
KS57C21516/P21516 MICROCONTROLLER PRODUCT OVERVIEW

1–1

1 PRODUCT OVERVIEW

OVERVIEW

The KS57C21516 single-chip CMOS microcontroller has been designed for high performance using Samsung's
newest 4-bit CPU core, SAM47 (Samsung Arrangeable Microcontrollers).

With an up-to-896-dot LCD direct drive capability, 8-bit and 16-bit timer/counter, and serial I/O, the KS57C21516
offers an excellent design solution for a wide variety of applications which require LCD functions.

Up to 39 pins of the 100-pin QFP package can be dedicated to I/O. Eight vectored interrupts provide fast
response to internal and external events. In addition, the KS57C21516's advanced CMOS technology provides
for low power consumption and a wide operating voltage range.

OTP

The KS57C21516 microcontroller is also available in OTP (One Time Programmable) version, KS57P21516.
KS57P21516 microcontroller has an on-chip 16K-byte one-time-programable EPROM instead of masked ROM.
The KS57P21516 is comparable to KS57C21516, both in function and in pin configuration.

PRODUCT OVERVIEW KS57C21516/P21516 MICROCONTROLLER

1–2

FEATURES SUMMARY

Memory

• 544 × 4-bit RAM (excluding LCD display RAM)

• 16,384 × 8-bit ROM

 39 I/O Pins

• I/O: 35 pins

• Input only: 4 pins

LCD Controller/Driver

• 56 segments and 16 common terminals

• 8 and 16 common selectable

• Internal resistor circuit for LCD bias

• All dot can be switched on/off

8-bit Basic Timer

• 4 interval timer functions

• Watch-dog timer

8-bit Timer/Counter

• Programmable 8-bit timer

• External event counter

• Arbitrary clock frequency output

• External clock signal divider

• Serial I/O interface clock generator

16-Bit Timer/Counter

• Programmable 16-bit timer

• External event counter

• Arbitrary clock frequency output

• External clock signal divider

8-bit Serial I/O Interface

• 8-bit transmit/receive mode

• 8-bit receive mode

• LSB-first or MSB-first transmission selectable

• Internal or external clock source

Memory-Mapped I/O Structure

• Data memory bank 15

Watch Timer

• Time interval generation: 0.5 s, 3.9 ms
at 32768 Hz

• 4 frequency outputs to BUZ pin

• Clock source generation for LCD

Interrupts

• Four internal vectored interrupts

• Four external vectored interrupts

• Two quasi-interrupts

Bit Sequential Carrier

• Supports 16-bit serial data transfer in arbitrary
format

Power-Down Modes

• Idle mode (only CPU clock stops)

• Stop mode (main system oscillation stops)

• Subsystem clock stop mode

Oscillation Sources

• Crystal, ceramic, or RC for main system clock

• Crystal oscillator for subsystem clock

• Main system clock frequency: 0.4 – 6 MHz

• Subsystem clock frequency: 32.768 kHz

• CPU clock divider circuit (by 4, 8, or 64)

Instruction Execution Times

• 0.67, 1.33, 10.7 µs at 6 MHz

• 0.95, 1.91, 15.3 µs at 4.19 MHz

• 122 µs at 32.768 kHz

Operating Temperature

• – 40 °C to 85 °C

Operating Voltage Range

• 1.8 V to 5.5 V

Package Type

• 100-pin QFP

KS57C21516/P21516 MICROCONTROLLER PRODUCT OVERVIEW

1–3

BLOCK DIAGRAM

P4.0–P4.3/
COM8-COM11

P5.0–P5.3/
COM12-COM15

P6.0–P6.3/
SEG55-SEG52/

KS4–KS7

P7.0–P7.3/
SEG51-SEG48

ARITHMETIC
AND

LOGIC UNIT

INTERRUPT
CONTROL

BLOCK

INSTRUCTION
REGISTER

PROGRAM
COUNTER

PROGRAM
STATUS
WORD

544 x 4-BIT
DATA

MEMORY

16 KBYTE
PROGRAM
MEMORY

I/O PORT 2

STACK
POINTER

INSTRUCTION
DECODER

CLOCK

RESET
Xin

XTin
Xout

XTout

INTERNAL
INTERRUPTS

I/O PORT 4

I/O PORT 5

I/O PORT 3

I/O PORT 7

BASIC
TIMER

WATCH
TIMER

P0.0/SCK/K0
P0.1/SO/K1
P0.2/SI/K2
P0.3/BUZ/K3

LCD
DRIVER/

CONTROLLER

SERIAL I/O

VLC1-VLC5

I/O
PORT 0

16-BIT
TIMER/

COUNTER
P8.0–P8.3/

SEG47-SEG44
I/O PORT 8

I/O PORT 9

I/O PORT 6

INPUT PORT 1

P9.0–P9.3/
SEG43-SEG40

P3.0/TCLO0
P3.1/TCLO1

P3.2/TCL0
P3.3/TCL1

P2.0/CLO
P2.1/LCDCK
P2.2/LCDSY

P1.0-P1.3/
INT0-INT4

8-BIT
TIMER/

COUNTER

COM0-COM7

P4.0-P5.3/
COM8-COM15

SEG0-SEG39

P9.3-P6.0/
SEG40-SEG55

Figure 1-1. KS57C21516 Simplified Block Diagram

PRODUCT OVERVIEW KS57C21516/P21516 MICROCONTROLLER

1–4

PIN ASSIGNMENTS

SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
SEG36
SEG37
SEG38
SEG39
P9.3/SEG40
P9.2/SEG41
P9.1/SEG42
P9.0/SEG43
P8.3/SEG44
P8.2/SEG45
P8.1/SEG46
P8.0/SEG47
P7.3/SEG48
P7.2/SEG49
P7.1/SEG50
P7.0/SEG51
P6.3/SEG52/K7
P6.2/SEG53/K6
P6.1/SEG54/K5

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

SEG4
SEG3
SEG2
SEG1
SEG0
VLC5
VLC4
VLC3
VLC2
VLC1

P0.0/SCK /K0
P0.1/SO/K1
P0.2/SI/K2

P0.3/BUZ/K3
VDD
VSS
Xout

Xin
TEST
XTin

XTout
RESET

P1.0/INT0
P1.1/INT1
P1.2/INT2
P1.3/INT4
P2.0/CLO

P2.1/LCDCK
P2.2/LCDSY
P3.0/TCLO0

KS57C21516

(100-QFP-1420C)

S
E

G
5

S
E

G
6

S
E

G
7

S
E

G
8

S
E

G
9

S
E

G
10

S

E
G

11

S
E

G
12

S

E
G

13

S
E

G
14

S

E
G

15

S
E

G
16

S

E
G

17

S
E

G
18

S

E
G

19

S
E

G
20

S

E
G

21

S
E

G
22

S

E
G

23

S
E

G
24

10
0 99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

P
3.

1/
T

C
LO

1
P

3.
2/

T
C

L0

P
3.

3/
T

C
L1

C

O
M

0
C

O
M

1
C

O
M

2
C

O
M

3
C

O
M

4
C

O
M

5
C

O
M

6
C

O
M

7
P

4.
0/

C
O

M
8

P
4.

1/
C

O
M

9
P

4.
2/

C
O

M
10

P

4.
3/

C
O

M
11

P

5.
0/

C
O

M
12

P

5.
1/

C
O

M
13

P

5.
2/

C
O

M
14

P

5.
3/

C
O

M
15

P

6.
0/

S
E

G
55

/K
4

Figure 1-2. KS57C21516 100-QFP Pin Assignment Diagram

KS57C21516/P21516 MICROCONTROLLER PRODUCT OVERVIEW

1–5

PIN DESCRIPTIONS

Table 1–1. KS57C21516 Pin Descriptions

Pin Name Pin Type Description Number Share Pin

P0.0
P0.1
P0.2
P0.3

I/O 4-bit I/O port.
1-bit and 4-bit read/write and test are possible.
Individual pins are software configurable as input or
output.
Individual pins are software configurable as open-
drain or push-pull output.
4-bit pull-up resistors are software assignable; pull-up
resistors are automatically disabled for output pins.

11
12
13
14

SCK/K0
SO/K1
SI/K2

BUZ/K3

P1.0
P1.1
P1.2
P1.3

I 4-bit input port.
1-bit and 4-bit read and test are possible.
4-bit pull-up resistors are assignable by software.

23
24
25
26

INT0
INT1
INT2
INT4

P2.0
P2.1
P2.2

I/O Same as port 0 except that port 2 is 3-bit I/O port. 27
28
29

CLO
LCDCK
LCDSY

P3.0
P3.1
P3.2
P3.3

I/O Same as port 0. 30
31
32
33

TCLO0
TCLO1
TCL0
TCL1

P4.0–P4.3

P5.0–P5.3

I/O 4-bit I/O ports.
1-, 4-bit or 8-bit read/write and test are possible.
Individual pins are software configurable as input or
output.
4-bit pull-up resistors are software assignable; pull-up
resistors are automatically disabled for output pins.

42–45

46–49

COM8–
COM11
COM12–
COM15

P6.0–P6.3

P7.0–P7.3

I/O Same as P4, P5. 50–53

54–57

SEG55/K4–
SEG52/K7

SEG51–
SEG48

P8.0–P8.3

P9.0–P9.3

I/O Same as P4, P5. 58–61

62–65

SEG47–
SEG44

SEG43–
SEG40

SCK I/O Serial I/O interface clock signal. 11 P0.0/K0

SO I/O Serial data output. 12 P0.1/K1

SI I/O Serial data input. 13 P0.2/K2

BUZ I/O 2 kHz, 4 kHz, 8 kHz or 16 kHz frequency output for
buzzer signal.

14 P0.3/K3

INT0, INT1 I External interrupts. The triggering edge for INT0 and
INT1 is selectable.

23, 24 P1.0, P1.1

PRODUCT OVERVIEW KS57C21516/P21516 MICROCONTROLLER

1–6

Table 1–1. KS57C21516 Pin Descriptions (Continued)

Pin Name Pin Type Description Number Share Pin

INT2 I Quasi-interrupt with detection of rising or
falling edges.

25 P1.2

INT4 I External interrupt with detection of rising or
falling edges.

26 P1.3

CLO I/O Clock output . 27 P2.0

LCDCK I/O LCD clock output for display expansion. 28 P2.1

LCDSY I/O LCD synchronization clock output for display
expansion.

29 P2.2

TCLO0 I/O Timer/counter 0 clock output. 30 P3.0

TCLO1 I/O Timer/counter 1 clock output. 31 P3.1

TCL0 I/O External clock input for timer/counter 0. 32 P3.2

TCL1 I/O External clock input for timer/counter 1. 33 P3.3

COM0–COM7 O LCD common signal output. 34–41 –

COM8–COM11 I/O 42–45 P4.0–P4.3

COM12–COM15 46–49 P5.0–P5.3

SEG0–SEG39 O LCD segment signal output. 5–1,
100–66

–

SEG40–SEG43 I/O 65–62 P9.3–P9.0

SEG44–SEG47 61–58 P8.3–P8.0

SEG48–SEG51 57–54 P7.3–P7.0

SEG52–SEG55 53–50 P6.3/K7–P6.0/K4

K0–K3 I/O External interrupt. The triggering edge is
selectable.

11–14 P0.0–P0.3

K4–K7 50–53 P6.0–P6.3

VDD – Main power supply. 15 –

VSS – Ground. 16 –

RESET I Reset signal. 22 –

VLC1–VLC5 – LCD power supply. 10–6 –

Xin, Xout – Crystal, Ceramic or RC oscillator pins for
system clock.

18, 17 –

XTin, XTout – Crystal oscillator pins for subsystem clock. 20, 21 –

TEST I Test signal input. (must be connected to VSS) 19 –

NOTE: Pull-up resistors for all I/O ports are automatically disabled if they are configured to output mode.

KS57C21516/P21516 MICROCONTROLLER PRODUCT OVERVIEW

1–7

Table 1–2. Overview of KS57C21516 Pin Data

Pin Names Share Pins I/O Type Reset Value Circuit Type

P0.1, P0.3 SO/K1, BUZ/K3 I/O Input E-1

P0.0, P0.2 SCK/K0, SI/K2 I/O Input E-2

P1.0–P1.3 INT0–INT2, INT4 I Input A-3

P2.0–P2.2 CLO, LCDCK, LCDSY I/O Input E

P3.0–P3.1 TCLO0, TCLO1 I/O Input E

P3.2–P3.3 TCL0, TCL1 I/O Input E-1

P4.0–P4.3
P5.0–P5.3

COM8–COM11
COM12–COM15

I/O Input H-13

P6.0–P6.3 SEG55/K4–SEG52/K7 I/O Input H-16

P7.0–P7.3 SEG51–SEG48 I/O Input H-13

P8.0–P8.3
P9.0–P9.3

SEG47–SEG44
SEG43–SEG40

I/O Input H-13

COM0–COM7 – O High H-3

SEG0–SEG39 – O High H-15

VDD – – – –

VSS – – – –

RESET – I – B

VLC1–VLC5 – – – –

Xin, Xout – – – –

XTin, XTout – – – –

TEST – I – –

KS57C21516/P21516 MICROCONTROLLER PRODUCT OVERVIEW

1–8

PIN CIRCUIT DIAGRAMS

VDD

P-CHANNEL

IN

N-CHANNEL

Figure 1-3. Pin Circuit Type A

P-CHANNEL
PULL-UP
RESISTOR
ENABLE

VDD

PULL-UP
RESISTOR

SCHMITT TRIGGER

IN

Figure 1-4. Pin Circuit Type A-3

VDD

PULL-UP
RESISTOR

SCHMITT TRIGGER

IN

Figure 1-5. Pin Circuit Type B

DATA

OUTPUT
DISABLE

OUT

VDD

P-CHANNEL

N-CHANNEL

Figure 1-6. Pin Circuit Type C

KS57C21516/P21516 MICROCONTROLLER PRODUCT OVERVIEW

1–9

VDD

RESISTOR
ENABLE

N-CH

P-CH

VDD

PULL-UP
RESISTOR

DATA

OUTPUT
DISABLE

CIRCUIT TYPE A

I/O

PNE

Figure 1-7. Pin Circuit Type E

VDD

RESISTOR
ENABLE

N-CH

P-CH

VDD

PULL-UP
RESISTOR

DATA

OUTPUT
DISABLE

SCHMITT TRIGGER

I/O

PNE

Figure 1-8. Pin Circuit Type E-1

PRODUCT OVERVIEW KS57C21516/P21516 MICROCONTROLLER

1–10

VDD

RESISTOR
ENABLE

N-CH

P-CH

VDD

PULL-UP
RESISTOR

DATA

OUTPUT
DISABLE

SCHMITT TRIGGER

I/O

PNE

Figure 1-9. Pin Circuit Type E-2

KS57C21516/P21516 MICROCONTROLLER PRODUCT OVERVIEW

1–11

OUT

VLC4

COM DATA

VLC5

VLC1

VDD

 Figure 1-10. Pin Circuit Type H-3

OUT

VLC3

SEG DATA

VLC5

VLC2

VDD

Figure 1-11. Pin Circuit Type H-15

PRODUCT OVERVIEW KS57C21516/P21516 MICROCONTROLLER

1–12

VDD

P-CH

PULL-UP
RESISTOR

RESISTOR
ENABLE

COM/SEG

OUTPUT
DISABLE

TYPE H-3

CIRCUIT TYPE A

DATA I/OTYPE C

Figure 1-12. Pin Circuit Type H-13

VDD

P-CH

PULL-UP
RESISTOR

RESISTOR
ENABLE

SEG

OUTPUT
DISABLE

TYPE H-15

SCHMITT TRIGGER

DATA
I/OTYPE C

Figure 1-13. Pin Circuit Type H-16

KS57C21516/P21516 MICROCONTROLLER ADDRESS SPACES

2–1

2 ADDRESS SPACES

PROGRAM MEMORY (ROM)

OVERVIEW

ROM maps for KS57C21516 devices are mask programmable at the factory. In its standard configuration, the
device's 16,384 × 8-bit program memory has three areas that are directly addressable by the program counter
(PC):

— 16-byte area for vector addresses

— 96-byte instruction reference area

— 16-byte general-purpose area

— 16,256-byte general-purpose area

General-purpose Program Memory

Two program memory areas are allocated for general-purpose use: One area is 16 bytes in size and the other is
16,256 bytes.

Vector Addresses

A 16-byte vector address area is used to store the vector addresses required to execute system resets and
interrupts. Start addresses for interrupt service routines are stored in this area, along with the values of the
enable memory bank (EMB) and enable register bank (ERB) flags that are used to set their initial value for the
corresponding service routines. The 16-byte area can be used alternately as general-purpose ROM.

REF Instructions

Locations 0020H–007FH are used as a reference area (look-up table) for 1-byte REF instructions. The REF
instruction reduces the byte size of instruction operands. REF can reference one 2-byte instruction, two 1-byte
instructions, and one 3-byte instructions which are stored in the look-up table. Unused look-up table addresses
can be used as general-purpose ROM.

