Document Title Multi-Chip Package MEMORY 128M Bit (Two Dual Bank 64M Bit) NOR Flash Memory / 32M Bit (2Mx16) UtRAM # **Revision History** | Revision No. | <u>History</u> | <u>Draft Date</u> | <u>Remark</u> | |--------------|--|-------------------|---------------| | 0.0 | Initial Draft | August 9, 2002 | Preliminary | | 0.1 | Revised (UtRAM) - Changed Icc1u(Typ.) from 4mA to 6mA - Changed Icc1u(Max.) from 7mA to 10mA - Changed Cycle time of Icc2 from 'Min' to 'tRC+3tPC' in DC Characteristics - Added Page Cycle(tPC) and Page Access Time(tPA) in AC Characteristics - Added TIMING WAVEFORM OF PAGE CYCLE(READ ONLY) in Timing Diagrams | November 29, 2002 | Preliminary | | 1.0 | Finalized Revised (UtRAM) - Changed toH (MIN) From 10ns to 5ns in AC Characteristics - Changed Power up Sequence - Deleted Technical Note | May 23, 2003 | Final | | 1.1 | Revised(NOR) - Release the stand-by current from typ. 10uA(max. 36uA) to typ. 20uA(max. 60uA). | June 18, 2003 | Final | The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices. ## Multi-Chip Package MEMORY 128M Bit (Two Dual Bank 64M Bit) NOR Flash Memory / 32M Bit (2Mx16) UtRAM #### **FEATURES** • Power Supply Voltage: 2.7V to 3.1V Organization - Flash: Two 64Mb: Each of K8D6316UT(B)M, Byte/Word Mode - UtRAM: 2,097,152 x 16 bit • Two Chip Enable (Flash) - Two CE balls control each internal Flash Memory • Access Time (@2.7V) - Flash: 70 ns, UtRAM: 70 ns • Power Consumption Flash (typical value) Read Current: 14 mA (@5MHz) Program/Erase Current: 15 mA Standby mode/Autosleep mode: 20 µA Read while Program or Read while Erase: 25 mA - UtRAM (typical value) Operating Current: 30 mA Standby Current: 60 µA • Secode(Security Code) Block : Extra 64KB Block (Flash) • Support Common Flash Memory Interface • Block Group Protection / Unprotection (Flash) • Flash Bank Size: 16Mb / 48Mb, 32Mb / 32Mb • Flash Endurance: 100,000 Program/Erase Cycles Minimum • Operating Temperature : -40°C ~ 85°C • Package: 69-ball TBGA Type - 8 x 11.6mm, 0.8 mm pitch 1.4mm(max.) Thickness 5 7 6 8 9 10 #### **BALL CONFIGURATION** 3 2 1 Κ (D.N.U) Α D.N.L (D.N.L (D.N.U (D.N.U) В Α7 LΒ WE UB С A6 RESE ZZ A20 RY/BY A9 A18 D D.N.U A1 A10 Е F D.N.L A0 (DQ1 DQ6 Vss ŌE DQ9 DQ3 (DQ4 DQ13 G DQ0 DQ10 Vcc Vccı Н (DQ8 DQ2 DQ1 N.C DQ5 (DQ14 J (D.N.Ù > 69 Ball TBGA, 0.8mm Pitch Top View (Ball Down) D.N.L D.N.U #### **GENERAL DESCRIPTION** The KADxx0300B featuring single 3.0V power supply is a Multi Chip Package Memory which combines two 64Mbit Dual Bank Flash and 32Mbit UtRAM. The each of 64Mbit Flash memory is organized as 8M x8 or 4M x16 bit and 32Mbit UtRAM is organized as 2M x16 bit. The memory architecture of each flash memory is designed to divide its memory arrays into 135 blocks and this provides highly flexible erase and program capability. Each Flash memory is capable of reading data from one bank while programming or erasing in the other bank with dual bank organization. The Flash memory performs a program operation in units of 8 bits (Byte) or 16 bits (Word) and erases in units of a block. Single or multiple blocks can be erased. The block erase operation is completed for typically 0.7sec. The UtRAM is fabricated by SAMSUNG's advanced CMOS technology using one transistor memory cell. The device supports deep power down mode for low standby current. The KADxx0300B is suitable for the memory of mobile communication system to reduce mount area. This device is available in 69-ball TBGA Type package. #### **BALL DESCRIPTION** | Ball Name | Description | |-------------------|--| | A0 to A20 | Address Input Balls (Common) | | A-1, A21 | Address Input Balls (Flash Memory) | | DQ0 to DQ15 | Data Input/Output Balls (Common) | | RESET | Hardware Reset (Flash Memory) | | WP/ACC | Write Protection / Acceleration Program (Flash Memory) | | ÜB | Upper Byte Enable (UtRAM) | | LB | Lower Byte Enable (UtRAM) | | BYTE _F | Word/Byte selection (Flash Memory) | | CE _F 1 | Flash Chip Enable 1 (Flash Memory) | | CE _F 2 | Flash Chip Enable 2 (Flash Memory) | | CS ∪ | Chip Enable (UtRAM) | | ZZ | Deep Power Down (UtRAM) | | WE | Write Enable (Common) | | ŌE | Output Enable (Common) | | RY/BY | Ready/Busy (Flash memory) | | Vcc _U | Power Supply (UtRAM) | | Vcc _F | Power Supply (Flash Memory) | | Vss | Ground (Common) | | D.N.U | Do Not Use | | N.C | No Connection | SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice. #### **ORDERING INFORMATION** | | 64Mb -
Controlle | | | NOR <u>2</u>
d by CE _F 2 | |----|---------------------|-------------------|-----------|--| | | Bank Size | Boot Block Type | Bank Size | Boot Block Type | | 05 | 16Mb/48Mb | Top Boot Block | 16Mb/48Mb | Bottom Boot Block | | 06 | 16Mb/48Mb | Top Boot Block | 16Mb/48Mb | Top Boot Block | | 07 | 16Mb/48Mb | Bottom Boot Block | 16Mb/48Mb | Bottom Boot Block | | 08 | 32Mb/32Mb | Top Boot Block | 32Mb/32Mb | Bottom Boot Block | | 09 | 32Mb/32Mb | Top Boot Block | 32Mb/32Mb | Top Boot Block | | 10 | 32Mb/32Mb | Bottom Boot Block | 32Mb/32Mb | Bottom Boot Block | Figure 1. FUNCTIONAL BLOCK DIAGRAM **Table 1. Top Boot Block Address** | KAD05 | KAD08 | | | | | | Block A | ddress | 5 | | | | Block Size | Addres | s Range | |---------------|---------------|-------|-----|-----|-----|-----|---------|--------|-----|-----|-----|-----|------------|-----------------|-----------------| | (06)030
0B | (09)03
00B | Block | A21 | A20 | A19 | A18 | A17 | A16 | A15 | A14 | A13 | A12 | (KB/KW) | Byte Mode | Word Mode | | | | BA134 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 8/4 | 7FE000H-7FFFFFH | 3FF000H-3FFFFFH | | | | BA133 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 8/4 | 7FC000H-7FDFFFH | 3FE000H-3FEFFFH | | | | BA132 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 8/4 | 7FA000H-7FBFFFH | 3FD000H-3FDFFFH | | | | BA131 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 8/4 | 7F8000H-7F9FFFH | 3FC000H-3FCFFFH | | | | BA130 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 8/4 | 7F6000H-7F7FFFH | 3FB000H-3FBFFFH | | | | BA129 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 8/4 | 7F4000H-7F5FFFH | 3FA000H-3FAFFFH | | | | BA128 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 8/4 | 7F2000H-7F3FFFH | 3F9000H-3F9FFFH | | | | BA127 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 8/4 | 7F0000H-7F1FFFH | 3F8000H-3F8FFFH | | | | BA126 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 7E0000H-7EFFFFH | 3F0000H-3F7FFFH | | | | BA125 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 7D0000H-7DFFFFH | 3E8000H-3EFFFFH | | | | BA124 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 7C0000H-7CFFFFH | 3E0000H-3E7FFFH | | | | BA123 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 7B0000H-7BFFFFH | 3D8000H-3DFFFFH | | | | BA122 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 7A0000H-7AFFFFH | 3D0000H-3D7FFFH | | | | BA121 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 790000H-79FFFFH | 3C8000H-3CFFFFH | | | | BA120 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 780000H-78FFFFH | 3C0000H-3C7FFFH | | | | BA119 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 770000H-77FFFFH | 3B8000H-3BFFFFH | | | | BA118 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 760000H-76FFFFH | 3B0000H-3B7FFFH | | | | BA117 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 750000H-75FFFFH | 3A8000H-3AFFFFH | | | | BA116 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 740000H-74FFFFH | 3A0000H-3A7FFFH | | Bank1 | | BA115 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 730000H-73FFFFH | 398000H-39FFFFH | | | | BA114 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 720000H-72FFFFH | 390000H-397FFFH | | | | BA113 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 710000H-71FFFFH | 388000H-38FFFFH | | | Bank1 | BA112 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 700000H-70FFFFH | 380000H-387FFFH | | | Danki | BA111 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 6F0000H-6FFFFH | 378000H-37FFFFH | | | | BA110 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 6E0000H-6EFFFFH | 370000H-377FFFH | | | | BA109 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 6D0000H-6DFFFFH | 368000H-36FFFFH | | | | BA108 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 6C0000H-6CFFFFH | 360000H-367FFFH | | | | BA107 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 6B0000H-6BFFFFH | 358000H-35FFFFH | | | | BA106 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 6A0000H-6AFFFFH | 350000H-357FFFH | | | | BA105 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 690000H-69FFFFH | 348000H-34FFFFH | | | | BA104 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 680000H-68FFFFH | 340000H-347FFFH | | | | BA103 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 670000H-67FFFFH | 338000H-33FFFFH | | | | BA102 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 660000H-66FFFFH | 330000H-337FFFH | | | | BA101 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 650000H-65FFFFH | 328000H-32FFFFH | | | | BA100 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 640000H-64FFFFH | 320000H-327FFFH | | | | BA99 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 630000H-63FFFFH | 318000H-31FFFFH | | | | BA98 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | Χ | Х | Χ | 64/32 | 620000H-62FFFFH | 310000H-317FFFH | | | | BA97 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 610000H-61FFFFH | 308000H-30FFFFH | | | | BA96 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 600000H-60FFFFH | 300000H-307FFFH | | | | BA95 | 1 | 0 | 1 | 1 |
1 | 1 | 1 | Х | Х | Х | 64/32 | 5F0000H-5FFFFFH | 2F8000H-2FFFFFH | | | | BA94 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 5E0000H-5EFFFFH | 2F0000H-2F7FFFH | | | | BA93 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 5D0000H-5DFFFFH | 2E8000H-2EFFFFH | | Bank2 | | BA92 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 5C0000H-5CFFFFH | 2E0000H-2E7FFFH | | | | BA91 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 5B0000H-5BFFFFH | 2D8000H-2DFFFFH | | | | BA90 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 5A0000H-5AFFFFH | 2D0000H-2D7FFFH | | | | BA89 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 590000H-59FFFFH | 2C8000H20CFFFFH | **Table 1. Top Boot Block Address (Continued)** | KAD05 | KAD08 | рво | | | | | Block A | | | | | | | Addres | s Range | |---------------|---------------|-------|-----|-----|-----|-----|---------|-----|-----|-----|-----|-----|-----------------------|-----------------|-----------------| | (06)030
0B | (09)03
00B | Block | A21 | A20 | A19 | A18 | A17 | A16 | A15 | A14 | A13 | A12 | Block Size
(KB/KW) | Byte Mode | Word Mode | | 0.5 | 002 | BA88 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | Х | X | Х | 64/32 | 580000H-58FFFFH | 2C0000H-2C7FFFH | | | | BA87 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | X | X | X | 64/32 | 570000H-57FFFFH | 2B8000H-2BFFFFH | | | | BA86 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 560000H-56FFFFH | 2B0000H-2B7FFFH | | | | BA85 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 550000H-55FFFFH | 2A8000H-2AFFFFH | | | | BA84 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 540000H-54FFFFH | 2A0000H-2A7FFFH | | | | BA83 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 530000H-53FFFFH | 298000H-29FFFFH | | | | BA82 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 520000H-52FFFFH | 290000H-297FFFH | | | | BA81 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | X | X | X | 64/32 | 510000H-51FFFFH | 288000H-28FFFFH | | | | BA80 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | Х | X | Х | 64/32 | 500000H-50FFFFH | 280000H-287FFFH | | | | BA79 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | Х | X | Х | 64/32 | 4F0000H-4FFFFH | 278000H-27FFFH | | | | BA78 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | X | X | X | 64/32 | 4E0000H-4EFFFFH | 270000H-277FFFH | | | | BA77 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | Х | X | Х | 64/32 | 4D0000H-4DFFFFH | 268000H-26FFFFH | | | Bank1 | BA76 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | X | X | X | 64/32 | 4C0000H-4CFFFFH | 260000H-267FFFH | | | Danki | BA75 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | X | X | X | 64/32 | 4B0000H-4BFFFFH | 258000H-25FFFFH | | | | BA74 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | X | X | X | 64/32 | 4A0000H-4AFFFFH | 250000H-257FFFH | | | | BA73 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | X | X | X | 64/32 | 490000H-49FFFFH | 248000H-24FFFH | | | | BA72 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | X | X | X | 64/32 | 480000H-48FFFFH | 240000H-247FFFH | | | | | 1 | 0 | 0 | 0 | 1 | 1 | 1 | X | X | X | | 470000H-47FFFFH | 238000H-23FFFFH | | | | BA71 | | | | | | | | | | | 64/32 | | | | | | BA70 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | X | X | X | 64/32 | 460000H-46FFFFH | 230000H-237FFFH | | | | BA69 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | X | X | X | 64/32 | 450000H-45FFFFH | 228000H-22FFFFH | | | | BA68 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | X | X | X | 64/32 | 440000H-44FFFFH | 220000H-227FFFH | | | | BA67 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | X | X | X | 64/32 | 430000H-43FFFFH | 218000H-21FFFFH | | Bank2 | | BA66 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | X | X | X | 64/32 | 420000H-42FFFFH | 210000H-217FFFH | | | | BA65 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 410000H-41FFFFH | 208000H-20FFFFH | | | | BA64 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | X | X | X | 64/32 | 400000H-3FFFFFH | 200000H-207FFFH | | | | BA63 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | X | X | X | 64/32 | 3F0000H-3FFFFH | 1F8000H-1FFFFFH | | | | BA62 