include those reclaimed blocks.

	Failure Mode	Detection and Countermeasure sequence
	Erase Failure	Status Read after Erase> Block Replacement
Write	Program Failure	Status Read after Program> Block Replacement Read back (Verify after Program)> Block Replacement or ECC Correction
Read	Single Bit Failure	Verify ECC -> ECC Correction

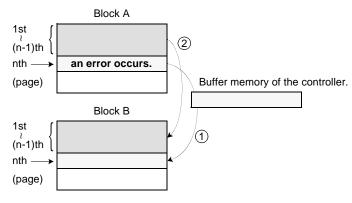
ECC : Error Correcting Code --> Hamming Code etc.

Example) 1bit correction & 2bit detection

Program Flow Chart



NAND Flash Technical Notes (Continued)


Erase Flow Chart

Read Flow Chart

(*): If erase operation results in an error, map out the failing block and replace it with another block.

Block Replacement

^{*} Step1

When an error happens in the nth page of the Block 'A' during erase or program operation.

Copy the nth page data of the Block 'A' in the buffer memory to the nth page of another free block. (Block 'B')

Then, copy the data in the 1st \sim (n-1)th page to the same location of the Block 'B'.

Do not further erase Block 'A' by creating an 'invalid Block' table or other appropriate scheme.

^{*} Step2

^{*} Step3

^{*} Step4

Pointer Operation

Samsung NAND Flash has two address pointer commands as a substitute for the most significant column address. '00h' command sets the pointer to 'A' area(0~255word), and '50h' command sets the pointer to 'B' area(256~263word). With these commands, the starting column address can be set to any of a whole page(0~263word). '00h' or '50h' is sustained until another address pointer command is inputted. To program data starting from 'A' or 'B' area, '00h' or '50h' command must be inputted before '80h' command is written. A complete read operation prior to '80h' command is not necessary.

Table 2. Destination of the pointer

Command	Pointer position	Area
00h	0 ~ 255 word	main array(A)
50h	256 ~ 263 word	spare array(B)

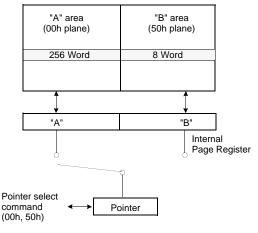
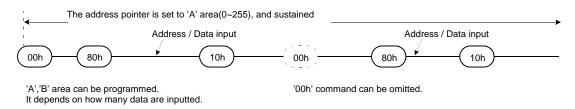
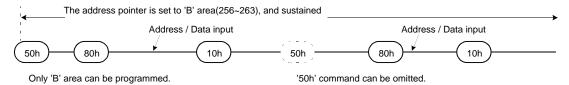
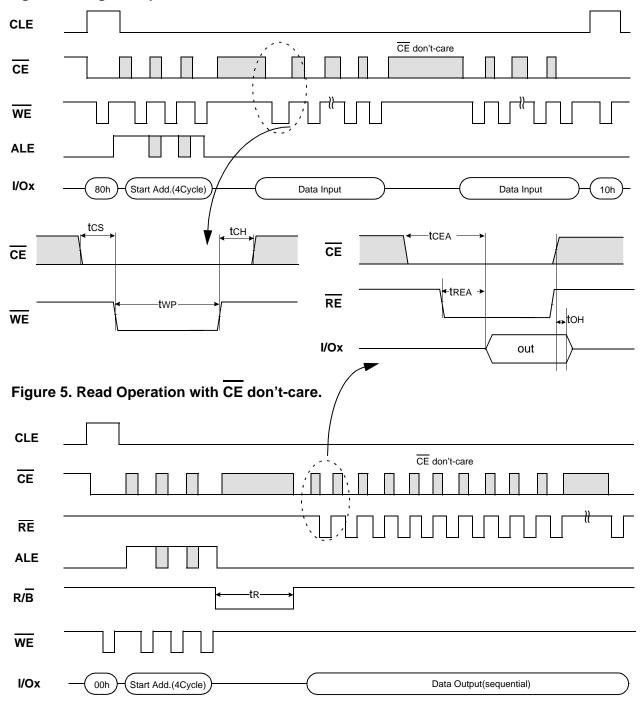




Figure 3. Block Diagram of Pointer Operation

(1) Command input sequence for programming 'A' area


(2) Command input sequence for programming 'B' area

System Interface Using $\overline{\text{CE}}$ don't-care.

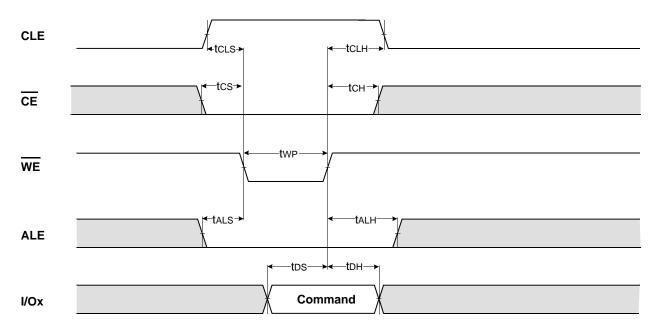
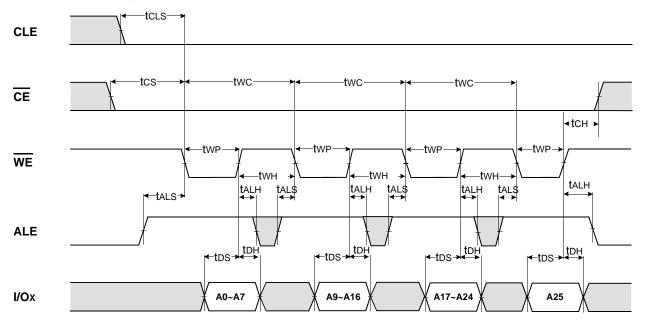
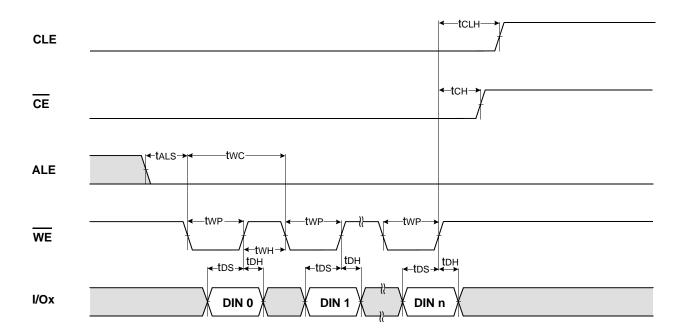
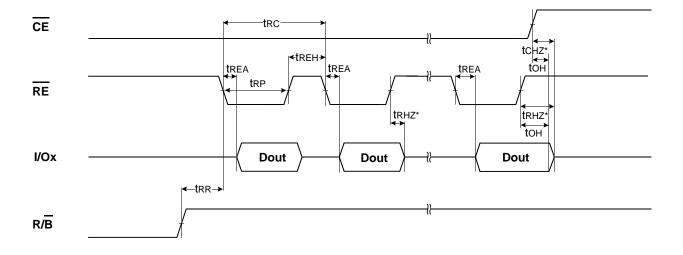

For an easier system interface, $\overline{\text{CE}}$ may be inactive during the data-loading or sequential data-reading as shown below. The internal 264word page registers are utilized as seperate buffers for this operation and the system design gets more flexible. In addition, for voice or audio applications which use slow cycle time on the order of u-seconds, de-activating $\overline{\text{CE}}$ during the data-loading and reading would provide significant savings in power consumption.

Figure 4. Program Operation with CE don't-care.