Table 2–1. Program Memory Address Ranges

ROM Area Function Address Ranges Area Size (in Bytes)

Vector address area 0000H–000FH 16

General-purpose program memory 0010H–001FH 16

REF instruction look-up table area 0020H–007FH 96

General-purpose program memory 0080H–3FFFH 16,256

ADDRESS SPACES KS57C21516/P21516 MICROCONTROLLER

2–2

GENERAL-PURPOSE MEMORY AREAS

The 16-byte area at ROM locations 0010H–001FH and the 16,256-byte area at ROM locations 0080H–3FFFH
are used as general-purpose program memory. Unused locations in the vector address area and REF instruction
look-up table areas can be used as general-purpose program memory. However, care must be taken not to
overwrite live data when writing programs that use special-purpose areas of the ROM.

VECTOR ADDRESS AREA

The 16-byte vector address area of the ROM is used to store the vector addresses for executing system resets
and interrupts. The starting addresses of interrupt service routines are stored in this area, along with the enable
memory bank (EMB) and enable register bank (ERB) flag values that are needed to initialize the service routines.
16-byte vector addresses are organized as follows:

EMB ERB PC13 PC12 PC11 PC10 PC9 PC8

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

To set up the vector address area for specific programs, use the instruction VENTn. The programming tips on the
next page explain how to do this.

0000H

000FH

0010H

001FH

0020H

007FH

0080H

3FFFH

Vector Address Area
(16 bytes)

General Purpose Area
(16 bytes)

Instruction Reference Area
(96 bytes)

General Purpose Area
(16,256 bytes)

Figure 2–1. ROM Address Structure

0000H

0002H

0004H

0006H

0008H

000AH

000CH

000EH

7 6 5 4 3 2 1 0

RESET

INTB/INT4

INT0

INT1

INTS

INTT0

INTT1

INTK

Figure 2–2. Vector Address Map

KS57C21516/P21516 MICROCONTROLLER ADDRESS SPACES

2–3

++ PROGRAMMING TIP — Defining Vectored Interrupts

The following examples show you several ways you can define the vectored interrupt and instruction reference
areas in program memory:

1. When all vector interrupts are used:

ORG 0000H
;

VENT0 1,0,RESET ; EMB ← 1, ERB ← 0; Jump to RESET address by RESET
VENT1 0,0,INTB ; EMB ← 0, ERB ← 0; Jump to INTB address by INTB
VENT2 0,0,INT0 ; EMB ← 0, ERB ← 0; Jump to INT0 address by INT0
VENT3 0,0,INT1 ; EMB ← 0, ERB ← 0; Jump to INT1 address by INT1
VENT4 0,0,INTS ; EMB ← 0, ERB ← 0; Jump to INTS address by INTS
VENT5 0,0,INTT0 ; EMB ← 0, ERB ← 0; Jump to INTT0 address by INTT0
VENT6 0,0,INTT1 ; EMB ← 0, ERB ← 0; Jump to INTT1 address by INTT1
VENT7 0,0,INTK ; EMB ← 0, ERB ← 0; Jump to INTK address by INTK

2. When a specific vectored interrupt such as INT0, and INTT0 is not used, the unused vector interrupt locations
 must be skipped with the assembly instruction ORG so that jumps will address the correct locations:

ORG 0000H
;

VENT0 1,0,RESET ; EMB ← 1, ERB ← 0; Jump to RESET address by RESET
VENT1 0,0,INTB ; EMB ← 0, ERB ← 0; Jump to INTB address by INTB
ORG 0006H ; INT0 interrupt not used
VENT3 0,0,INT1 ; EMB ← 0, ERB ← 0; Jump to INT1 address by INT1
VENT4 0,0,INTS ; EMB ← 0, ERB ← 0; Jump to INTS address by INTS

;
ORG 000CH ; INTT0 interrupt not used

;
VENT6 0,0,INTT1 ; EMB ← 0, ERB ← 0; Jump to INTT1 address by INTT1
VENT7 0,0,INTK ; EMB ← 0, ERB ← 0; Jump to INTK address by INTK

;
ORG 0010H

ADDRESS SPACES KS57C21516/P21516 MICROCONTROLLER

2–4

++ PROGRAMMING TIP — Defining Vectored Interrupts (Continued)

3. If an INT0 interrupt is not used and if its corresponding vector interrupt area is not fully utilized, or if it is not
 written by a ORG instruction as in Example 2, a CPU malfunction will occur:

ORG 0000H
;

VENT0 1,0,RESET ; EMB ← 1, ERB ← 0; Jump to RESET address by RESET
VENT1 0,0,INTB ; EMB ← 0, ERB ← 0; Jump to INTB address by INTB
VENT3 0,0,INT1 ; EMB ← 0, ERB ← 0; Jump to INT1 address by INT0
VENT4 0,0,INTS ; EMB ← 0, ERB ← 0; Jump to INTS address by INT1
VENT5 0,0,INTT0 ; EMB ← 0, ERB ← 0; Jump to INTT0 address by INTS
VENT6 0,0,INTT1 ; EMB ← 0, ERB ← 0; Jump to INTT1 address by INTT0
VENT7 0,0,INTK ; EMB ← 0, ERB ← 0; Jump to INTK address by INTT1

;
ORG 0010H

;
General-purpose ROM area

;

In this example, when an INTS interrupt is generated, the corresponding vector area is not VENT4 INTS, but
VENT5 INTT0. This causes an INTS interrupt to jump incorrectly to the INTT0 address and causes a CPU
malfunction to occur.

KS57C21516/P21516 MICROCONTROLLER ADDRESS SPACES

2–5

INSTRUCTION REFERENCE AREA

Using 1-byte REF instructions, you can easily reference instructions with larger byte sizes that are stored in ad-
dresses 0020H–007FH of program memory. This 96-byte area is called the REF instruction reference area, or
look-up table. Locations in the REF look-up table may contain two 1-byte instructions, one 2-byte instruction, or
one 3-byte instruction such as a JP (jump) or CALL. The starting address of the instruction you are referencing
must always be an even number. To reference a JP or CALL instruction, it must be written to the reference area
in a two-byte format: for JP, this format is TJP; for CALL, it is TCALL. In summary, there are three ways to the
REF instruction:

By using REF instructions you can execute instructions larger than one byte. In summary, there are three ways
you can use the REF instruction:

— Using the 1-byte REF instruction to execute one 2-byte or two 1-byte instructions,

— Branching to any location by referencing a branch instruction stored in the look-up table,

— Calling subroutines at any location by referencing a call instruction stored in the look-up table.

++ PROGRAMMING TIP — Using the REF Look-Up Table

Here is one example of how to use the REF instruction look-up table:

ORG 0020H
;
JMAIN TJP MAIN ; 0, MAIN
KEYCK BTSF KEYFG ; 1, KEYFG CHECK
WATCH TCALL CLOCK ; 2, Call CLOCK
INCHL LD @HL,A ; 3, (HL) ← A

INCS HL
•
•
•

ABC LD EA,#00H ; 47, EA ← #00H
ORG 0080

;
MAIN NOP

NOP
•
•
•
REF KEYCK ; BTSF KEYFG (1-byte instruction)
REF JMAIN ; KEYFG = 1, jump to MAIN (1-byte instruction)
REF WATCH ; KEYFG = 0, CALL CLOCK (1-byte instruction)
REF INCHL ; LD @HL,A

; INCS HL
REF ABC ; LD EA,#00H (1-byte instruction)
•
•
•

ADDRESS SPACES KS57C21516/P21516 MICROCONTROLLER

2–6

DATA MEMORY (RAM)

OVERVIEW

In its standard configuration, the 736 × 4-bit data memory has five areas:

— 32 × 4-bit working register area in bank 0

— 224 × 4-bit general-purpose area in bank 0 which is also used as the stack area

— 256 × 4-bit general-purpose area in bank 1

— 32 × 4-bit general-purpose area in bank 2

— 224 × 4-bit area for LCD data in bank 2

— 128 × 4-bit area in bank 15 for memory-mapped I/O addresses

To make it easier to reference, the data memory area has four memory banks — bank 0, bank 1, bank 2 and
bank 15. The select memory bank instruction (SMB) is used to select the bank you want to select as working data
memory. Data stored in RAM locations are 1-, 4-, and 8-bit addressable.

Initialization values for the data memory area are not defined by hardware and must therefore be initialized by
program software following power RESET. However, when RESET signal is generated in power-down mode, the
most of data memory contents are held.

GENERAL-PURPOSE
REGISTERS AND

STACK AREA
(224 x 4 Bits)

WORKING REGISTERS
(32 x 4 Bits)

LCD DATA REGISTERS
(224 x 4 Bits) and

GENERAL-PURPOSE
REGISTERS (32 x 4 Bits)

MEMORY-MAPPED I/O
AEERESS REGISTERS

(128 x 4 Bits)

000H

01FH
020H

1FFH
200H

FFFH

2FFH

F80H
~~

BANK 0

BANK 2

BANK 15

GENERAL-PURPOSE
REGISTERS
(256 x 4 Bits)

BANK 1

0FFH
100H

Figure 2–3. Data Memory (RAM) Map

KS57C21516/P21516 MICROCONTROLLER ADDRESS SPACES

2–7

Memory Banks 0, 1, 2, and 15

Bank 0 (000H–0FFH) The lowest 32 nibbles of bank 0 (000H–01FH) are used as working registers;
the next 224 nibbles (020H–0FFH) can be used both as stack area and as
general-purpose data memory. Use the stack area for implementing subroutine
calls and returns, and for interrupt processing.

Bank 1 (100H–1FFH) Bank 1 is used for general-purpose.

Bank 2 (200H–2FFH) The 224 nibbles of bank 2 are for display registers or general-purpose use;
locations 2xE and 2xF (x = 0–F) are for general-purpose use in bank 2.
Detailed map on bank 2 is shown in Section 12 LCD Controller/Driver.

Bank 15 (F80H–FFFH) The microcontroller uses bank 15 for memory-mapped peripheral I/O. Fixed
RAM locations for each peripheral hardware address are mapped into this area.

Data Memory Addressing Modes

The enable memory bank (EMB) flag controls the addressing mode for data memory banks 0, 1, 2, or 15. When
the EMB flag is logic zero, the addressable area is restricted to specific locations, depending on whether direct or
indirect addressing is used. With direct addressing, you can access locations 000H–07FH of bank 0 and bank 15.
With indirect addressing, only bank 0 (000H–0FFH) can be accessed. When the EMB flag is set to logic one, all
four data memory banks can be accessed according to the current SMB value.

For 8-bit addressing, two 4-bit registers are addressed as a register pair. Also, when using 8-bit instructions to
address RAM locations, remember to use the even-numbered register address as the instruction operand.

Working Registers

The RAM working register area in data memory bank 0 is further divided into four register banks (bank 0, 1, 2,
and 3). Each register bank has eight 4-bit registers and paired 4-bit registers are 8-bit addressable.

Register A is used as a 4-bit accumulator and register pair EA as an 8-bit extended accumulator. The carry flag
bit can also be used as a 1-bit accumulator. Register pairs WX, WL, and HL are used as address pointers for
indirect addressing. To limit the possibility of data corruption due to incorrect register addressing, it is advisable
to use register bank 0 for the main program and banks 1, 2, and 3 for interrupt service routines.

LCD Data Register Area

Bit values for LCD segment data are stored in data memory bank 2. Register locations in this area that are not
used to store LCD data can be assigned to general-purpose use.

ADDRESS SPACES KS57C21516/P21516 MICROCONTROLLER

2–8

Table 2–2. Data Memory Organization and Addressing

Addresses Register Areas Bank EMB Value SMB Value

000H–01FH Working registers 0 0, 1 0

020H–0FFH Stack and general-purpose registers

100H–1FFH General-purpose registers 1 1 1

200H–2FFH Display registers and general-purpose
registers

2 1 2

F80H–FFFH I/O-mapped hardware registers 15 0, 1 15

++ PROGRAMMING TIP — Clearing Data Memory Banks 0 and 1

Clear banks 0 and 1 of the data memory area:

RAMCLR SMB 1 ; RAM (100H–1FFH) clear
LD HL,#00H
LD A,#0H

RMCL1 LD @HL,A
INCS HL
JR RMCL1

;
SMB 0 ; RAM (010H–0FFH) clear
LD HL,#10H

RMCL0 LD @HL,A
INCS HL
JR RMCL0

KS57C21516/P21516 MICROCONTROLLER ADDRESS SPACES

2–9

WORKING REGISTERS

Working registers, mapped to RAM address 000H-01FH in data memory bank 0, are used to temporarily store
intermediate results during program execution, as well as pointer values used for indirect addressing. Unused
registers may be used as general-purpose memory. Working register data can be manipulated as 1-bit units, 4-
bit units or, using paired registers, as 8-bit units.

000H

001H

002H

003H

004H

005H

006H

007H

00FH
010H

017H
018H

01FH

008H

A

E

L

H

X

W

Z

Y

A ... Y
Register
Bank 1

Register
Bank 2

Register
Bank 3

A ... Y

A ... Y

Working
Register
Bank 0

Data
Memory
Bank 0

Figure 2–4. Working Register Map

ADDRESS SPACES KS57C21516/P21516 MICROCONTROLLER

2–10

Working Register Banks

For addressing purposes, the working register area is divided into four register banks — bank 0, bank 1, bank 2,
and bank 3. Any one of these banks can be selected as the working register bank by the register bank selection
instruction (SRB n) and by setting the status of the register bank enable flag (ERB).

Generally, working register bank 0 is used for the main program, and banks 1, 2, and 3 for interrupt service rou-
tines. Following this convention helps to prevent possible data corruption during program execution due to con-
tention in register bank addressing.

Table 2–3. Working Register Organization and Addressing

ERB Setting SRB Settings Selected Register Bank

3 2 1 0

0 0 0 x x Always set to bank 0

1 0 0 0 0 Bank 0

0 1 Bank 1

1 0 Bank 2

1 1 Bank 3

NOTE: 'x' means don't care.

Paired Working Registers

Each of the register banks is subdivided into eight 4-bit registers. These registers, named Y, Z, W, X, H, L, E and
A, can either be manipulated individually using 4-bit instructions, or together as register pairs for 8-bit data
manipulation.

The names of the 8-bit register pairs in each register bank are EA, HL, WX, YZ and WL. Registers A, L, X and Z
always become the lower nibble when registers are addressed as 8-bit pairs. This makes a total of eight 4-bit
registers or four 8-bit double registers in each of the four working register banks.

(MSB) (LSB) (MSB) (LSB)

Y

W

H

E

Z

X

L

A

Figure 2–5. Register Pair Configuration

KS57C21516/P21516 MICROCONTROLLER ADDRESS SPACES

2–11

Special-Purpose Working Registers

Register A is used as a 4-bit accumulator and double register EA as an 8-bit accumulator. The carry flag can also
be used as a 1-bit accumulator.

8-bit double registers WX, WL and HL are used as data pointers for indirect addressing. When the HL register
serves as a data pointer, the instructions LDI, LDD, XCHI, and XCHD can make very efficient use of working
registers as program loop counters by letting you transfer a value to the L register and increment or decrement it
using a single instruction.

C

A

EA
8-BIT

ACCUMULATOR

1-BIT
ACCUMULATOR

4-BIT
ACCUMULATOR

Figure 2–6. 1-Bit, 4-Bit, and 8-Bit Accumulator

Recommendation for Multiple Interrupt Processing

If more than four interrupts are being processed at one time, you can avoid possible loss of working register data
by using the PUSH RR instruction to save register contents to the stack before the service routines are executed
in the same register bank. When the routines have executed successfully, you can restore the register contents
from the stack to working memory using the POP instruction.

ADDRESS SPACES KS57C21516/P21516 MICROCONTROLLER

2–12

++ PROGRAMMING TIP — Selecting the Working Register Area

The following examples show the correct programming method for selecting working register area:

1. When ERB = "0":

VENT2 1,0,INT0 ; EMB ← 1, ERB ← 0, Jump to INT0 address
;
INT0 PUSH SB ; PUSH current SMB, SRB

SRB 2 ; Instruction does not execute because ERB = "0"
PUSH HL ; PUSH HL register contents to stack
PUSH WX ; PUSH WX register contents to stack
PUSH YZ ; PUSH YZ register contents to stack
PUSH EA ; PUSH EA register contents to stack
SMB 0
LD EA,#00H
LD 80H,EA
LD HL,#40H
INCS HL
LD WX,EA
LD YZ,EA
POP EA ; POP EA register contents from stack
POP YZ ; POP YZ register contents from stack
POP WX ; POP WX register contents from stack
POP HL ; POP HL register contents from stack
POP SB ; POP current SMB, SRB
IRET

The POP instructions execute alternately with the PUSH instructions. If an SMB n instruction is used in an
interrupt service routine, a PUSH and POP SB instruction must be used to store and restore the current SMB and
SRB values, as shown in Example 2 below.

2. When ERB = "1":

VENT2 1,1,INT0 ; EMB ← 1, ERB ← 1, Jump to INT0 address
;
INT0 PUSH SB ; Store current SMB, SRB

SRB 2 ; Select register bank 2 because of ERB = "1"
SMB 0
LD EA,#00H
LD 80H,EA
LD HL,#40H
INCS HL
LD WX,EA
LD YZ,EA
POP SB ; Restore SMB, SRB
IRET

KS57C21516/P21516 MICROCONTROLLER ADDRESS SPACES

2–13

STACK OPERATIONS

STACK POINTER (SP)

The stack pointer (SP) is an 8-bit register that stores the address used to access the stack, an area of data
memory set aside for temporary storage of data and addresses. The SP can be read or written by 8-bit control
instructions. When addressing the SP, bit 0 must always remain cleared to logic zero.