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 3E0000H-3EFFFFH | 1F0000H-1F7FFFH | | | | BA61 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 3D0000H-3DFFFFH | 1E8000H-1EFFFFH | | | | BA60 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 3C0000H-3CFFFFH | 1E0000H-1E7FFFH | | | | BA59 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 3B0000H-3BFFFFH | 1D8000H-1DFFFFH | | | | BA58 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 3A0000H-3AFFFFH | 1D0000H-1D7FFFH | | | | BA57 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 390000H-39FFFFH | 1C8000H-1CFFFFH | | | | BA56 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 380000H-38FFFFH | 1C0000H-1C7FFFH | | | | BA55 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 370000H-37FFFFH | 1B8000H-1BFFFFH | | | | BA54 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 360000H-36FFFFH | 1B0000H-1B7FFFH | | | Bank2 | BA53 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 350000H-35FFFFH | 1A8000H-1AFFFFH | | | | BA52 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 340000H-34FFFFH | 1A0000H-1A7FFFH | | | | BA51 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 330000H-33FFFFH | 198000H-19FFFFH | | | | BA50 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 320000H-32FFFFH | 190000H-197FFFH | | | | BA49 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 310000H-31FFFFH | 188000H-18FFFFH | | | | BA48 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 300000H-30FFFFH | 180000H-187FFFH | | | | BA47 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 2F0000H-2FFFFH | 178000H-17FFFFH | | | | BA46 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 2E0000H-2EFFFFH | 170000H-177FFFH | | | | BA45 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 2D0000H-2DFFFFH | 168000H-16FFFFH | | | | BA44 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 2C0000H-2CFFFFH | 160000H-167FFFH | | | | BA43 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | Х | Х | Χ | 64/32 | 2B0000H-2BFFFFH | 158000H-15FFFFH | **Table 1. Top Boot Block Address (Continued)** | KAD05 | KAD08 | | | | E | Block A | ddress | ; | A15 A14 A13 A1 | | | Block Size | Addres | s Range | | |---------------|---------------|-------|-----|-----|-----|---------|--------|-----|----------------|-----|-----|------------|---------|-----------------|-----------------| | (06)030
0B | (09)03
00B | Block | A21 | A20 | A19 | A18 | A17 | A16 | A15 | A14 | A13 | A12 | (KB/KW) | Byte Mode | Word Mode | | | | BA42 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 2A0000H-2AFFFFH | 150000H-157FFFH | | | | BA41 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 290000H-29FFFFH | 148000H-14FFFFH | | | | BA40 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 280000H-28FFFFH | 140000H-147FFFH | | | | BA39 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 270000H-27FFFH | 138000H-13FFFFH | | | | BA38 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 260000H-26FFFFH | 130000H-137FFFH | | | | BA37 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 250000H-25FFFFH | 128000H-12FFFFH | | | | BA36 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 240000H-24FFFFH | 120000H-127FFFH | | | | BA35 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 230000H-23FFFFH | 118000H-11FFFFH | | | | BA34 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 220000H-22FFFFH | 110000H-117FFFH | | | | BA33 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 210000H-21FFFFH | 108000H-10FFFFH | | | | BA32 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 200000H-20FFFFH | 100000H-107FFFH | | | | BA31 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 1F0000H-1FFFFFH | 0F8000H-0FFFFFH | | | | BA30 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 1E0000H-1EFFFFH | 0F0000H-0F7FFFH | | | | BA29 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 1D0000H-1DFFFFH | 0E8000H-0EFFFFH | | | | BA28 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 1C0000H-1CFFFFH | 0E0000H-0E7FFFH | | | | BA27 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 1B0000H-1BFFFFH | 0D8000H-0DFFFFH | | | | BA26 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 1A0000H-1AFFFFH | 0D0000H-0D7FFFH | | | | BA25 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 190000H-19FFFFH | 0C8000H-0CFFFFH | | | | BA24 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 180000H-18FFFFH | 0C0000H-0C7FFFH | | | | BA23 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 170000H-17FFFFH | 0B8000H-0BFFFFH | | | | BA22 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 160000H-16FFFFH | 0B0000H-0B7FFFH | | Bank2 | Bank2 | BA21 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 150000H-15FFFFH | 0A8000H-0AFFFFH | | | | BA20 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 140000H-14FFFFH | 0A0000H-0A7FFFH | | | | BA19 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 130000H-13FFFFH | 098000H-09FFFFH | | | | BA18 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 120000H-12FFFFH | 090000H-097FFFH | | | | BA17 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 110000H-11FFFFH | 088000H-08FFFFH | | | | BA16 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 100000H-10FFFFH | 080000H-087FFFH | | | | BA15 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 0F0000H-0FFFFH | 078000H-07FFFFH | | | | BA14 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 0E0000H-0EFFFH | 070000H-077FFFH | | | | BA13 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 0D0000H-0DFFFFH | 068000H-06FFFFH | | | | BA12 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 0C0000H-0CFFFFH | 060000H-067FFFH | | | | BA11 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 0B0000H-0BFFFFH | 058000H-05FFFFH | | | | BA10 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 0A0000H-0AFFFFH | 050000H-057FFFH | | | | BA9 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 090000H-09FFFFH | 048000H-04FFFFH | | | | BA8 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 080000H-08FFFFH | 040000H-047FFFH | | | | BA7 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 070000H-07FFFH | 038000H-03FFFFH | | | | BA6 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 060000H-06FFFFH | 030000H-037FFFH | | | | BA5 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 050000H-05FFFFH | 028000H-02FFFFH | | | | BA4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 040000H-04FFFFH | 020000H-027FFFH | | | | BA3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 030000H-03FFFFH | 018000H-01FFFFH | | | | BA2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Х | Х | Х | 64/32 | 020000H-02FFFFH | 010000H-017FFFH | | | | BA1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 010000H-01FFFFH | 008000H-00FFFFH | | | | BA0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 000000H-00FFFH | 000000H-007FFFH | $\textbf{NOTE:} \ \ \text{The bank address bits are A21} \sim \text{A20 for KAD050300B/KAD060300B/KAD070300B}, \ \text{A21 for KAD080300B/KAD090300B/KAD100300B}.$ **Table 2. Secode Block Addresses for Top Boot Devices** | Device | Block Address | Block | (X8) | (X16) | |---|---------------|-------|-----------------|-----------------| | | A21-A12 | Size | Address Range | Address Range | | $\begin{array}{c} \text{KAD050300B} \ (\overline{\text{CE}}_{\text{E}}1) \\ \text{KAD060300B} \ (\overline{\text{CE}}_{\text{E}}1, \overline{\text{CE}}_{\text{F}}2) \\ \text{KAD080300B} \ (\overline{\text{CE}}_{\text{E}}1) \\ \text{KAD090300B} \ (\overline{\text{CE}}_{\text{F}}1, \overline{\text{CE}}_{\text{F}}2) \end{array}$ | 11111111xxx | 64/32 | 7F0000H-7FFFFFH | 3F8000H-3FFFFFH | **Table 3. Bottom Boot Block Address** | KAD05 | KAD08 | - | | | | E | Block A | ddress | ; | | | | Block Size | Addres | s Range | |---------------|---------------|----------|-----|-----|-----|-----|---------|--------|-----|-----|-----|-----|------------|-----------------|-----------------| | (07)03
00B | (10)030
0B | Block | A21 | A20 | A19 | A18 | A17 | A16 | A15 | A14 | A13 | A12 | (KB/KW) | Byte Mode | Word Mode | | | | BA134 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 7F0000H-7FFFFH | 3F8000H-3FFFFFH | | | | BA133 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 7E0000H-7EFFFFH | 3F0000H-3F7FFFH | | | | BA132 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 7D0000H-7DFFFFH | 3E8000H-3EFFFFH | | | | BA131 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 7C0000H-7CFFFFH | 3E0000H-3E7FFFH | | | | BA130 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 7B0000H-7BFFFFH | 3D8000H-3DFFFFH | | | | BA129 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 7A0000H-7AFFFFH | 3D0000H-3D7FFFH | | | | BA128 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 790000H-79FFFFH | 3C8000H-3CFFFFH | | | | BA127 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 780000H-78FFFFH | 3C0000H-3C7FFFH | | | | BA126 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 770000H-77FFFFH | 3B8000H-3BFFFFH | | | | BA125 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 760000H-76FFFFH | 3B0000H-3B7FFFH | | | | BA124 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 750000H-75FFFFH | 3A8000H-3AFFFFH | | | | BA123 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 740000H-74FFFFH | 3A0000H-3A7FFFH | | | | BA122 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 730000H-73FFFFH | 398000H-39FFFFH | | | | BA121 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 720000H-72FFFFH | 390000H-397FFFH | | | | BA120 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 710000H-71FFFFH | 388000H-38FFFFH | | | | BA119 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 700000H-70FFFFH | 380000H-387FFFH | | | | BA118 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 6F0000H-6F1FFFH | 378000H-37FFFFH | | | | BA117 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 6E0000H-6EFFFFH | 370000H-377FFFH | | Bank2 | Bank2 | BA116 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 6D0000H-6DFFFFH | 368000H-36FFFFH | | | | BA115 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 6C0000H-6CFFFFH | 360000H-367FFFH | | | | BA114 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 6B0000H-6BFFFFH | 358000H-35FFFFH | | | | BA113 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 6A0000H-6AFFFFH | 350000H-357FFFH | | | | BA112 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 690000H-69FFFFH | 348000H-34FFFFH | | | | BA111 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 680000H-68FFFFH | 340000H-347FFFH | | | | BA110 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 670000H-67FFFFH | 338000H-33FFFFH | | | | BA109 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 660000H-66FFFFH | 330000H-337FFFH | | | | BA108 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 650000H-65FFFFH | 328000H-32FFFFH | | | | BA107 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 640000H-64FFFFH | 320000H-327FFFH | | | | BA106 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | Χ | Χ | Х | 64/32 | 630000H-63FFFFH | 318000H-31FFFFH | | | | BA105 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | Χ | Х | Х | 64/32 | 620000H-62FFFFH | 310000H-317FFFH | | | | BA104 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 610000H-61FFFFH | 308000H-30FFFFH | | | | BA103 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 600000H-60FFFFH | 300000H-307FFFH | | | | BA102 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 5F0000H-5FFFFFH | 2F8000H-2FFFFFH | | | | BA101 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 5E0000H-5EFFFFH | 2F0000H-2F7FFFH | | | | BA100 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 5D0000H-5DFFFFH | 2E8000H-2EFFFFH | | | | BA99 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | Χ | Х | Х | 64/32 | 5C0000H-5CFFFFH | 2E0000H-2E7FFFH | **Table 3. Bottom Block Address (Continued)** | KAD05 | KAD08 | | | | | E | Block A | ddress | | | | | Block Size | Address | s Range | |---------------|---------------|-------|-----|-----|-----|-----|---------|--------|-----|-----|-----|-----|------------|-----------------|-----------------| | (07)03
00B | (10)03