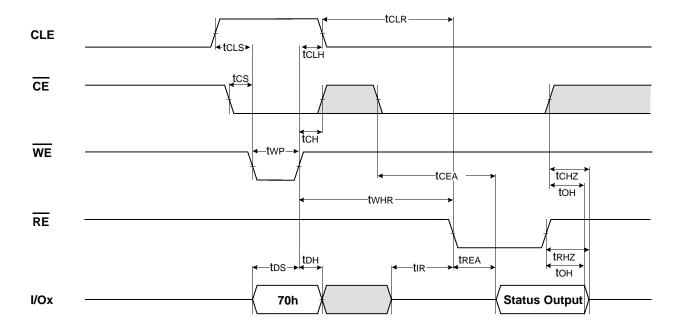



Command Latch Cycle

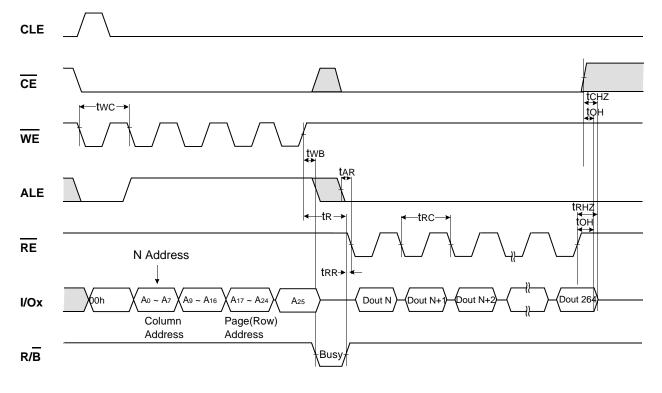

Address Latch Cycle

Input Data Latch Cycle

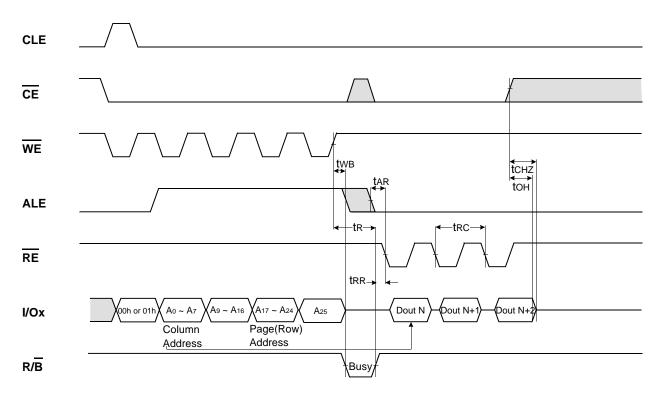
Sequential Out Cycle after Read(CLE=L, WE=H, ALE=L)

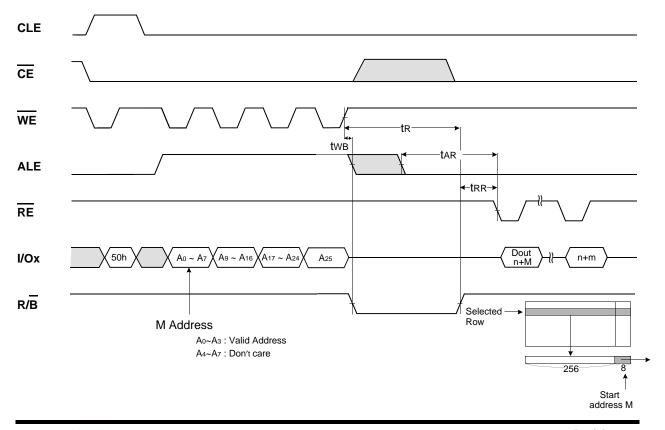


NOTES:

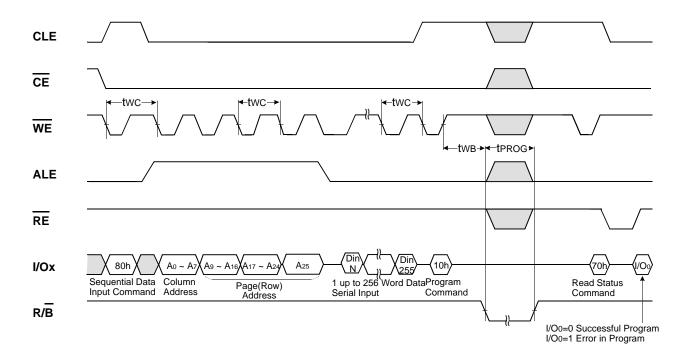

- 1.Transition is measured $\pm 200 \text{mV}$ from steady state voltage with load.
- 2. This parameter is sampled and not 100% tested.

Status Read Cycle

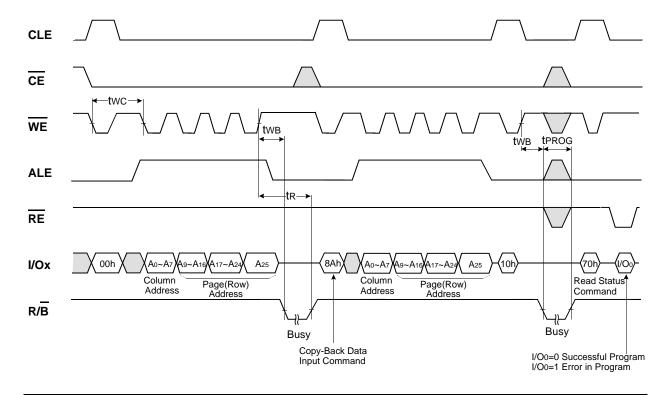

READ1 OPERATION(READ ONE PAGE)


X16 device : m = 264 , Read CMD = 00h

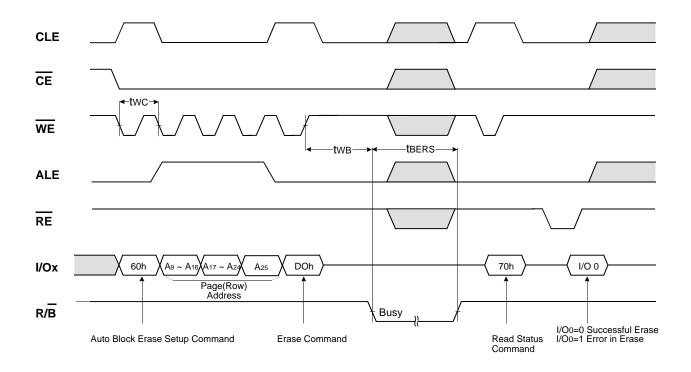
READ1 OPERATION (INTERCEPTED BY $\overline{\text{CE}}$)



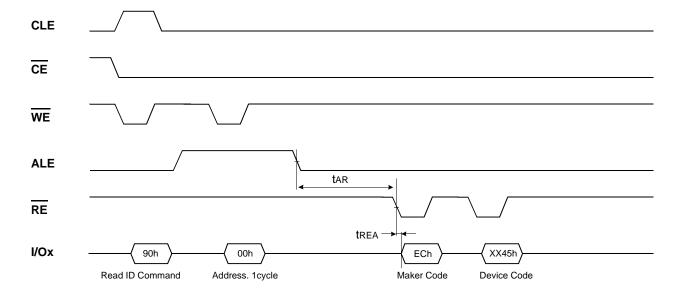
READ2 OPERATION (READ ONE PAGE)



PAGE PROGRAM OPERATION



COPY-BACK PROGRAM OPERATION



BLOCK ERASE OPERATION (ERASE ONE BLOCK)

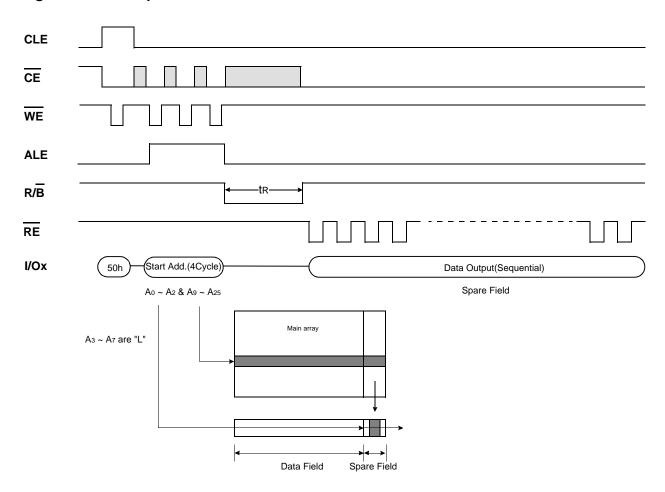
MANUFACTURE & DEVICE ID READ OPERATION

DEVICE OPERATION PAGE READ

Upon initial device power up, the device defaults to Read1 mode. This operation is also initiated by writing 00h to the command register along with three address cycles. Once the command is latched, it does not need to be written for the following page read operation. Two types of operations are available: random read, serial page read.

The random read mode is enabled when the page address is changed. The 264 words of data within the selected page are transferred to the data registers in less than $10\mu s(tR)$. The system controller can detect the completion of this data transfer(tR) by analyzing the output of R/B pin. Once the data in a page is loaded into the registers, they may be read out in 50ns cycle time by sequentially pulsing RE. High to low transitions of the RE clock output the data starting from the selected column address up to the last column address[column 255 /263 depending on the state of GND input pin].