F80H SP3 SP2 SP1 "0"

F81H SP7 SP6 SP5 SP4

There are two basic stack operations: writing to the top of the stack (push), and reading from the top of the stack
(pop). A push decrements the SP and a pop increments it so that the SP always points to the top address of the
last data to be written to the stack.

The program counter contents and program status word are stored in the stack area prior to the execution of a
CALL or a PUSH instruction, or during interrupt service routines. Stack operation is a LIFO (Last In-First Out)
type. The stack area is located in general-purpose data memory bank 0.

During an interrupt or a subroutine, the PC value and the PSW are saved to the stack area. When the routine
has completed, the stack pointer is referenced to restore the PC and PSW, and the next instruction is executed.
The SP can address stack registers in bank 0 (addresses 000H-0FFH) regardless of the current value of the en-
able memory bank (EMB) flag and the select memory bank (SMB) flag. Although general-purpose register areas
can be used for stack operations, be careful to avoid data loss due to simultaneous use of the same register(s).
Since the reset value of the stack pointer is not defined in firmware, we recommend that you initialize the stack
pointer by program code to location 00H. This sets the first register of the stack area to 0FFH.

NOTE

A subroutine call occupies six nibbles in the stack; an interrupt requires six. When subroutine nesting or
interrupt routines are used continuously, the stack area should be set in accordance with the maximum
number of subroutine levels. To do this, estimate the number of nibbles that will be used for the
subroutines or interrupts and set the stack area correspondingly.

++ PROGRAMMING TIP — Initializing the Stack Pointer

To initialize the stack pointer (SP):

1. When EMB = "1":

SMB 15 ; Select memory bank 15
LD EA,#00H ; Bit 0 of SP is always cleared to "0"
LD SP,EA ; Stack area initial address (0FFH) ← (SP) – 1

2. When EMB = "0":

LD EA,#00H
LD SP,EA ; Memory addressing area (00H–7FH, F80H–FFFH)

ADDRESS SPACES KS57C21516/P21516 MICROCONTROLLER

2–14

PUSH OPERATIONS

Three kinds of push operations reference the stack pointer (SP) to write data from the source register to the
stack: PUSH instructions, CALL instructions, and interrupts. In each case, the SP is decremented by a number
determined by the type of push operation and then points to the next available stack location.

PUSH Instructions

A PUSH instruction references the SP to write two 4-bit data nibbles to the stack. Two 4-bit stack addresses are
referenced by the stack pointer: one for the upper register value and another for the lower register. After the
PUSH has executed, the SP is decremented by two and points to the next available stack location.

CALL Instructions

When a subroutine call is issued, the CALL instruction references the SP to write the PC's contents to six 4-bit
stack locations. Current values for the enable memory bank (EMB) flag and the enable register bank (ERB) flag
are also pushed to the stack. Since six 4-bit stack locations are used per CALL, you may nest subroutine calls up
to the number of levels permitted in the stack.

Interrupt Routines

An interrupt routine references the SP to push the contents of the PC and the program status word (PSW) to the
stack. Six 4-bit stack locations are used to store this data. After the interrupt has executed, the SP is
decremented by six and points to the next available stack location. During an interrupt sequence, subroutines
may be nested up to the number of levels which are permitted in the stack area.

SP – 2

SP – 1

SP

LOWER REGISTER

UPPER REGISTER

PUSH
(After PUSH, SP SP – 2)

SP – 6

SP – 5

SP – 4

SP – 3

SP – 2

SP – 1

SP

CALL
(After CALL, SP SP – 6)

0 0

PC3 – PC0

PC7 – PC4

0 0 EMB ERB

0 0 0 0

PC13−PC12

PC11– PC8

INTERRUPT
(When INT is acknowledged,

SP SP – 6)

SP – 6

SP – 5

SP – 4

SP – 3

SP – 2

SP – 1

SP

0 0

PC3 – PC0

PC7 – PC4

IS1 IS0 EMB ERB
PSW

C SC2 SC1 SC0

PC13–PC12

PC11– PC8

PSW

Figure 2–7. Push-Type Stack Operations

KS57C21516/P21516 MICROCONTROLLER ADDRESS SPACES

2–15

POP OPERATIONS

For each push operation there is a corresponding pop operation to write data from the stack back to the source
register or registers: for the PUSH instruction it is the POP instruction; for CALL, the instruction RET or SRET;
for interrupts, the instruction IRET. When a pop operation occurs, the SP is incremented by a number determined
by the type of operation and points to the next free stack location.

POP Instructions

A POP instruction references the SP to write data stored in two 4-bit stack locations back to the register pairs and
SB register. The value of the lower 4-bit register is popped first, followed by the value of the upper 4-bit register.
After the POP has executed, the SP is incremented by two and points to the next free stack location.

RET and SRET Instructions

The end of a subroutine call is signaled by the return instruction, RET or SRET. The RET or SRET uses the SP
to reference the six 4-bit stack locations used for the CALL and to write this data back to the PC, the EMB, and
the ERB. After the RET or SRET has executed, the SP is incremented by six and points to the next free stack
location.

IRET Instructions

The end of an interrupt sequence is signaled by the instruction IRET. IRET references the SP to locate the six 4-
bit stack addresses used for the interrupt and to write this data back to the PC and the PSW. After the IRET has
executed, the SP is incremented by six and points to the next free stack location.

(SP SP + 2)

SP

SP + 1

SP + 2

LOWER REGISTER

UPPER REGISTER

POP RET OR SRET
 (SP SP + 6)

IRET
(SP SP + 6)

SP

SP + 1

SP + 2

SP + 3

SP + 4

SP + 5

SP + 6

PC11 – PC8

0 0 PC13–PC12

PC3 – PC0

PC7 – PC4

IS1 IS0 EMB ERB

C SC2 SC1 SC0
PSW

PC11 – PC8

0 0 PC13–PC12

PC3 – PC0

PC7 – PC4

0 0 EMB ERB

0 0 0 0
PSW

SP

SP + 1

SP + 2

SP + 3

SP + 4

SP + 5

SP + 6

Figure 2–8. Pop-Type Stack Operations

ADDRESS SPACES KS57C21516/P21516 MICROCONTROLLER

2–16

BIT SEQUENTIAL CARRIER (BSC)

The bit sequential carrier (BSC) is a 16-bit general register that can be manipulated using 1-, 4-, and 8-bit RAM
control instructions. RESET clears all BSC bit values to logic zero.

Using the BSC, you can specify sequential addresses and bit locations using 1-bit indirect addressing
(memb.@L). (Bit addressing is independent of the current EMB value.) In this way, programs can process 16-bit
data by moving the bit location sequentially and then incrementing or decrementing the value of the L register.

BSC data can also be manipulated using direct addressing. For 8-bit manipulations, the 4-bit register names
BSC0 and BSC2 must be specified and the upper and lower 8 bits manipulated separately.

If the values of the L register are 0H at BSC0.@L, the address and bit location assignment is FC0H.0. If the L
register content is FH at BSC0.@L, the address and bit location assignment is FC3H.3.

Table 2–4. BSC Register Organization

Name Address Bit 3 Bit 2 Bit 1 Bit 0

BSC0 FC0H BSC0.3 BSC0.2 BSC0.1 BSC0.0

BSC1 FC1H BSC1.3 BSC1.2 BSC1.1 BSC1.0

BSC2 FC2H BSC2.3 BSC2.2 BSC2.1 BSC2.0

BSC3 FC3H BSC3.3 BSC3.2 BSC3.1 BSC3.0

++ PROGRAMMING TIP — Using the BSC Register to Output 16-Bit Data

To use the bit sequential carrier (BSC) register to output 16-bit data (5937H) to the P3.0 pin:

BITS EMB
SMB 15
LD EA,#37H ;
LD BSC0,EA ; BSC0 ← A, BSC1 ← E
LD EA,#59H ;
LD BSC2,EA ; BSC2 ← A, BSC3 ← E
SMB 0
LD L,#0H ;

AGN LDB C,BSC0.@L ;
LDB P3.0,C ; P3.0 ← C
INCS L
JR AGN
RET

KS57C21516/P21516 MICROCONTROLLER ADDRESS SPACES

2–17

PROGRAM COUNTER (PC)

A 14-bit program counter (PC) stores addresses for instruction fetches during program execution. Whenever a
reset operation or an interrupt occurs, bits PC13 through PC0 are set to the vector address.

Usually, the PC is incremented by the number of bytes of the instruction being fetched. One exception is the 1-
byte REF instruction which is used to reference instructions stored in the ROM.

PROGRAM STATUS WORD (PSW)

The program status word (PSW) is an 8-bit word that defines system status and program execution status and
which permits an interrupted process to resume operation after an interrupt request has been serviced. PSW
values are mapped as follows:

(MSB) (LSB)

FB0H IS1 IS0 EMB ERB

FB1H C SC2 SC1 SC0

The PSW can be manipulated by 1-bit or 4-bit read/write and by 8-bit read instructions, depending on the specific
bit or bits being addressed. The PSW can be addressed during program execution regardless of the current
value of the enable memory bank (EMB) flag.

Part or all of the PSW is saved to stack prior to execution of a subroutine call or hardware interrupt. After the in-
terrupt has been processed, the PSW values are popped from the stack back to the PSW address.
When a RESET is generated, the EMB and ERB values are set according to the RESET vector address, and the
carry flag is left undefined (or the current value is retained). PSW bits IS0, IS1, SC0, SC1, and SC2 are all
cleared to logical zero.

Table 2–5. Program Status Word Bit Descriptions

PSW Bit Identifier Description Bit Addressing Read/Write

IS1, IS0 Interrupt status flags 1, 4 R/W

EMB Enable memory bank flag 1 R/W

ERB Enable register bank flag 1 R/W

C Carry flag 1 R/W

SC2, SC1, SC0 Program skip flags 8 R

ADDRESS SPACES KS57C21516/P21516 MICROCONTROLLER

2–18

INTERRUPT STATUS FLAGS (IS0, IS1)

PSW bits IS0 and IS1 contain the current interrupt execution status values. You can manipulate IS0 and IS1
flags directly using 1-bit RAM control instructions.

By manipulating interrupt status flags in conjunction with the interrupt priority register (IPR), you can process
multiple interrupts by anticipating the next interrupt in an execution sequence. The interrupt priority control circuit
determines the IS0 and IS1 settings in order to control multiple interrupt processing. When both interrupt status
flags are set to "0", all interrupts are allowed. The priority with which interrupts are processed is then determined
by the IPR.

When an interrupt occurs, IS0 and IS1 are pushed to the stack as part of the PSW and are automatically
incremented to the next higher priority level. Then, when the interrupt service routine ends with an IRET
instruction, IS0 and IS1 values are restored to the PSW. Table 2–6 shows the effects of IS0 and IS1 flag
settings.

Table 2–6. Interrupt Status Flag Bit Settings

IS1
Value

IS0
Value

Status of Currently
Executing Process

Effect of IS0 and IS1 Settings
on Interrupt Request Control

0 0 0 All interrupt requests are serviced.

0 1 1 Only high-priority interrupt(s) as determined in the
interrupt priority register (IPR) are serviced.

1 0 2 No more interrupt requests are serviced.

1 1 – Not applicable; these bit settings are undefined.

Since interrupt status flags can be addressed by write instructions, programs can exert direct control over inter-
rupt processing status. Before interrupt status flags can be addressed, however, you must first execute a DI in-
struction to inhibit additional interrupt routines. When the bit manipulation has been completed, execute an EI
instruction to re-enable interrupt processing.

++ PROGRAMMING TIP — Setting ISx Flags for Interrupt Processing

The following instruction sequence shows how to use the IS0 and IS1 flags to control interrupt processing:

INTB DI ; Disable interrupt
BITR IS1 ; IS1 ← 0
BITS IS0 ; Allow interrupts according to IPR priority level
EI ; Enable interrupt

KS57C21516/P21516 MICROCONTROLLER ADDRESS SPACES

2–19

EMB FLAG (EMB)

The EMB flag is used to allocate specific address locations in the RAM by modifying the upper 4 bits of 12-bit
data memory addresses. In this way, it controls the addressing mode for data memory banks 0, 1, 2, or 15.

When the EMB flag is "0", the data memory address space is restricted to bank 15 and addresses 000H–07FH of
memory bank 0, regardless of the SMB register contents. When the EMB flag is set to "1", the general-purpose
areas of bank 0, 1, 2, and 15 can be accessed by using the appropriate SMB value.

++ PROGRAMMING TIP — Using the EMB Flag to Select Memory Banks

EMB flag settings for memory bank selection:

1. When EMB = "0":

SMB 1 ; Non-essential instruction since EMB = "0"
LD A,#9H
LD 90H,A ; (F90H) ← A, bank 15 is selected
LD 34H,A ; (034H) ← A, bank 0 is selected
SMB 0 ; Non-essential instruction since EMB = "0"
LD 90H,A ; (F90H) ← A, bank 15 is selected
LD 34H,A ; (034H) ← A, bank 0 is selected
SMB 15 ; Non-essential instruction, since EMB = "0"
LD 20H,A ; (020H) ← A, bank 0 is selected
LD 90H,A ; (F90H) ← A, bank 15 is selected

2. When EMB = "1":

SMB 1 ; Select memory bank 1
LD A,#9H
LD 90H,A ; (190H) ← A, bank 1 is selected
LD 34H,A ; (134H) ← A, bank 1 is selected
SMB 0 ; Select memory bank 0
LD 90H,A ; (090H) ← A, bank 0 is selected
LD 34H,A ; (034H) ← A, bank 0 is selected
SMB 15 ; Select memory bank 15
LD 20H,A ; Program error, but assembler does not detect it
LD 90H,A ; (F90H) ← A, bank 15 is selected

ADDRESS SPACES KS57C21516/P21516 MICROCONTROLLER

2–20

ERB FLAG (ERB)

The 1-bit register bank enable flag (ERB) determines the range of addressable working register area. When the
ERB flag is "1", the working register area from register banks 0 to 3 is selected according to the register bank
selection register (SRB). When the ERB flag is "0", register bank 0 is the selected working register area,
regardless of the current value of the register bank selection register (SRB).

When an internal RESET is generated, bit 6 of program memory address 0000H is written to the ERB flag. This
automatically initializes the flag. When a vectored interrupt is generated, bit 6 of the respective address table in
program memory is written to the ERB flag, setting the correct flag status before the interrupt service routine is
executed.

During the interrupt routine, the ERB value is automatically pushed to the stack area along with the other PSW
bits. Afterwards, it is popped back to the FB0H.0 bit location. The initial ERB flag settings for each vectored
interrupt are defined using VENTn instructions.

++ PROGRAMMING TIP — Using the ERB Flag to Select Register Banks

ERB flag settings for register bank selection:

1. When ERB = "0":

SRB 1 ; Register bank 0 is selected (since ERB = "0", the
SRB is configured to bank 0)

LD EA,#34H ; Bank 0 EA ← #34H
LD HL,EA ; Bank 0 HL ← EA
SRB 2 ; Register bank 0 is selected
LD YZ,EA ; Bank 0 YZ ← EA
SRB 3 ; Register bank 0 is selected
LD WX,EA ; Bank 0 WX ← EA

2. When ERB = "1":

SRB 1 ; Register bank 1 is selected
LD EA,#34H ; Bank 1 EA ← #34H
LD HL,EA ; Bank 1 HL ← Bank 1 EA
SRB 2 ; Register bank 2 is selected
LD YZ,EA ; Bank 2 YZ ← BANK2 EA
SRB 3 ; Register bank 3 is selected
LD WX,EA ; Bank 3 WX ← Bank 3 EA

KS57C21516/P21516 MICROCONTROLLER ADDRESS SPACES

2–21

SKIP CONDITION FLAGS (SC2, SC1, SC0)

The skip condition flags SC2, SC1, and SC0 in the PSW indicate the current program skip conditions and are set
and reset automatically during program execution. Skip condition flags can only be addressed by 8-bit read
instructions. Direct manipulation of the SC2, SC1, and SC0 bits is not allowed.

CARRY FLAG (C)

The carry flag is used to save the result of an overflow or borrow when executing arithmetic instructions involving
a carry (ADC, SBC). The carry flag can also be used as a 1-bit accumulator for performing Boolean operations
involving bit-addressed data memory.

If an overflow or borrow condition occurs when executing arithmetic instructions with carry (ADC, SBC), the carry
flag is set to "1". Otherwise, its value is "0". When a RESET occurs, the current value of the carry flag is retained
during power-down mode, but when normal operating mode resumes, its value is undefined.

The carry flag can be directly manipulated by predefined set of 1-bit read/write instructions, independent of other
bits in the PSW. Only the ADC and SBC instructions, and the instructions listed in Table 2–7, affect the carry
flag.

Table 2–7. Valid Carry Flag Manipulation Instructions

Operation Type Instructions Carry Flag Manipulation

Direct manipulation SCF Set carry flag to "1".

RCF Clear carry flag to "0" (reset carry flag).

CCF Invert carry flag value (complement carry flag).

BTST C Test carry and skip if C = "1".

Bit transfer LDB (operand) (1),C Load carry flag value to the specified bit.

LDB C,(operand) (1) Load contents of the specified bit to carry flag.

Boolean manipulation BAND C,(operand) (1) AND the specified bit with contents of carry flag and save
the result to the carry flag.

BOR C,(operand) (1) OR the specified bit with contents of carry flag and save
the result to the carry flag.

BXOR C,(operand) (1) XOR the specified bit with contents of carry flag and save
the result to the carry flag.

