Stacked 512Mbit SDRAM

16M x 8bit x 4 Banks Synchronous DRAM LVTTL

Revision 0.1

Sept. 2001

* Samsung Electronics reserves the right to change products or specification without

Revision 0.0 (Mar., 2001)

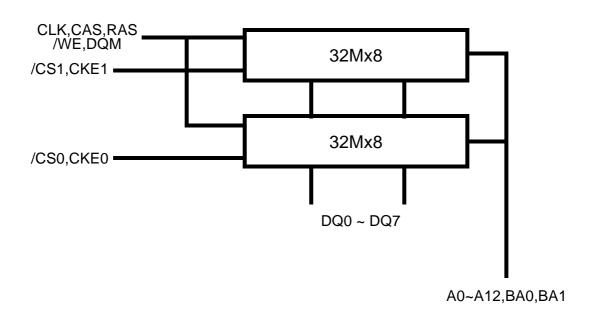
Revision 0.1 (Sep., 2001)

- Corrected Typo.
- Redefined IDD1 & IDD4 in DC Characteristics
- Changed the Notes in Operating AC Parameter.
 - < Before >
 - For 1H/1L, tRDL=1CLK and tDAL=1CLK+tRP is also supported.
 SAMSUNG recommends tRDL=2CLK and tDAL=2CLK + tRP.
 - < After >
 - 5.In 100MHz and below 100MHz operating conditions, tRDL=1CLK and tDAL=1CLK + 20ns is also supported. SAMSUNG recommends tRDL=2CLK and tDAL=2CLK + tRP.

16M x 8Bit x 4 Banks Synchronous DRAM

FEATURES

- JEDEC standard 3.3V power supply
- · LVTTL compatible with multiplexed address
- · Four banks operation
- · MRS cycle with address key programs
 - -. CAS latency (2 & 3)
 - -. Burst length (1, 2, 4, 8 & Full page)
 - -. Burst type (Sequential & Interleave)
- All inputs are sampled at the positive going edge of the system clock
- · Burst read single-bit write operation
- DQM for masking
- · Auto & self refresh
- 64ms refresh period (8K Cycle)


GENERAL DESCRIPTION

The K4S510732C is 536,870,912 bits synchronous high data rate Dynamic RAM organized as 4 x 16,777,216 words by 8 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst length and programmable latencies allow the same device to be useful for a variety of high bandwidth, high performance memory system applications.

ORDERING INFORMATION

Part No.	Max Freq.	Interface	Package
K4S510732C-TC/L7C	133MHz(CL=2)		
K4S510732C-TC/L75	133MHz(CL=3)	I VTTI	54pin
K4S510732C-TC/L1H	100MHz(CL=2)		TSOP(II)
K4S510732C-TC/L1L	100MHz(CL=3)		

FUNCTIONAL BLOCK DIAGRAM

^{*} Samsung Electronics reserves the right to change products or specification without notice. Stakteks stacking technology is Samsungs stacking technology of choice.

PIN CONFIGURATION (Top view)

DQ0 to VDDQ to VSSQ to VDDQ to VSSQ to VDDQ to VSSQ to VDQ3 to VSSQ to VDDQ to VDDQ to VDDQ to VDDQ to VSSQ to VDD	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	54 Vss 53 DQ7 52 Vssq 51 N.C 50 DQ6 49 VDDQ 48 N.C 47 DQ5 46 Vssq 45 N.C 44 DQ4 43 VDDQ 44 DQ4 43 VDDQ 44 DQ4 47 VSS 48 N.C 49 VSSQ 40 VSSQ 40 VSSQ 41 DQ4 42 N.C 44 DQ4 45 VSSQ 46 VSSQ	
	16	39 DQM	
	17	38 CLK	
	18	37 CKE0	
	19	36 A12	
	20	35 P A11	
	21 22	34 A9	
	23	33 A A8 32 A7	
	24	31 A6	
	25	30 A5	54Pin TSOP (II)
A3 I	26	29 A 4	(400mil x 875mil)
V _{DD} t	27	28 V Vss	(0.8 mm Pin pitcH)