00B | Block | A21 | A20 | A19 | A18 | A17 | A16 | A15 | A14 | A13 | A12 | (KB/KW) | Byte Mode | Word Mode | | | | BA98 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 5B0000H-5BFFFFH | 2D8000H-2DFFFFH | | | | BA97 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 5A0000H-5AFFFFH | 2D0000H-2D7FFFH | | | | BA96 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 590000H-59FFFFH | 2C8000H-2CFFFFH | | | | BA95 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 580000H-58FFFFH | 2C0000H-2C7FFFH | | | | BA94 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 570000H-57FFFFH | 2B8000H-2BFFFFH | | | | BA93 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 560000H-56FFFFH | 2B0000H-2B7FFFH | | | | BA92 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 550000H-55FFFFH | 2A8000H-2AFFFFH | | | | BA91 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 540000H-54FFFFH | 2A0000H-2A7FFFH | | | | BA90 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 530000H-53FFFFH | 298000H-29FFFFH | | | | BA89 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | Χ | Х | Х | 64/32 | 520000H-52FFFFH | 290000H-297FFFH | | | | BA88 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 510000H-51FFFFH | 288000H-28FFFFH | | | | BA87 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 500000H-50FFFFH | 280000H-287FFFH | | | | BA86 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 4F0000H-4FFFFFH | 278000H-27FFFFH | | | Bank2 | BA85 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 4E0000H-4EFFFFH | 270000H-277FFFH | | | | BA84 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 4D0000H-4DFFFFH | 268000H-26FFFFH | | | | BA83 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 4C0000H-4CFFFFH | 260000H-267FFFH | | | | BA82 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 4B0000H-4BFFFFH | 258000H-25FFFFH | | | | BA81 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 4A0000H-4AFFFFH | 250000H-257FFFH | | | | BA80 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 490000H-49FFFFH | 248000H-24FFFFH | | | | BA79 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 480000H-48FFFFH | 240000H-247FFFH | | | | BA78 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 470000H-47FFFFH | 238000H-23FFFFH | | | | BA77 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 460000H-46FFFFH | 230000H-237FFFH | | Bank2 | | BA76 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 450000H-45FFFFH | 228000H-22FFFFH | | | | BA75 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 440000H-44FFFFH | 220000H-227FFFH | | | | BA74 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 430000H-43FFFFH | 218000H-21FFFFH | | | | BA73 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 420000H-42FFFFH | 210000H-217FFFH | | | | BA72 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 410000H-41FFFFH | 208000H-20FFFFH | | | | BA71 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | Χ | Х | Х | 64/32 | 400000H-40FFFFH | 200000H-207FFFH | | | | BA70 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 3F0000H-3FFFFFH | 1F8000H-1FFFFFH | | | | BA69 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 3E0000H-3EFFFFH | 1F0000H-1F7FFFH | | | | BA68 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 3D0000H-3DFFFFH | 1E8000H-1EFFFFH | | | | BA67 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 3C0000H-3CFFFFH | 1E0000H-1E7FFFH | | | | BA66 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 3B0000H-3BFFFFH | 1D8000H-1DFFFFH | | | | BA65 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 3A0000H-3AFFFFH | 1D0000H-1D7FFFH | | | | BA64 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 390000H-39FFFFH | 1C8000H-1CFFFFH | | | | BA63 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | Χ | Х | Х | 64/32 | 380000H-38FFFFH | 1C0000H-1C7FFFH | | | Bank1 | BA62 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | Χ | Х | Х | 64/32 | 370000H-37FFFFH | 1B8000H-1BFFFFH | | | Danki | BA61 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 360000H-36FFFFH | 1B0000H-1B7FFFH | | | | BA60 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | Χ | Х | Х | 64/32 | 350000H-35FFFFH | 1A8000H-1AFFFFH | | | | BA59 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 340000H-34FFFFH | 1A0000H-1A7FFFH | | | | BA58 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 330000H-33FFFFH | 198000H-19FFFFH | | | | BA57 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 320000H-32FFFFH | 190000H-197FFFH | | | | BA56 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 310000H-31FFFFH | 188000H-18FFFFH | | | | BA55 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | Х | Х |
Х | 64/32 | 300000H-30FFFFH | 180000H-187FFFH | | | | BA54 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | Χ | Χ | Х | 64/32 | 2F0000H-2F1FFFH | 178000H-17FFFFH | | | | BA53 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | Χ | Χ | Χ | 64/32 | 2E0000H-2EFFFFH | 170000H-177FFFH | # **MCP MEMORY** **Table 3. Bottom Boot Block Address (Continued)** | KAD05 | KAD08 | | | | | F | Block A | ddress | | | | | | Address | s Range | |---------------|---------------|-------|-----|-----|-----|-----|---------|--------|-----|-----|-----|-----|-----------------------|-----------------|-----------------| | (07)030
0B | (10)030
0B | Block | A21 | A20 | A19 | A18 | A17 | A16 | A15 | A14 | A13 | A12 | Block Size
(KB/KW) | Byte Mode | Word Mode | | | | BA52 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 2D0000H-2DFFFFH | 168000H-16FFFFH | | | | BA51 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 2C0000H-2CFFFFH | 160000H-167FFFH | | | | BA50 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 2B0000H-2BFFFFH | 158000H-15FFFFH | | | | BA49 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 2A0000H-2AFFFFH | 150000H-157FFFH | | | | BA48 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 290000H-29FFFFH | 148000H-14FFFFH | | | | BA47 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 280000H-28FFFFH | 140000H-147FFFH | | | | BA46 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 270000H-27FFFFH | 138000H-13FFFFH | | Bank2 | | BA45 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 260000H-26FFFFH | 130000H-137FFFH | | | | BA44 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 250000H-25FFFFH | 128000H-12FFFFH | | | | BA43 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 240000H-24FFFFH | 120000H-127FFFH | | | | BA42 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 230000H-23FFFFH | 118000H-11FFFFH | | | | BA41 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 220000H-22FFFFH | 110000H-117FFFH | | | | BA40 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 210000H-21FFFFH | 108000H-10FFFFH | | | | BA39 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 200000H-20FFFFH | 100000H-107FFFH | | | | BA38 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 1F0000H-1FFFFFH | 0F8000H-0FFFFH | | | | BA37 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 1E0000H-1EFFFFH | 0F0000H-0F7FFFH | | | | BA36 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | Χ | Х | Х | 64/32 | 1D0000H-1DFFFFH | 0E8000H-0EFFFFH | | | | BA35 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 1C0000H-1CFFFFH | 0E0000H-0E7FFFH | | | | BA34 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 1B0000H-1BFFFFH | 0D8000H-0DFFFFH | | | | BA33 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 1A0000H-1AFFFFH | 0D0000H-0D7FFFH | | | | BA32 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 190000H-19FFFFH | 0C8000H-0CFFFFH | | | Bank1 | BA31 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 180000H-18FFFFH | 0C0000H-0C7FFFH | | | | BA30 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 170000H-17FFFFH | 0B8000H-0BFFFFH | | | | BA29 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 160000H-16FFFFH | 0B0000H-0B7FFFH | | | | BA28 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 150000H-15FFFFH | 0A8000H-0AFFFFH | | | | BA27 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 140000H-14FFFFH | 0A0000H-0A7FFFH | | | | BA26 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 130000H-13FFFFH | 098000H-09FFFFH | | | | BA25 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 120000H-12FFFFH | 090000H-097FFFH | | | | BA24 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 110000H-11FFFFH | 088000H-08FFFFH | | Bank1 | | BA23 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | Х | Х | Х | 64/32 | 100000H-10FFFFH | 080000H-087FFFH | | | | BA22 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | Х | Х | Х | 64/32 | 0F0000H-0FFFFH | 078000H-07FFFFH | | | | BA21 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 0E0000H-0EFFFFH | 070000H-077FFFH | | | | BA20 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | Х | Х | Х | 64/32 | 0D0000H-0DFFFFH | 068000H-06FFFFH | | | | BA19 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | Х | Х | Х | 64/32 | 0C0000H-0CFFFFH | 060000H-067FFFH | | | | BA18 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | Х | Х | Х | 64/32 | 0B0000H-0BFFFFH | 058000H-05FFFFH | | | | BA17 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | Х | Х | Х | 64/32 | 0A0000H-0AFFFFH | 050000H-057FFFH | | | | BA16 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | Х | Х | Х | 64/32 | 090000H-09FFFFH | 048000H-04FFFFH | | | | BA15 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | Χ | Х | Х | 64/32 | 080000H-08FFFFH | 040000H-047FFFH | | | | BA14 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | Χ | Х | Х | 64/32 | 070000H-07FFFFH | 038000H-03FFFFH | | | | BA13 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | Х | Х | Х | 64/32 | 060000H-06FFFFH | 030000H-037FFFH | | | | BA12 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | Χ | Х | Х | 64/32 | 050000H-05FFFFH | 028000H-02FFFFH | | | | BA11 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | Χ | Х | Х | 64/32 | 040000H-04FFFFH | 020000H-027FFFH | | | | BA10 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | Χ | Х | Х | 64/32 | 030000H-03FFFFH | 018000H-01FFFFH | | | | BA9 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Χ | Х | Х | 64/32 | 020000H-02FFFFH | 010000H-017FFFH | | | | BA8 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Χ | Χ | Χ | 64/32 | 010000H-01FFFFH | 008000H-00FFFFH | **Table 3. Bottom Block Address (Continued)** | KAD05 | KAD08 | Disale | | | | | Block A | ddress | 5 | | | | Block Size | Address | s Range | |---------------|---------------|--------|-----|-----|-----|-----|---------|--------|-----|-----|-----|-----|------------|-----------------|-----------------| | (07)03
00B | (10)030
0B | Block | A21 | A20 | A19 | A18 | A17 | A16 | A15 | A14 | A13 | A12 | (KB/KW) | Byte Mode | Word Mode | | | | BA7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 8/4 | 00E000H-00FFFFH | 007000H-007FFFH | | | | BA6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 8/4 | 00C000H-00DFFFH | 006000H-006FFFH | | | | BA5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 8/4 | 00A000H-00BFFFH | 005000H-005FFFH | | Bank1 | Bank1 | BA4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 8/4 | 008000H-009FFFH | 004000H-004FFFH | | Daliki | Daliki | BA3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 8/4 | 006000H-007FFFH | 003000H-003FFFH | | | | BA2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 8/4 | 004000H-005FFFH | 002000H-002FFFH | | | | BA1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 8/4 | 002000H-003FFFH | 001000H-001FFFH | | | | BA0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8/4 | 000000H-001FFFH | 000000H-000FFFH | NOTE: The bank address bits are A21 ~ A20 for KAD050300B/KAD060300B/KAD070300B, A21 for KAD080300B/KAD090300B/KAD100300B. **Table 4. Secode Block Addresses for Bottom Boot Devices** | Device | Block Address | Block | (X8) | (X16) | |---|---------------|-------|-----------------|-----------------| | | A21-A12 | Size | Address Range | Address Range | | $\begin{array}{c} {\sf KAD050300B} \; (\overline{\sf CE}_{{\sf F2}}) \\ {\sf KAD070300B} \; (\overline{\sf CE}_{{\sf F1}}, \overline{\sf CE}_{{\sf F2}}) \\ {\sf KAD080300B} \; (\overline{\sf CE}_{{\sf F2}}) \\ {\sf KAD100300B} \; (\overline{\sf CE}_{{\sf F1}}, \overline{\sf CE}_{{\sf F2}}) \end{array}$ | 0000000xxx | 64/32 | 000000H-00FFFFH | 000000H-007FFFH | #### Flash MEMORY COMMAND DEFINITIONS Flash memory operates by selecting and executing its operational modes. Each operational mode has its own command set. In order to select a certain mode, a proper command with specific address and data sequences must be written into the command register. Writing incorrect information which include address and data or writing an improper command will reset the device to the read mode. The defined valid register command sequences are stated in Table 5. Note that Erase Suspend (B0H) and Erase Resume (30H) commands are valid only while the Block Erase Operation is in progress. **Table 5. Command Sequences** | Command Sequ | ienco | Cycle | 1st C | ycle | 2nd (| Cycle | 3rd (| Cycle | 4th C | Cycle | 5th C | Cycle | 6th (| Cycle | |---------------------------------|----------------------|-------|-------|----------|-------|-------|-------------|-------------|--------------|-------------|-------|-------|-------|-------| | Command Sequ | ience | Cycle | Word | Byte | | Dood | Addr | 1 | R | A | | | | | | | | | | | | Read | Data | ı | R | D | | | | | | | | | | | | Deset | Addr | 1 | XX | XH | | | | | | | | | | | | Reset | Data | ı | FC | Н | | | | | | | | | | | | Autoselect
Manufacturer | Addr | 4 | 555H | AAAH | 2AAH | 555H | DA/
555H | DA/
AAAH | DA/
X00H | DA/
X00H | | | | | | ID (2,3) | Data | | AA | Н | 55 | 5H | 90 |)H | EC | CH | | | | | | Autoselect
Device Code | Addr | 4 | 555H | AAAH | 2AAH | 555H | DA/
555H | DA/
AAAH | DA/
X01H | DA/
X02H | | | | | | (2,3) | Data | | AA | \H | 55 | 5H | 90 | H | (See T | able 6) | | | | | | Autoselect
Block Group | Addr | 4 | 555H | AAAH | 2AAH | 555H | DA/
555H | DA/
AAAH | BA /
X02H | BA/
X04H | | | | | | Protect Verify (2,3) | Data | | AA | λН | 55 | 5H | 90 | H | (See T | able 6) | | | | | | Auto Select
Secode Block | Addr | 4 | 555H | AAAH | 2AAH | 555H | DA/
555H | DA/
AAAH | DA /
X03H | DA/
X06H | | | | | | Factory Protect
Verify (2,3) | Data | | AA | \H | 55 | 5H | 90 | Н | (See T | able 6) | | | | | | Enter Secode | Addr | • | 555H | AAAH | 2AAH | 555H | 555H | AAAH | | | | | | | | Block Region | Data | 3 | AA | Н | 55 | 5H | 88 | ВН | | | | | | | | Exit Secode | Addr | | 555H | AAAH | 2AAH | 555H | 555H | AAAH | XX | XH | | | | | | Block
Region | Block
Region Data | 4 | AA | Н | 55 | 5H | 90 |)H | 00 |)H | | | | | | _ | Addr | 4 | 555H | AAAH | 2AAH | 555H | 555H | AAAH | Р | Α | | | | | | Program | Data | 4 | AA | \H | 55 | 5H | A | Ή | Р | D | | | | | | Unlock Bypass | Addr | 3 | 555H | AAAH | 2AAH | 555H | 555H | AAAH | | | | | | | | | Data | 3 |