Interrupt routine INTn (2) Save carry flag to stack with other PSW bits.

Return from interrupt IRET Restore carry flag from stack with other PSW bits.

NOTES:
1. The operand has three bit addressing formats: mema.a, memb.@L, and @H + DA.b.
2. 'INTn' refers to the specific interrupt being executed and is not an instruction.

ADDRESS SPACES KS57C21516/P21516 MICROCONTROLLER

2–22

++ PROGRAMMING TIP — Using the Carry Flag as a 1-Bit Accumulator

1. Set the carry flag to logic one:

SCF ; C ← 1
LD EA,#0C3H ; EA ← #0C3H
LD HL,#0AAH ; HL ← #0AAH
ADC EA,HL ; EA ← #0C3H + #0AAH + #1H, C ← 1

2. Logical-AND bit 3 of address 3FH with P3.3 and output the result to P5.0:

LD H,#3H ; Set the upper four bits of the address to the H register
; value

LDB C,@H+0FH.3 ; C ← bit 3 of 3FH
BAND C,P3.3 ; C ← C AND P3.3
LDB P5.0,C ; Output result from carry flag to P5.0

KS57C21516/P21516 MICROCONTROLLER ADDRESSING MODES

3–1

3 ADDRESSING MODES

OVERVIEW

The enable memory bank flag, EMB, controls the two addressing modes for data memory. When the EMB flag is
set to logic one, you can address the entire RAM area; when the EMB flag is cleared to logic zero, the
addressable area in the RAM is restricted to specific locations.

The EMB flag works in connection with the select memory bank instruction, SMBn. You will recall that the SMBn
instruction is used to select RAM bank 0, 1, 2, or 15. The SMB setting is always contained in the upper four bits
of a 12-bit RAM address. For this reason, both addressing modes (EMB = "0" and EMB = "1") apply specifically
to the memory bank indicated by the SMB instruction, and any restrictions to the addressable area within banks
0, 1, 2, or 15. Direct and indirect 1-bit, 4-bit, and 8-bit addressing methods can be used. Several RAM locations
are addressable at all times, regardless of the current EMB flag setting.

Here are a few guidelines to keep in mind regarding data memory addressing:

— When you address peripheral hardware locations in bank 15, the mnemonic for the memory-mapped
hardware component can be used as the operand in place of the actual address location.

— Always use an even-numbered RAM address as the operand in 8-bit direct and indirect addressing.

— With direct addressing, use the RAM address as the instruction operand; with indirect addressing, the
instruction specifies a register which contains the operand's address.

ADDRESSING MODES KS57C21516/P21516 MICROCONTROLLER

3–2

SMB = 2 SMB = 2

SMB = 1 SMB = 1

DA
DA.b

@HL
@H + DA.b

@WX
@WL

mema.b memb.@L

EMB = 0 EMB = 1 X X X

000H WORKING
REGISTERS

BANK 0
(GENERAL
REGISTERS
AND STACK)

01FH
020H

0FFH
100H

2FFH

F80H

BANK 2
(DISPLAY

REGISTERS and
GENERAL

REGISTERS)

RAM
AREAS

ADDRESSING
MODE

FFFH

BANK 15
(PERIPHERAL
HARDWARE
REGISTERS)

FB0H
FBFH
FC0HSMB = 15 SMB = 15

NOTES
1. 'X' means don't care.
2. Blank columns indicate RAM areas that are not addressable, given the addressing method
 and enable memory bank (EMB) flag setting shown in the column headers.

EMB = 1 EMB = 0

SMB = 0 SMB = 007FH
080H

FF0H

BANK 1
(GENERAL

REGISTERS)

1FFH
200H

Figure 3–1. RAM Address Structure

KS57C21516/P21516 MICROCONTROLLER ADDRESSING MODES

3–3

EMB AND ERB INITIALIZATION VALUES

The EMB and ERB flag bits are set automatically by the values of the RESET vector address and the interrupt
vector address. When a RESET is generated internally, bit 7 of program memory address 0000H is written to the
EMB flag, initializing it automatically. When a vectored interrupt is generated, bit 7 of the respective vector
address table is written to the EMB. This automatically sets the EMB flag status for the interrupt service routine.
When the interrupt is serviced, the EMB value is automatically saved to stack and then restored when the
interrupt routine has completed.

At the beginning of a program, the initial EMB and ERB flag values for each vectored interrupt must be set by
using VENT instruction. The EMB and ERB can be set or reset by bit manipulation instructions (BITS, BITR)
despite the current SMB setting.

++ PROGRAMMING TIP — Initializing the EMB and ERB Flags

The following assembly instructions show how to initialize the EMB and ERB flag settings:

ORG 0000H ; ROM address assignment

VENT0 1,0,RESET ; EMB ← 1, ERB ← 0; Jump to RESET address by RESET

VENT1 0,1,INTB ; EMB ← 0, ERB ← 1; Jump to INTB address by INTB

VENT2 0,1,INT0 ; EMB ← 0, ERB ← 1; Jump to INT0 address by INT0

VENT3 0,1,INT1 ; EMB ← 0, ERB ← 1; Jump to INT1 address by INT1

VENT4 0,1,INTS ; EMB ← 0, ERB ← 1; Jump to INTS address by INTS

VENT5 0,1,INTT0 ; EMB ← 0, ERB ← 1; Jump to INTT0 address by INTT0

VENT6 0,1,INTT1 ; EMB ← 0, ERB ← 1; Jump to INTT1 address by INTT1

VENT7 0,1,INTK ; EMB ← 0, ERB ← 1; Jump to INTK address by INTK

RESET

 •
 •
 •
BITR EMB

ADDRESSING MODES KS57C21516/P21516 MICROCONTROLLER

3–4

ENABLE MEMORY BANK SETTINGS

EMB = "1"

When the enable memory bank flag EMB is set to logic one, you can address the data memory bank specified by
the select memory bank (SMB) value (0, 1, 2, or 15) using 1-, 4-, or 8-bit instructions. You can use both direct
and indirect addressing modes. The addressable RAM areas when EMB = "1" are as follows:

If SMB = 0, 000H–0FFH

If SMB = 1, 100H–1FFH

If SMB = 2, 200H–2FFH

If SMB = 15, F80H–FFFH

EMB = "0"

When the enable memory bank flag EMB is set to logic zero, the addressable area is defined independently of
the SMB value, and is restricted to specific locations depending on whether a direct or indirect address mode is
used.

If EMB = "0", the addressable area is restricted to locations 000H–07FH in bank 0 and to locations F80H–FFFH
in bank 15 for direct addressing. For indirect addressing, only locations 000H–0FFH in bank 0 are addressable,
regardless of SMB value.

To address the peripheral hardware register (bank 15) using indirect addressing, the EMB flag must first be set to
"1" and the SMB value to "15". When a RESET occurs, the EMB flag is set to the value contained in bit 7 of ROM
address 0000H.

EMB-Independent Addressing

At any time, several areas of the data memory can be addressed independent of the current status of the EMB
flag. These exceptions are described in Table 3–1.

Table 3–1. RAM Addressing Not Affected by the EMB Value

Address Addressing Method Affected Hardware Program Examples

000H–0FFH 4-bit indirect addressing using WX
and WL register pairs;
8-bit indirect addressing using SP

Not applicable LD A,@WX

PUSH
POP

FB0H–FBFH
FF0H–FFFH

1-bit direct addressing PSW, SCMOD,
IEx, IRQx, I/O

BITS EMB
BITR IE4

FC0H–FFFH 1-bit indirect addressing using the
L register

BSC, I/O BTST FC3H.@L
BAND C,P3.@L

KS57C21516/P21516 MICROCONTROLLER ADDRESSING MODES

3–5

SELECT BANK REGISTER (SB)

The select bank register (SB) is used to assign the memory bank and register bank. The 8-bit SB register con-
sists of the 4-bit select register bank register (SRB) and the 4-bit select memory bank register (SMB), as shown
in Figure 3–2.

During interrupts and subroutine calls, SB register contents can be saved to stack in 8-bit units by the PUSH SB
instruction. You later restore the value to the SB using the POP SB instruction.

SMB 3 SMB 2 SMB 1 SMB 0 0 0 SRB 1 SRB 0
SB

REGISTER

SMB (F83H) SRB (F82H)

Figure 3–2. SMB and SRB Values in the SB Register

SELECT REGISTER BANK (SRB) INSTRUCTION

The select register bank (SRB) value specifies which register bank is to be used as a working register bank. The
SRB value is set by the 'SRB n' instruction, where n = 0, 1, 2, 3.

One of the four register banks is selected by the combination of ERB flag status and the SRB value that is set
using the 'SRB n' instruction. The current SRB value is retained until another register is requested by program
software. PUSH SB and POP SB instructions are used to save and restore the contents of SRB during interrupts
and subroutine calls. RESET clears the 4-bit SRB value to logic zero.

SELECT MEMORY BANK (SMB) INSTRUCTION

To select one of the four available data memory banks, you must execute an SMB n instruction specifying the
number of the memory bank you want (0, 1, 2, or 15). For example, the instruction 'SMB 1' selects bank 1 and
'SMB 15' selects bank 15. (And remember to enable the selected memory bank by making the appropriate EMB
flag setting).

The upper four bits of the 12-bit data memory address are stored in the SMB register. If the SMB value is not
specified by software (or if a RESET does not occur) the current value is retained. RESET clears the 4-bit SMB
value to logic zero.

The PUSH SB and POP SB instructions save and restore the contents of the SMB register to and from the stack
area during interrupts and subroutine calls.

ADDRESSING MODES KS57C21516/P21516 MICROCONTROLLER

3–6

DIRECT AND INDIRECT ADDRESSING

1-bit, 4-bit, and 8-bit data stored in data memory locations can be addressed directly using a specific register or
bit address as the instruction operand.

Indirect addressing specifies a memory location that contains the required direct address. The KS57 instruction
set supports 1-bit, 4-bit, and 8-bit indirect addressing. For 8-bit indirect addressing, an even-numbered RAM
address must always be used as the instruction operand.

1-BIT ADDRESSING

Table 3–2. 1-Bit Direct and Indirect RAM Addressing

Operand
Notation

Addressing Mode
Description

EMB Flag
Setting

Addressable
Area

Memory
Bank

Hardware I/O
Mapping

DA.b Direct: bit is indicated by the 0 000H–07FH Bank 0 –

RAM address (DA), memory
bank selection, and specified
bit number (b).

F80H–FFFH Bank 15 All 1-bit
addressable
peripherals
(SMB = 15)

1 000H–FFFH SMB = 0, 1,
2, 15

mema.b Direct: bit is indicated by ad-
dressable area (mema) and
bit number (b).

x FB0H–FBFH
FF0H–FFFH

Bank 15 IS0, IS1,
EMB, ERB, IEx,

IRQx, Pn.n

memb.@L Indirect: address is indicated
by the upper 10 bits of RAM
area (memb) and the upper
two bits of register L, and bit is
indicated by the lower two bits
of register L.

x FC0H–FFFH Bank 15 BSCn.x
Pn.n

@H + DA.b Indirect: bit is indicated by the
lower four bits of the address
(DA), memory bank selection,
and the H register identifier.

0 000H–0FFH Bank 0 –

1 000H–FFFH SMB = 0, 1,
2, 15

All 1-bit
addressable
peripherals
(SMB = 15)

NOTE: 'x' means don't care.

KS57C21516/P21516 MICROCONTROLLER ADDRESSING MODES

3–7

++ PROGRAMMING TIP — 1-Bit Addressing Modes

1-Bit Direct Addressing

1. If EMB = "0":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
BITS AFLAG ; 34H.3 ← 1
BITS BFLAG ; F85H.3 ← 1
BTST CFLAG ; If FBAH.0 = 1, skip
BITS BFLAG ; Else if, FBAH.0 = 0, F85H.3 (BMOD.3) ← 1
BITS P3.0 ; FF3H.0 (P3.0) ← 1

2. If EMB = "1":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
BITS AFLAG ; 34H.3 ← 1
BITS BFLAG ; 85H.3 ← 1
BTST CFLAG ; If 0BAH.0 = 1, skip
BITS BFLAG ; Else if 0BAH.0 = 0, 085H.3 ← 1
BITS P3.0 ; FF3H.0 (P3.0) ← 1

ADDRESSING MODES KS57C21516/P21516 MICROCONTROLLER

3–8

++ PROGRAMMING TIP — 1-Bit Addressing Modes (Continued)

1-Bit Indirect Addressing

1. If EMB = "0":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
LD H,#0BH ; H ← #0BH
BTSTZ @H+CFLAG ; If 0BAH.0 = 1, 0BAH.0 ← 0 and skip
BITS CFLAG ; Else if 0BAH.0 = 0, FBAH.0 ← 1

2. If EMB = "1":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
LD H,#0BH ; H ← #0BH
BTSTZ @H+CFLAG ; If 0BAH.0 = 1, 0BAH.0 ← 0 and skip
BITS CFLAG ; Else if 0BAH.0 = 0, 0BAH.0 ← 1

KS57C21516/P21516 MICROCONTROLLER ADDRESSING MODES

3–9

4-BIT ADDRESSING

Table 3–3. 4-Bit Direct and Indirect RAM Addressing

Operand
Notation

Addressing Mode
Description

EMB Flag
Setting

Addressable
Area

Memory
Bank

Hardware I/O
Mapping

DA Direct: 4-bit address indicated 0 000H–07FH Bank 0 –

by the RAM address (DA) and
the memory bank selection

F80H–FFFH Bank 15 All 4-bit
addressable
peripherals

1 000H–FFFH SMB = 0, 1,
2, 15

(SMB = 15)

@HL Indirect: 4-bit address indi-
cated by the memory bank
selection and register HL

0 000H–0FFH Bank 0 –

1 000H–FFFH SMB = 0, 1,
2, 15

All 4-bit
addressable
peripherals
(SMB = 15)

@WX Indirect: 4-bit address indi-
cated by register WX

x 000H–0FFH Bank 0 –

@WL Indirect: 4-bit address indi-
cated by register WL

x 000H–0FFH Bank 0

NOTE: 'x' means don't care.

++ PROGRAMMING TIP — 4-Bit Addressing Modes

4-Bit Direct Addressing

1. If EMB = "0":

ADATA EQU 46H
BDATA EQU 8EH

SMB 15 ; Non-essential instruction, since EMB = "0"
LD A,P3 ; A ← (P3)
SMB 0 ; Non-essential instruction, since EMB = "0"
LD ADATA,A ; (046H) ← A
LD BDATA,A ; (F8EH (LCON)) ← A

2. If EMB = "1":

ADATA EQU 46H
BDATA EQU 8EH

SMB 15
LD A,P3 ; A ← (P3)
SMB 0
LD ADATA,A ; (046H) ← A
LD BDATA,A ; (08EH) ← A

ADDRESSING MODES KS57C21516/P21516 MICROCONTROLLER

3–10

++ PROGRAMMING TIP — 4-Bit Addressing Modes (Continued)

4-Bit Indirect Addressing (Example 1)

1. If EMB = "0", compare bank 0 locations 040H–046H with bank 0 locations 060H–066H:

ADATA EQU 46H
BDATA EQU 66H

SMB 1 ; Non-essential instruction, since EMB = "0"
LD HL,#BDATA
LD WX,#ADATA

COMP LD A,@WL ; A ← bank 0 (040H–046H)
CPSE A,@HL ; If bank 0 (060H–066H) = A, skip
SRET
DECS L
JR COMP
RET

2. If EMB = "1", compare bank 0 locations 040H–046H to bank 1 locations 160H–166H:

ADATA EQU 46H
BDATA EQU 66H

SMB 1
LD HL,#BDATA
LD WX,#ADATA

COMP LD A,@WL ; A ← bank 0 (040H–046H)
CPSE A,@HL ; If bank 1 (160H–166H) = A, skip
SRET
DECS L
JR COMP
RET

KS57C21516/P21516 MICROCONTROLLER ADDRESSING MODES

3–11

++ PROGRAMMING TIP — 4-Bit Addressing Modes (Concluded)

4-Bit Indirect Addressing (Example 2)

1. If EMB = "0", exchange bank 0 locations 040H–046H with bank 0 locations 060H–066H:

ADATA EQU 46H
BDATA EQU 66H

SMB 1 ; Non-essential instruction, since EMB = "0"
LD HL,#BDATA
LD WX,#ADATA

TRANS LD A,@WL ; A ← bank 0 (040H–046H)
XCHD A,@HL ; Bank 0 (060H–066H) ↔ A
JR TRANS

2. If EMB = "1", exchange bank 0 locations 040H–046H to bank 1 locations 160H–166H:

ADATA EQU 46H
BDATA EQU 66H

SMB 1
LD HL,#BDATA
LD WX,#ADATA

TRANS LD A,@WL ; A ← bank 0 (040H–046H)
XCHD A,@HL ; Bank 1 (160H–166H) ↔ A
JR TRANS

ADDRESSING MODES KS57C21516/P21516 MICROCONTROLLER

3–12

8-BIT ADDRESSING

Table 3–4. 8-Bit Direct and Indirect RAM Addressing

Instruction
Notation

Addressing Mode
Description

EMB Flag
Setting

Addressable
Area

Memory
Bank

Hardware I/O
Mapping

DA Direct: 8-bit address indicated 0 000H–07FH Bank 0 –

by the RAM address (DA =
even number) and memory
bank selection

F80H–FFFH Bank 15 All 8-bit
addressable
peripherals

1 000H–FFFH SMB = 0, 1,
2, 15

(SMB = 15)

@HL Indirect: the 8-bit address indi-
cated by the memory bank
selection and register HL; (the
4-bit L register value must be
an even number)

0 000H–0FFH Bank 0 –

1 000H–FFFH SMB = 0, 1,
2, 15

All 8-bit
addressable
peripherals
(SMB = 15)

++ PROGRAMMING TIP — 8-Bit Addressing Modes

8-Bit Direct Addressing

1. If EMB = "0":

ADATA EQU 46H
BDATA EQU 8EH

SMB 15 ; Non-essential instruction, since EMB = "0"
LD EA,P4 ; E ← (P5), A ← (P4)
SMB 0
LD ADATA,EA ; (046H) ← A, (047H) ← E
LD BDATA,EA ; (F8EH) ← A, (F8FH) ← E

2. If EMB = "1":

ADATA EQU 46H
BDATA EQU 8EH

SMB 15
LD EA,P4 ; E ← (P5), A ← (P4)
SMB 0
LD ADATA,EA ; (046H) ← A, (047H) ← E
LD BDATA,EA ; (08EH) ← A, (08FH) ← E

KS57C21516/P21516 MICROCONTROLLER ADDRESSING MODES

3–13

++ PROGRAMMING TIP — 8-Bit Addressing Modes (Continued)

8-Bit Indirect Addressing

1. If EMB = "0":

ADATA EQU 46H
SMB 1 ; Non-essential instruction, since EMB = "0"
LD HL,#ADATA
LD EA,@HL ; A ← (046H), E ← (047H)

2. If EMB = "1":

ADATA EQU 46H
SMB 1
LD HL,#ADATA
LD EA,@HL ; A ← (146H), E ← (147H)

ADDRESSING MODES KS57C21516/P21516 MICROCONTROLLER

3–14

NOTES

KS57C21516/P21516 MICROCONTROLLER ADDRESSING MODES

3–15

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–1

4 MEMORY MAP

OVERVIEW

To support program control of peripheral hardware, I/O addresses for peripherals are memory-mapped to bank
15 of the RAM. Memory mapping lets you use a mnemonic as the operand of an instruction in place of the
specific memory location.