PIN FUNCTION DESCRIPTION

Pin	Name	Input Function
CLK	System clock	Active on the positive going edge to sample all inputs.
CS0~1	Chip select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQM
CKE0~1	Clock enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disable input buffers for power down in standby.
A0 ~ A12	Address	Row/column addresses are multiplexed on the same pins. Row address: RA0 ~ RA12, Column address: CA0 ~ CA9
BA0 ~ BA1	Bank select address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
RAS	Row address strobe	Latches row addresses on the positive going edge of the CLK with RAS low. Enables row access & precharge.
CAS	Column address strobe	Latches column addresses on the positive going edge of the CLK with CAS low. Enables column access.
WE	Write enable	Enables write operation and row precharge. Latches data in starting from CAS, WE active.
DQM	Data input/output mask	Makes data output Hi-Z, tsHz after the clock and masks the output. Blocks data input when DQM active.
DQ0 ~7	Data input/output	Data inputs/outputs are multiplexed on the same pins.
VDD/Vss	Power supply/ground	Power and ground for the input buffers and the core logic.
VDDQ/Vssq	Data output power/ground	Isolated power supply and ground for the output buffers to provide improved noise immunity.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	Vin, Vout	-1.0 ~ 4.6	V
Voltage on VDD supply relative to Vss	VDD, VDDQ	-1.0 ~ 4.6	V
Storage temperature	Тѕтс	-55 ~ +150	°C
Power dissipation	PD	2	W
Short circuit current	los	50	mA

Note: Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = 0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	Vdd, Vddq	3.0	3.3	3.6	V	
Input logic high voltage	ViH	2.0	3.0	VDD+0.3	V	1
Input logic low voltage	VIL	-0.3	0	0.8	V	2
Output logic high voltage	Vон	2.4	-	-	V	Iон = -2mA
Output logic low voltage	Vol	-	-	0.4	V	IoL = 2mA
Input leakage current	lμ	-10	-	10	uA	3

Notes: 1. VIH (max) = 5.6V AC. The overshoot voltage duration is \leq 3ns.

- 2. VIL (min) = -2.0V AC. The undershoot voltage duration is \leq 3ns.
- 3. Any input $0V \le VIN \le VDDQ$.

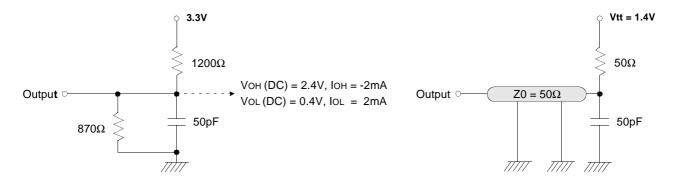
Input leakage currents include Hi-Z output leakage for all bi-directional buffers with Tri-State outputs.

CAPACITANCE (VDD = 3.3V, TA = 23°C, f = 1MHz, VREF = 1.4V ± 200 mV)

Pin	Symbol	Min	Max	Unit	Note
Clock	Cclk	5.0	9.0	pF	
RAS, CAS, WE, DQM	CIN	5.0	10.0	pF	
Address	CADD	5.0	10.0	pF	
CS#, CKE#	Ccs	2.5	6.5	pF	
DQ0 ~ DQ8	Соит	8.0	14.0	pF	

DC CHARACTERISTICS

(Recommended operating condition unless otherwise noted, TA = 0 to $70^{\circ}C$)