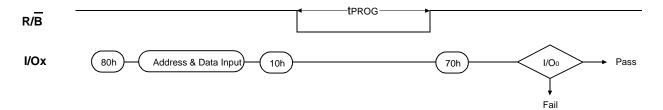
The way the Read1 and Read2 commands work is like a pointer set to either the main area or the spare area. The spare area of 256~263 words may be selectively accessed by writing the Read2 command with GND input pin low. Addresses Ao-A2 set the starting address of the spare area while addresses A3-A7 must be "L". The Read1 command is needed to move the pointer back to the main area. Figures 6, 7 show typical sequence and timings for each read operation.


Figure 6. Read1 Operation CLE WE ALE R/B RE VOX Ooh Start Add.(4Cycle) Ao - A7 & A9 - A25 (00h Command) Main array Main array

Spare Field

Data Field

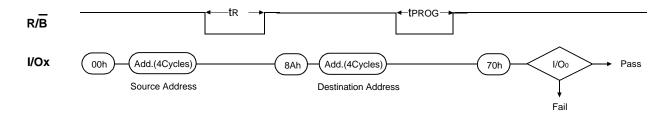
Figure 7. Read2 Operation



PAGE PROGRAM

The device is programmed basically on a page basis, but it does allow multiple partial page programing of a word or consecutive words up to 264, in a single page program cycle. The number of consecutive partial page programming operation within the same page without an intervening erase operation should not exceed 2 for main array and 3 for spare array. The addressing may be done in any random order in a block. A page program cycle consists of a serial data loading period in which up to 264 words of data maybe loaded into the page register, followed by a non-volatile programming period where the loaded data is programmed into the appropriate cell. About the pointer operation, please refer to the attached technical notes.

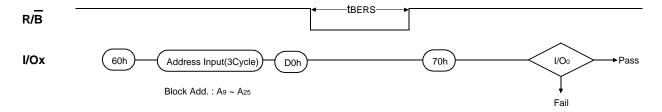
The serial data loading period begins by inputting the Serial Data Input command(80h), followed by the three cycle address input and then serial data loading. The words other than those to be programmed do not need to be loaded. The Page Program confirm command(10h) initiates the programming process. Writing 10h alone without previously entering the serial data will not initiate the programming process. The internal write controller automatically executes the algorithms and timings necessary for program and verify, thereby freeing the system controller for other tasks. Once the program process starts, the Read Status Register command may be entered, with RE and CE low, to read the status register. The system controller can detect the completion of a program cycle by monitoring the R/B output, or the Status bit(I/O 6) of the Status Register. Only the Read Status command and Reset command are valid while programming is in progress. When the Page Program is complete, the Write Status Bit(I/O 0) may be checked(Figure 8). The internal write verify detects only errors for "1"s that are not successfully programmed to "0"s. The command register remains in Read Status command mode until another valid command is written to the command register.


Figure 8. Program Operation

COPY-BACK PROGRAM

The copy-back program is configured to quickly and efficiently rewrite data stored in one page within the array to another page within the same array without utilizing an external memory. Since the time-consuming sequently-reading and its re-loading cycles are removed, the system performance is improved. The benefit is especially obvious when a portion of a block is updated and the rest of the block also need to be copied to the newly assigned free block. The operation for performing a copy-back is a sequential execution of page-read without burst-reading cycle and copying-program with the address of destination page. A normal read operation with "00h" command with the address of the source page moves the whole 264words data into the internal buffer. As soon as the Flash returns to Ready state, copy-back programming command "8Ah" may be given with three address cycles of target page followed. The data stored in the internal buffer is then programmed directly into the memory cells of the destination page. Once the Copy-Back Program is finished, any additional partial page programming into the copied pages is prohibited before erase. Since the memory array is internally partitioned into two different planes, copy-back program is allowed only within the same memory plane. Thus, A14 and A25, the plane address, of source and destination page address must be the same.

Figure 9. Copy-Back Program Operation



BLOCK ERASE

The Erase operation is done on a block basis. Block address loading is accomplished in three cycles initiated by an Erase Setup command(60h). Only address A14 to A25 is valid while A9 to A13 is ignored. The Erase Confirm command(D0h) following the block address loading initiates the internal erasing process. This two-step sequence of setup followed by execution command ensures that memory contents are not accidentally erased due to external noise conditions.

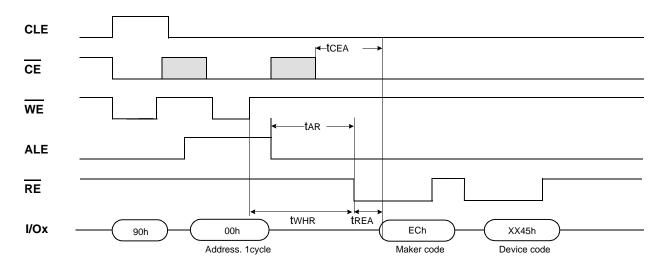
At the rising edge of $\overline{\text{WE}}$ after the erase confirm command input, the internal write controller handles erase and erase-verify. When the erase operation is completed, the Write Status Bit(I/O 0) may be checked. Figure 10 details the sequence.

Figure 10. Block Erase Operation

READ STATUS

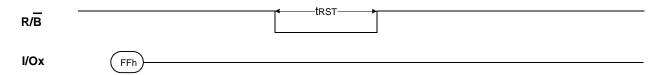
The device contains a Status Register which may be read to find out whether program or erase operation is completed, and whether the program or erase operation is completed successfully. After writing 70h command to the command register, a read cycle outputs the content of the Status Register to the I/O pins on the falling edge of \overline{CE} or \overline{RE} , whichever occurs last. This two line control allows the system to poll the progress of each device in multiple memory connections even when R/\overline{B} pins are common-wired. \overline{RE} or \overline{CE} does not need to be toggled for updated status. Refer to table 3 for specific Status Register definitions. The command register remains in Status Read mode until further commands are issued to it. Therefore, if the status register is read during a random read cycle, a read command(00h or 50h) should be given before sequential page read cycle.

Table 3. Read Status Register Definition


I/O #	Status	Definition		
I/O 0	Program / Erase	"0" : Successful Program / Erase		
1/0 0	1 Togram / Erase	"1" : Error in Program / Erase		
I/O 1		"0"		
I/O 2	5 1/ 5	"0"		
I/O 3	Reserved for Future Use	"0"		
I/O 4		"0"		
I/O 5		"0"		
I/O 6	Device Operation	"0" : Busy "1" : Ready		
1/0 7	Write Protect	"0" : Protected "1" : Not Protected		
I/O 8~15	Not use	Don't care		

READ ID

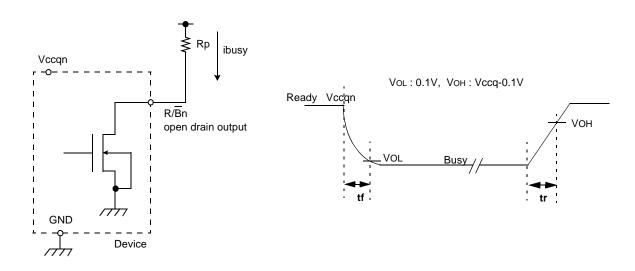
The device contains a product identification mode, initiated by writing 90h to the command register, followed by an address input of 00h. Two read cycles sequentially output the manufacture code(ECh), and the device code respectively. The command register remains in Read ID mode until further commands are issued to it. Figure 11 shows the operation sequence.

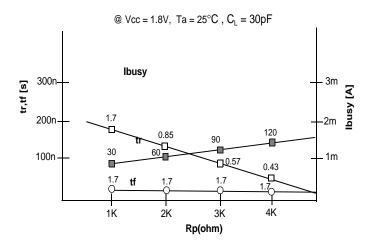

Figure 11. Read ID Operation

RESET

The device offers a reset feature, executed by writing FFh to the command register. When the device is in Busy state during random read, program or erase mode, the reset operation will abort these operations. The contents of memory cells being altered are no longer valid, as the data will be partially programmed or erased. The command register is cleared to wait for the next command, and the Status Register is cleared to value C0h when \overline{WP} is high. Refer to table 4 for device status after_reset operation. If the device is already in reset state a new reset command will not be accepted by the command register. The R/B pin transitions to low for tRST after the Reset command is written. Refer to Figure 12 below.