Access to bank 15 is controlled by the select memory bank (SMB) instruction and by the enable memory bank
flag (EMB) setting. If the EMB flag is "0", bank 15 can be addressed using direct addressing, regardless of the
current SMB value. 1-bit direct and indirect addressing can be used for specific locations in bank 15, regardless
of the current EMB value.

I/O MAP FOR HARDWARE REGISTERS

Table 4–1 contains detailed information about I/O mapping for peripheral hardware in bank 15 (register locations
F80H–FFFH). Use the I/O map as a quick-reference source when writing application programs. The I/O map
gives you the following information:

— Register address

— Register name (mnemonic for program addressing)

— Bit values (both addressable and non-manipulable)

— Read-only, write-only, or read and write addressability

— 1-bit, 4-bit, or 8-bit data manipulation characteristics

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–2

Table 4–1. I/O Map for Memory Bank 15

Memory Bank 15 Addressing Mode

Address Register Bit 3 Bit 2 Bit 1 Bit 0 R/W 1-Bit 4-Bit 8-Bit

F80H SP .3 .2 .1 "0" R/W No No Yes

F81H .7 .6 .5 .4

Locations F82H–F84H are not mapped.

F85H BMOD .3 .2 .1 .0 W .3 Yes No

F86H BCNT R No No Yes

F87H

F88H WMOD .3 .2 .1 .0 W .3 (1) No Yes

F89H .7 "0" .5 .4

Locations F8AH–F8BH are not mapped.

F8CH LMOD .3 .2 .1 .0 W No No Yes

F8DH .7 .6 .5 .4

F8EH LCON "0" .2 .1 .0 W No Yes No

Locations F8FH is not mapped.

F90H TMOD0 .3 .2 "0" "0" W .3 No Yes

F91H "0" .6 .5 .4

F92H TOE1 TOE0 "U" "0" R/W Yes Yes No

Locations F93H is not mapped.

F94H TCNT0 R No No Yes

F95H

F96H TREF0 W No No Yes

F97H

F98H WDMOD .3 .2 .1 .0 W No No Yes

F99H .7 .6 .5 .4

F9AH WDFLAG (2) WDTCF "0" "0" "0" W .3 Yes No

Locations F9BH–F9FH are not mapped.

FA0H TMOD1 .3 .2 "0" "0" W .3 No Yes

FA1H "0" .6 .5 .4

Locations FA2H–FA3H are not mapped.

FA4H TCNT1A R No No Yes

FA5H

FA6H TCNT1B

FA7H

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–3

Table 4–1. I/O Map for Memory Bank 15 (Continued)

Memory Bank 15 Addressing Mode

Address Register Bit 3 Bit 2 Bit 1 Bit 0 R/W 1-Bit 4-Bit 8-Bit

FA8H TREF1A W No No Yes

FA9H

FAAH TREF1B

FABH

Locations FACH–FAFH are not mapped.

FB0H PSW IS1 IS0 EMB ERB R/W Yes Yes Yes

FB1H C (3) SC2 SC1 SC0 R No No

FB2H IPR IME .2 .1 .0 W IME Yes No

FB3H PCON .3 .2 .1 .0 W No Yes No

FB4H IMOD0 "0" "0" .1 .0 W No Yes No

FB5H IMOD1 "0" "0" "0" .0 W No Yes No

FB6H IMODK "0" .2 .1 .0 W No Yes No

FB7H SCMOD .3 .2 "0" .0 W Yes No No

FB8H IE4 IRQ4 IEB IRQB R/W Yes Yes No

Locations FB9H is not mapped.

FBAH "0" "0" IEW IRQW R/W Yes Yes No

FBBH IEK IRQK IET1 IRQT1

FBCH "0" "0" IET0 IRQT0

FBDH "0" "0" IES IRQS

FBEH IE1 IRQ1 IE0 IRQ0

FBFH "0" "0" IE2 IRQ2

FC0H BSC0 R/W Yes Yes Yes

FC1H BSC1

FC2H BSC2

FC3H BSC3

Locations FC4H–FCFH are not mapped.

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–4

Table 4–1. I/O Map for Memory Bank 15 (Continued)

Memory Bank 15 Addressing Mode

Address Register Bit 3 Bit 2 Bit 1 Bit 0 R/W 1-Bit 4-Bit 8-Bit

FD0H CLMOD .3 "0" .1 .0 W No Yes No

Locations FD1H–FD5H are not mapped.

FD6H PNE1 .3 .2 .1 .0 W No No Yes

FD7H "0" .6 .5 .4

FD8H PNE2 .3 .2 .1 .0 No Yes No

Locations FD9H is not mapped.

FDAH IMOD2 "0" "0" "0" .0 W No Yes No

Locations FDBH is not mapped.

FDCH PUMOD1 PUR3 PUR2 PUR1 PUR0 W No No Yes

FDDH PUR7 PUR6 PUR5 PUR4

FDEH PUMOD2 "0" "0" PUR9 PUR8 No Yes No

Locations FDFH is not mapped.

FE0H SMOD .3 .2 .1 .0 W .3 No Yes

FE1H .7 .6 .5 "0"

Locations FE2H–FE3H are not mapped.

FE4H SBUF R/W No No Yes

FE5H

FE6H PMG1 PM0.3 PM0.2 PM0.1 PM0.0 W No No Yes

FE7H "0" PM2.2 PM2.1 PM2.0

FE8H PMG2 PM3.3 PM3.2 PM3.1 PM3.0 Yes

FE9H "0" "0" "0" "0"

FEAH PMG3 PM4.3 PM4.2 PM4.1 PM4.0 Yes

FEBH PM5.3 PM5.2 PM5.1 PM5.0

FECH PMG4 PM6.3 PM6.2 PM6.1 PM6.0 Yes

FEDH PM7.3 PM7.2 PM7.1 PM7.0

FEEH PMG5 PM8.3 PM8.2 PM8.1 PM8.0 Yes

FEFH PM9.3 PM9.2 PM9.1 PM9.0

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–5

Table 4–1. I/O Map for Memory Bank 15 (Concluded)

Memory Bank 15 Addressing Mode

Address Register Bit 3 Bit 2 Bit 1 Bit 0 R/W 1-Bit 4-Bit 8-Bit

FF0H Port 0 .3 .2 .1 .0 R/W Yes Yes No

FF1H Port 1 .3 .2 .1 .0 R

FF2H Port 2 "0" .2 .1 .0 R/W

FF3H Port 3 .3 .2 .1 .0 R/W

FF4H Port 4 .3 .2 .1 .0 R/W Yes

FF5H Port 5 .3 / .7 .2 / .6 .1 / .5 .0 / .4

FF6H Port 6 .3 .2 .1 .0 R/W

FF7H Port 7 .3 / .7 .2 / .6 .1 / .5 .0 / .4

FF8H Port 8 .3 .2 .1 .0 R/W

FF9H Port 9 .3 / .7 .2 / .6 .1 / .5 .0 / .4

NOTES:
1. Bit 3 in the WMOD register is read only.
2. F9AH.0, F9AH.1 and F9AH.2 are fixed to "0".
3. The carry flag can be read or written by specific bit manipulation instructions only.
4. The “U” means that the bit is undefined.

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–6

REGISTER DESCRIPTIONS

In this section, register descriptions are presented in a consistent format to familiarize you with the memory-
mapped I/O locations in bank 15 of the RAM. Figure 4–1 describes features of the register description format.
Register descriptions are arranged in alphabetical order. Programmers can use this section as a quick-reference
source when writing application programs.

Counter registers, buffer registers, and reference registers, as well as the stack pointer and port I/O latches, are
not included in these descriptions. More detailed information about how these registers are used is included in
Part II of this manual, "Hardware Descriptions," in the context of the corresponding peripheral hardware module
descriptions.

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–7

CLMOD − − Clock Output Mode Control Register FD0H

Bit

Identifier
RESET Value

Read/Write

Bit Addressing

CLMOD.3

W

4

0

3

.3

Register ID Register name

Register location
in RAM bank 15

Bit number in
MSB to LSB order

Bit identifier used
for bit addressing

Bit value immediately

after a RESET

Type of addressing
that must be used to
address the bit
(1-bit, 4-bit, or 8-bit)

R = Read-only
W = Write-only

R/W = Read/write

Register and bit IDs
used for bit addressing

Description of the
effect of specific bit
settin gs

Name of individual
bit or related bits

W

0

2

.2

4

W

0

1

.1

4

W

0

0

.0

4

CLMOD.2

CLMOD.1 - .0

Associated
hardware module

CPU

Select CPU clock source fx/4, fx/8, fx/64 (1.05 MHz, 524kHz,or 65.5kHz), or fxt/4

Clock Source and Frequency Selection Control Bits

Select system clock fxx/8 (524 kHz at 4.19 MHz)

0

0

1

1

0

1

0

1 Select system clock fxx/64 (65.5 kHz at 4.19 MHz)

Select system clock fxx/16 (262 kHz at 4.19 MHz)

Bit 2

0 Always logic zero

Enable/Disable Clock Output Control Bit

0

1

Disable clock output at the CLO pin

Enable clock output at the CLO pin

Figure 4–1. Register Description Format

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–8

BMOD — Basic Timer Mode Register BT F85H

Bit 3 2 1 0

Identifier .3 .2 .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 1/4 4 4 4

BMOD.3 Basic Timer Restart Bit

1 Restart basic timer, then clear IRQB flag, BCNT and BMOD.3 to logic zero

BMOD.2 – .0 Input Clock Frequency and Interrupt Interval Time

0 0 0 Input clock frequency:
Interrupt interval time (wait time)

fxx / 212 (1.02 kHz)
220 / fxx (250 ms)

0 1 1 Input clock frequency:
Interrupt interval time (wait time)

fxx / 29 (8.18 kHz)
217 / fxx (31.3 ms)

1 0 1 Input clock frequency:
Interrupt interval time (wait time)

fxx / 27 (32.7 kHz)
215 / fxx (7.82 ms)

1 1 1 Input clock frequency:
Interrupt interval time (wait time)

fxx / 25 (131 kHz)
213 / fxx (1.95 ms)

NOTES:
1. When a RESET occurs, the oscillator stabilization wait time is 31.3 ms (217/fxx) at 4.19 MHz.
2. 'fxx' is the system clock rate given a clock frequency of 4.19 MHz.

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–9

CLMOD — Clock Output Mode Register CPU FD0H

Bit 3 2 1 0

Identifier .3 "0" .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

CLMOD.3 Enable/Disable Clock Output Control Bit

0 Disable clock output at the CLO pin

1 Enable clock output at the CLO pin

CLMOD.2 Bit 2

0 Always logic zero

CLMOD.1 – .0 Clock Source and Frequency Selection Control Bits

0 0 Select CPU clock source fx/4, fx/8, fx/64 (1.05 MHz, 524 kHz, or 65.5
kHz) or fxt/4

0 1 Select system clock fxx/8 (524 kHz)

1 0 Select system clock fxx/16 (262 kHz)

1 1 Select system clock fxx/64 (65.5 kHz)

NOTE: 'fxx' is the system clock, given a clock frequency of 4.19 MHz.

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–10

IE0, 1, IRQ0, 1 — INT0, 1 Interrupt Enable/Request Flags CPU FBEH

Bit 3 2 1 0

Identifier IE1 IRQ1 IE0 IRQ0

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

IE1 INT1 Interrupt Enable Flag

0 Disable interrupt requests at the INT1 pin

1 Enable interrupt requests at the INT1 pin

IRQ1 INT1 Interrupt Request Flag

– Generate INT1 interrupt (This bit is set and cleared by hardware when rising or
falling edge detected at INT1 pin.)

IE0 INT0 Interrupt Enable Flag

0 Disable interrupt requests at the INT0 pin

1 Enable interrupt requests at the INT0 pin

IRQ0 INT0 Interrupt Request Flag

– Generate INT0 interrupt (This bit is set and cleared automatically by hardware
when rising or falling edge detected at INT0 pin.)

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–11

IE2, IRQ2 — INT2 Interrupt Enable/Request Flags CPU FBFH

Bit 3 2 1 0

Identifier "0" "0" IE2 IRQ2

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3 – .2 Bits 3–2

0 Always logic zero

IE2 INT2 Interrupt Enable Flag

0 Disable INT2 interrupt requests at the INT2 pin

1 Enable INT2 interrupt requests at the INT2 pin

IRQ2 INT2 Interrupt Request Flag

– Generate INT2 quasi-interrupt (This bit is set and is not cleared automatically
by hardware when a rising or falling edge is detected at INT2. Since INT2 is a
quasi-interrupt, IRQ2 flag must be cleared by software.)

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–12

IE4, IRQ4 — INT4 Interrupt Enable/Request Flags CPU FB8H

IEB, IRQB — INTB Interrupt Enable/Request Flags CPU FB8H

Bit 3 2 1 0

Identifier IE4 IRQ4 IEB IRQB

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

IE4 INT4 Interrupt Enable Flag

0 Disable interrupt requests at the INT4 pin

1 Enable interrupt requests at the INT4 pin

IRQ4 INT4 Interrupt Request Flag

– Generate INT4 interrupt (This bit is set and cleared automatically by hardware
when rising and falling signal edge detected at INT4 pin.)

IEB INTB Interrupt Enable Flag

0 Disable INTB interrupt requests

1 Enable INTB interrupt requests

IRQB INTB Interrupt Request Flag

– Generate INTB interrupt (This bit is set and cleared automatically by hardware
when reference interval signal received from basic timer.)

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–13

IES, IRQS — INTS Interrupt Enable/Request Flags CPU FBDH

Bit 3 2 1 0

Identifier "0" "0" IES IRQS

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3 – .2 Bits 3–2

0 Always logic zero

IES INTS Interrupt Enable Flag

0 Disable INTS interrupt requests

1 Enable INTS interrupt requests

IRQS INTS Interrupt Request Flag

– Generate INTS interrupt (This bit is set and cleared automatically by hardware
when serial data transfer completion signal received from serial I/O interface.)

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–14

IET0, IRQT0 — INTT0 Interrupt Enable/Request Flags CPU FBCH

Bit 3 2 1 0

Identifier "0" "0" IET0 IRQT0

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3 – .2 Bits 3–2

0 Always logic zero

IET0 INTT0 Interrupt Enable Flag

0 Disable INTT0 interrupt requests

1 Enable INTT0 interrupt requests

IRQT0 INTT0 Interrupt Request Flag

– Generate INTT0 interrupt (This bit is set and cleared automatically by
hardware when contents of TCNT0 and TREF0 registers match.)

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–15

IET1, IRQT1 — INTT1 Interrupt Enable/Request Flags CPU FBBH

IEK, IRQK — INTK Interrupt Enable/Request Flags CPU FBBH

Bit 3 2 1 0

Identifier IEK IRQK IET1 IRQT1

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

IEK INTK Interrupt Enable Flag

0 Disable interrupt requests at the K0–K7 pins

1 Enable interrupt requests at the K0–K7 pins

IRQK INTK Interrupt Request Flag

– Generate INTK interrupt (This bit is set and cleared automatically by hardware
when rising or falling edge detected at K0–K7 pins.)