Parameter	Symbol	Test Condition			Vers	ion		Unit	Note
i didilietei	Symbol	rest condition		-7C	-75	-1H	-1L	5	Note
Operating current (One bank active)	ICC1	Burst length = 1 tRC ≥ tRC(min) IO = 0 mA	120	110	110	110	mA	1	
Precharge standby current in	Icc2P	CKE ≤ VIL(max), tcc = 10ns			4			mA	
power-down mode	Icc2PS	CKE & CLK ≤ VIL(max), tcc = ∞			4			ШХ	
Precharge standby current in	Icc2N	CKE ≥ VIH(min), CS ≥ VIH(min), tcc : Input signals are changed one time of			40)		mA	
non power-down mode	Icc2NS	CKE \geq VIH(min), CLK \leq VIL(max), too Input signals are stable	20				IIIA		
Active Standby current	Icc3P	CKE ≤ VIL(max), tcc = 10ns		8				mA	
in power-down mode	Icc3PS	CKE & CLK ≤ VIL(max), tcc = ∞		8				1117 (
Active standby current in non power-down mode	Icc3N	CKE ≥ VIH(min), CS ≥ VIH(min), tcc : Input signals are changed one time of		50				mA	
(One bank active)	Icc3NS	CKE ≥ VIH(min), CLK ≤ VIL(max), tcc Input signals are stable	35				mA		
Operating current (Burst mode)	ICC4	Io = 0 mA Page burst 4banks activated. tccd = 2CLKs	140	140	130	130	mA	1	
Refresh current	ICC5	tRC ≥ tRC(min)	240	220	210	210	mA	2	
Self refresh current	ICC6	CKE ≤ 0.2V		6	mA	3			
Con removing		0.12 = 0.2 v	L		3	i		mA	4

Notes: 1. Measured with outputs open.

- 2. Refresh period is 64ms.
- 3. K4S510732C-TC**
- 4. K4S510732C-TL**
- 5. Unless otherwise noticed, input swing level is CMOS(VIH/VIL=VDDQ/VSSQ).

AC OPERATING TEST CONDITIONS (VDD = $3.3V \pm 0.3V$, TA = 0 to 70° C)

Parameter	Value	Unit
AC input levels (Vih/Vil)	2.4/0.4	V
Input timing measurement reference level	1.4	V
Input rise and fall time	tr/tf = 1/1	ns
Output timing measurement reference level	1.4	V
Output load condition	See Fig. 2	

(Fig. 1) DC output load circuit

(Fig. 2) AC output load circuit

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Parameter		Symbol		Ver	sion		Unit	Note
1 di dilictoi		Cymbol	-7C	-75	-1H	-1L	ns ns ns ns ns cLK cLK cLK cLK clK cea	14010
Row active to row active delay		trrd(min)	15	15	20	20	ns	1
RAS to CAS delay		tRCD(min)	15	20	20	20	ns	1
Row precharge time		trp(min)	15	20	20	20	ns	1
Row active time		tras(min)	45	45	50	50	ns	1
	tras(max)		1(us				
Row cycle time		trc(min)	60	65	70	70	ns	1
Last data in to row precharge		tRDL(min)		2	CLK	2, 5		
Last data in to Active delay		tDAL(min)		2 CLK	+ tRP		-	5
Last data in to new col. addre	ss delay	tcdl(min)		,	1		CLK	2
Last data in to burst stop		tBDL(min)			1		CLK	2
Col. address to col. address delay tccp					CLK	3		
Number of valid output data	er of valid output data CAS latency=3			2	ea	4		
	CAS lat	tency=2			1			

- Notes: 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer.
 - 2. Minimum delay is required to complete write.
 - 3. All parts allow every cycle column address change.
 - 4. In case of row precharge interrupt, auto precharge and read burst stop.
 - 5. In 100MHz and below 100MHz operating conditions, tRDL=1CLK and tDAL=1CLK + 20ns is also supported. SAMSUNG recommends tRDL=2CLK and tDAL=2CLK + tRP.

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Parameter		Symbol	-7	'C	-7	75	-1	Н	-1	L	Unit	Note
i ara	meter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Oilit	Note
CLK cycle time	CAS latency=3	tcc	7.5	1000	7.5	1000	10	1000	10	1000	ns	1
OLIV Oyolo IIIIlo	CAS latency=2	100	7.5	1000	10	1000	10	1000	12	1000	110	
CLK to valid	CAS latency=3	tsac		5.4		5.4		6		6	ns	1,2
output delay	CAS latency=2	ISAC		5.4		6		6		7	113	1,2
Output data	CAS latency=3	tон	3		3		3		3		ns	2
hold time	CAS latency=2		3		3		3		3		113	_
CLK high pulse w	vidth	tсн	2.5		2.5		3		3		ns	3
CLK low pulse w	idth	tCL	2.5		2.5		3		3		ns	3
Input setup time		tss	1.5		1.5		2		2		ns	3
Input hold time		tsн	0.8		0.8		1		1		ns	3
CLK to output in Low-Z		tslz	1		1		1		1		ns	2
CLK to output	CAS latency=3	tshz		5.4		5.4		6		6	ns	
in Hi-Z	CAS latency=2	ISHZ		5.4		6		6		7	115	

Notes: 1. Parameters depend on programmed CAS latency.