AA | Н | 55 | 5H | 20 |)H | | | | | | | | Unlock Bypass | Addr | 2 | XX | XH | Р | Α | | | | | | | | | | Program | Data | 2 | AC |)H | Р | D | | | | | | | | | | Unlock Bypass | Addr | 2 | XX | XH | XX | XH | | | | | | | | | | Reset | Data | 2 | 90 | Н | 00 |)H | | | | | | | | | | Chip Erase | Addr | 6 | 555H | AAAH | 2AAH | 555H | 555H | AAAH | 555H | AAAH | 2AAH | 555H | 555H | AAAH | | Chip Liase | Data | U | AA | Н | 55 | 5H | 80 |)H | AA | λH | 55 | 5H | 10 | DΗ | | Block Erase | Addr | 6 | 555H | AAAH | 2AAH | 555H | 555H | AAAH | 555H | AAAH | 2AAH | 555H | В | SA. | | BIOCK E1830 | Data | 0 | AA | Н | 55 | 5H | 80 | H | AA | λH | 55 | 5H | 30 | DΗ | | Block Erase | Addr | 1 | XXX | | | | | | | | | | | | | Suspend (4, 5) | Data | | ВС | вон | | | | | | | | | | | | Block Erase | Frase Addr | 1 | XX | XH | | | | | | | | | | | | Resume | Data | | 30 | Н | | | | | | | | | | | | CFI Query (6) | Addr | 1 | 55H | AAH | | | | | | | | | | | | 5. 1 Quoiy (0) | Data 1 | 98 | H | | | | | | | | | | | | NOTES: 1. RA: Read Address, PA: Program Address, RD: Read Data, PD: Program Data DA: Dual Bank Address (A20 - A21), BA: Block Address (A12 - A21), X = Don't care. 2. To terminate the Autoselect Mode, it is necessary to write Reset command to the register. - 3. The 4th cycle data of Autoselect mode is output data. - The 3rd and 4th cycle bank addresses of Autoselect mode must be same. - 4. The Read / Program operations at non-erasing blocks and the autoselect mode are allowed in the Erase Suspend mode. - 5. The Erase Suspend command is applicable only to the Block Erase operation. - 6. Command is valid when the device is in read mode or Autoselect mode. - 7. DQ8 DQ15 are don't care in command sequence, except for RD and PD. - 8. A11 A21 are also don't care, except for the case of special notice. ### **Table 6. Flash Memory Autoselect Codes** | Possibilita | DQ8 to | DQ15 | DOZ44 DOG | |---|-------------------------|-------------------------|---| | Description | BYTE _F = ViH | BYTE _F = VIL | DQ7 to DQ0 | | Manufacturer ID | Х | Х | ECH | | Device Code K8D6316UT (Top Boot Block) | 22H | Х | E0H | | Device Code K8D6316UB (Bottom Boot Block) | 22H | Х | E2H | | Device Code K8D6516UT (Top Boot Block) | 22H | Х | E1H | | Device Code K8D6516UB (Bottom Boot Block) | 22H | Х | E3H | | Block Protection Verification | Х | × | 01H (Protected),
00H (Unprotected) | | Secode Block Indicator Bit (DQ7) | Х | × | 80H (Factory locked),
00H (Not factory locked) | **Table 7-1. Flash Operations Table** | Opera | ition | CE _F (6) | ŌE | WE | ВҮТЕ | WP/
ACC | А9 | A6 | A1 | Α0 | DQ15/
A-1 | DQ8/
DQ14 | DQ0/
DQ7 | RESET | |----------------------------|----------|---------------------|----|----|------|------------|-----|----|----|----|--------------|--------------|----------------------|-------| | Read | word | L | L | Н | Н | L/H | A9 | A6 | A1 | A0 | DQ15 | Dout | Dout | Н | | Reau | byte | L | L | Н | L | L/II | A9 | A6 | A1 | A0 | A-1 | High-Z | Dout | Н | | Stand-by | | Vcc ± 0.3V | Х | Х | х | (2) | Х | х | х | Х | High-Z | High-Z | High-Z | (2) | | Output Disa | able | L | Н | Н | Х | L/H | Х | Х | Х | Х | High-Z | High-Z | High-Z | Н | | Reset | | Х | Х | Х | Х | L/H | Х | Х | Х | Х | High-Z | High-Z | High-Z | L | | Write | word | L | Н | L | Н | (4) | A9 | A6 | A1 | A0 | Din | Din | Din | Н | | vvrite | byte | L | Н | L | L | (4) | A9 | A6 | A1 | A0 | A-1 | High-Z | DIN | Н | | Enable Bloc
Protect (3) | ck Group | L | Н | L | х | L/H | х | L | Н | L | Х | Х | DIN | VID | | Enable Blo
Unprotect (| | L | Н | L | х | (4) | х | Н | Н | L | Х | Х | DIN | VID | | Temporary
Group | Block | х | x | х | Х | (4) | х | Х | Х | Х | х | Х | Х | VID | | Auto Select
Manufactur | | L | L | Н | Х | L/H | VID | L | L | L | Х | Х | Code(See
Table 6) | Н | | Auto Select
Device Cod | | L | L | Н | Х | L/H | VID | L | L | Н | Х | Х | Code(See
Table 6) | Н | - 1. L = VIL (Low), H = VIH (High), VID = $8.5V \sim 12.5V$, DIN = Data in, DOUT = Data out, X = Don't care. - 2. WP/ACC and RESET pin are asserted at Vcc±0.3 V or Vss±0.3 V in the Stand-by mode. - 3. Addresses must be composed of the Block address (A12 A21). - The Block Protect and Unprotect operations may be implemented via programming equipment too. Refer to the "Block Group Protection and Unprotection". - 4. If WP/ACC=VII., the two outermost boot blocks is protected. If WP/ACC=VIII, the two outermost boot block protection depends on whether those blocks were last protected or unprotected using the method described in "Block Group Protection and Unprotection". If WP/ACC=VhH, all blocks will be temporarily unprotected. - 5. Manufacturer and device codes may also be accessed via a command register write sequence. Refer to Table 6. 6. $\overline{\text{CE}_{\text{F}}}$ can be replaced by $\overline{\text{CE}_{\text{F}}}$ 1 or $\overline{\text{CE}_{\text{F}}}$ 2. $\overline{\text{CE}_{\text{F}}}$ 1 and $\overline{\text{CE}_{\text{F}}}$ 2 must not be enabled at the same time. | State (| of CE _F | State of NOR Flash | | | | | |-------------------|--------------------|--|---|--|--|--| | CE _F 1 | CE _F 2 | 64Mb - NOR <u>1</u>
Controlled by CE _F 1 | 64Mb - NOR 2
Controlled by CE _F 2 | | | | | Low | Low | Not Av | railable | | | | | Low | High | Active | Stand-by | | | | | High | Low | Stand-by | Active | | | | | High | High | Stand-by | Stand-by | | | | Table 10. UtRAM Operations Table | CS u | ZZ | OE | WE | LB | UB | I/O _{0~7} | I/O8~15 | Mode | Power | |-----------------|----|-----------------|-----------------|-----------------|-----------------|--------------------|---------|------------------|------------| | Н | Н | X ¹⁾ | X ¹⁾ | X ¹⁾ | X ¹⁾ | High-Z | High-Z | Deselected | Standby | | X ¹⁾ | L | X ¹⁾ | X ¹⁾ | X ¹⁾ | X ¹⁾ | High-Z | High-Z | Deselected | Deep Power | | L | Н | X ¹⁾ | X ¹⁾ | Н | Н | High-Z | High-Z | Deselected | Standby | | L | Н | Н | Н | L | X ¹⁾ | High-Z | High-Z | Output Disabled | Active | | L | Н | Н | Н | X ¹⁾ | L | High-Z | High-Z | Output Disabled | Active | | L | Н | L | Н | L | Н | Dout | High-Z | Lower Byte Read | Active | | L | Н | L | Н | Н | L | High-Z | Dout | Upper Byte Read | Active | | L | Н | L | Н | L | L | Dout | Dout | Word Read | Active | | L | Н | X ¹⁾ | L | L | Н | Din | High-Z | Lower Byte Write | Active | | L | Н | X ¹⁾ | L | Н | L | High-Z | Din | Upper Byte Write | Active | | L | Н | X ¹⁾ | L | L | L | Din | Din | Word Write | Active | ^{1.} X = VIL or VIH #### Flash DEVICE OPERATION #### **Byte/Word Mode** If the BYTE_F pin is set at logical "1", the device is in word mode, DQ0-DQ15 are active. Otherwise the BYTE_F pin is set at logical "0", the device is in byte mode, DQ0-DQ7 are active. DQ8-DQ14 are in the High-Z state and DQ15 pin is used as an input for the LSB (A-1) address pin. #### **Read Mode** Flash memory is controlled by Chip Enable (\overline{CE}_F1 / \overline{CE}_F2), Output Enable (\overline{OE}) and Write Enable (\overline{WE}). When (\overline{CE}_F1 or \overline{CE}_F2) and \overline{OE} are low and \overline{WE} is high, the data stored at the specified address location will be the output of the device. The outputs are in high impedance state whenever \overline{CE}_F1 and \overline{CE}_F2 are high or \overline{OE} is high. #### **Standby Mode** Flash memory features Stand-by Mode to reduce power consumption. This mode puts the device on hold when the device is deselected by making \overline{CE}_F high $(\overline{CE}_F 1$ and $\overline{CE}_F 2 = V_{IH})$. Refer to the DC characteristics for more details on stand-by modes. #### **Output Disable** The device outputs are disabled when \overline{OE} is High ($\overline{OE} = V_{H}$). The output pins are in high impedance state. #### **Automatic Sleep Mode** Flash memory features Automatic Sleep Mode to minimize the device power consumption. Since the each device typically draws 5µA of the current in Automatic Sleep Mode, this feature plays an extremely important role in battery-powered applications. When addresses remain steady for tAA+50ns, the device automatically activates the Automatic Sleep Mode. In the sleep mode, output data is latched and always available to the system. When addresses are changed, the device provides new data without wait time. Figure 2. Auto Sleep Mode Operation #### **Autoselect Mode** Flash memory offers the Autoselect Mode to identify manufacturer and device type by reading a binary code. The Autoselect Mode allows programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. In addition, this mode allows the verification of the status of write protected blocks. The manufacturer and device code can be read via the command register. The Command Sequence is shown in Table 5 and Figure 3. The autoselect operation of block protect verification is initiated by first writing two unlock cycle. The third cycle must contain the bank address and autoselect command (90H). If Block address while (A6, A1, A0) = (0,1,0) is finally asserted on the address ball, it will produce a logical "1" at the device output DQ0 to indicate a write protected block or a logical "0" at the device output DQ0 to indicate a write unprotected block. To terminate the autoselect operation, write Reset command (F0H) into the command register. NOTE: The 3rd Cycle and 4th Cycle address must include the same bank address. Please refer to Table 6 for device code. Figure 3. Autoselect Operation (by command sequence method) #### Write (Program/Erase) Mode Flash memory executes its program/erase operations by writing commands into the command register. In order to write the commands to the register, $\overline{CE_F}$ and \overline{WE}
must be low and \overline{OE} must be high. Addresses are latched on the falling edge of $\overline{CE_F}$ or \overline{WE} (whichever occurs first). The device uses standard microprocessor write timing. #### **Program** Flash memory can be programmed in units of a word or a byte. Programming is writing 0's into the memory array by executing the Internal Program Routine. In order to perform the Internal Program Routine, a four-cycle command sequence is necessary. The first two cycles are unlock cycles. The third cycle is assigned for the program setup command. In the last cycle, the address of the memory location and the data to be programmed at that location are written. The device automatically generates adequate program pulses and verifies the programmed cell margin by the Internal Program Routine. During the execution of the Routine, the system is not required to provide further controls or timings. During the Internal Program Routine, commands written to the device will be ignored. Note that a hardware reset during a program operation will cause data corruption at the corresponding location. Figure 4. Program Command Sequence #### **Unlock Bypass** Flash memory provides the unlock bypass mode to save its program time for program operation. The mode is invoked by the unlock bypass command sequence. Then, the unlock bypass program command sequence is required to program the device. Unlike the standard program command sequence that contains four bus cycles, the unlock bypass program command sequence comprises only two bus cycles. The unlock bypass mode is engaged by issuing the unlock bypass command sequence which is comprised of three bus cycles. Writing first two unlock cycles is followed by a third cycle containing the unlock bypass command (20H). Once the device is in the unlock bypass mode, the unlock bypass program command sequence is necessary to program in this mode. The unlock bypass program command sequence is comprised of only two bus cycles; writing the unlock bypass program command (A0H) is followed by the program address and data. This command sequence is the only valid one for programming the device in the unlock bypass mode. The unlock bypass reset command sequence is the only valid command sequence to exit the unlock bypass mode. The unlock bypass reset command sequence consists of two bus cycles. The first cycle must contain the data (90H). The second cycle contains only the data (00H). Then, the device returns to the read mode. #### **Chip Erase** To erase a chip is to write 1's into the entire memory array by executing the Internal Erase Routine. The Chip Erase requires six bus cycles to write the command sequence. The erase set-up command is written after first two "unlock" cycles. Then, there are two more write cycles prior to writing the chip erase command. The Internal Erase Routine automatically pre-programs and verifies the entire memory for an all zero data pattern prior to erasing. The automatic erase begins on the rising edge of the last WE or $\overline{\text{CE}_F}$ pulse in the command sequence and terminates when DQ7 is "1". After that the device returns to the read mode. Figure 5. Chip Erase Command Sequence #### **Block Erase** To erase a block is to write 1's into the desired memory block by executing the Internal Erase Routine. The Block Erase requires six bus cycles to write the command sequence shown in Table 5. After the first two "unlock" cycles, the erase setup command (80H) is written at the third cycle. Then there are two more "unlock" cycles followed by the Block Erase command. The Internal Erase Routine automatically pre-programs and verifies the entire memory prior to erasing it. The block address is latched on the falling edge of WE or $\overline{CE_E}$, while the Block Erase command is latched on the rising edge of WE or $\overline{CE_E}$. Multiple blocks can be erased sequentially by writing the six bus-cycle operation in Figure 6. Upon completion of the last cycle for the Block Erase, additional block address and the Block Erase command (30H) can be written to perform the Multi-Block Erase. An 50µs (typical) "time window" is required between the Block Erase command writes. The Block Erase command must be written within the 50µs "time window", otherwise the Block Erase command will be ignored. The 50µs "time window" is reset when the falling edge of the WE occurs within the 50µs of "time window" to latch the Block Erase command. During the 50µs of "time window", any command other than the Block Erase or the Erase Suspend command written to the device will reset the device to read