Figure 12. RESET Operation


Table4. Device Status


	After Power-up	After Reset
Operation Mode	Read 1	Waiting for next command

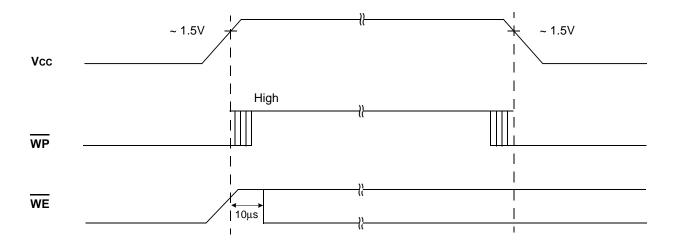
READY/BUSY

The device has a R/B output that provides a hardware method of indicating the completion of a page program, erase and random read completion. The R/B pin is normally high but transitions to low after program or erase command is written to the command register or random read is started after address loading. It returns to high when the internal controller has finished the operation. The pin is an open-drain driver thereby allowing two or more R/B outputs to be Or-tied. Because pull-up resistor value is related to tr(R/B) and current drain during busy(ibusy) , an appropriate value can be obtained with the following reference chart. Its value can be determined by the following guidance.

Rp value guidance

$$Rp(min, 1.8V part) = \frac{Vccq(Max.) - VoL(Max.)}{IoL + \Sigma IL} = \frac{1.9V}{3mA + \Sigma IL}$$

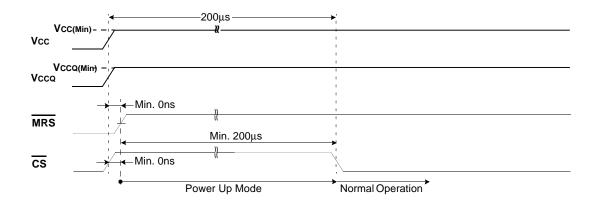
where IL is the sum of the input currents of all devices tied to the R/\overline{B} pin.


Rp(max) is determined by maximum permissible limit of tr

Data Protection & Power up sequence

The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector disables all functions whenever Vcc is below about 1.1V. WP pin provides hardware protection and is recommended to be kept at VIL during power-up and power-down and recovery time of minimum 10µs is required before internal circuit gets ready for any command sequences as shown in Figure 13. The two step command sequence for program/erase provides additional software protection.

Figure 13. AC Waveforms for Power Transition


64Mb(4M x 16) Burst UtRAM B-Die

POWER UP SEQUENCE

- 1. Apply power.
- 2. Maintain stable power(Vcc min.=2.7V) for a minimum 200 μ s with \overline{CS} and \overline{MRS} high.

TIMING WAVEFORM OF POWER UP

(POWER UP)

1. After Vcc reaches Vcc(Min.), wait 200 μ s with \overline{CS} and \overline{MRS} high. Then the device gets into the normal operation.

FUNCTIONAL DESCRIPTION for ASYNCHRONOUS MODE(A15=0)

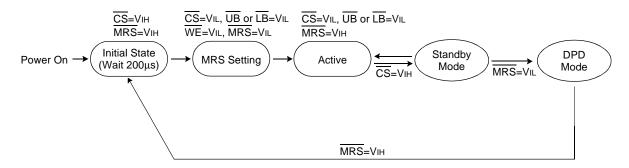
cs	MRS	OE	WE	LB	UB	I/O _{0~7}	I/O8~15 Mode		Power
Н	Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
Н	L	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	DPD or PAR
L	Н	Н	Н	X1)	X1)	High-Z	High-Z	Output Disabled	Active
L	Н	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Output Disabled	Active
L	Н	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	Н	L	Н	L	L	Dout	Dout	Word Read	Active
L	Н	Н	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	Н	Н	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	Н	Н	L	L	L	Din	Din Din Word Write		Active
L	L	Н	L	X ¹⁾	X ¹⁾	High-Z	High-Z	Mode Register Set	Active

^{1.} X must be low or high state.

FUNCTIONAL DESCRIPTION for SYNCHRONOUS MODE(A15=1)

cs	MRS	OE	WE	LB	UB	I/O _{0~7}	I/O8~15	CLK	ADV	Mode	Power
Н	Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	X ²⁾	X ²⁾	Deselected	Standby
Н	L	X1)	X ¹⁾	X1)	X1)	High-Z	High-Z	X ²⁾	X ²⁾	Deselected	DPD or PAR
L	Н	Н	Н	X ¹⁾	X ¹⁾	High-Z	High-Z	X ²⁾	Н	Output Disabled	Active
L	Н	X1)	X ¹⁾	Н	Н	High-Z	High-Z	X ²⁾	Н	Output Disabled	Active
L	Н	X1)	Н	X ¹⁾	X1)	High-Z	High-Z	5	7	Read Add. Input Load	Active
L	Н	L	Н	L	Н	Dout	High-Z		Н	Lower Byte Read	Active
L	Н	L	Н	Н	L	High-Z	Dout		Н	Upper Byte Read	Active
L	Н	L	Н	L	L	Dout	Dout		Н	Word Read	Active
L	Н	Н	L	L	Н	Din	High-Z	X ²⁾	Lor <u></u>	Lower Byte Write	Active
L	Н	Н	L	Н	L	High-Z	Din	X ²⁾	Lor□□	Upper Byte Write	Active
L	Н	Н	L	L	L	Din	Din	X ²⁾	Lor∐	Word Write	Active
L	L	Н	L	X ¹⁾	X ¹⁾	High-Z	High-Z	X ²⁾	L	Mode Register Set	Active

^{2.} In asynchronous mode, Clock and ADV are ignored.


X must be low or high state.
 X means "Don't care"(can be low, high or toggling).

ABSOLUTE MAXIMUM RATINGS1)

Item	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-0.2 to Vcc+0.3V	V
Power supply voltage relative to Vss	Vcc	-0.2 to 3.6V	V
Output power supply voltage relative to Vss	Vccq	-0.2 to 2.5V	V
Power Dissipation	Pb	1.0	W
Storage temperature	Тѕтс	-65 to 150	°C
Operating Temperature	TA	-25 to 85	°C

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to be used under recommended operating condition. Exposure to absolute maximum rating conditions longer than 1 second may affect reliability.

STANDBY MODE STATE MACHINES

NOTE: Default mode after power up is Asynchronous mode and DPD enable. But this default mode is not 100% guaranteed so MRS setting sequence is highly recommended after power up or after getting out of DPD mode.

If Synchronous operation is needed, set A15=1. For more detail, please refer to the Mode Register Set(See Page 35). Once the device gets out of DPD mode, all the register settings are initialized into the default mode.

For entry to DPD mode, drive \overline{MRS} pin into VIL for over $0.5\underline{us}(\underline{sus})$ period) during standby mode after MRS setting has been completed(A4=0). To get out of the DPD mode, drive \overline{MRS} pin into VIH with wake up sequence(See Page 50).

DPD mode can be selected through Mode Register Set(See Page 35).

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Min	Тур	Max	Unit
Power supply voltage	Vcc	2.7	2.9	3.1	V
I/O power supply voltage	Vccq	1.7	1.85	2.0	V
Ground	Vss	0	0	0	V
Input high voltage	Vih	1.5	-	VDDQ+0.2 ²⁾	V
Input low voltage	VIL	-0.2 ³⁾	-	0.4	V

^{1.} T_A=-25 to 85°C, otherwise specified.

CAPACITANCE¹⁾(f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Cio	Vio=0V	=	10	pF

^{1.} Capacitance is sampled, not 100% tested.

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Input leakage current	ILI	VIN=Vss to VCCQ	-1	-	1	μΑ
Output leakage current	llo	CS=VIH, MRS=VIH, OE=VIH or WE=VIL, VIO=Vss to VCCQ	-1	-	1	μΑ
Average operating current	ICC2	Cycle time=Min, IIo=0mA, 100% duty, $\overline{\text{CS}}$ =VIL, $\overline{\text{MRS}}$ =VIH, VIN=VIL or VIH	-	-	45	mA
Output low voltage	Vol	IoL=0.1mA	-	-	0.2	V
Output high voltage	Voн	IOH=-0.1mA	1.4	-	-	V
Standby Current(CMOS)	ISB1	CS≥Vccq-0.2V, MRS≥Vccq-0.2V, Other inputs=Vss to Vccq	-	-	180	μΑ
Deep Power Down	ISBD	MRS≤0.2V, CS≥Vccq-0.2V, Other inputs=Vss to Vccq	-	-	25	μΑ

^{2.} Overshoot: Vcc+1.0V in case of pulse width ≤20ns.
3. Undershoot: -1.0V in case of pulse width ≤20ns.
4. Overshoot and undershoot are sampled, not 100% tested.