If tr & tf is longer than 1ns, transient time compensation should be considered,

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

^{2.} If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.

^{3.} Assumed input rise and fall time (tr & tf) = 1ns.

SIMPLIFIED TRUTH TABLE

С	ommand		CKEn-1	CKEn	CS	RAS	CAS	WE	DQM	BA0,1	A10/AP	A11,A12, A9 ~ A0	Note
Register	Mode regist	ter set	Н	Х	L	L	L	L	Х		OP cod	е	1,2
	Auto refresi	n	Н	Н	L	L	L	Н	X			3	
Refresh		Entry	П	L	_	_	_		^		Х		3
Reliesii	Self refresh	Exit	L	Н	L	Н	Н	Н	Х		Х		3
		EXIL	L	П	Н	Х	Х	Х	^		^		3
Bank active & row	addr.		Н	Х	L	L	Н	Н	Х	V	Row a	address	
Read &	Auto precha	arge disable	Н	Х	L	Н	L	Н	Х	V	L	Column address	4
column address	Auto precha	arge enable	П	^	L		_		^	V	Н	(A ₀ ~ A ₉)	4,5
Write &	Auto precha	arge disable	Н	Х	L	Н	L	L	Х	V	L Column address		4
column address	Column address Auto prechai] ''	^	L			_	^	v	Н	(A ₀ ~ A ₉)	4,5
Burst Stop			Н	Х	L	Н	Н	L	Х		Х		6
Precharge	Bank select	nk selection		Х	L	L	Н	L	Х	V	L	Х	
Frecharge	All banks		Η	^	_	L	П	L	^	Χ	Н	^	
		Entry	Н	L	Ι	Х	Х	Х	Х				
Clock suspend or active power down	n	Littiy	- 11	_	L	V	V	V	^	X			
•		Exit	L	Н	Х	Х	Х	Х	Х				
		Entry	Н	L	Η	Х	Х	Х	X				
Precharge power	down mode	Littiy	- 11	_	L	Н	Н	Н	^		Х		
i recharge power	down mode	Exit	L	Н	Ι	Х	Х	Х	Х	x			
		LXII	ı		L	V	V	V	^				
DQM			Н			Х			V		Х		7
No operation com	mand		Н	Х	Η	Х	Х	Х	Х		Х		
110 operation com			11		L	Н	Н	Н		^			

(V=Valid, X=Don't care, H=Logic high)

Notes: 1. OP Code: Operand code

 $A_0 \sim A_{12} \& BA_0 \sim BA_1$: Program keys. (@ MRS)

- 2. MRS can be issued only at all banks precharge state.
 - A new command can be issued after 2 CLK cycles of MRS.
- 3. Auto refresh functions are as same as CBR refresh of DRAM.

The automatical precharge without row precharge command is meant by "Auto".

Auto/self refresh can be issued only at all banks precharge state.

4. BA₀ ~ BA₁ : Bank select addresses.

If both BAo and BA1 are "Low" at read, write, row active and precharge, bank A is selected.

If both BAo is "High" and BA1 is "Low" at read, write, row active and precharge, bank B is selected.

If both BAo is "Low" and BA1 is "High" at read, write, row active and precharge, bank C is selected.

If both BAo and BA1 are "High" at read, write, row active and precharge, bank D is selected.

If A10/AP is "High" at row precharge, BA0 and BA1 is ignored and all banks are selected.

5. During burst read or write with auto precharge, new read/write command can not be issued.

Another bank read/write command can be issued after the end of burst.

New row active of the associated bank can be issued at tRP after the end of burst.

- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at positive going edge of a CLK and masks the data-in at the very CLK (Write DQM latency is 0), but makes Hi-Z state the data-out of 2 CLK cycles after. (Read DQM latency is 2)

