INTRODUCTION The KA22211 is a monolithic integrated circuit consisting of a 2-channel pre-amplifier in an 8-pin plastic single in-line package. # **FEATURES** - Recommended operating supply voltage range: V_{CC} = 5V ~ 14V - Low noise $(V_{NI} = 1.0 \mu V: Typ)$ - · High channel separation - · Minimum number of external parts required # **ORDERING INFORMATION** | Device | package | Operating Temperature | |---------|---------|-----------------------| | KA22211 | 8-SIP | –20°C ~ +70°C | ### **BLOCK DIAGRAM** Figure 1. # ABSOLUTE MAXIMUM RATINGS (Ta = 25°C) | Characteristic | Symbol | Value | Unit | |-----------------------|------------------|--------------------|------| | Supply Voltage | V _{CC} | 18 | V | | Power Dissipation | P _D | 200 | mW | | Operating Temperature | T _{OPR} | − 20 ~ + 70 | °C | | Storage Temperature | T _{STG} | − 40 ~ + 125 | °C | # **ELECTRICAL CHARACTERISTICS** (Ta=25°C, V_{CC} = 9V, R_L = 10k Ω , R_G = 600 Ω , f = 1kHz, NAB, unless otherwise specified) | Characteristic | Symbol | Test Conditions | Min. | Тур. | Max. | Unit | |--------------------------------|------------------|---|------|------|------|------| | Quiescent Circuit Current | I _{CCQ} | V _I = 0 | _ | 4.0 | 6.0 | mA | | Open Loop Voltage Gain | G _{VO} | _ | 65 | 80 | _ | dB | | Closed Loop Voltage Gain | G _{VC} | V _O = 0.5V | 30 | 35 | 37 | dB | | Output Voltage | Vo | THD = 1% | 1.1 | 1.3 | _ | V | | Total Harmonic Distortion | THD | V _O = 0.5V | _ | 0.1 | 0.3 | % | | Input Resistance | R _I | - | 70 | 100 | _ | kΩ | | Equivalent Input Noise Voltage | V _{NI} | $R_G = 2.2k\Omega$
BW (- 3dB) = 15Hz ~ 30kHz | _ | 1.0 | 2.0 | μV | | Cross Talk | СТ | $R_G = 2.2k\Omega$ | 50 | 65 | _ | dB | # **TEST CIRCUIT** Figure 2. ### **APPLICATION INFORMATION** #### **External Components** C₂ (C₉): Input coupling capacitor These components are concerned with the output noise and operation starting time. Its capacitance is adequate for $10\mu F$. As C2 (C9) below $4.7\mu\text{F}$ extends the operation starting time, a capacitance of over $4.8\mu\text{F}$ is recommended. C₃ (C₈): Negative feedback capacitor These components decide the low cut-off frequency, which is determined as follows: $$C_3(C_8) = \frac{1}{2\pi f_L \cdot R_2(R_7)}$$ where, f_L : low cut-off frequency. A large C₃ (C₈) makes the operation starting time of an amplifier late. Its capacitance is adequate for 47 F. C₄, R₃, R₂ (C₇, R₄, R₅): Equalizer network These components decide the frequency response of an equalizer amplifier. The time constant of standard NAB characteristic is as follows: | Tape Speed Time Constant | 9.5 cm/sec | 4.75 cm/sec | |---------------------------------|------------|-------------| | $C_4 (R_2 + R_3)$ | 3,180 µsec | 1,590 μsec | | C ₄ , R ₂ | 90 μsec | 120 μsec | # C₁₁ Filter capacitor of the power line This should be located as close to the supply voltage pin (Pin 4) as possible. The recommended value is 47μF. C₁ (C₁₀): Protection capacitor These components protect against wave damage of strong electric fields. They also protect against engine noise damage and block oscillation during high amplifying operations. C₅ (C₆): Output coupling capacitor The recommended value is 10µF. # **APPLICATION CIRCUIT** Figure 3. **NOTES**