INTRODUCTION

The KA22211 is a monolithic integrated circuit consisting of a 2-channel pre-amplifier in an 8-pin plastic single in-line package.

FEATURES

- Recommended operating supply voltage range:
 V_{CC} = 5V ~ 14V
- Low noise $(V_{NI} = 1.0 \mu V: Typ)$
- · High channel separation
- · Minimum number of external parts required

ORDERING INFORMATION

Device	package	Operating Temperature
KA22211	8-SIP	–20°C ~ +70°C

BLOCK DIAGRAM

Figure 1.

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	18	V
Power Dissipation	P _D	200	mW
Operating Temperature	T _{OPR}	− 20 ~ + 70	°C
Storage Temperature	T _{STG}	− 40 ~ + 125	°C

ELECTRICAL CHARACTERISTICS

(Ta=25°C, V_{CC} = 9V, R_L = 10k Ω , R_G = 600 Ω , f = 1kHz, NAB, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Quiescent Circuit Current	I _{CCQ}	V _I = 0	_	4.0	6.0	mA
Open Loop Voltage Gain	G _{VO}	_	65	80	_	dB
Closed Loop Voltage Gain	G _{VC}	V _O = 0.5V	30	35	37	dB
Output Voltage	Vo	THD = 1%	1.1	1.3	_	V
Total Harmonic Distortion	THD	V _O = 0.5V	_	0.1	0.3	%
Input Resistance	R _I	-	70	100	_	kΩ
Equivalent Input Noise Voltage	V _{NI}	$R_G = 2.2k\Omega$ BW (- 3dB) = 15Hz ~ 30kHz	_	1.0	2.0	μV
Cross Talk	СТ	$R_G = 2.2k\Omega$	50	65	_	dB

TEST CIRCUIT

Figure 2.

APPLICATION INFORMATION

External Components

C₂ (C₉): Input coupling capacitor

These components are concerned with the output noise and operation starting time. Its capacitance is adequate for $10\mu F$.

As C2 (C9) below $4.7\mu\text{F}$ extends the operation starting time, a capacitance of over $4.8\mu\text{F}$ is recommended.

C₃ (C₈): Negative feedback capacitor

These components decide the low cut-off frequency, which is determined as follows:

$$C_3(C_8) = \frac{1}{2\pi f_L \cdot R_2(R_7)}$$
 where, f_L : low cut-off frequency.

A large C₃ (C₈) makes the operation starting time of an amplifier late. Its capacitance is adequate for 47 F.

C₄, R₃, R₂ (C₇, R₄, R₅): Equalizer network

These components decide the frequency response of an equalizer amplifier. The time constant of standard NAB characteristic is as follows:

Tape Speed Time Constant	9.5 cm/sec	4.75 cm/sec
$C_4 (R_2 + R_3)$	3,180 µsec	1,590 μsec
C ₄ , R ₂	90 μsec	120 μsec

C₁₁ Filter capacitor of the power line

This should be located as close to the supply voltage pin (Pin 4) as possible. The recommended value is 47μF.

C₁ (C₁₀): Protection capacitor

These components protect against wave damage of strong electric fields. They also protect against engine noise damage and block oscillation during high amplifying operations.

C₅ (C₆): Output coupling capacitor

The recommended value is 10µF.

APPLICATION CIRCUIT

Figure 3.

NOTES