mode. After the 50µs of "time window", the Block Erase command will initiate the Internal Erase Routine to erase the selected blocks. Any Block Erase address and command following the exceeded "time window" may or may not be accepted. No other commands will be recognized except the Erase Suspend command during Block Erase operation. Figure 6. Block Erase Command Sequence ### **Erase Suspend / Resume** The Erase Suspend command interrupts the Block Erase to read or program data in a block that is not being erased. The Erase Suspend command is only valid during the Block Erase operation including the time window of 50µs. The Erase Suspend command is not valid while the Chip Erase or the Internal Program Routine sequence is running. When the Erase Suspend command is written during a Block Erase operation, the device requires a maximum of $20\mu s$ to suspend the erase operation. But, when the Erase Suspend command is written during the block erase time window ($50\mu s$), the device immediately terminates the block erase time window and suspends the erase operation. After the erase operation has been suspended, the device is available for reading or programming data in a block that is not being erased. The system may also write the autoselect command sequence when the device is in the Erase Suspend mode. When the Erase Resume command is executed, the Block Erase operation will resume. When the Erase Suspend or Erase Resume command is executed, the addresses are in Don't Care state. Figure 7. Erase Suspend/Resume Command Sequence #### Read While Write Flash memory provides dual bank memory architecture that divides the memory array into two banks. The device is capable of reading data from one bank and writing data to the other bank simultaneously. This is so called the Read While Write operation with dual bank architecture; this feature provides the capability of executing the read operation during Program/Erase or Erase-Suspend-Program operation. The Read While Write operation is prohibited during the chip erase operation. It is also allowed during erase operation when either single block or multiple blocks from same bank are loaded to be erased. It means that the Read While Write operation is prohibited when blocks from Bank1 and another blocks from Bank2 are loaded all together for the multi-block erase operation. #### **Block Group Protection & Unprotection** Flash memory feature hardware block group protection. This feature will disable both program and erase operations in any combination of forty one block groups of memory. Please refer to Tables 9 and 10. The block group protection feature is enabled using programming equipment at the user's site. The device is shipped with all block groups unprotected. This feature can be hardware protected or unprotected. If a block is protected, program or erase command in the protected block will be ignored by the device. The protected block can only be read. This is useful method to preserve an important program data. The block group unprotection allows the protected blocks to be erased or programed. All blocks must be protected before unprotect operation is executing. The block group protection and unprotection can be implemented by the following methods. **Table 8. Block Group Protection & Unprotection** | Operation | CE _F | OE | WE | BYTE _F | А9 | A6 | A1 | A0 | DQ15/
A-1 | DQ8/
DQ14 | DQ0/
DQ7 | RESET | |-----------------------|-----------------|----|----|-------------------|----|----|----|----|--------------|--------------|-------------|-------| | Block Group Protect | L | Н | L | Х | Х | L | Н | L | X | Х | Din | VID | | Block Group Unprotect | L | Н | ш | Х | Х | Н | Н | L | X | X | DIN | VID | Address must be inputted to the block group address (A12~A21) during block group protection operation. Please refer to Figure 9 (Algorithm) and Switching Waveforms of Block Group Protect & Unprotect Operations. #### **Temporary Block Group Unprotect** The protected blocks of the Flash memory can be temporarily unprotected by applying high voltage ($V_{ID} = 8.5V \sim 12.5V$) to the RESET ball. In this mode, previously protected blocks can be programmed or erased with the program or erase command routines. When the RESET ball goes high (RESET = V_{IH}), all the previously protected blocks will be protected again. If the WP/ACC ball is asserted at V_{IL} , the two outermost boot blocks remain protected. Figure 8. Temporary Block Group Unprotect Sequence NOTE: All blocks must be protected before unprotect operation is executing. Figure 9. Block Group Protection & Unprotection Algorithms **Table 9. Flash Memory Block Group Address (Top Boot Block)** | | | | | | Block A | Address | | | , | | | |-------------|-----|-----|-----|-----|---------|---------|-----|-----|-----|-----|----------------| | Block Group | A21 | A20 | A19 | A18 | A17 | A16 | A15 | A14 | A13 | A12 | Block | | BGA0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Х | Х | Х | BA0 | | | | | | | | 0 | 1 | | | | | | BGA1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Х | Х | X | BA1 to BA3 | | | | | | | | 1 | 1 | | | | | | BGA2 | 0 | 0 | 0 | 0 | 1 | Х | Х | Х | Х | Х | BA4 to BA7 | | BGA3 | 0 | 0 | 0 | 1 | 0 | Х | Х | Х | Х | Х | BA8 to BA11 | | BGA4 | 0 | 0 | 0 | 1 | 1 | Х | Х | Х | Х | Х | BA12 to BA15 | | BGA5 | 0 | 0 | 1 | 0 | 0 | Х | Х | Х | Х | Х | BA16 to BA19 | | BGA6 | 0 | 0 | 1 | 0 |
1 | X | Х | Х | Х | X | BA20 to BA23 | | BGA7 | 0 | 0 | 1 | 1 | 0 | Х | Х | Х | Х | Х | BA24 to BA27 | | BGA8 | 0 | 0 | 1 | 1 | 1 | Х | Х | Х | Х | Х | BA28 to BA31 | | BGA9 | 0 | 1 | 0 | 0 | 0 | Х | Х | Х | Х | Х | BA32 to BA35 | | BGA10 | 0 | 1 | 0 | 0 | 1 | Х | Х | Х | Х | Х | BA36 to BA39 | | BGA11 | 0 | 1 | 0 | 1 | 0 | Х | Х | Х | Х | Х | BA40 to BA43 | | BGA12 | 0 | 1 | 0 | 1 | 1 | Х | Х | Х | Х | Х | BA44 to BA47 | | BGA13 | 0 | 1 | 1 | 0 | 0 | Х | Х | Х | Х | Х | BA48 to BA51 | | BGA14 | 0 | 1 | 1 | 0 | 1 | Х | Х | Х | Х | Х | BA52 to BA55 | | BGA15 | 0 | 1 | 1 | 1 | 0 | Х | Х | Х | Х | Х | BA56 to BA59 | | BGA16 | 0 | 1 | 1 | 1 | 1 | Х | Х | Х | Х | Х | BA60 to BA63 | | BGA17 | 1 | 0 | 0 | 0 | 0 | Х | Х | Х | Х | X | BA64 to BA67 | | BGA18 | 1 | 0 | 0 | 0 | 1 | Х | Х | Х | Х | Х | BA68 to BA71 | | BGA19 | 1 | 0 | 0 | 1 | 0 | Х | Х | Х | Х | Х | BA72 to BA75 | | BGA20 | 1 | 0 | 0 | 1 | 1 | Х | Х | Х | Х | Х | BA76 to BA79 | | BGA21 | 1 | 0 | 1 | 0 | 0 | Х | Х | Х | Х | Х | BA80 to BA83 | | BGA22 | 1 | 0 | 1 | 0 | 1 | Х | Х | Х | Х | Х | BA84 to BA87 | | BGA23 | 1 | 0 | 1 | 1 | 0 | Х | Х | Х | Х | Х | BA88 to BA91 | | BGA24 | 1 | 0 | 1 | 1 | 1 | Х | Х | Х | Х | Х | BA92 to BA95 | | BGA25 | 1 | 1 | 0 | 0 | 0 | Х | Х | Х | Х | Х | BA96 to BA99 | | BGA26 | 1 | 1 | 0 | 0 | 1 | Х | Х | Х | Х | Х | BA100 to BA103 | | BGA27 | 1 | 1 | 0 | 1 | 0 | Х | Х | Х | Х | Х | BA104 to BA107 | | BGA28 | 1 | 1 | 0 | 1 | 1 | Х | Х | Х | Х | Х | BA108 to BA111 | | BGA29 | 1 | 1 | 1 | 0 | 0 | Х | Х | Х | Х | Х | BA112 to BA115 | | BGA30 | 1 | 1 | 1 | 0 | 1 | X | Х | Х | Х | X | BA116 to BA119 | | BGA31 | 1 | 1 | 1 | 1 | 0 | Х | Х | Х | Х | Х | BA120 to BA123 | | | | | | | | 0 | 0 | | | | | | BGA32 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | Х | X | X | BA124 to BA126 | | | | | | | | 1 | 0 | | | | | | BGA33 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | BA127 | | BGA34 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | BA128 | | BGA35 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | BA129 | | BGA36 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | BA130 | | BGA37 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | BA131 | | BGA38 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | BA132 | | BGA39 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | BA133 | | BGA40 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | BA134 | Table 10. Block Group Address (Bottom Boot Block) | Block Crown | | | | | Block A | Address | | | | | Diesk | |-------------|-----|-----|-----|-----|---------|---------|-----|-----|-----|-----|----------------| | Block Group | A21 | A20 | A19 | A18 | A17 | A16 | A15 | A14 | A13 | A12 | Block | | BGA0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | BA0 | | BGA1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | BA1 | | BGA2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | BA2 | | BGA3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | BA3 | | BGA4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | BA4 | | BGA5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | BA5 | | BGA6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | BA6 | | BGA7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | BA7 | | | | | | | | 0 | 1 | | | | | | BGA8 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Х | Х | X | BA8 to BA10 | | | | | | | | 1 | 1 | | | | | | BGA9 | 0 | 0 | 0 | 0 | 1 | Х | Х | Х | Х | Х | BA11 to BA14 | | BGA10 | 0 | 0 | 0 | 1 | 0 | Х | Х | Х | Х | Х | BA15 to BA18 | | BGA11 | 0 | 0 | 0 | 1 | 1 | Х | Х | Х | Х | Х | BA19 to BA22 | | BGA12 | 0 | 0 | 1 | 0 | 0 | Х | Х | Х | Х | х | BA23 to BA26 | | BGA13 | 0 | 0 | 1 | 0 | 1 | Х | Х | Х | Х | Х | BA27 to BA30 | | BGA14 | 0 | 0 | 1 | 1 | 0 | Х | Х | Х | Х | Х | BA31 to BA34 | | BGA15 | 0 | 0 | 1 | 1 | 1 | Х | Х | Х | Х | Х | BA35 to BA38 | | BGA16 | 0 | 1 | 0 | 0 | 0 | Х | Х | Х | Х | Х | BA39 to BA42 | | BGA17 | 0 | 1 | 0 | 0 | 1 | Х | Х | Х | Х | Х | BA43 to BA46 | | BGA18 | 0 | 1 | 0 | 1 | 0 | Х | Х | Х | Х | Х | BA47 to BA50 | | BGA19 | 0 | 1 | 0 | 1 | 1 | Х | Х | Х | Х | Х | BA51 to BA54 | | BGA20 | 0 | 1 | 1 | 0 | 0 | Х | Х | Х | Х | Х | BA55 to BA58 | | BGA21 | 0 | 1 | 1 | 0 | 1 | Х | Х | Х | Х | Х | BA59 to BA62 | | BGA22 | 0 | 1 | 1 | 1 | 0 | Х | Х | Х | Х | Х | BA63 to BA66 | | BGA23 | 0 | 1 | 1 | 1 | 1 | Х | Х | Х | Х | Х | BA67 to BA70 | | BGA24 | 1 | 0 | 0 | 0 | 0 | Х | Х | Х | Х | Х | BA71 to BA74 | | BGA25 | 1 | 0 | 0 | 0 | 1 | Х | Х | Х | Х | Х | BA75 to BA78 | | BGA26 | 1 | 0 | 0 | 1 | 0 | Х | Х | Х | Х | Х | BA79 to BA82 | | BGA27 | 1 | 0 | 0 | 1 | 1 | X | Х | Х | Х | Х | BA83 to BA86 | | BGA28 | 1 | 0 | 1 | 0 | 0 | Х | Х | Х | Х | X | BA87to BA90 | | BGA29 | 1 | 0 | 1 | 0 | 1 | X | X | X | X | X | BA91 to BA94 | | BGA30 | 1 | 0 | 1 | 1 | 0 | X | X | X | X | X | BA95 to BA98 | | | | | | | | | | | | | | | BGA31 | 1 | 0 | 1 | 1 | 1 | X | X | X | X | X | BA99 to BA102 | | BGA32 | 1 | 1 | 0 | 0 | 0 | Х | Х | Х | Х | Х | BA103 to BA106 | | BGA33 | 1 | 1 | 0 | 0 | 1 | Х | Х | Х | Х | Х | BA107 to BA110 | | BGA34 | 1 | 1 | 0 | 1 | 0 | Х | Х | Х | Х | Х | BA111 to BA114 | | BGA35 | 1 | 1 | 0 | 1 | 1 | X | Х | Х | Х | X | BA115 to BA118 | | BGA36 | 1 | 1 | 1 | 0 | 0 | Х | Х | Х | Х | Х | BA119 to BA122 | | BGA37 | 1 | 1 | 1 | 0 | 1 | Х | Х | Х | Х | Х | BA123 to BA126 | | BGA38 | 1 | 1 | 1 | 1 | 0 | Х | Х | Х | Х | X | BA127 to BA130 | | | | | | | | 0 | 0 | | | | | | BGA39 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | X | Х | Х | BA131 to BA133 | | _ 3, .55 | | | | | | 1 | 0 | 1 | | | | | BGA40 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Х | X | X | BA134 | # Write Protect (WP) The WP/ACC ball has two useful functions. The one is that certain boot block is protected by the hardware method not to use VID. The other <u>is that</u> program operation is accelerated to reduce the program time (Refer to Accelerated program Operation Paragraph). When the WP/ACC ball is asserted at VIL, the device can not perform program and erase operation in the two "outermost" 8K byte boot blocks independently of whether those blocks were protected or unprotected using the method described in "Block Group protection/Unprotection". The write protected blocks can only be read. This is useful method to preserve an important program data. The two outermost 8K byte boot blocks are the two blocks containing the lowest addresses in a bottom-boot-configured device, or the two blocks <u>containing</u> the highest addresses in a <u>top</u>-boot-congfigured device. $(KAD050300B(\overline{CE}_{F}1), KAD060300B, KAD080300B(\overline{CE}_{F}1), KAD090300B : BA133 and BA134, KAD050300B(\overline{CE}_{F}2), KAD070300B, KAD080300B(\overline{CE}_{F}2), KAD100300B : BA0 and BA1)$ When the $\overline{\text{WP}}/\text{ACC}$ ball is asserted at VIH, the device reverts to whether the two outermost 8K byte boot blocks were last set to be protected or unprotected. That is, block protection or unprotection for these two blocks depends on whether they were last protected or unprotected using the method described in "Block Group protection/unprotection". Recommend that the WP/ACC ball must not be in the state of floating or unconnected, or the device may be led to malfunction. #### Secode(Security Code) Block Region The Secode Block feature provides a Flash memory region to be stored unique and permanent identification code, that is, Electronic Serial Number (ESN), customer code and so on. This is primarily intended for customers who wish to use an Electronic Serial Number (ESN) in the device with the ESN protected against modification. Once the Secode Block region is protected, any further modification of that region is impossible. This ensures the security of the ESN once the product is shipped to the field. The Secode Block is factory locked or customer lockable. Before the device is shipped, the factory locked Secode Block is written on the special code and it is protected. The Secode Indicator bit (DQ7) is permanently fixed at "1" and it is not changed. The customer lockable Secode Block is unprotected, therefore it is programmed and erased. The Secode Indicator bit (DQ7) of it is permanently fixed at "0" and it is not changed. But once it is protected, there is no procedure to unprotect and modify the Secode Block. The Secode Block region is 64K bytes in length and is accessed through a new command sequence (see Table 5). After the system has written the Enter Secode Block command sequence, the system may read the Secode Block region by using the same addresses of the boot blocks (8KBx8). The KAD050300B(CE_F1), KAD060300B, KAD080300B(CE_F1) and KAD090300B occupy the address of the byte mode 7F0000H to 7FFFFFH (word mode 3F8000H to 3FFFFFH) and the KAD050300B(CE_F2), KAD070300B, KAD080300B(CE_F2) and KAD100300B type occupy the address of the byte mode 000000H to 00FFFFH (word mode 000000H to 007FFFH). This mode of operation continues until the system issues the Exit Secode Block command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the device reverts to read mode. #### **Accelerated Program Operation** Accelerated program operation reduces the program time. This is one of two functions provided by the $\overline{\text{WP}}/\text{ACC}$ ball. When the $\overline{\text{WP}}/\text{ACC}$ ball is asserted as VHH, the device automatically enters the aforementioned Unlock Bypass mode, temporarily unprotecting any protected blocks, and reduces the program operation time. The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing VHH from the $\overline{\text{WP}}/\text{ACC}$ ball returns the device to normal operation. Recommend that the WP/ACC ball must not be asserted at VHH except accelerated program operation, or the device may be damaged. In addition, the WP/ACC ball must not be in the state of floating or unconnected, otherwise the device may be led to malfunction. #### Software Reset The reset command provides that the device is reseted to read mode or erase-suspend-read mode. The addresses are in Don't Care state. The reset command is vaild between the sequence cycles in an erase command sequence before erasing begins, or in a program command sequence before programming begins. This resets the bank in which