IET1 INTT1 Interrupt Enable Flag

0 Disable INTT1 interrupt requests

1 Enable INTT1 interrupt requests

IRQT1 INTT1 Interrupt Request Flag

– Generate INTT1 interrupt (This bit is set and cleared automatically by
hardware when contents of TCNT1 and TREF1 registers match.)

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–16

IEW, IRQW — INTW Interrupt Enable/Request Flags CPU FBAH

Bit 3 2 1 0

Identifier "0" "0" IEW IRQW

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3 – .2 Bits 3–2

0 Always logic zero

IEW INTW Interrupt Enable Flag

0 Disable INTW interrupt requests

1 Enable INTW interrupt requests

IRQW INTW Interrupt Request Flag

– Generate INTW interrupt (This bit is set when the timer interval is set to 0.5
seconds or 3.91 milliseconds.)

NOTE: Since INTW is a quasi-interrupt, the IRQW flag must be cleared by software.

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–17

IMOD0 — External Interrupt 0 (INT0) Mode Register CPU FB4H

Bit 3 2 1 0

Identifier "0" "0" .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

IMOD0.3 – .2 Bits 3– 2

0 Always logic zero

IMOD0.1 – .0 External Interrupt Mode Control Bits

0 0 Interrupt request is triggered by a rising signal edge

0 1 Interrupt request is triggered by a falling signal edge

1 0 Interrupt request is triggered by both rising and falling signal edges

1 1 Interrupt request flag (IRQ0) cannot be set to logic one

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–18

IMOD1 — External Interrupt 1 (INT1) Mode Register CPU FB5H

Bit 3 2 1 0

Identifier "0" "0" "0" IMOD1.0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

IMOD1.3 – .1 Bits 3–1

0 Always logic zero

IMOD1.0 External Interrupt 1 Edge Detection Control Bit

0 Rising edge detection

1 Falling edge detection

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–19

IMOD2 — External Interrupt 2 (INT2) Mode Register CPU FDAH

Bit 3 2 1 0

Identifier "0" "0" "0" IMOD2.0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

IMOD2.3 – .1 Bits 3–1

0 Always logic zero

IMOD2.0 External Interrupt 2 Edge Detection Selection Bit

0 Interrupt request at INT2 pin trigged by rising edge

1 Interrupt request at INT2 pin trigged by falling edge

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–20

IMODK — External Key Interrupt Mode Register CPU FB6H

Bit 3 2 1 0

Identifier "0" IMODK.2 IMODK.1 IMODK.0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

IMODK.3 Bit 3

0 Always logic zero

IMODK.2 External Key Interrupt Edge Detection Selection Bit

0 Falling edge detection

1 Rising edge detection

IMODK.1 – .0 External Key Interrupt Mode Control Bits

0 0 Disable key interrupt

0 1 Enable edge detection at K0–K3 pins

1 0 Enable edge detection at K4–K7 pins

1 1 Enable edge detection at K0–K7 pins

NOTES:
1. To generate a key interrupt, all of the selected pins must be configured to input mode. If any one of the selected pins
 is configured to output mode, only falling edge can be detected.
2. To generate a key interrupt, all of the selected pins must be at input high state for falling edge detection, or all of the

selected pins must be at input low state for rising edge detection. If any one of them or more is at input low state or
input high state, the interrupt may be not occurred at falling edge or rising edge.

3. To generate a key interrupt, first, configure pull-up resistors or external pull-down resistors. And then, select edge
detection and pins by setting IMODK register.

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–21

IPR — Interrupt Priority Register CPU FB2H

Bit 3 2 1 0

Identifier IME .2 .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 1/4 4 4 4

IME Interrupt Master Enable Bit

0 Disable all interrupt processing

1 Enable processing for all interrupt service requests

IPR.2 – .0 Interrupt Priority Assignment Bits

0 0 0 Process all interrupt requests at low priority

0 0 1 Only INTB and INT4 interrupts are at high priority

0 1 0 Only INT0 interrupt is at high priority

0 1 1 Only INT1 interrupt is at high priority

1 0 0 Only INTS interrupt is at high priority

1 0 1 Only INTT0 interrupt is at high priority

1 1 0 Only INTT1 interrupt is at high priority

1 1 1 Only INTK interrupt is at high priority

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–22

LCON — LCD Output Control Register LCD F8EH

Bit 3 2 1 0

Identifier "0" .2 .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

LCON.3 Bit 3

0 Always logic zero

LCON.2 LCD Clock Output Disable/Enable Bit

0 Disable LCDCK and LCDSY signal outputs.

1 Enable LCDCK and LCDSY signal outputs.

LCON.1 – .0 LCD Output Control Bit

0 0 LCD display off; cut off current to dividing resistor

0 1 LCD display on; application without contrast control

1 0 LCD display on; application with contrast control

1 1 LCD dispaly on; application without contrast control

NOTES:
1. The function of LCON.0 is applied in case of using the internal GND for LCD power; the function of LCON.1

is used for contrast control application.
2. The table for LCON.1–LCON.0 also shows the case that internal bias resistors are built-in by mask option. For the

case that external bias resistors are configured by mask option, refer to Chapter 12.

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–23

LMOD — LCD Mode Register LCD F8DH, F8CH

Bit 3 2 1 0 3 2 1 0

Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

LMOD.7 – .5 LCD Output Segment and Pin Configuration Bits

0 0 0 Segments 40–43, 44–47, 48–51 and 52–55

0 0 1 Segments 40–43, 44–47 and 48–51; normal I/O at port 6

0 1 0 Segments 40–43 and 44–47; normal I/O at port 6 and port 7

0 1 1 Segments 40–43; normal I/O at ports 6, 7 and 8

1 0 0 Normal I/O at ports 6, 7, 8 and 9

NOTE: Segment pins that also can used for normal I/O should be configured to output mode
 when the SEG function is used.

LMOD.4 – .3 LCD Clock (LCDCK) Frequency Selection Bits

0 0 When 1/8 duty: fxx / 27 (256 Hz); when 1/16 duty: fxx / 26 (512 Hz)

0 1 When 1/8 duty: fxx/ 26 (512 Hz); when 1/16 duty: fxx / 25 (1024 Hz)

1 0 When 1/8 duty: fxx / 25 (1024 Hz); when 1/16 duty: fxx / 24 (2048 Hz)

1 1 When 1/8 duty: fxx / 24 (2048 Hz); when 1/16 duty: fxx / 23 (4096 Hz)

NOTE: LCDCK is supplied only when the watch timer operates. To use the LCD controller,
 bit 2 in the watch mode register WMOD should be set to 1.

LMOD.2 LCD Duty and Selection Bits

0 1/8 duty (COM0–COM7 select)

1 1/16 duty (COM0–COM15 select)

NOTE: When 1/16 duty is selected, ports 4 and 5 should be configured as output mode;
 when 1/8 duty is selected, ports 4 and 5 can be used as normal I/O ports.

LMOD.1 – .0 LCD Display Mode Selection Bits

0 0 All LCD dots off

0 1 All LCD dots on

1 1 Normal display

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–24

PCON — Power Control Register CPU FB3H

Bit 3 2 1 0

Identifier .3 .2 .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

PCON.3 – .2 CPU Operating Mode Control Bits

0 0 Enable normal CPU operating mode

0 1 Initiate idle power-down mode

1 0 Initiate stop power-down mode

PCON.1 – .0 CPU Clock Frequency Selection Bits

0 0 If SCMOD.0 = "0", fx/64; if SCMOD.0 = "1", fxt/4

1 0 If SCMOD.0 = "0", fx/8; if SCMOD.0 = "1", fxt/4

1 1 If SCMOD.0 = "0", fx/4; if SCMOD.0 = "1", fxt/4

NOTE: 'fx' is the main system clock; 'fxt' is the subsystem clock.

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–25

PMG1 — Port I/O Mode Register 1 (Group 1: Ports 0, 2) I/O FE7H, FE6H

Bit 7 6 5 4 3 2 1 0

Identifier "0" PM2.2 PM2.1 PM2.0 PM0.3 PM0.2 PM0.1 PM0.0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

.7 Bit 7

0 Always logic zero

PM2.2 P2.2 I/O Mode Selection Flag

0 Set P2.2 to input mode

1 Set P2.2 to output mode

PM2.1 P2.1 I/O Mode Selection Flag

0 Set P2.1 to input mode

1 Set P2.1 to output mode

PM2.0 P2.0 I/O Mode Selection Flag

0 Set P2.0 to input mode

1 Set P2.0 to output mode

PM0.3 P0.3 I/O Mode Selection Flag

0 Set P0.3 to input mode

1 Set P0.3 to output mode

PM0.2 P0.2 I/O Mode Selection Flag

0 Set P0.2 to input mode

1 Set P0.2 to output mode

PM0.1 P0.1 I/O Mode Selection Flag

0 Set P0.1 to input mode

1 Set P0.1 to output mode

PM0.0 P0.0 I/O Mode Selection Flag

0 Set P0.0 to input mode

1 Set P0.0 to output mode

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–26

PMG2 — Port I/O Mode Register 2 (Group 2: Port 3) I/O FE9H, FE8H

Bit 7 6 5 4 3 2 1 0

Identifier "0" "0" "0" "0" PM3.3 PM3.2 PM3.1 PM3.0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

.7 – .4 Bits 7 – 4

0 Always logic zero

PM3.3 P3.3 I/O Mode Selection Flag

0 Set P3.3 to input mode

1 Set P3.3 to output mode

PM3.2 P3.2 I/O Mode Selection Flag

0 Set P3.2 to input mode

1 Set P3.2 to output mode

PM3.1 P3.1 I/O Mode Selection Flag

0 Set P3.1 to input mode

1 Set P3.1 to output mode

PM3.0 P3.0 I/O Mode Selection Flag

0 Set P3.0 to input mode

1 Set P3.0 to output mode

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–27

PMG3 — Port I/O Mode Register 3 (Group 3: Ports 4, 5) I/O FEBH, FEAH

Bit 7 6 5 4 3 2 1 0

Identifier PM5.3 PM5.2 PM5.1 PM5.0 PM4.3 PM4.2 PM4.1 PM4.0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

PM5.3 P5.3 I/O Mode Selection Flag

0 Set P5.3 to input mode

1 Set P5.3 to output mode

PM5.2 P5.2 I/O Mode Selection Flag

0 Set P5.2 to input mode

1 Set P5.2 to output mode

PM5.1 P5.1 I/O Mode Selection Flag

0 Set P5.1 to input mode

1 Set P5.1 to output mode

PM5.0 P5.0 I/O Mode Selection Flag

0 Set P5.0 to input mode

1 Set P5.0 to output mode

PM4.3 P4.3 I/O Mode Selection Flag

0 Set P4.3 to input mode

1 Set P4.3 to output mode

PM4.2 P4.2 I/O Mode Selection Flag

0 Set P4.2 to input mode

1 Set P4.2 to output mode

PM4.1 P4.1 I/O Mode Selection Flag

0 Set P4.1 to input mode

1 Set P4.1 to output mode

PM4.0 P4.0 I/O Mode Selection Flag

0 Set P4.0 to input mode

1 Set P4.0 to output mode

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–28

PMG4 — Port I/O Mode Register 4 (Group 4: Ports 6, 7) I/O FEDH, FECH

Bit 7 6 5 4 3 2 1 0

Identifier PM7.3 PM7.2 PM7.1 PM7.0 PM6.3 PM6.2 PM6.1 PM6.0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

PM7.3 P7.3 I/O Mode Selection Flag

0 Set P7.3 to input mode

1 Set P7.3 to output mode

PM7.2 P7.2 I/O Mode Selection Flag

0 Set P7.2 to input mode

1 Set P7.2 to output mode

PM7.1 P7.1 I/O Mode Selection Flag

0 Set P7.1 to input mode

1 Set P7.1 to output mode

PM7.0 P7.0 I/O Mode Selection Flag

0 Set P7.0 to input mode

1 Set P7.0 to output mode

PM6.3 P6.3 I/O Mode Selection Flag

0 Set P6.3 to input mode

1 Set P6.3 to output mode

PM6.2 P6.2 I/O Mode Selection Flag

0 Set P6.2 to input mode

1 Set P6.2 to output mode

PM6.1 P6.1 I/O Mode Selection Flag

0 Set P6.1 to input mode

1 Set P6.1 to output mode

PM6.0 P6.0 I/O Mode Selection Flag

0 Set P6.0 to input mode

1 Set P6.0 to output mode

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–29

PMG5 — Port I/O Mode Register 5 (Group 5: Ports 8, 9) I/O FEFH, FEEH

Bit 7 6 5 4 3 2 1 0

Identifier PM9.3 PM9.2 PM9.1 PM9.0 PM8.3 PM8.2 PM8.1 PM8.0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

PM9.3 P9.3 I/O Mode Selection Flag

0 Set P9.3 to input mode

1 Set P9.3 to output mode

PM9.2 P9.2 I/O Mode Selection Flag

0 Set P9.2 to input mode

1 Set P9.2 to output mode

PM9.1 P9.1 I/O Mode Selection Flag

0 Set P9.1 to input mode

1 Set P9.1 to output mode

PM9.0 P9.0 I/O Mode Selection Flag

0 Set P9.0 to input mode

1 Set P9.0 to output mode

PM8.3 P8.3 I/O Mode Selection Flag

0 Set P8.3 to input mode

1 Set P8.3 to output mode

PM8.2 P8.2 I/O Mode Selection Flag

0 Set P8.2 to input mode

1 Set P8.2 to output mode

PM8.1 P8.1 I/O Mode Selection Flag

0 Set P8.1 to input mode

1 Set P8.1 to output mode

PM8.0 P8.0 I/O Mode Selection Flag

0 Set P8.0 to input mode

1 Set P8.0 to output mode

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–30

PNE1 — N-Channel Open-Drain Mode Register 1 I/O FD7H, FD6H

Bit 7 6 5 4 3 2 1 0

Identifier "0" PNE1.6 PNE1.5 PNE1.4 PNE1.3 PNE1.2 PNE1.1 PNE1.0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

.7 Bit 7

0 Always logic 0

PNE1.6 P2.2 N-Channel Open-Drain Configurable Bit

0 Configure P2.2 as a push-pull

1 Configure P2.2 as a n-channel open-drain

PNE1.5 P2.1 N-Channel Open-Drain Configurable Bit

0 Configure P2.1 as a push-pull

1 Configure P2.1 as a n-channel open-drain

PNE1.4 P2.0 N-Channel Open-Drain Configurable Bit

0 Configure P2.0 as a push-pull

1 Configure P2.0 as a n-channel open-drain

PNE1.3 P0.3 N-Channel Open-Drain Configurable Bit

0 Configure P0.3 as a push-pull

1 Configure P0.3 as a n-channel open-drain

PNE1.2 P0.2 N-Channel Open-Drain Configurable Bit

0 Configure P0.2 as a push-pull

1 Configure P0.2 as a n-channel open-drain

PNE1.1 P0.1 N-Channel Open-Drain Configurable Bit

0 Configure P0.1 as a push-pull

1 Configure P0.1 as a n-channel open-drain

PNE1.0 P0.0 N-Channel Open-Drain Configurable Bit

0 Configure P0.0 as a push-pull

1 Configure P0.0 as a n-channel open-drain

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–31

PNE2 — N-Channel Open-Drain Mode Register 2 I/O FD8H

Bit 3 2 1 0

Identifier PNE2.3 PNE2.2 PNE2.1 PNE2.0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

PNE2.3 P3.3 N-Channel Open-Drain Configurable Bit

0 Configure P3.3 as a push-pull

1 Configure P3.3 as a n-channel open-drain

PNE2.2 P3.2 N-Channel Open-Drain Configurable Bit

0 Configure P3.2 as a push-pull

1 Configure P3.2 as a n-channel open-drain

PNE2.1 P3.1 N-Channel Open-Drain Configurable Bit

0 Configure P3.1 as a push-pull

1 Configure P3.1 as a n-channel open-drain

PNE2.0 P3.0 N-Channel Open-Drain Configurable Bit

0 Configure P3.0 as a push-pull

1 Configure P3.0 as a n-channel open-drain

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–32

PSW — Program Status Word CPU FB1H, FB0H

Bit 7 6 5 4 3 2 1 0

Identifier C SC2 SC1 SC0 IS1 IS0 EMB ERB

RESET Value (1) 0 0 0 0 0 0 0

Read/Write R/W R R R R/W R/W R/W R/W

Bit Addressing (2) 8 8 8 1/4/8 1/4/8 1/4/8 1/4/8

C Carry Flag

0 No overflow or borrow condition exists

1 An overflow or borrow condition does exist

SC2 – SC0 Skip Condition Flags

0 No skip condition exists; no direct manipulation of these bits is allowed

1 A skip condition exists; no direct manipulation of these bits is allowed

IS1, IS0 Interrupt Status Flags

0 0 Service all interrupt requests

0 1 Service only the high-priority interrupt(s) as determined in the interrupt
priority register (IPR)

1 0 Do not service any more interrupt requests

1 1 Undefined

EMB Enable Data Memory Bank Flag

0 Restrict program access to data memory to bank 15 (F80H–FFFH) and to
the locations 000H–07FH in the bank 0 only

1 Enable full access to data memory banks 0, 1, 2, and 15

ERB Enable Register Bank Flag

0 Select register bank 0 as working register area

1 Select register banks 0, 1, 2, or 3 as working register area in accordance with
the select register bank (SRB) instruction operand

NOTES:
1. The value of the carry flag after a RESET occurs during normal operation is undefined. If a RESET occurs during

power-down mode (IDLE or STOP), the current value of the carry flag is retained.
2. The carry flag can only be addressed by a specific set of 1-bit manipulation instructions. See Section 2 for

detailed information.