DEVICE OPERATION

The device has several modes: Synchronous Burst Read mode, Asynchronous Write mode, Standby mode and Deep Power Down(DPD) mode.

Deep Power Down(DPD) mode is defined through Mode Register Set(MRS) option. Mode Register Set(MRS) option also defines Burst Length, Burst Type and First Access Latency Count at Synchronous Burst Read mode.

To set Mode Register, the system must drive CS, ADV, WE and MRS to VIL and drive OE to VIH during valid address. To get into the Standby mode, the system must drive CS to VIH. To get into the Deep Power Down(DPD) mode, the system must drive CS to CMOS VIH(VCC-0.2V) and MRS to CMOS VIL(0.2V).

Mode Register Set (MRS)

The mode register stores the data for controlling the various operation modes of UtRAM. It programs Deep Power Down(DPD) mode, Burst Length, Burst Type, First Access Latency Count and various vendor specific options to make UtRAM useful for a variety of different applications. The default values of mode register are defined, therefore unless user specifies the specific modes, the device runs at default modes. If user wants to set modes other than default modes, user should write specific mode value on mode register after power up. The mode register is written by driving \overline{CS} , \overline{ADV} , \overline{WE} and \overline{MRS} to \overline{VIL} and driving \overline{OE} to \overline{VIH} during valid address. The mode register is divided into various fields depending on the fields of functions. The Deep Power Down(DPD) field uses A4, Burst Length field uses A6~A7, Burst Type uses A8 and First Access Latency Count uses A9~A11. Refer to the Table below for detailed Mode Register Setting.

Mode Register Setting according to field of function

Address	An~A16	A15	A14~A12	A11~A9	A8	A7~A6	A5	A4
Function	RFU	MS	RFU	Latency	ВТ	BL	RFU	DPD

NOTE: RFU(Reserved for Future Use), BT(Burst Type), BL(Burst Length), DPD(Deep Power Down), MS(Mode Select)

Mode Select		First Access Latency Count				Burst Type		Burst Length		
A15	Async./Sync.	A11	A10	A9)	Latency	A8	Туре	A7	A6	Length
0	Async. Mode	0	0	0	Reserved	0	Linear	0	0	4
1	Sync. Mode	0	0	1	3	1	Interleave	0	1	8
		0	1	0	4			1	0	16
		0	1	1	5			1	1	Reserved
		1	0	0	6					
		1	0	1	Reserved	1				
		1	1	0	Reserved					

Reserved

Deep power Down							
Α4	DPD						
0	DPD Enable						
1	DPD Disable						

NOTE: Default mode(when user does not write any specific value to the mode register) is Async. mode and DPD enable. Even though the device used to work in the sync. mode, once the device gets out of DPD mode, all the register settings are initialized into the default mode. But this default mode is not 100% guaranteed so MRS setting sequence is highly recommended after power up or after getting out of DPD mode.

Asynchronous Read Operation

Asynchronous read operation starts when \overline{CS} , \overline{OE} and \overline{UB} or \overline{LB} are driven to VIL under the valid address.(\overline{MRS} and \overline{WE} should be driven to VIH during asynchronous read operation)

Asynchronous Write Operation

Asynchronous write operation starts when \overline{CS} , \overline{WE} and \overline{UB} or \overline{LB} are driven to V_{IL} under the valid address.(\overline{MRS} and \overline{OE} should be driven to V_{IH} during write operation.)

Asynchronous Write Operation in Synchronous Mode

A write operation starts when \overline{CS} , \overline{WE} and \overline{UB} & \overline{LB} are driven to VIL under the valid address. Clock input does not have any affect to the write operation. (MRS and OE should be driven to VIH during write operation. ADV can be toggling for address latch or can be driven to VIL)

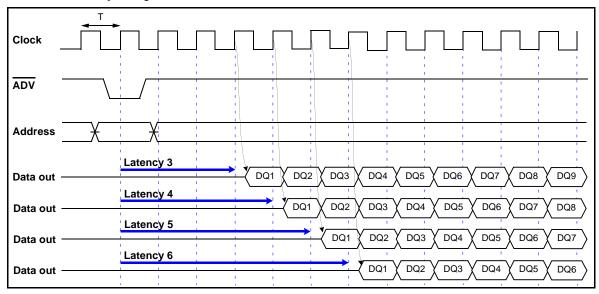
Synchronous Burst Read Operation

The device supports Linear Synchronous Burst Read mode and Interleave Synchronous Burst Read mode.

For the optimized Burst Mode to each system, the system should determine how many clock cycles are desirable for the initial word of each burst access(First Access Latency Count), how many words the device outputs at an access(Burst Length) and which type of burst operation(Burst Type: Linear or Interleave) is desired.(See Table "Mode Register Set")

Clock(CLK)

The clock input is used as the reference for synchronous burst read operation of UtRAM. Synchronous burst read operation is synchronized to the rising edge of the clock. The clock transitions must swing between VIL and VIH.


First Access Latency Count

The First Access Latency Count configuration tells the device how many clocks must elapse from $\overline{\mathsf{ADV}}$ de-assertion(VIH) before the first data word should be driven onto its data pins. This value depends on the input clock frequency. The supported Latency Count is as follows.

Latency Count support: 3, 4, 5, 6

Clock Frequency	Upto 54MHz	Upto 40MHz		
Latency Count	4 , 5, 6	3 , 4, 5, 6		

First Access Latency Configuration

NOTE: Other First Access Latency Configuration settings <u>are reserved</u>.

Only one rising edge of the clock is allowed during ADV low pulse

Burst Sequence

Start Address	Burst Address Sequence								
	4 word Burst		8 word Burst		16 word Burst				
	Linear	Interleave	Linear	Interleave	Linear	Interleave			
0	0-1-2-3	0-1-2-3	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7	0-1-2-3-414-15	0-1-2-3-414-15			
1	1-2-3-0	1-0-3-2	1-2-3-4-5-6-7-0	1-0-3-2-5-4-7-6	1-2-3-414-15-0	1-0-3-2-515-14			
2	2-3-0-1	2-3-0-1	2-3-4-5-6-7-0-1	2-3-0-1-6-7-4-5	2-3-414-15-0-1	2-3-0-1-612-13			
3	3-0-1-2	3-2-1-0	3-4-5-6-7-0-1-2	3-2-1-0-7-6-5-4	3-4-515-0-1-2	3-2-1-0-713-12			
4			4-5-6-7-0-1-2-3	4-5-6-7-0-1-2-3	4-5-615-0-1-2-3	4-5-6-7-010-11			
5			5-6-7-0-1-2-3-4	5-4-7-6-1-0-3-2	5-615-0-1-2-3-4	5-4-7-6-111-10			
6			6-7-0-1-2-3-4-5	6-7-4-5-2-3-0-1	6-715-0-1-2-3-4-5	6-7-4-5-28-9			
7			7-0-1-2-3-4-5-6	7-6-5-4-3-2-1-0	7-815-0-15-6	7-6-5-4-39-8			
~					~	~			
14					14-15-0-112-13	14-15-12-13-100-1			
15					15-0-112-13-14	15-14-13-12-111-0			

Burst Stop

Burst stop is used when the system wants to stop burst operation on special purpose. If driving CS to VIH during burst read operation, then burst operation will be stopped. During burst read operation, the new burst operation by ADV can not be issued. The new burst operation can be issued only after the previous burst operation is finished.