was operating to read mode. If the device is be erasing or programming, the reset command is invalid until the operation is completed. Also, the reset command is valid between the sequence cycles in an autoselect command sequence. In the autoselect mode, the reset command returns the bank to read mode. If a bank entered the autoselect mode in the Erase Suspend mode, the reset command returns the bank to erase-suspend-read mode. If DQ5 is high on erase or program operation, the reset command return the bank to read mode or erase-suspend-read mode if the bank was in the Erase Suspend state. #### **Hardware Reset** Flash memory offers a reset feature by driving the RESET ball to V_{IL}. The RESET ball must be kept low (V_{IL}) for at least 500ns. When the RESET ball is driven low, any operation in progress will be terminated and the internal state machine will be reset to the standby mode after 20us. If a hardware reset occurs during a program operation, the data at that particular location will be lost. Once the RESET ball is taken high, the device requires 50ns of wake-up time until outputs are valid for read access. Also, note that all the data output balls are tri-stated for the duration of the RESET pulse. The RESET ball may be tied to the system reset ball. If a system reset occurs during the Internal Program and Erase Routine, the device will be automatically reset to the read mode; this will enable the systems microprocessor to read the boot-up firmware from the Flash memory. #### **Power-up Protection** To avoid initiation of a write cycle during Vcc_F Power-up, RESET low must be asserted during power-up. After RESET goes high, the device is reset to the read mode. #### Low Vcc_F Write Inhibit To avoid initiation of a write cycle during Vcc_F power-up and power-down, a write cycle is locked out for Vcc_F less than 1.8V. If Vcc_F < VLKO (Lock-Out Voltage), the command register and all internal program/erase circuits are disabled. Under this condition the device will reset itself to the read mode. Subsequent writes will be ignored until the Vcc_F level is greater than VLKO. It is the user's responsibility to ensure that the control balls are logically correct to prevent unintentional writes when Vcc_F is above 1.8V. #### Write Pulse Glitch Protection Noise pulses of less than 5ns(typical) on \overline{CE}_F , \overline{OE} , or \overline{WE} will not initiate a write cycle. #### **Logical Inhibit** Writing is inhibited under any one of the following conditions: $\overline{OE} = VIL$, $\overline{CE}_F = VIH$ or $\overline{WE} = VIH$. To initiate a write, \overline{CE}_F and \overline{WE} must be "0", while \overline{OE} is "1". #### **Commom Flash Memory Interface** Common Flash Momory Interface is contrived to increase the compatibility of host system software. It provides the specific information of the device, such as memory size, byte/word configuration, and electrical features. Once this information has been obtained, the system software will know which command sets to use to enable flash writes, block erases, and control the flash component. When the system writes the CFI command(98H) to address 55H in word mode(or address AAH in byte mode), the device enters the CFI mode. And then if the system writes the address shown in Table 11, the system can read the CFI data. Query data are always presented on the lowest-order data outputs(DQ0-7) only. In word(x16) mode, the upper data outputs(DQ8-15) is 00h. To terminate this operation, the system must write the reset command. **Table 11. Common Flash Memory Interface Code** | Description | Addresses
(Word Mode) | Addresses
(Byte Mode) | Data | |--|--------------------------|--------------------------|-------| | | 10H | 20H | 0051H | | Query Unique ASCII string "QRY" | 11H | 22H | 0052H | | | 12H | 24H | 0059H | | Primary OEM Command Set | 13H | 26H | 0002H | | Timary 62m command 60t | 14H | 28H | 0000H | | Address for Primary Extended Table | 15H | 2AH | 0040H | | | 16H | 2CH | 0000H | | Alternate OEM Command Set (00h = none exists) | 17H | 2EH | 0000H | | (************************************** | 18H | 30H | 0000H | | Address for Alternate OEM Extended Table (00h = none exists) | 19H | 32H | 0000H | | (| 1AH | 34H | 0000H | | Vcc Min. (write/erase) D7-D4: volt, D3-D0: 100 millivolt | 1BH | 36H | 0027H | | Vcc Max. (write/erase) D7-D4: volt, D3-D0: 100 millivolt | 1CH | 38H | 0036H | | Vpp Min. voltage(00H = no Vpp pin present) | 1DH | 3AH | 0000H | | Vpp Max. voltage(00H = no Vpp pin present) | 1EH | 3CH | 0000H | | Typical timeout per single byte/word write 2 ^N us | 1FH | 3EH | 0004H | | Typical timeout for Min. size buffer write 2^{N} us(00H = not supported) | 20H | 40H | 0000H | | Typical timeout per individual block erase 2 ^N ms | 21H | 42H | 000AH | | Typical timeout for full chip erase 2^{N} ms(00H = not supported) | 22H | 44H | 0000H | | Max. timeout for byte/word write 2 ^N times typical | 23H | 46H | 0005H | | Max. timeout for buffer write 2 ^N times typical | 24H | 48H | 0000H | | Max. timeout per individual block erase $2^{\mathbb{N}}$ times typical | 25H | 4AH | 0004H | | Max. timeout for full chip erase 2^N times typical(00H = not supported) | 26H | 4CH | 0000H | | Device Size = 2 ^N byte | 27H | 4EH | 0017H | | Flash Device Interface description | 28H | 50H | 0002H | | i iasii bevice iiileliace descriptiori | 29H | 52H | 0000H | | Max. number of byte in multi-byte write = 2 ^N | 2AH | 54H | 0000H | | max. Hamber of byte in main-byte write = 2" | 2BH | 56H | 0000H | | Number of Erase Block Regions within device | 2CH | 58H | 0002H | **Table 11. Common Flash Memory Interface Code (Continued)** | Description | Addresses
(Word Mode) | Addresses
(Byte Mode) | Data | |---|--------------------------|--------------------------|----------------------------------| | Erase Block Region 1 Information | 2DH
2EH
2FH
30H | 5AH
5CH
5EH
60H | 0007H
0000H
0020H
0000H | | Erase Block Region 2 Information | 31H
32H
33H
34H | 62H
64H
66H
68H | 007EH
0000H
0000H
0001H | | Erase Block Region 3 Information | 35H
36H
37H
38H | 6AH
6CH
6EH
70H | 0000H
0000H
0000H | | Erase Block Region 4 Information | 39H
3AH
3BH
3CH | 72H
74H
76H
78H | 0000H
0000H
0000H
0000H | | Query-unique ASCII string "PRI" | 40H
41H
42H | 80H
82H
84H | 0050H
0052H
0049H | | Major version number, ASCII | 43H | 86H | 0030H | | Minor version number, ASCII | 44H | 88H | 0030H | | Address Sensitive Unlock(Bits 1-0) 0 = Required, 1= Not Required Silcon Revision Number(Bits 7-2) | 45H | 8AH | 0000H | | Erase Suspend 0 = Not Supported, 1 = To Read Only, 2 = To Read & Write | 46H | 8CH | 0002H | | Block Protect
0 = Not Supported, 1 = Supported | 47H | 8EH | 0001H | | Block Temporary Unprotect 00 = Not Supported, 01 = Supported | 48H | 90H | 0001H | | Block Protect/Unprotect scheme 04 = K8D1x16U mode | 49H | 92H | 0004H | | Simultaneous Operation (1) 00 = Not Supported, XX = Number of Blocks in Bank2 | 4AH | 94H | 00XXH | | Burst Mode Type 00 = Not Supported, 01 = Supported | 4BH | 96H | 0000H | | Page Mode Type
00=Not supported, 01=4word page, 02=8word page | 4CH | 98H | 0000H | | ACC(Acceleration) Supply Minimum
00 = Not Supported, D7 - D4 : Volt, D3 - D0 : 100mV | 4DH | 9AH | 0085H | | ACC(Acceleration) Supply Maximum
00 = Not Supported, D7 - D4 : Volt, D3 - D0 : 100mV | 4EH | 9CH | 00C5H | | Top/Bottom Boot Block Flag
02H = Bottom Boot , 03H = Top Boot | 4FH | 9EH | 000XH | ^{1.} The number of blocks in Bank2 is device dependent. 16Mb/48Mb, KAD050300B/KAD060300B/KAD070300B = 60h (96blocks) 32Mb/32Mb, KAD080300B/KAD090300B/KAD100300B = 40h (64blocks) #### **DEVICE STATUS FLAGS** Flash memory has means to indicate its status of operation in the bank where a program or erase operation is in processes. Address must include bank address being excuted internal routine operation. The status is indicated by raising the device status flag via corresponding DQ balls or the RY/BY ball. The corresponding DQ balls are DQ7, DQ6, DQ5, DQ3 and DQ2. The status is as follows: **Table 12. Hardware Sequence Flags** | | State | ıs | DQ7 | DQ6 | DQ5 | DQ3 | DQ2 | RY/BY | |-------------------------|--------------------------|--------------------------------|--------|--------|------|--------------|--------------------|-------| | | Programming | | DQ7 | Toggle | 0 | 0 | 1 | 0 | | | Block Erase or Chip Eras | 0 | Toggle | 0 | 1 | Toggle | 0 | | | In Progress | Erase Suspend Read | Erase Suspended
Block | 1 | 1 | 0 | 0 | Toggle
(Note 1) | 1 | | 3 | Erase Suspend Read | Non-Erase Sus-
pended Block | Data | Data | Data | Data | Data | 1 | | | Erase Suspend
Program | DQ7 | Toggle | 0 | 0 | 1 | 0 | | | | Programming | | DQ7 | Toggle | 1 | 0 | No
Toggle | 0 | | Exceeded
Time Limits | Block Erase or Chip Eras | 0 | Toggle | 1 | 1 | (Note 2) | 0 | | | | Erase Suspend Program | DQ7 | Toggle | 1 | 0 | No
Toggle | 0 | | #### NOTES: - 1. DQ2 will toggle when the device performs successive read operations from the erase suspended block. - 2. If DQ5 is High (exceeded timing limits), successive reads from a problem block will cause DQ2 to toggle. #### DQ7: Data Polling When an attempt to read the device is made while executing the Internal Program, the complement of the data is written to DQ7 as an indication of the Routine in progress. When the Routine is completed an attempt to access to the device will produce the true data written to DQ7. When a user attempts to read the device during the Erase operation, DQ7 will be low. If the device is placed in the Erase Suspend Mode, the status can be detected via the DQ7 ball. If the system tries to read an address which belongs to a block
that is being erased, DQ7 will be high. If a non-erased block address is read, the device will produce the true data to DQ7. If an attempt is made to program a protected block, DQ7 outputs complements the data for approximately 1µs and the device then returns to the Read Mode without changing data in the block. If an attempt is made to erase a protected block, DQ7 outputs complement data in approximately 100us and the device then returns to the Read Mode without erasing the data in the block. #### DQ6: Toggle Bit Toggle bit is another option to detect whether an Internal Routine is in progress or completed. Once the device is at a busy state, DQ6 will toggle. Toggling DQ6 will stop after the device completes its Internal Routine. If the device is in the Erase Suspend Mode, an attempt to read an address that belongs to a block that is being erased will produce a high output of DQ6. If an address belongs to a block that is not being erased, toggling is halted and valid data is produced at DQ6. If an attempt is made to program a protected block, DQ6 toggles for approximately 1us and the device then returns to the Read Mode without changing the data in the block. If an attempt is made to erase a protected block, DQ6 toggles for approximately 100μs and the device then returns to the Read Mode without erasing the data in the block. #### **DQ5: Exceed Timing Limits** If the Internal Program/Erase Routine extends beyond the timing limits, DQ5 will go High, indicating program/erase failure. #### **DQ3: Block Erase Timer** The status of the multi-block erase operation can be detected via the DQ3 ball. DQ3 will go High if 50µs of the block erase time window expires. In this case, the Internal Erase Routine will initiate the erase operation. Therefore, the device will not accept further write commands until the erase operation is completed. DQ3 is Low if the block erase time window is not expired. Within the block erase time window, an additional block erase command (30H) can be accepted. To confirm that the block erase command has been accepted, the software may check the status of DQ3 following each block erase command. #### DQ2: Toggle Bit 2 The device generates a toggling pulse in DQ2 only if an Internal Erase Routine or an Erase Suspend is in progress. When the device executes the Internal Erase Routine, DQ2 toggles only if an erasing block is read. Although the Internal Erase Routine is in the Exceeded Time Limits, DQ2 toggles only if an erasing block in the Exceeded Time Limits is read. When the device is in the Erase Suspend mode, DQ2 toggles only if an address in the erasing block is read. If a non-erasing block address is read during the Erase Suspend mode, then DQ2 will produce valid data. DQ2 will go High if the user tries to program a non-erase suspend block while the device is in the Erase Suspend mode. Combination of the status in DQ6 and DQ2 can be used to distinguish the erase operation from the program operation. #### RY/BY: Ready/Busy Flash memory has a Ready / Busy output that indicates either the completion of an operation or the status of Internal Algorithms. If the output is Low, the device is busy with either a program or an erase operation. If the output is High, the device is ready to accept any read/write or erase operation. When the RY/ \overline{BY} ball is low, the device will not accept any additional program or erase commands with the exception of the Erase Suspend command. If Flash memory is placed in an Erase Suspend mode, the RY/ \overline{BY} output will be High. For programming, the RY/ \overline{BY} is valid (RY/ \overline{BY} = 0) after the rising edge of the fourth \overline{WE} pulse in the four write pulse sequence. For Chip Erase, RY/ \overline{BY} is also valid after the rising edge of \overline{WE} pulse in the six write pulse sequence. For Block Erase, RY/ \overline{BY} is also valid after the rising edge of the sixth \overline{WE} pulse. The ball is an open drain output, allowing two or more Ready/ Busy outputs to be OR-tied. An appropriate pull-up resistor is required for proper operation. $$Rp = \frac{Vcc_{F} (Max.) - VoL (Max.)