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–33

PUMOD1 — Pull-up Resistor Mode Register 1 I/O FDDH, FDCH

Bit 7 6 5 4 3 2 1 0

Identifier PUR7 PUR6 PUR5 PUR4 PUR3 PUR2 PUR1 PUR0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

PUR7 Connect/Disconnect Port 7 Pull-up Resistor Control Bit

0 Disconnect port 7 pull-up resistor

1 Connect port 7 pull-up resistor

PUR6 Connect/Disconnect Port 6 Pull-up Resistor Control Bit

0 Disconnect port 6 pull-up resistor

1 Connect port 6 pull-up resistor

PUR5 Connect/Disconnect Port 5 Pull-up Resistor Control Bit

0 Disconnect port 5 pull-up resistor

1 Connect port 5 pull-up resistor

PUR4 Connect/Disconnect Port 4 Pull-up Resistor Control Bit

0 Disconnect port 4 pull-up resistor

1 Connect port 4 pull-up resistor

PUR3 Connect/Disconnect Port 3 Pull-up Resistor Control Bit

0 Disconnect port 3 pull-up resistor

1 Connect port 3 pull-up resistor

PUR2 Connect/Disconnect Port 2 Pull-up Resistor Control Bit

0 Disconnect port 2 pull-up resistor

1 Connect port 2 pull-up resistor

PUR1 Connect/Disconnect Port 1 Pull-up Resistor Control Bit

0 Disconnect port 1 pull-up resistor

1 Connect port 1 pull-up resistor

PUR0 Connect/Disconnect Port 0 Pull-up Resistor Control Bit

0 Disconnect port 0 pull-up resistor

1 Connect port 0 pull-up resistor

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–34

PUMOD2 — Pull-up Resistor Mode Register 2 I/O FDEH

Bit 3 2 1 0

Identifier "0" "0" PUR9 PUR8

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

.3 – .2 Bits 3 – 2

0 Always cleared to logic zero

PUR9 Connect/Disconnect Port 9 Pull-up Resistor Control Bit

0 Disconnect port 9 pull-up resistor

1 Connect port 9 pull-up resistor

PUR8 Connect/Disconnect Port 8 Pull-up Resistor Control Bit

0 Disconnect port 8 pull-up resistor

1 Connect port 8 pull-up resistor

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–35

SCMOD — System Clock Mode Control Register CPU FB7H

Bit 3 2 1 0

Identifier .3 .2 "0" .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 1 1 1 1

SCMOD.3 Bit 3

0 Enable main system clock

1 Disable main system clock

SCMOD.2 Bit 2

0 Enable sub system clock

1 Disable sub system clock

SCMOD.1 Bit 1

0 Always logic zero

SCMOD.0 Bit 0

0 Select main system clock

1 Select sub system clock

NOTES:
1. Sub-oscillation goes into stop mode only by SCMOD.2. PCON which revokes stop mode cannot stop the sub-

oscillation.
2. You can use SCMOD.2 as follows (ex; after data bank was used, a few minutes have passed):

Main operation → sub-operation → sub-idle (LCD on, after a few minutes later without any external input) → sub-
operation → main operation → SCMOD.2 = 1 → main stop mode (LCD off).

3. SCMOD bits 3–0 cannot be modified simultaneously by a 4-bit instruction; they can only be modified by
separate 1-bit instructions.

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–36

SMOD — Serial I/O Mode Register SIO FE1H, FE0H

Bit 7 6 5 4 3 2 1 0

Identifier .7 .6 .5 "0" .3 .2 .1 .0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 1/8 8 8 8

SMOD.7 – .5 Serial I/O Clock Selection and SBUF R/W Status Control Bits

0 0 0 Use an external clock at the SCK pin;
Enable SBUF when SIO operation is halted or when SCK goes high

0 0 1 Use the TOL0 clock from timer/counter 0;
Enable SBUF when SIO operation is halted or when SCK goes high

0 1 x Use the selected CPU clock (fxx/4, 8, or 64; 'fxx' is the system clock)
then, enable SBUF read/write operation. 'x' means 'don't care.'

1 0 0 4.09 kHz clock (fxx/210)

1 1 1 262 kHz clock (fxx/24); Note: You cannot select a fxx/24 clock fre-
quency if you have selected a CPU clock of fxx/64

NOTE: All kHz frequency ratings assume a system clock of 4.19 MHz.

SMOD.4 Bit 4

0 Always logic zero

SMOD.3 Initiate Serial I/O Operation Bit

1 Clear IRQS flag and 3-bit clock counter to logic zero; then initiate serial trans-
mission. When SIO transmission starts, this bit is cleared by hardware to logic
zero

SMOD.2 Enable/Disable SIO Data Shifter and Clock Counter Bit

0 Disable the data shifter and clock counter; the contents of IRQS flag is retained
when serial transmission is completed

1 Enable the data shifter and clock counter; The IRQS flag is set to logic one when
serial transmission is completed

SMOD.1 Serial I/O Transmission Mode Selection Bit

0 Receive-only mode

1 Transmit-and-receive mode

SMOD.0 LSB/MSB Transmission Mode Selection Bit

0 Transmit the most significant bit (MSB) first

1 Transmit the least significant bit (LSB) first

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–37

TMOD0 — Timer/Counter 0 Mode Register T/C0 F91H, F90H

Bit 7 6 5 4 3 2 1 0

Identifier "0" .6 .5 .4 .3 .2 "0" "0"

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 1/8 8 8 8

TMOD0.7 Bit 7

0 Always logic zero

TMOD0.6 – .4 Timer/Counter 0 Input Clock Selection Bits

0 0 0 External clock input at TCL0 pin on rising edge

0 0 1 External clock input at TCL0 pin on falling edge

1 0 0 fxx/210 (4.09 kHz)

1 0 1 fxx/26 (65.5 kHz)

1 1 0 fxx/24 (262 kHz)

1 1 1 fxx (4.19 MHz)

NOTE: “fxx” is selected system clock of 4.19 MHz

TMOD0.3 Clear Counter and Resume Counting Control Bit

1 Clear TCNT0, IRQT0, and TOL0 and resume counting immediately
(This bit is cleared automatically when counting starts.)

TMOD0.2 Enable/Disable Timer/Counter 0 Bit

0 Disable timer/counter 0; retain TCNT0 contents

1 Enable timer/counter 0

TMOD0.1 Bit 1

0 Always logic zero

TMOD0.0 Bit 0

0 Always logic zero

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–38

TMOD1 — Timer/Counter 1 Mode Register T/C FA1H, FA0H

Bit 3 2 1 0 3 2 1 0

Identifier "0" .6 .5 .4 .3 .2 "0" "0"

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 1/8 8 8 8

TMOD1.7 Bit 7

0 Always logic zero

TMOD1.6 – .4 Timer/Counter 1 Input Clock Selection Bit

0 0 0 External clock input at TCL1 pin on rising edge

0 0 1 External clock input at TCL1 pin on falling edge

1 0 0 fxx/210 (4.09 kHz)

1 0 1 fxx/28 (16.4 kHz)

1 1 0 fxx/26 (65.5 kHz)

1 1 1 fxx/24 (262 kHz)

NOTE: “fxx” is selected system clock of 4.19 MHz

TMOD1.3 Clear Counter and Resume Counting Control Bit

1 Clear TCNT1, IRQT1, and TOL1 and resume counting immediately
(This bit is cleared automatically when counting starts.)

TMOD1.2 Enable/Disable Timer/Counter 1 Bit

0 Disable timer/counter 1; retain TCNT1 contents

1 Enable timer/counter 1

TMOD1.1 Bit 1

0 Always logic zero

TMOD1.0 Bit 0

0 Always logic zero

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–39

TOE — Timer Output Enable Flag Register T/C F92H

Bit 3 2 1 0

Identifier TOE1 TOE0 "U" "0"

RESET Value 0 0 U 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

TOE1 Timer/Counter 1 Output Enable Flag

0 Disable timer/counter 1 clock output at the TCLO1 pin

1 Enable timer/counter 1 clock output at the TCLO1 pin

TOE0 Timer/Counter 0 Output Enable Flag

0 Disable timer/counter 0 clock output at the TCLO0 pin

1 Enable timer/counter 0 clock output at the TCLO0 pin

.1 Bits 1

U This bit is undefined

.0 Bits 0

0 Always logic zero

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–40

WDFLAG — Watch-Dog Timer's Counter Clear Flag WT F9AH.3

Bit 3 2 1 0

Identifier WDTCF "0" "0" "0"

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 1/4 1/4 1/4 1/4

WDTCF Watch-dog Timer's Counter Clear Bit

0 –

1 Clear the WDT's counter to zero and restart the WDT's counter

WDFLAG.2 – .0 Bit2 – 0

0 Always logic zero

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–41

WDMOD — Watch-Dog Timer Mode Control Register WT F99H, F98H

Bit 3 2 1 0 3 2 1 0

Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESET Value 1 0 1 0 0 1 0 1

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

WMOD.7 – .0 Watch-Dog Timer Enable/Disable Control

0 1 0 1 1 0 1 0 Disable watch-dog timer function

Other Values Enable watch-dog timer function

MEMORY MAP KS57C21516/P21516 MICROCONTROLLER

4–42

WMOD — Watch Timer Mode Register WT F89H, F88H

Bit 7 6 5 4 3 2 1 0

Identifier .7 "0" .5 .4 .3 .2 .1 .0

RESET Value 0 0 0 0 (note) 0 0 0

Read/Write W W W W R W W W

Bit Addressing 8 8 8 8 1 8 8 8

WMOD.7 Enable/Disable Buzzer Output Bit

0 Disable buzzer (BUZ) signal output at the BUZ pin

1 Enable buzzer (BUZ) signal output at the BUZ pin

WMOD.6 Bit 6

0 Always logic zero

WMOD.5 – .4 Output Buzzer Frequency Selection Bits

0 0 2 kHz buzzer (BUZ) signal output

0 1 4 kHz buzzer (BUZ) signal output

1 0 8 kHz buzzer (BUZ) signal output

1 1 16 kHz buzzer (BUZ) signal output

WMOD.3 XTin Input Level Control Bit

0 Input level to XTin pin is low; 1-bit read-only addressable for tests

1 Input level to XTin pin is high; 1-bit read-only addressable for tests

WMOD.2 Enable/Disable Watch Timer Bit

0 Disable watch timer and clear frequency dividing circuits

1 Enable watch timer

WMOD.1 Watch Timer Speed Control Bit

0 Normal speed; set IRQW to 0.5 seconds

1 High-speed operation; set IRQW to 3.91 ms

WMOD.0 Watch Timer Clock Selection Bit

0 Select main system clock (fx)/128 as the watch timer clock

1 Select a subsystem clock as the watch timer clock

NOTE: RESET sets WMOD.3 to the current input level of the subsystem clock, XTin. If the input level is high, WMOD.3
is set to logic one; if low, WMOD.3 is cleared to zero along with all the other bits in the WMOD register.

KS57C21516/P21516 MICROCONTROLLER MEMORY MAP

4–43

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5–1

5 SAM47 INSTRUCTION SET

OVERVIEW

The SAM47 instruction set is specifically designed to support the large register files typically founded in most
KS57-series microcontrollers. The SAM47 instruction set includes 1-bit, 4-bit, and 8-bit instructions for data
manipulation, logical and arithmetic operations, program control, and CPU control. I/O instructions for peripheral
hardware devices are flexible and easy to use. Symbolic hardware names can be substituted as the instruction
operand in place of the actual address. Other important features of the SAM47 instruction set include:

— 1-byte referencing of long instructions (REF instruction)

— Redundant instruction reduction (string effect)

— Skip feature for ADC and SBC instructions

Instruction operands conform to the operand format defined for each instruction. Several instructions have
multiple operand formats.

Predefined values or labels can be used as instruction operands when addressing immediate data. Many of the
symbols for specific registers and flags may also be substituted as labels for operations such DA, mema, memb,
b, and so on. Using instruction labels can greatly simplify programming and debugging tasks.

INSTRUCTION SET FEATURES

In this section, the following SAM47 instruction set features are described in detail:

— Instruction reference area

— Instruction redundancy reduction

— Flexible bit manipulation

— ADC and SBC instruction skip condition

NOTES:
1. The ROM size accessed by instruction may change for different devices in the SAM47 product family (JP, JPS, CALL,

and CALLS).
2. The number of memory bank selected by SMB may change for different devices in the SAM47 product family.
3. The port names used in the instruction set may change for different devices in the SAM4 product family.
4. The interrupt names and the interrupt numbers used in the instruction set may change for different devices in the SAM

47 product family.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5–2

INSTRUCTION REFERENCE AREA

Using the 1-byte REF (Reference) instruction, you can reference instructions stored in addresses 0020H–007FH
of program memory (the REF instruction look-up table). The location referenced by REF may contain either two
1-byte instructions or a single 2-byte instruction. The starting address of the instruction being referenced must
always be an even number.

3-byte instructions such as JP or CALL may also be referenced using REF. To reference these 3-byte
instructions, the 2-byte pseudo commands TJP and TCALL must be written in the reference instead of JP and
CALL.

The PC is not incremented when a REF instruction is executed. After it executes, the program's instruction
execution sequence resumes at the address immediately following the REF instruction. By using REF instructions
to execute instructions larger than one byte, as well as branches and subroutines, you can reduce program size.
To summarize, the REF instruction can be used in three ways:

— Using the 1-byte REF instruction to execute one 2-byte or two 1-byte instructions;

— Branching to any location by referencing a branch address that is stored in the look-up table;

— Calling subroutines at any location by referencing a call address that is stored in the look-up table.

If necessary, a REF instruction can be circumvented by means of a skip operation prior to the REF in the
execution sequence. In addition, the instruction immediately following a REF can also be skipped by using an
appropriate reference instruction or instructions.

Two-byte instruction can be referenced by using a REF instruction (An exception is XCH A, DA). If the MSB
value of the first one-byte instruction in the reference area is “0”, the instruction cannot be referenced by a REF
instruction. Therefore, if you use REF to reference two 1-byte instruction stored in the reference area, specific
combinations must be used for the first and second 1-byte instruction.
These combination examples are described in Table 5-1.

Table 5-1. Valid 1-Byte Instruction Combinations for REF Look-Ups

First 1-Byte Instruction Second 1-Byte Instruction

Instruction Operand Instruction Operand

LD A, #im INCS (note) R

INCS RRb

DECS (note) R

LD A, @RRa INCS (note) R

INCS RRb

DECS (note) R

LD @HL, A INCS (note) R

INCS RRb

DECS (note) R

NOTE: The MSB value of the instruction is “0”.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-3

REDUCING INSTRUCTION REDUNDANCY

When redundant instructions such as LD A,#im and LD EA,#imm are used consecutively in a program sequence,
only the first instruction is executed. The redundant instructions which follow are ignored, that is, they are handled
like a NOP instruction. When LD HL,#imm instructions are used consecutively, redundant instructions are also
ignored.

In the following example, only the 'LD A, #im' instruction will be executed. The 8-bit load instruction which follows
it is interpreted as redundant and is ignored:

LD A,#im ; Load 4-bit immediate data (#im) to accumulator
LD EA,#imm ; Load 8-bit immediate data (#imm) to extended

; accumulator

In this example, the statements 'LD A,#2H' and 'LD A,#3H' are ignored:

BITR EMB
LD A,#1H ; Execute instruction
LD A,#2H ; Ignore, redundant instruction
LD A,#3H ; Ignore, redundant instruction
LD 23H,A ; Execute instruction, 023H ← #1H

If consecutive LD HL, #imm instructions (load 8-bit immediate data to the 8-bit memory pointer pair, HL) are
detected, only the first LD is executed and the LDs which immediately follow are ignored. For example,

LD HL,#10H ; HL ← 10H
LD HL,#20H ; Ignore, redundant instruction
LD A,#3H ; A ← 3H
LD EA,#35H ; Ignore, redundant instruction
LD @HL,A ; (10H) ← 3H

If an instruction reference with a REF instruction has a redundancy effect, the following conditions apply:

— If the instruction preceding the REF has a redundancy effect, this effect is cancelled and the referenced
instruction is not skipped.

— If the instruction following the REF has a redundancy effect, the instruction following the REF is skipped.

+ + PROGRAMMING TIP — Example of the Instruction Redundancy Effect

ORG 0020H
ABC LD EA,#30H ; STORED IN REF INSTRUCTION REFERENCE AREA

ORG 0080H
 •
 •
 •
LD EA,#40H ; REDUNDANCY EFFECT IS ENCOUNTERED
REF ABC ; NO SKIP (EA ← #30H)
 •
 •
 •
REF ABC ; EA ← #30H
LD EA,#50H ; SKIP

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-4

FLEXIBLE BIT MANIPULATION

In addition to normal bit manipulation instructions like set and clear, the SAM47 instruction set can also perform
bit tests, bit transfers, and bit Boolean operations. Bits can also be addressed and manipulated by special bit
addressing modes. Three types of bit addressing are supported:

— mema.b

— memb.@L

— @H+DA.b

The parameters of these bit addressing modes are described in more detail in Table 5-2.