AC OPERATING CONDITIONS

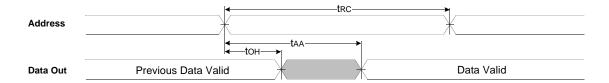
TEST CONDITIONS(Test Load and Test Input/Output Reference)

Input pulse level: 0.2 to Vccq-0.2V Input rising and falling time: 3ns

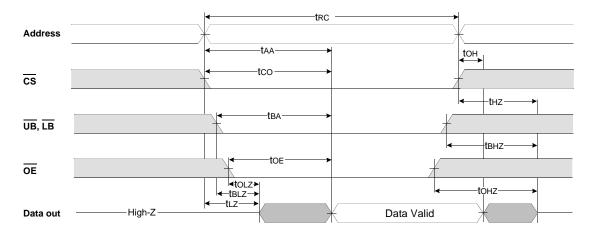
Input and output reference voltage: 0.5 x Vccq

Output load: CL=50pF

ASYNCHRONOUS AC CHARACTERISTICS (Vcc=2.7~3.1V, Vccq=1.7~2.0V, Ta=-25 to 85°C)


Parameter List		Symbol	Speed		Units
			Min	Max	Onits
Async. Read	Read Cycle Time	trc	85	-	ns
	Address Access Time	taa	-	85	ns
	Chip Select to Output	tco	-	85	ns
	Output Enable to Valid Output	toe	-	40	ns
	UB, LB Access Time	tва	-	40	ns
	Chip Select to Low-Z Output	tLZ	10	-	ns
	UB, LB Enable to Low-Z Output	tBLZ	10	-	ns
	Output Enable to Low-Z Output	toLZ	5	-	ns
	Chip Disable to High-Z Output	tHZ	0	25	ns
	UB, LB Disable to High-Z Output	tBHZ	0	25	ns
	Output Disable to High-Z Output	tonz	0	25	ns
	Output Hold	tон	10	-	ns
	Write Cycle Time	twc	85	-	ns
	Chip Select to End of Write	tcw	70	-	ns
Async. Write	Address Set-up Time to Beginning of Write	tas	0	-	ns
	Address Valid to End of Write	taw	70	-	ns
	UB, LB Valid to End of Write	tsw	70	-	ns
	Write Pulse Width	twp	60 ¹⁾	-	ns
	Write Recovery Time	twr	0	-	ns
	Data to Write Time Overlap	tow	35	-	ns
	Data Hold from Write Time	tDH	0	-	ns
	MRS Enable to Register Write Start	tmw	0	500	ns
MRS	Register Write Recovery Time	trwr	5	-	ns
	End of Write to MRS Disable	twu	0	-	ns

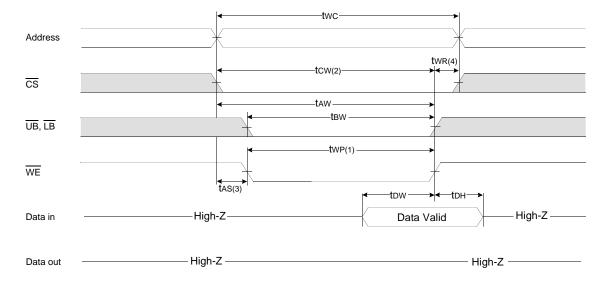
^{1.} tWP(min)=85ns for continuous write operation over 50 times.



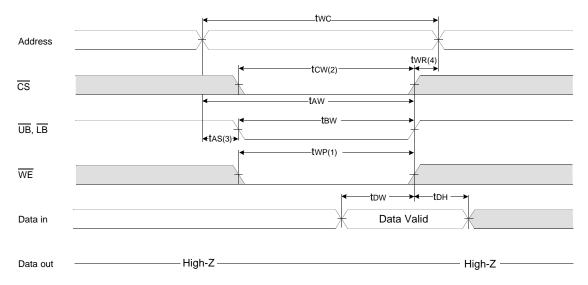
ASYNCHRONOUS READ TIMING WAVEFORM

TIMING WAVEFORM OF ASYNCHRONOUS READ CYCLE(1)(Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, $\overline{MRS} = \overline{WE} = V_{IH}$, \overline{UB} or $\overline{LB} = V_{IL}$)

TIMING WAVEFORM OF ASYNCHRONOUS READ CYCLE(2)(MRS=WE=VIH)


(ASYNCHRONOUS READ CYCLE)

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.
- 3. tOE(max) is met only when \overline{OE} becomes enabled after tAA(max).
- 4. If invalid address signals shorter than min. tRC are continuously repeated for over 4us, the device needs a normal read timing(tRC) or needs to sustain standby state for min. tRC at least once in every 4us.
- 5. In asynchronous mode, Clock and $\overline{\text{ADV}}$ are ignored.



ASYNCHRONOUS WRITE TIMING WAVEFORM

TIMING WAVEFORM OF WRITE CYCLE(1)(MRS=VIH, OE=VIH, WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (MRS=VIH, OE=VIH, UB & LB Controlled)

(WRITE CYCLE)

- 1. A write occurs during the overlap(twr) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when $\overline{\text{CS}}$ goes high and $\overline{\text{WE}}$ goes high. The twp is measured from the beginning of write to the end of write. 2. tcw is measured from the $\overline{\text{CS}}$ going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn is applied in case a write ends with $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.
- 5. In asynchronous mode, Clock and ADV are ignored.

AC OPERATING CONDITIONS

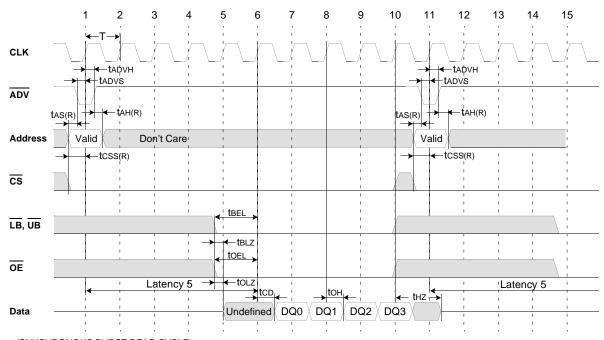
TEST CONDITIONS(Test Load and Test Input/Output Reference)

Input pulse level: 0.2 to Vccq-0.2V Input rising and falling time: 3ns

Input and output reference voltage: 0.5 x Vccq

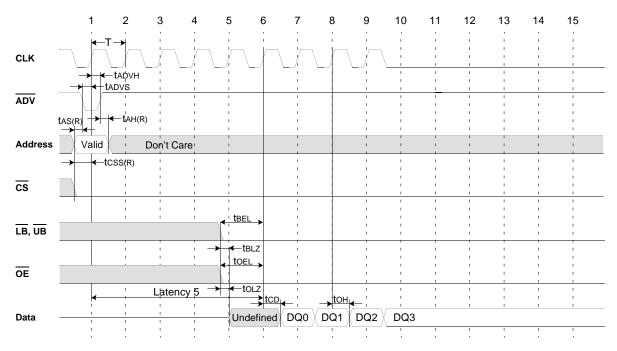
Output load: CL=50pF

$\textbf{SYNCHRONOUS AC CHARACTERISTICS} \ (Vcc=2.7\sim3.1V,\ Vccq=1.7\sim2.0V,\ TA=-25\ to\ 85^{\circ}C,\ Maximum\ Main\ Clock\ Frequency=54MHz)$


Parameter List		Symbol	Speed		l luito
			Min	Max	Units
Sync. Burst Read	Clock Cycle Time	Т	18.5	200	ns
	Address Set-up Time to ADV Falling	tas(R)	0	-	ns
	Address Hold Time from ADV Rising	tah(R)	7	-	ns
	ADV Setup Time	tadvs	7	-	ns
	ADV Hold Time	tadvh	7	-	ns
	CS Setup Time to Clock Rising	tcss(R)	7	-	ns
	CS Low Hold Time from Clock	tcslh	10	-	ns
	CS High Pulse Width	tcshp	5	-	ns
	ADV High Pulse Width	tadhp	5	-	ns
	UB, LB Valid to End of Latency	tBEL	1	-	Clock
	Output Enable to End of Latency	toel	1	-	Clock
	UB, LB Valid to Low-Z Output	tBLZ	10	-	ns
	Output Enable to Low-Z Output	toLZ	5	-	ns
	Latency Clock Rising Edge to Data Output	tcD	-	12	ns
	Output Hold	tон	3	-	ns
	Output High-Z	tHZ	-	10	ns
	Write Cycle Time	twc ²⁾	85	-	ns
	Address Set-up Time to ADV Falling	tAS(W)	0	-	ns
	Address Hold Time from ADV Rising	tah(W)	7	-	ns
	CS Setup Time to ADV Rising	tcss(W)	10	-	ns
Async. Write	Address Set-up Time to Beginning of Write	tas	0	-	ns
	Write Recovery Time	twr	0	-	ns
	Burst Read End Clock to Next ADV Falling	t BEWA	3	-	ns
	Chip Select to End of Write	tcw	70	-	ns
	Address Valid to End of Write	taw	70	-	ns
	UB, LB Valid to End of Write	tвw	70	-	ns
	Write Pulse Width	twp	60 ¹⁾	-	ns
	WE High Pulse Width	twhp	5 ns	Latency-1 clock	-
	Data to Write Time Overlap	tow	35	-	ns
	Data Hold from Write Time	tDH	0	-	ns
	MRS Enable to Register Write Start	tmw	0	500	ns
MRS	Register Write Recovery Time	trwr	5	-	ns
	End of Write to MRS Disable	twu	0	-	ns

^{1.} twp(min)=85ns for continuous write operation over 50 times. 2. In ADDRESS LATCH TYPE WRITE TIMING, twC is same as taw.