}{IOL + \sum IL} = \frac{2.9 \text{ V}}{2.1 \text{mA} + \sum IL}$$ where Σ IL is the sum of the input currents of all devices tied to the Ready / $\overline{\text{Busy}}$ ball. Figure 10. Data Polling Algorithms Figure 11. Toggle Bit Algorithms #### NOTES: - 1. All protected block groups are unprotected. (If $\overline{WP}/ACC = V_{IL}$, the two outermost boot blocks remain protected) - 2. All previously protected block groups are protected once again. Figure 12. Temporary Block Group Unprotect Routine #### **ABSOLUTE MAXIMUM RATINGS** | Parameter | | Symbol | Rating | Unit | |-------------------------------------|-----------------|-------------------------------------|----------------------------|------| | | Vcc | Vcc _F , Vcc _U | -0.2 to +3.6 | | | Voltage on any hall relative to Voc | RESET | | -0.2 to +12.5 | V | | Voltage on any ball relative to Vss | WP/ACC | VIN | -0.2 to +12.5 | V | | | All Other Balls | | -0.2 to Vcc+0.3V(Max.3.6V) | | | Temperature Under Bias | | Tbias | -40 to +125 | °C | | Storage Temperature | | Tstg | -65 to +150 | °C | | Operating Temperature | | TA | -40 to +85 | °C | #### NOTES: - 1. Minimum DC voltage is -0.3V on Input/ Output balls. During transitions, this level may fall to -2.0V for periods <20ns. Maximum DC voltage on - input / output balls is Vcc+0.3V on input / output balls. During transitions, this level may fall to -2.0V for periods <20ns. Maximum DC voltage on input / output balls is Vcc+0.3V(Max. 3.6V) which, during transitions, may overshoot to Vcc+2.0V for periods <20ns. 2. Minimum DC voltage is -0.3V on RESET and WP/ACC balls. During transitions, this level may fall to -2.0V for periods <20ns. Maximum DC voltage on RESET and WP/ACC balls are 12.5V which, during transitions, may overshoot to 14.0V for periods <20ns. 3. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability. #### RECOMMENDED OPERATING CONDITIONS(Voltage reference to Vss) | Parameter | Symbol | Min | Тур. | Max | Unit | |----------------|-------------------------------------|-----|------|-----|------| | Supply Voltage | Vcc _F , Vcc _U | 2.7 | 2.9 | 3.1 | ٧ | | Supply Voltage | Vss | 0 | 0 | 0 | V | #### DC CHARACTERISTICS | | Parameter | Symbol | Test Conditions | 3 | Min | Тур | Max | Unit | |--------|--|--------|--|-------------------------|------|-----|-------------|------| | | Input Leakage Current | lu | VIN=Vss to Vcc, Vcc=Vccma | x | -2.0 | - | 2.0 | μΑ | | | Output Leakage Current | llo | Vout=Vss to Vcc, Vcc=Vccr | nax, OE =VIH | -2.0 | - | 2.0 | μΑ | | | Input Low Level | VIL | | | -0.3 | - | 0.5 | V | | Common | Input High Level | VIH | | | 2.2 | - | Vcc
+0.3 | ٧ | | | Output Low Level | Vol | IOL= 2.1mA, Vcc = Vccmin | | - | - | 0.4 | V | | | Output High Level | Vон | IOH= -1.0mA, Vcc = Vccmin | | 2.3 | - | - | V | | | RESET Input Leakage Current | ILIT | Vcc _F =Vccmax, RESET=12.5 | - | - | 70 | μΑ | | | | WP/ACC Input Leakage Current | ILIW | Vcc _F =Vccmax, WP/ACC=12 | - | - | 70 | μΑ | | | | A (; D 10 (4) | Icc1 | CE _F =VIL, OE=VIH | 5MHz | - | 14 | 20 | 4 | | | Active Read Current (1) | | CE _F =VIL, OE=VIH | 1MHz | - | 3 | 6 | mA | | | Active Write Current (2) | lcc2 | CE _F =VIL, OE=VIH | | - | 15 | 30 | mA | | | Read While Program Current (3) | Icc3 | CE _F =VIL, OE=VIH | - | 25 | 50 | mA | | | | Read While Erase Current (3) | Icc4 | CE _F =VIL, OE=VIH | - | 25 | 50 | mA | | | Flash | Program While Erase Suspend
Current | Icc5 | CE _F =VIL, OE=VIH | | - | 15 | 35 | mA | | | ACC Accelerated Program | IACC | CE _F =VIL, OE=VIH | ACC Ball | - | 5 | 10 | mA | | | Current | IACC | OLF-VIL, OL-VIII | Vcc _F Ball | - | 15 | 30 | ША | | | Standby Current | IsB1 | $\begin{tabular}{llll} & Vcc_F=Vcc_Fmax, & \hline{RESET}=Vcc_F\pm0.3V \\ \hline \hline CE_F1=\overline{CE}_F2=Vcc_F\pm0.3V, \\ \hline WP/ACC=Vcc_F\pm0.3V & or Vss\pm0.3V \\ \hline \end{tabular}$ | | - | 20 | 60 | μΑ | | | Standby Curren During Reset | IsB2 | Vcc _F =Vcc _F max, RESET=Vs
WP/ACC=Vcc _F ± 0.3V or Vs | - | 20 | 60 | μΑ | | ## **DC CHARACTERISTICS (Continued)** | | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |----------------|---|--------|---|-----|-----|------|------| | | Automatic Sleep Mode | IsB3 | $V_{IH}=V_{CC}$ $_{F}\pm0.3V$, $V_{IL}=V_{SS}\pm0.3V$, $\overline{OE}=V_{IL}$, $I_{OL}=I_{OH}=0$ | 1 | 20 | 60 | μΑ | | Flash | Voltage for WP/ACC Block
Temporarily Unprotect and
Program Acceleration (4) | Vнн | $Vcc_{F} = 2.9V \pm 0.2V$ | 8.5 | - | 12.5 | V | | | Voltage for Autoselect and
Block Protect (4) | VID | $Vcc_F = 2.9V \pm 0.2V$ | 8.5 | - | 12.5 | V | | | Low Vcc _F Lock-out Voltage (5) | VLKO | | 1.8 | - | 2.5 | V | | | Operating Current | lcc1 | Cycle time= $\underline{1}\mu$ s, $100\% \underline{d}u$ ty, $IIO=0mA$, $CS_U \le 0.2V$, $ZZ \ge Vcc_U - 0.2V$, $VIN \le 0.2V$ or $VIN \ge Vcc_U - 0.2V$ | - | 6 | 10 | mA | | U <i>t</i> RAM | | lcc2 | Cycle time=tRC+3tPC, 100% duty, lio=0mA, CS _U =VIL, ZZ=VIH, VIN=VIL or VIH | - | 30 | 40 | mA | | | Stand_by Current(CMOS) | IsB1 | CSu≥Vcc _U -0.2V, ZZ≥Vcc _U -0.2V,
Other inputs =0~Vcc _U | - | 60 | 80 | μА | | | Deep Power Down |
ISBD | ZZ≤0.2V, Other input =0~Vcc _U | ı | 5 | 20 | μΑ | #### NOTES: - 1. The lcc current listed includes both the DC operating current and the frequency dependent component(at 5 MHz). - The read current is typically 14 mA (@ Vcc_F=2.9V , $\overline{\text{OE}}$ at ViH.) - 2. lcc active during Internal Routine(program or erase) is in progress. - 3. Icc active during Read while Write is in progress. 4. The high voltage (VhH or VID) must be used in the range of Vcc_F = $2.9V \pm 0.2V$ - 5. Not 100% tested. - 6. Typical values are measured at $Vcc_F = Vcc_U = 2.9V$, Ta=25°C , not 100% tested. #### CAPACITANCE(TA = 25 °C, Vcc_F = Vcc_U = 2.9V, f = 1.0MHz) | Item | Symbol | Test Condition | Min | Max | Unit | |--------------------------|--------|----------------|-----|-----|------| | Input Capacitance | Cin | VIN=0V | - | 28 | pF | | Output Capacitance | Соит | Vout=0V | - | 30 | pF | | Control Ball Capacitance | CIN2 | VIN=0V | - | 28 | pF | NOTE: Capacitance is periodically sampled and not 100% tested. #### **AC TEST CONDITION** | Parameter | Value | |--------------------------------|-----------| | Input Pulse Levels | 0V to Vcc | | Input Rise and Fall Times | 5ns | | Input and Output Timing Levels | Vcc/2 | | Output Load | CL = 30pF | # Flash AC CHARACTERISTICS Write(Erase/Program)Operations Alternate WE Controlled Write | | Parameter | | Symbol | 7(| Ons | 80 | 0ns | Unit | | |--|-----------------------|---------------|----------|-----|--------|---------|--------|------|--| | | | | | Min | Max | Min Max | | | | | Write Cycle | Time (1) | | twc | 70 | - | 80 | - | ns | | | Address Cat | Time | | tas | 0 | - | 0 | 0 - | | | | Address Set | up rime | | taso | 55 | - | 55 | - | ns | | | Address Hol | d Time | | tah | 45 | - | 45 | - | ns | | | Address Hor | u Time | | taht | 0 | - | 0 | - | ns | | | Data Setup | Time | | tDS | 35 | - | 35 | - | ns | | | Data Hold Ti | ime | | tDH | 0 | - | 0 | - | ns | | | Output Enab | le Setup Time (1) | | toes | 0 | - | 0 | - | ns | | | Output | Read (1) | | tOEH1 | 0 | - | 0 | - | ns | | | Enable
Hold Time | Toggle and Dat | a Polling (1) | tOEH2 | 10 | - | 10 | - | ns | | | CE _F Setup T | ime | | tcs | 0 | - | 0 | - | ns | | | CE _F Hold Tir | me | | tсн | 0 | - | 0 | - | ns | | | Write Pulse | Width | | twp | 35 | - | 35 | - | ns | | | Write Pulse | Width High | | twpH | 25 | - | 25 | - | ns | | | Programmin | Programming Operation | | tPGM | 14 | (typ.) | 14(| (typ.) | μs | | | i rogrammir | g Operation | Byte | trow | 9(1 | typ.) | 9(1 | typ.) | μs | | | | Programming | Word | taccpgm | 9(| typ.) | 9(1 | typ.) | μs | | | Operation | | Byte | thoor ow | 7(| typ.) | 7(1 | typ.) | μs | | | Block Erase | Operation (2) | | tbers | 0.7 | (typ.) | 0.7 | (typ.) | sec | | | Vcc _F Set Up | Time | | tvcs | 50 | - | 50 | - | μs | | | Write Recov | ery Time from RY | /BY | trb | 0 | - | 0 | - | ns | | | RESET High | Time Before Rea | nd | trh | 50 | - | 50 | - | ns | | | RESET to P | ower Down Time | | trpd | 20 | - | 20 | - | μs | | | Program/Era | ase Valid to RY/B | / Delay | tBUSY | 90 | - | 90 | - | ns | | | VID Rising ar | nd Falling Time | | tvid | 500 | - | 500 | - | ns | | | RESET Puls | e Width | | trp | 500 | - | 500 | - | ns | | | RESET Low | to RY/BY High | | trrb | - | 20 | - | 20 | μs | | | RESET Setup Time for Temporary Unprotect | | trsp | 1 | - | 1 | - | μs | | | | RESET Low | Setup Time | | trsts | 500 | - | 500 | - | ns | | | RESET High | to Address Valid | | trstw | 200 | - | 200 | - | ns | | | Read Recov | ery Time Before \ | Vrite | tghwl | 0 | - | 0 | - | ns | | | CE _F High du | ıring toggling bit p | olling | tCEPH | 20 | - | 20 | - | ns | | | OE High dur | ing toggling bit po | lling | toeph | 20 | - | 20 | - | ns | | NOTES: 1. Not 100% tested. ^{2.} The duration of the Program or Erase operation varies and is calculated in the internal algorithms. # Flash AC CHARACTERISTICS Write(Erase/Program)Operations Alternate CE_F Controlled Writes | | | | | | Vcc=2. | 7V~3.1V | | | |-------------------------|------------------|----------------|----------|-----|--------|----------|--------|-----| | Parameter | | Symbol | 70ns | | 8 | 80ns | | | | | | | • | Min | Max | Min | Max | | | Write Cycle | Time (1) | | twc | 70 | - | 80 | - | ns | | Address Set | up Time | | tas | 0 | - | 0 | - | ns | | Address Hole | d Time | | tah | 45 | - | 45 | - | ns | | Data Setup | Гime | | tDS | 35 | - | 35 | - | ns | | Data Hold Ti | me | | tDH | 0 | - | 0 | - | ns | | Output Enab | le Setup Time (1 |) | toes | 0 | - | 0 | - | ns | | Output | Read (1) | | tOEH1 | 0 | - | 0 | - | ns | | Enable
Hold Time | Toggle and Da | ta Polling (1) | tOEH2 | 10 | - | 10 | - | ns | | WE Setup Ti | me | | tws | 0 | - | 0 | - | ns | | WE Hold Tin | ne | | twн | 0 | - | 0 | - | ns | | CE _F Pulse W | Vidth | | tcp | 35 | - | 35 | - | ns | | CE _F Pulse W | /idth High | | tcph | 25 | - | 25 | - | ns | | Dragrammin | a Operation | Word | tnout | 14(| typ.) | 14(typ.) | | μs | | Programmin | g Operation | Byte | tPGM | 9(t | yp.) | 9(| typ.) | μs | | Accelerated | Programming | Word | tucopout | 9(t | yp.) | 9(| typ.) | μs | | Operation | | Byte | taccpgm | 7(t | yp.) | 7(| typ.) | μs | | Block Erase | Operation (2) | | tBERS | 0.7 | (typ.) | 0.7 | (typ.) | sec | | BYTE _F Switc | ching Low to Out | put HIGH-Z | tFLQZ | 25 | - | 25 | - | ns | NOTES: 1. Not 100% tested. 2. This does not include the preprogramming time. #### **ERASE AND PROGRAM PERFORMANCE** | Devementer | | | Limits | | Unit | Comments | |-------------------------|-----------------------|---------|--------|-----|--------------------------------------|---| | Parameter | | Min | | | Comments | | | Block Erase Time | Block Erase Time | | 0.7 | 15 | sec | Excludes 00H programming prior to erasure | | Chip Erase Time (3) | | - | 98 | - | sec | | | Word Programming Time | | - | 14 | 330 | μs | Excludes system-level overhead | | Byte Programming Time | Byte Programming Time | | 9 | 210 | μs | Excludes system-level overhead | | Accelerated Byte/Word | Word Mode | - | 9 | 210 | μs | Excludes system-level overhead | | Program Time | Byte Mode | - | 7 | 150 | μs | Excludes system-level overhead | | Chip Programming Time | Word Mode | - | 59 | 177 | sec | E-dada-a-da-a-da-a-da-a-da-a-da-a-da-a- | | (3) | Byte Mode | - | 75 | 225 | sec | Excludes system-level overhead | | Erase/Program Endurance | | 100,000 | - | - | - cycles Minimum 100,000 cycles teed | | **NOTES:** 1. 