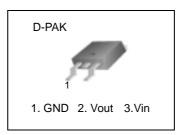
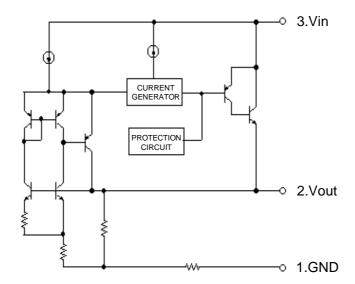


KA78RH33


Semi Low Dropout Voltage Regulator

Features


- Fixed Output Voltage of +3.3V
- Space Saving SMD types of DPAK
- 1V(Typ) Dropout at Io=800mA
- Output Current of 800mA
- Thermal Shutdown Protection
- Over Current Protection
- Output trimmed to +/-1% Tolerance
- No minimum Load Requirement

Description

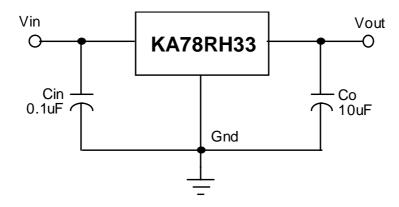
The KA78RH33 is a +3.3V fixed Low Dropout Voltage Regulator specifically designed for use in low voltage operation. The maximum load current is 0.8A and the dropout voltage is guaranteed to be 1V(Typ). The Dropout Voltage varies with load current. The regulator consists of composite PNP-NPN pass transistors.

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Power Supply Input Voltage	Vin	15	V
Output Load Current	lo	800	mA
Junction Temperature	Tj	150	°C
Operating Junction Temperature	Topr	-25 ~ 125	°C
Storage Temperature	Tstg	-55 ~ 150	°C

Temperature Characteristics

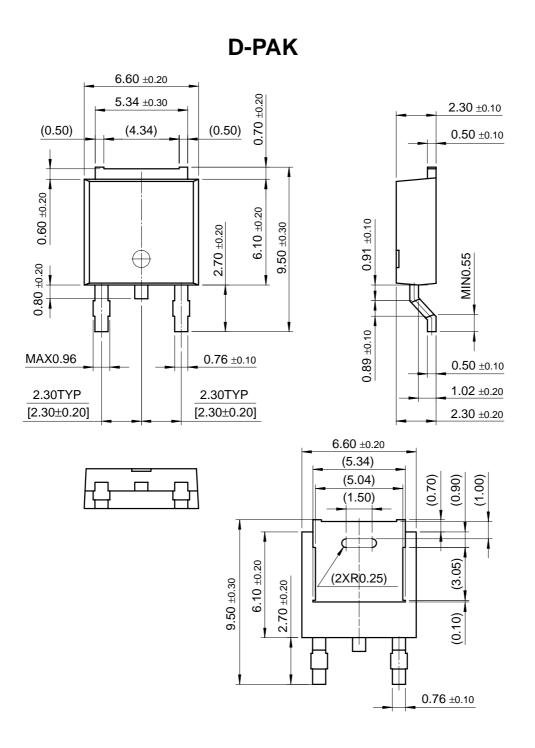

Parameter	Symbol	Value	Unit
Temperature Coefficient of Output Voltage	\triangle Vo/ \triangle T	+ / -0.02	% / °C

Electrical Characteristics

(Refer to the test circuit. Vin= 5V, Co=10uF, Ta = 25°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output Voltage	Vout	Io=10mA, Tj=25°C	3.27	3.3	3.33	V
Output Voltage	Vout	Vin = 4.8V to 12V lo = 10mA to 800mA Tj = -25°C to 125°C	3.23	3.3	3.37	V
Line Regulation	Rline	Vin=4.8V to 12V, Io=10mA	-	1	10	mV
Load Regulation	Rload	Io = 10mA to 800mA	-	1	20	mV
Ripple Rejection	RR	f=120Hz, lo=500mA Vin = 6.3 +/- 1Vrms	55	-	-	dB
Dropout Voltage	Vdrop	lo = 100mA lo = 500mA lo = 800mA	- - -	1 1.05 1.1	1.2 1.25 1.4	V
Quiescent Current	Iq	Vin <= 12V	-	5	10	mA
Temperature Coefficient of Output Voltage	\triangle Vo/ \triangle T	Tj = -25°C to 125°C lo = 10mA	-	0.2	-	mV/°C
Peak Output Current	lpk	Vin = 6.3V	800	-	-	mA
Output Noise Voltage	Vn	f = 10Hz to 10KHz	-	100	-	μVrms

Typical Application



An input capacitor, Cin is not necessary for stability, but it will improve the overall performance

Mechanical Dimensions

Package

Dimensions in millimeters

Ordering Information

Product Number	Package	Operating Temperature
KA78RH33D	D-PAK	-25°C to + 125°C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com