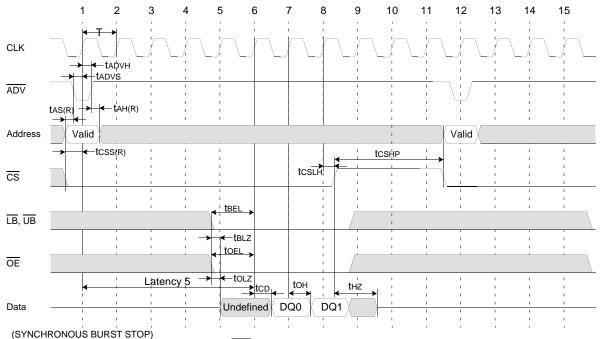
SYNCHRONOUS BURST READ TIMING WAVEFORM


TIMING WAVEFORM OF BURST READ CYCLE(1) [Latency=5, Burst Length=4] (WE=VIH, MRS=VIH)

(SYNCHRONOUS BURST READ CYCLE)

- 1. Only one rising edge of the clock is allowed during ADV low pulse.
- 2. The new burst operation can be issued only after the previous burst operation is finished.

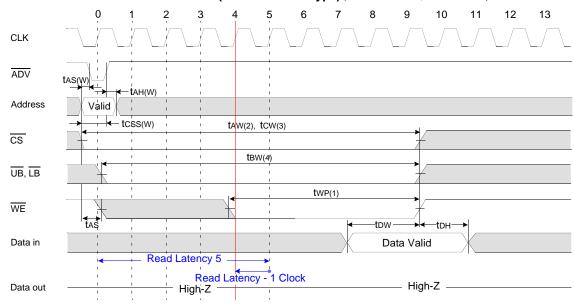
TIMING WAVEFORM OF BURST READ CYCLE(2) [Latency=5, Burst Length=4] (WE=VIH, MRS=VIH)


(SYNCHRONOUS BURST READ CYCLE)

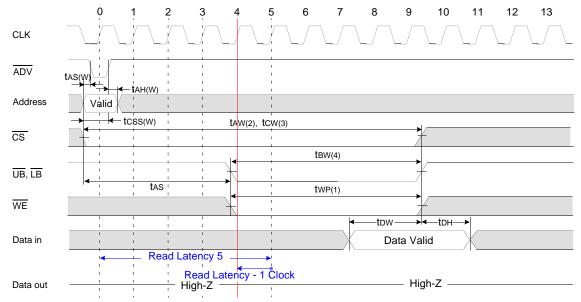
1.Only one rising edge of the clock is allowed during ADV low pulse.

BURST STOP TIMING WAVEFORM

TIMING WAVEFORM OF BURST STOP by CS [Latency=5, Burst Length=4] (WE=VIH, MRS=VIH)



1. Only one rising edge of the clock is allowed during ADV low pulse.

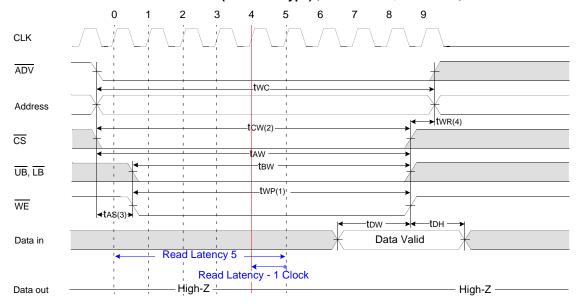


ASYNCHRONOUS WRITE TIMING WAVEFORM in SYNCHRONOUS MODE

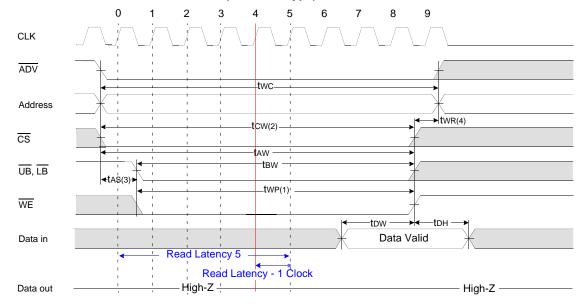
TIMING WAVEFORM OF WRITE CYCLE(Address Latch Type) (MRS=VIH, OE=VIH, WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(Address Latch Type) (MRS=VIH, OE=VIH, UB & LB Controlled)

(ADDRESS LATCH TYPE WRITE CYCLE)


- 1. \underline{A} write occurs during the overlap(twp) of low \overline{CS} and low \overline{WE} . \underline{A} write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when \overline{CS} goes high and \overline{WE} goes high. The twp is measured from the beginning of write to the end of write.
- 2. taw is measured from the address valid to the end of write. In this address latch type write timing, two is same as taw.

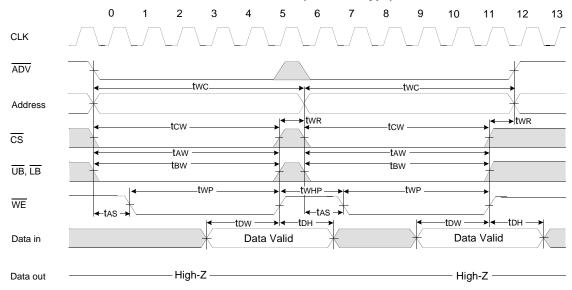
 3. tow is measured from the CS going low to the end of write.
- 4. taw is measured from the UB and LB going low to the end of write.
- 5. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock in write timing is just a reference to WE low going for proper write operation.



ASYNCHRONOUS WRITE TIMING WAVEFORM in SYNCHRONOUS MODE

TIMING WAVEFORM OF WRITE CYCLE(Low ADV Type) (MRS=VIH, OE=VIH, WE Controlled)

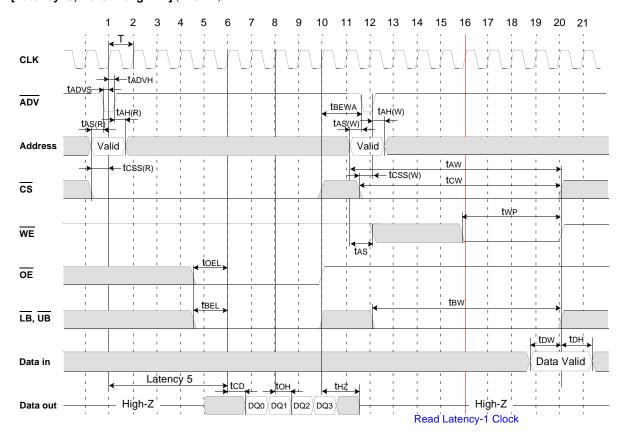
TIMING WAVEFORM OF WRITE CYCLE(Low ADV Type) (MRS=VIH, OE=VIH, UB & LB Controlled)


(LOW ADV TYPE WRITE CYCLE)

- 1. A <u>write</u> occurs during the overlap(twp) of low $\overline{\text{CS}}$ and low $\overline{\text{WE}}$. A <u>write</u> begins when $\overline{\text{CS}}$ goes low and $\overline{\text{WE}}$ goes low with asserting $\overline{\text{UB}}$ or $\overline{\text{LB}}$ for single byte operation or simultaneously asserting $\overline{\text{UB}}$ and $\overline{\text{LB}}$ for double byte operation. A write ends at the earliest transition when CS goes high and WE goes high. The twp is measured from the beginning of write to the end of write.
- tow is measured from the CS going low to the end of write.
 tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change, twn is applied in case a write ends with $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.
- 5. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock in write timing is just a reference to WE low going for proper write operation.