25 °C, Vcc_F=2.9V 100,000 cycles, typical pattern. - 2. System-level overhead is defined as the time required to execute the four bus cycle command necessary to program each byte. In the preprogramming step of the Internal Erase Routine, all bytes are programmed to 00H before erasure. - 3. These parameters apply to discrete 64Mb NOR Flash. # Flash SWITCHING WAVEFORMS Read Operations | Parameter | Symbol | 70 | ns | 80 | Unit | | |---|--------|-----|-----|-----|------|-------| | Farameter | Symbol | Min | Max | Min | Max | Ullit | | Read Cycle Time | trc | 70 | - | 80 | - | ns | | Address Access Time | tAA | - | 70 | - | 80 | ns | | Chip Enable Access Time | tce | - | 70 | - | 80 | ns | | Output Enable Time | toe | - | 25 | - | 25 | ns | | CE _F & OE Disable Time (1) | tDF | - | 16 | - | 16 | ns | | Output Hold Time from Address, $\overline{CE_F}$ or \overline{OE} | tон | 0 | - | 0 | - | ns | | OE Hold Time | tOEH1 | 0 | - | 0 | - | ns | NOTE: 1. Not 100% tested. # Flash SWITCHING WAVEFORMS Hardware Reset/Read Operations | Parameter | Symbol | 70ns | | 80 | Unit | | |---|--------|------|-----|-----|------|-------| | raidilietei | Symbol | Min | Max | Min | Max | Oilit | | Read Cycle Time | trc | 70 | - | 80 | - | ns | | Address Access Time | taa | - | 70 | - | 80 | ns | | Chip Enable Access Time | tce | - | 70 | - | 80 | ns | | Output Hold Time from Address, $\overline{CE_F}$ or \overline{OE} | tон | 0 | - | 0 | - | ns | | RESET Pulse Width | trp | 500 | - | 500 | - | ns | | RESET High Time Before Read | trh | 50 | - | 50 | - | ns | # **Alternate WE Controlled Program Operations** NOTES: 1. DQ7 is the output of the complement of the data written to the device. 2. DOUT is the output of the data written to the device. 3. PA: Program Address, PD: Program Data 4. The illustration shows the last two cycles of the program command sequence. | Parameter | | Comple ed | 70 |)ns | 80 |)ns | l lm!t | |--|----------|-----------|----------|------|----------|------|--------| | | | Symbol | Min | Max | Min | Max | Unit | | Write Cycle Time | | twc | 70 | - | 80 | - | ns | | Address Setup Time | | tas | 0 | - | 0 | - | ns | | Address Hold Time | | tah | 45 | - | 45 | - | ns | | Data Setup Time | | tos | 35 | - | 35 | - | ns | | Data Hold Time | | tDH | 0 | - | 0 | - | ns | | CE _F Setup Time | | tcs | 0 | - | 0 | - | ns | | CE _F Hold Time | | tch | 0 | - | 0 | - | ns | | OE Setup Time | | toes | 0 | - | 0 | - | ns | | Write Pulse Width | | twp | 35 | - | 35 | - | ns | | Write Pulse Width High | | twph | 25 | - | 25 | - | ns | | Brogramming Operation | Word | tpgm | 14(typ.) | | 14(typ.) | | us | | Programming Operation | Byte | IPGM | 9(t | yp.) | 9(typ.) | | us | | Accelerated Programming | Word | tacopou | 9(typ.) | | 9(typ.) | | μs | | Operation | Byte | taccpgm | 7(t | yp.) | 7(t | yp.) | μs | | Read Cycle Time | • | trc | 70 | - | 80 | - | ns | | Chip Enable Access Time | | tce | - | 70 | - | 80 | ns | | Output Enable Time | | toe | - | 25 | - | 25 | ns | | CE _F & OE Disable Time | | tDF | - | 16 | - | 16 | ns | | Output Hold Time from Address, $\overline{\text{CE}_{\text{F}}}$ or $\overline{\text{OE}}$ | | toн | 0 | - | 0 | - | ns | | Program/Erase Valide to RY/ | BY Delay
 tBUSY | 90 | - | 90 | - | ns | | Recovery Time from RY/BY | | trb | 0 | - | 0 | - | ns | # Flash SWITCHING WAVEFORMS Alternate CE_F Controlled Program Operations - NOTES: 1. DQ7 is the output of the complement of the data written to the device. 2. DOUT is the output of the data written to the device. - 3. PA : Program Address, PD : Program Data 4. The illustration shows the last two cycles of the program command sequence. | Parameter | | Cumbal | 70 |)ns | 8 | 0ns | Unit | |----------------------------------|-------------------------------------|---------|----------|------|----------|-------|-------| | | | Symbol | Min | Max | Min | Max | Ullit | | Write Cycle Time | | twc | 70 | - | 80 | - | ns | | Address Setup Time | | tas | 0 | - | 0 | - | ns | | Address Hold Time | | tah | 45 | - | 45 | - | ns | | Data Setup Time | | tDS | 35 | - | 35 | - | ns | | Data Hold Time | | tDH | 0 | - | 0 | - | ns | | OE Setup Time | | toes | 0 | - | 0 | - | ns | | WE Setup Time | | tws | 0 | - | 0 | - | ns | | WE Hold Time | | twn | 0 | - | 0 | - | ns | | CE _F Pulse Width | | tcp | 35 | - | 35 | - | ns | | CE _F Pulse Width High | | tcph | 25 | - | 25 | - | ns | | Dragramming Operation | Word | tpgm | 14(typ.) | | 14(typ.) | | μs | | Programming Operation | Byte | LPGM | 9(t | yp.) | 9(| typ.) | μs | | Accelerated Programming | Word | taccpgm | 9(t | yp.) | 9(| typ.) | μs | | Operation Byte | | LACCPGM | 7(t | yp.) | 7(| typ.) | μs | | Program/Erase Valide to RY | Program/Erase Valide to RY/BY Delay | | 90 | - | 90 | - | ns | | Recovery Time from RY/BY | | trb | 0 | - | 0 | - | ns | # **Word to Byte Timing Diagram for Read Operation** # Byte to Word Timing Diagram for Read Operation # BYTE_F Timing Diagram for Write Operation | Parameter | Symbol | 70ns | | 80 | Unit | | |--|-------------|------|-----|-----|------|-------| | Farameter | Syllibol | Min | Max | Min | Max | Ollit | | Chip Enable Access Time | tce | - | 70 | - | 80 | ns | | CE _F to BYTE _F Switching Low or High | telfl/telfh | - | 5 | - | 5 | ns | | BYTE _F Switching Low to Output HIGH-Z | tFLQZ | - | 25 | - | 25 | ns | | BYTE _F Switching High to Output Active | tfhqv | - | 25 | - | 25 | ns | # Flash SWITCHING WAVEFORMS Chip/Block Erase Operations NOTE: BA: Block Address | Parameter | Comple ed | 70ns | | 80ns | | 1114 | |------------------------------|-----------|------|-----|------|-----|------| | | Symbol | Min | Max | Min | Max | Unit | | Write Cycle Time | twc | 70 | - | 80 | - | ns | | Address Setup Time | tas | 0 | - | 0 | - | ns | | Address Hold Time | tah | 45 | - | 45 | - | ns | | Data Setup Time | tDS | 35 | - | 35 | - | ns | | Data Hold Time | tDH | 0 | - | 0 | - | ns | | OE Setup Time | toes | 0 | - | 0 | - | ns | | CE _F Setup Time | tcs | 0 | - | 0 | - | ns | | Write Pulse Width | twp | 35 | - | 35 | - | ns | | Write Pulse Width High | twph | 25 | - | 25 | - | ns | | Read Cycle Time | trc | 70 | - | 80 | - | ns | | Vcc _F Set Up Time | tvcs | 50 | - | 50 | - | μs | # Flash SWITCHING WAVEFORMS Read While Write Operations NOTE: This is an example in the program-case of the Read While Write function. DA1: Address of Bank1, DA2: Address of Bank 2 PA = Program Address at one bank, RA = Read Address at the other bank, PD = Program Data In, RD = Read Data Out | Parameter | Sumb al | 70 | 70ns | | 80ns | | | |--|---------|-------------|------|------|------|----|--| | Parameter | Symbol | Min Max Min | Max | Unit | | | | | Write Cycle Time | twc | 70 | - | 80 | - | ns | | | Write Pulse Width | twp | 35 | - | 35 | - | ns | | | Write Pulse Width High | twph | 25 | - | 25 | - | ns | | | Address Setup Time | tas | 0 | - | 0 | - | ns | | | Address Hold Time | tah | 45 | - | 45 | - | ns | | | Data Setup Time | tos | 35 | - | 35 | - | ns | | | Data Hold Time | tDH | 0 | - | 0 | - | ns | | | Read Cycle Time | trc | 70 | - | 80 | - | ns | | | Chip Enable Access Time | tce | - | 70 | - | 80 | ns | | | Address Access Time | taa | - | 70 | - | 80 | ns | | | Output Enable Access Time | toe | - | 25 | - | 25 | ns | | | OE Setup Time | toes | 0 | - | 0 | - | ns | | | OE Hold Time | tOEH2 | 10 | - | 10 | - | ns | | | CE _F & OE Disable Time | tDF | - | 16 | - | 16 | ns | | | Address Hold Time | taht | 0 | - | 0 | - | ns | | | CE _F High during toggle bit polling | tCEPH | 20 | - | 20 | - | ns | | # **Data Polling During Internal Routine Operation** Note: *DQ7=Vaild Data (The device has completed the internal operation). # RY/BY Timing Diagram During Program/Erase Operation | Parameter | Symbol | 70ns | | 80ns | | Unit | |---|------------|------|-----|------|-----|-------| | r al allietei | Symbol Min | | Max | Min | Max | Oille | | Program/Erase Valid to RY/BY Delay | tBUSY | 90 | - | 90 | - | ns | | Chip Enable Access Time | tce | - | 70 | - | 80 | ns | | Output Enable Time | toe | - | 25 | - | 25 | ns | | CE _F & OE Disable Time | tDF | - | 16 | - | 16 | ns | | Output Hold Time from Address, $\overline{CE_F}$ or \overline{OE} | tон | 0 | - | 0 | - | ns | | OE Hold Time | tOEH2 | 10 | - | 10 | - | ns | #### **SWITCHING WAVEFORMS** NOTE: Address for the write operation must include a bank address (A20~A21) where the data is written. NOTE: DQ2 is read from the erase-suspended block. | Parameter | 70ns | | ns 80ns | | ns | Unit | |--|--------|-----|---------|-----|-----|------| | Farameter | Symbol | Min | Max | Min | Max | Unit | | Output Enable Access Time | toe | - | 25 | - | 25 | ns | | OE Hold Time | tOEH2 | 10 | - | 10 | - | ns | | Address Hold Time | taht | 0 | - | 0 | - | ns | | Address Setup | taso | 55 | - | 55 | - | ns | | Address Setup Time | tas | 0 | - | 0 | - | ns | | Data Hold Time | tDH | 0 | - | 0 | - | ns | | CE _F High during toggle bit polling | tCEPH | 20 | - | 20 | - | ns | | OE _F High during toggle bit polling | toeph | 20 | - | 20 | - | ns | # **RESET** Timing Diagram **Reset Timings NOT during Internal Routine** **Reset Timings during Internal Routine** # Power-up and RESET Timing Diagram | Parameter | Symbol | 70 | ns | 80ns | | Unit | |---|--------|-----|-----|------|-----|-------| | | Symbol | Min | Max | Min | Max | Ollit | | RESET Pulse Width | trp | 500 | - | 500 | - | ns | | RESET Low to Valid Data
(During Internal Routine) | tREADY | - | 20 | - | 20 | μs | | RESET Low to Valid Data (Not during Internal Routine) | tREADY | - | 500 | - | 500 | ns | | RESET High Time Before Read | trh | 50 | - | 50 | - | ns | | RY/BY Recovery Time | trb | 0 | - | 0 | - | ns | | RESET High to Address Valid | trstw | 200 | - | 200 | - | ns | | RESET Low Set-up Time | trsts | 500 | - | 500 | - | ns | NOTES: Block Group Protect (A6=VIL , A1=VIH , A0=VIL) , Status=01H Block Group Unprotect (A6=VIH , A1=VIH, A0=VIL) , Status=00H BGA = Block Group Address (A12 ~ A21) # **Temporary Block Group Unprotect** # UtRAM AC CHARACTERISTICS(Vcc_U=2.7~3.1V, TA=-40 to 85°C) | | | | Spee | d Bins | | |-------|---------------------------------|--------|------------------|----------------|----| | | Parameter List | Symbol | 70 | 70ns ¹) | | | | | | Min | Max | | | | Read Cycle Time | trc | 70 | - | ns | | | Address Access Time | tAA | - | 70 | ns | | | Chip Select to Output | tco | - | 70 | ns | | | Output Enable to Valid Output | toe | - | 35 | ns | | | UB, LB Access Time | tва | - | 70 | ns | | | Chip Select to Low-Z Output | tLZ | 10 | - | ns | | Read | UB, LB Enable to Low-Z Output | tBLZ | 10 | - | ns | | Reau | Output Enable to Low-Z Output | toLz | 5 | - | ns | | | Chip Disable to High-Z Output | tHZ | 0 | 25 | ns | | | UB, LB Disable to High-Z Output | tвнz | 0 | 25 | ns | | | Output Disable to High-Z Output | tonz | 0 | 25 | ns | | | Output Hold from Address Change | toн | 5 | - | ns | | | Page Cycle | tPC | - | 25 | ns | | | Page Access Time | tPA | - | 20 | ns | | | Write Cycle Time | twc | 70 | - | ns | | | Chip Select to End of Write | tcw | 60 | - | ns | | | Address Set-up Time | tas | 0 | - | ns | | | Address Valid to End of Write | taw | 60 | - | ns | | | UB, LB Valid to End of Write | tsw | 60 | - | ns | | Write | Write Pulse Width | twp | 50 ¹⁾ | - | ns | | | Write Recovery Time | twr | 0 | - | ns | | | Write to Output High-Z | twnz | 0 | 20 | ns | | | Data to Write Time Overlap | tow | 30 | - | ns | | | Data Hold from Write Time | tDH | 0 | - | ns | | | End Write to Output Low-Z | tow | 5 | - | ns | ^{1.} tWP(min)=60ns for continuous write operation over 50 times #### UtRAM TIMING DIAGRAMS TIMING WAVEFORM OF READ CYCLE(1)(Address Controlled, $\overline{CS}_U = \overline{OE} = V_{IL}$, $\overline{ZZ} = \overline{WE} = V_{IH}$, \overline{UB} or/and $\overline{LB} = V_{IL}$) #### TIMING WAVEFORM OF READ CYCLE(2)(ZZ=WE=VIH) ## TIMING WAVEFORM OF PAGE CYCLE(READ ONLY) (READ CYCLE) - 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels. - 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection. - 3. tOE(max) is met only when \overline{OE} becomes enabled after tAA(max). - 4. If invalid address signals shorter than min. tRC are continuously repeated for over 4us, the device needs a normal read timing(tRC) or needs to sustain standby state for min. tRC at least once in every 4us. # TIMING WAVEFORM OF WRITE CYCLE(1)(WE Controlled, ZZ=Vih) # TIMING WAVEFORM OF WRITE CYCLE(2)(\overline{CS}_U Controlled, $\overline{ZZ}=VIH$) #### TIMING WAVEFORM OF WRITE CYCLE(3)(UB, LB Controlled, ZZ=Vih) #### (WRITE CYCLE) - 1. A write occurs during the overlap(twp) of low $\overline{\text{CS}}_{\text{U}}$ and low $\overline{\text{WE}}$. A write begins when $\overline{\text{CS}}_{\text{U}}$ goes low and
$\overline{\text{WE}}$ goes low with asserting UB or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition when $\overline{\text{CS}}_{\text{II}}$ goes high and $\overline{\text{WE}}$ goes high. The twp is measured from the beginning of write to the end of write. - 2. tcw is measured from the $\overline{\text{CS}}_{\text{U}}$ going low to the end of write. - 3. tas is measured from the address valid to the beginning of write. - 4. two is measured from the end of write to the address change, two applied in case a write ends as $\overline{\text{CS}}_{1}$ or $\overline{\text{WE}}$ going high. #### TIMING WAVEFORM OF DEEP POWER DOWN MODE ENTRY AND EXIT #### (DEEP POWER DOWN MODE) - 1. When you toggle \overline{ZZ} pin low, the device gets into the Deep Power Down mode after 0.5µs suspend period. 2. To return to normal operation, the device needs Wake Up period. - 3. Wake Up sequence is just the same as Power Up sequence. #### **POWER UP SEQUENCE** - 1. Apply power. - 2. Maintain stable power(Vcc min.=2.7V) for a minimum 200 μ s with \overline{CS} and \overline{ZZ} high. ## TIMING WAVEFORM OF POWER UP #### (POWER UP) 1. After Vcc reaches Vcc(Min.), wait 200 μ s with \overline{CS} and \overline{ZZ} high. Then you get into the normal operation. ## STANDBY MODE STATE MACHINES #### **PACKAGE DIMENSION**