ASYNCHRONOUS WRITE TIMING WAVEFORM in SYNCHRONOUS MODE

TIMING WAVEFORM OF CONTINUOUS WRITE CYCLE(Low ADV Type) (MRS=VIH, OE=VIH, WE Controlled)

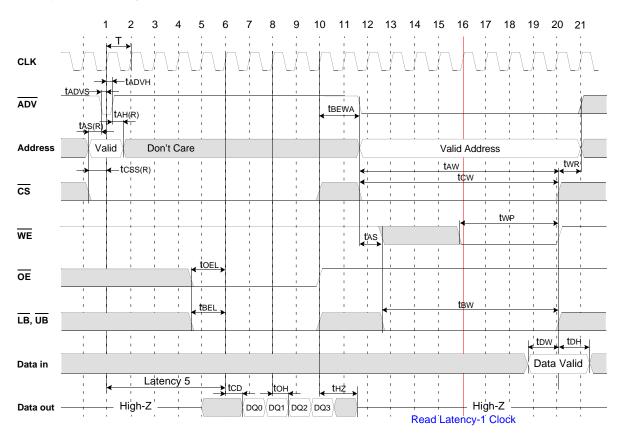


(LOW ADV TYPE CONTINUOUS WRITE CYCLE)

- 1. A <u>write</u> occurs during the overlap(twr) of low \overline{CS} and low \overline{WE} . A <u>write</u> begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when \overline{CS} goes high and \overline{WE} goes high. The two is measured from the beginning of write to the end of write.
- 2. tcw is measured from the $\overline{\text{CS}}$ going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change, twn is applied in case a write ends with $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.
- 5. Clock input does not have any affect to the continuous write operation if twhp is shorter than (Read Latency 1) clock duration.
- 6. tWP(min)=85ns for continuous write operation over 50 times.

SYNCH. BURST READ to ASYNCH. WRITE(Address Latch Type) TIMING WAVEFORM [Latency=5, Burst Length=4] (MRS=VIH)

(SYNCHRONOUS BURST READ CYCLE)


- 1. Only one rising edge of the clock is allowed during ADV low pulse.
 2. The next operation can be issued only after the previous burst operation is finished.

(ADDRESS LATCH TYPE ASYNCHRONOUS WRITE CYCLE - WE controlled)

1. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock in write timing is just a reference to $\overline{\text{WE}}$ low going for proper write operation.

SYNCH. BURST READ to ASYNCH. WRITE(Low ADV Type) TIMING WAVEFORM [Latency=5, Burst Length=4] (MRS=VIH)

(SYNCHRONOUS BURST READ CYCLE)

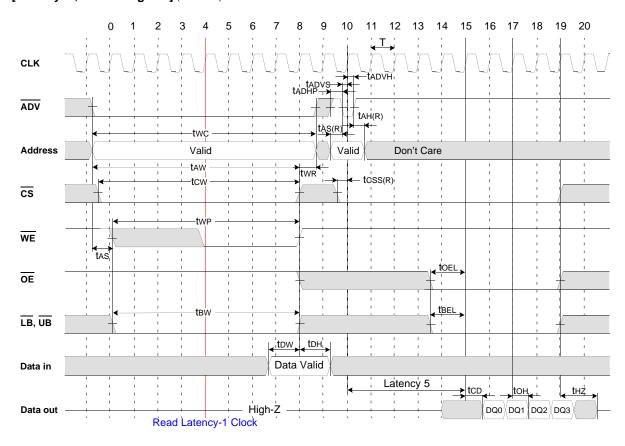

- 1. Only one rising edge of the clock is allowed during $\overline{\text{ADV}}$ low pulse.
- 2. The next operation can be issued only after the previous burst operation is finished.

(LOW ADV TYPE ASYNCHRONOUS WRITE CYCLE - WE controlled)

1. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock in write timing is just a reference to WE low going for proper write operation.

ASYNCH. WRITE(Address Latch Type) to SYNCH. BURST READ TIMING WAVEFORM [Latency=5, Burst Length=4](MRS=VIH)

(SYNCHRONOUS BURST READ CYCLE)


- 1. Only one rising edge of the clock is allowed during ADV low pulse.
- 2. The next operation can be issued only after the previous burst operation is finished.

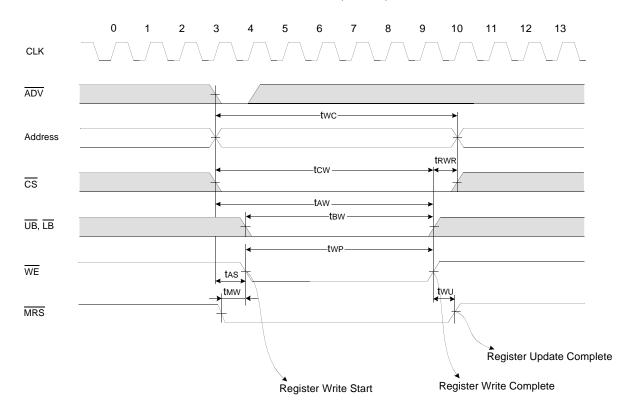
(ADDRESS LATCH TYPE ASYNCHRONOUS WRITE CYCLE - WE controlled)

1. Clock input does not have any affect to the write operation if WE is driven to low before Read Latency-1 clock. Read Latency-1 clock in write timing is just a reference to WE low going for proper write operation.

ASYNCH. WRITE(Low ADV Type) to SYNCH. BURST READ TIMING WAVEFORM [Latency=5, Burst Length=4] (MRS=VIH)

- (SYNCHRONOUS BURST READ CYCLE)

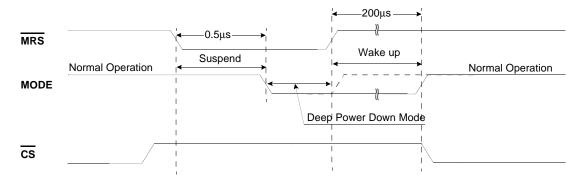
 1. Only one rising edge of the clock is allowed during $\overline{\text{ADV}}$ low pulse.


 2. The next operation can be issued only after the previous burst operation is finished.

(LOW $\overline{\text{ADV}}$ TYPE ASYNCHRONOUS WRITE CYCLE - $\overline{\text{WE}}$ controlled)

1. Clock input does not have any affect to the write operation if $\overline{\text{WE}}$ is driven to low before Read Latency-1 clock. Read Latency-1 clock in write timing is just a reference to WE low going for proper write operation.

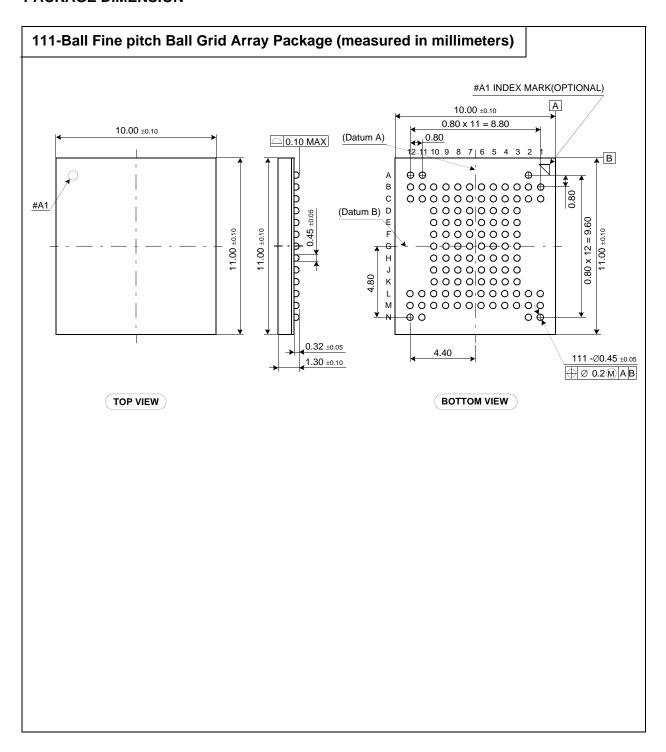
TIMING WAVEFORM OF MRS MODE SETTING $(\overline{OE}=VIH)$



(MRS SETTING TIMING)

1. Clock input does not have any affect to the register write operation.

TIMING WAVEFORM OF DEEP POWER DOWN MODE ENTRY AND EXIT



(DEEP POWER DOWN MODE)

- 1. When MRS pin is driven to low under the standby state, the device gets into the Deep Power Down mode after 0.5µs suspend period.
- 2. In this case, the stanby state is achieved by toggling CS pin high.
 3. To return to normal operation, the device needs Wake Up period.
- 4. Wake Up sequence is just the same as Power Up sequence.

PACKAGE DIMENSION