Table 5-2. Bit Addressing Modes and Parameters

Addressing Mode Addressable Peripherals Address Range

mema.b ERB, EMB, IS1, IS0, IEx, IRQx FB0H–FBFH

Ports FF0H–FFFH

memb.@L BSCx, Ports FC0H–FFFH

@H+DA.b All bit-manipulatable peripheral hardware All bits of the memory bank specified by
EMB and SMB that are bit-manipulatable

NOTE: Some devices in the SAM47 product family don’t have BSC.

INSTRUCTIONS WHICH HAVE SKIP CONDITIONS

The following instructions have a skip function when an overflow or borrow occurs:

XCHI INCS

XCHD DECS

LDI ADS

LDD SBS

If there is an overflow or borrow from the result of an increment or decrement, a skip signal is generated and a
skip is executed. However, the carry flag value is unaffected.

The instructions BTST, BTSF, and CPSE also generate a skip signal and execute a skip when they meet a skip
condition, and the carry flag value is also unaffected.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-5

INSTRUCTIONS WHICH AFFECT THE CARRY FLAG

The only instructions which do not generate a skip signal, but which do affect the carry flag are as follows:

ADC LDB C,(operand)

SBC BAND C,(operand)

SCF BOR C,(operand)

RCF BXOR C,(operand)

CCF IRET

RRC

ADC AND SBC INSTRUCTION SKIP CONDITIONS

The instructions 'ADC A,@HL' and 'SBC A,@HL' can generate a skip signal, and set or clear the carry flag,
when they are executed in combination with the instruction 'ADS A,#im'.

If an 'ADS A,#im' instruction immediately follows an 'ADC A,@HL' or 'SBC A,@HL' instruction in a program
sequence, the ADS instruction does not skip the instruction following ADS, even if it has a skip function. If,
however, an 'ADC A,@HL' or 'SBC A,@HL' instruction is immediately followed by an 'ADS A,#im' instruction,
the ADC (or SBC) skips on overflow (or if there is no borrow) to the instruction immediately following the ADS,
and program execution continues. Table 5-3 contains additional information and examples of the 'ADC A,@HL'
and 'SBC A,@HL' skip feature.

Table 5-3. Skip Conditions for ADC and SBC Instructions

Sample
Instruction Sequences

If the result of
instruction 1 is:

Then, the execution
sequence is:

Reason

ADC A,@HL
ADS A,#im
xxx
xxx

1
2
3
4

Overflow

No overflow

1, 3, 4

1, 2, 3, 4

ADS cannot skip
instruction 3, even if it
has a skip function.

SBC A,@HL
ADS A,#im
xxx
xxx

1
2
3
4

Borrow

No borrow

1, 2, 3, 4

1, 3, 4

ADS cannot skip
instruction 3, even if it
has a skip function.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-6

SYMBOLS and CONVENTIONS

Table 5-4. Data Type Symbols

Symbol Data Type

d Immediate data

a Address data

b Bit data

r Register data

f Flag data

i Indirect addressing data

t memc × 0.5 immediate data

Table 5-5. Register Identifiers

Full Register Name ID

4-bit accumulator A

4-bit working registers E, L, H, X, W,
Z, Y

8-bit extended accumulator EA

8-bit memory pointer HL

8-bit working registers WX, YZ, WL

Select register bank 'n' SRB n

Select memory bank 'n' SMB n

Carry flag C

Program status word PSW

Port 'n' Pn

'm'-th bit of port 'n' Pn.m

Interrupt priority register IPR

Enable memory bank flag EMB

Enable register bank flag ERB

Table 5-6. Instruction Operand Notation

Symbol Definition

DA Direct address

@ Indirect address prefix

src Source operand

dst Destination operand

(R) Contents of register R

.b Bit location

im 4-bit immediate data (number)

imm 8-bit immediate data (number)

Immediate data prefix

ADR 000H–3FFFH immediate address

ADRn 'n' bit address

R A, E, L, H, X, W, Z, Y

Ra E, L, H, X, W, Z, Y

RR EA, HL, WX, YZ

RRa HL, WX, WL

RRb HL, WX, YZ

RRc WX, WL

mema FB0H–FBFH, FF0H–FFFH

memb FC0H–FFFH

memc Code direct addressing:
0020H–007FH

SB Select bank register (8 bits)

XOR Logical exclusive-OR

OR Logical OR

AND Logical AND

[(RR)] Contents addressed by RR

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-7

OPCODE DEFINITIONS

Table 5-7. Opcode Definitions (Direct)

Register r2 r1 r0

A 0 0 0

E 0 0 1

L 0 1 0

H 0 1 1

X 1 0 0

W 1 0 1

Z 1 1 0

Y 1 1 1

EA 0 0 0

HL 0 1 0

WX 1 0 0

YZ 1 1 0

r = Immediate data for register

Table 5-8. Opcode Definitions (Indirect)

Register i2 i1 i0

@HL 1 0 1

@WX 1 1 0

@WL 1 1 1

i = Immediate data for indirect addressing

CALCULATING ADDITIONAL MACHINE CYCLES FOR SKIPS

A machine cycle is defined as one cycle of the selected CPU clock. Three different clock rates can be selected
using the PCON register.

In this document, the letter 'S' is used in tables when describing the number of additional machine cycles required
for an instruction to execute, given that the instruction has a skip function ('S' = skip). The addition number of
machine cycles that will be required to perform the skip usually depends on the size of the instruction being
skipped — whether it is a 1-byte, 2-byte, or 3-byte instruction. A skip is also executed for SMB and SRB
instructions.

The values in additional machine cycles for 'S' for the three cases in which skip conditions occur are as follows:

Case 1: No skip S = 0 cycles

Case 2: Skip is 1-byte or 2-byte instruction S = 1 cycle

Case 3: Skip is 3-byte instruction S = 2 cycles

NOTE: REF instructions are skipped in one machine cycle.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-8

HIGH-LEVEL SUMMARY

This section contains a high-level summary of the SAM47 instruction set in table format. The tables are designed
to familiarize you with the range of instructions that are available in each instruction category.

These tables are a useful quick-reference resource when writing application programs.

If you are reading this user's manual for the first time, however, you may want to scan this detailed information
briefly, and then return to it later on. The following information is provided for each instruction:

— Instruction name

— Operand(s)

— Brief operation description

— Number of bytes of the instruction and operand(s)

— Number of machine cycles required to execute the instruction

The tables in this section are arranged according to the following instruction categories:

— CPU control instructions

— Program control instructions

— Data transfer instructions

— Logic instructions

— Arithmetic instructions

— Bit manipulation instructions

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-9

Table 5-9. CPU Control Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

SCF Set carry flag to logic one 1 1

RCF Reset carry flag to logic zero 1 1

CCF Complement carry flag 1 1

EI Enable all interrupts 2 2

DI Disable all interrupts 2 2

IDLE Engage CPU idle mode 2 2

STOP Engage CPU stop mode 2 2

NOP No operation 1 1

SMB n Select memory bank 2 2

SRB n Select register bank 2 2

REF memc Reference code 1 1

VENTn EMB (0,1)
ERB (0,1)
ADR

Load enable memory bank flag (EMB) and the enable
register bank flag (ERB) and program counter to vector
address, then branch to the corresponding location

2 2

Table 5-10. Program Control Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

CPSE R,#im Compare and skip if register equals #im 2 2 + S

@HL,#im Compare and skip if indirect data memory equals #im 2 2 + S

A,R Compare and skip if A equals R 2 2 + S

A,@HL Compare and skip if A equals indirect data memory 1 1 + S

EA,@HL Compare and skip if EA equals indirect data memory 2 2 + S

EA,RR Compare and skip if EA equals RR 2 2 + S

JP ADR Jump to direct address (14 bits) 3 3

JPS ADR Jump direct in page (12 bits) 2 2

JR #im Jump to immediate address 1 2

@WX Branch relative to WX register 2 3

@EA Branch relative to EA 2 3

CALL ADR Call direct in page (14 bits) 3 4

CALLS ADR Call direct in page (11 bits) 2 3

RET – Return from subroutine 1 3

IRET – Return from interrupt 1 3

SRET – Return from subroutine and skip 1 3 + S

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-10

Table 5-11. Data Transfer Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

XCH A,DA Exchange A and direct data memory contents 2 2

A,Ra Exchange A and register (Ra) contents 1 1

A,@RRa Exchange A and indirect data memory 1 1

EA,DA Exchange EA and direct data memory contents 2 2

EA,RRb Exchange EA and register pair (RRb) contents 2 2

EA,@HL Exchange EA and indirect data memory contents 2 2

XCHI A,@HL Exchange A and indirect data memory contents;
increment contents of register L and skip on carry

1 2 + S

XCHD A,@HL Exchange A and indirect data memory contents;
decrement contents of register L and skip on carry

1 2 + S

LD A,#im Load 4-bit immediate data to A 1 1

A,@RRa Load indirect data memory contents to A 1 1

A,DA Load direct data memory contents to A 2 2

A,Ra Load register contents to A 2 2

Ra,#im Load 4-bit immediate data to register 2 2

RR,#imm Load 8-bit immediate data to register 2 2

DA,A Load contents of A to direct data memory 2 2

Ra,A Load contents of A to register 2 2

EA,@HL Load indirect data memory contents to EA 2 2

EA,DA Load direct data memory contents to EA 2 2

EA,RRb Load register contents to EA 2 2

@HL,A Load contents of A to indirect data memory 1 1

DA,EA Load contents of EA to data memory 2 2

RRb,EA Load contents of EA to register 2 2

@HL,EA Load contents of EA to indirect data memory 2 2

LDI A,@HL Load indirect data memory to A; increment register L
contents and skip on carry

1 2 + S

LDD A,@HL Load indirect data memory contents to A; decrement
register L contents and skip on carry

1 2 + S

LDC EA,@WX Load code byte from WX to EA 1 3

EA,@EA Load code byte from EA to EA 1 3

RRC A Rotate right through carry bit 1 1

PUSH RR Push register pair onto stack 1 1

SB Push SMB and SRB values onto stack 2 2

POP RR Pop to register pair from stack 1 1

SB Pop SMB and SRB values from stack 2 2

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-11

Table 5-12. Logic Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

AND A,#im Logical-AND A immediate data to A 2 2

A,@HL Logical-AND A indirect data memory to A 1 1

EA,RR Logical-AND register pair (RR) to EA 2 2

RRb,EA Logical-AND EA to register pair (RRb) 2 2

OR A, #im Logical-OR immediate data to A 2 2

A, @HL Logical-OR indirect data memory contents to A 1 1

EA,RR Logical-OR double register to EA 2 2

RRb,EA Logical-OR EA to double register 2 2

XOR A,#im Exclusive-OR immediate data to A 2 2

A,@HL Exclusive-OR indirect data memory to A 1 1

EA,RR Exclusive-OR register pair (RR) to EA 2 2

RRb,EA Exclusive-OR register pair (RRb) to EA 2 2

COM A Complement accumulator (A) 2 2

Table 5-13. Arithmetic Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

ADC A,@HL Add indirect data memory to A with carry 1 1

EA,RR Add register pair (RR) to EA with carry 2 2

RRb,EA Add EA to register pair (RRb) with carry 2 2

ADS A, #im Add 4-bit immediate data to A and skip on carry 1 1 + S

EA,#imm Add 8-bit immediate data to EA and skip on carry 2 2 + S

A,@HL Add indirect data memory to A and skip on carry 1 1 + S

EA,RR Add register pair (RR) contents to EA and skip on carry 2 2 + S

RRb,EA Add EA to register pair (RRb) and skip on carry 2 2 + S

SBC A,@HL Subtract indirect data memory from A with carry 1 1

EA,RR Subtract register pair (RR) from EA with carry 2 2

RRb,EA Subtract EA from register pair (RRb) with carry 2 2

SBS A,@HL Subtract indirect data memory from A; skip on borrow 1 1 + S

EA,RR Subtract register pair (RR) from EA; skip on borrow 2 2 + S

RRb,EA Subtract EA from register pair (RRb); skip on borrow 2 2 + S

DECS R Decrement register (R); skip on borrow 1 1 + S

RR Decrement register pair (RR); skip on borrow 2 2 + S

INCS R Increment register (R); skip on carry 1 1 + S

DA Increment direct data memory; skip on carry 2 2 + S

@HL Increment indirect data memory; skip on carry 2 2 + S

RRb Increment register pair (RRb); skip on carry 1 1 + S

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-12

Table 5-14. Bit Manipulation Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

BTST C Test specified bit and skip if carry flag is set 1 1 + S

DA.b Test specified bit and skip if memory bit is set 2 2 + S

mema.b

memb.@L

@H+DA.b

BTSF DA.b Test specified memory bit and skip if bit equals "0"

mema.b

memb.@L

@H+DA.b

BTSTZ mema.b Test specified bit; skip and clear if memory bit is set

memb.@L

@H+DA.b

BITS DA.b Set specified memory bit 2 2

mema.b

memb.@L

@H+DA.b

BITR DA.b Clear specified memory bit to logic zero

mema.b

memb.@L

@H+DA.b

BAND C,mema.b Logical-AND carry flag with specified memory bit

C,memb.@L

C,@H+DA.b

BOR C,mema.b Logical-OR carry with specified memory bit

C,memb.@L

C,@H+DA.b

BXOR C,mema.b Exclusive-OR carry with specified memory bit

C,memb.@L

C,@H+DA.b

LDB mema.b,C Load carry bit to a specified memory bit

memb.@L,C Load carry bit to a specified indirect memory bit

@H+DA.b,C

C,mema.b Load specified memory bit to carry bit

C,memb.@L Load specified indirect memory bit to carry bit

C,@H+DA.b

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-13

BINARY CODE SUMMARY

This section contains binary code values and operation notation for each instruction in the SAM47 instruction set
in an easy-to-read, tabular format. It is intended to be used as a quick-reference source for programmers who are
experienced with the SAM47 instruction set. The same binary values and notation are also included in the
detailed descriptions of individual instructions later in Section 5.

If you are reading this user's manual for the first time, please just scan this very detailed information briefly. Most
of the general information you will need to write application programs can be found in the high-level summary
tables in the previous section. The following information is provided for each instruction:

— Instruction name

— Operand(s)

— Binary values

— Operation notation

The tables in this section are arranged according to the following instruction categories:

— CPU control instructions

— Program control instructions

— Data transfer instructions

— Logic instructions

— Arithmetic instructions

— Bit manipulation instructions

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-14

Table 5-15. CPU Control Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

SCF 1 1 1 0 0 1 1 1 C ← 1

RCF 1 1 1 0 0 1 1 0 C ← 0

CCF 1 1 0 1 0 1 1 0 C ← C

EI 1 1 1 1 1 1 1 1 IME ← 1

1 0 1 1 0 0 1 0

DI 1 1 1 1 1 1 1 0 IME ← 0

1 0 1 1 0 0 1 0

IDLE 1 1 1 1 1 1 1 1 PCON.2 ← 1

1 0 1 0 0 0 1 1

STOP 1 1 1 1 1 1 1 1 PCON.3 ← 1

1 0 1 1 0 0 1 1

NOP 1 0 1 0 0 0 0 0 No operation

SMB n 1 1 0 1 1 1 0 1 SMB ← n (n = 0, … ,15)

0 1 0 0 d3 d2 d1 d0

SRB n 1 1 0 1 1 1 0 1 SRB ← n (n = 0, 1, 2, 3)

0 1 0 1 0 0 d1 d0

REF memc t7 t6 t5 t4 t3 t2 t1 t0 PC13–0 ← memc.5–0 + (memc + 1).7–
0

VENTn EMB (0,1)
ERB (0,1)
ADR

E
M
B

E
R
B

a13 a12 a11 a10 a9 a8 ROM (2 x n) 7–6 → EMB, ERB
ROM (2 x n) 5–4 → PC13–12
ROM (2 x n) 3–0 → PC11–8
ROM (2 x n + 1) 7–0 → PC7–0
(n = 0, 1, 2, 3, 4, 5, 6, 7)

a7 a6 a5 a4 a3 a2 a1 a0

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-15

Table 5-16. Program Control Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

CPSE R,#im 1 1 0 1 1 0 0 1 Skip if R = im

d3 d2 d1 d0 0 r2 r1 r0

@HL,#im 1 1 0 1 1 1 0 1 Skip if (HL) = im

0 1 1 1 d3 d2 d1 d0

A,R 1 1 0 1 1 1 0 1 Skip if A = R

0 1 1 0 1 r2 r1 r0

A,@HL 0 0 1 1 1 0 0 0 Skip if A = (HL)

EA,@HL 1 1 0 1 1 1 0 0 Skip if A = (HL), E = (HL+1)

0 0 0 0 1 0 0 1

EA,RR 1 1 0 1 1 1 0 0 Skip if EA = RR

1 1 1 0 1 r2 r1 0

JP ADR 1 1 0 1 1 0 1 1 PC13–0 ← ADR13–0

0 0 a13 a12 a11 a10 a9 a8

a7 a6 a5 a4 a3 a2 a1 a0

JPS ADR 1 0 0 1 a11 a10 a9 a8 PC13–0 ← PC13–12 + ADR11–0

a7 a6 a5 a4 a3 a2 a1 a0

JR #im * PC13–0 ← ADR (PC–15 to PC+16)

@WX 1 1 0 1 1 1 0 1 PC13–0 ← PC13–8 + (WX)

0 1 1 0 0 1 0 0

@EA 1 1 0 1 1 1 0 1 PC13–0 ← PC13–8 + (EA)

0 1 1 0 0 0 0 0

CALL ADR 1 1 0 1 1 0 1 1 [(SP–1) (SP–2)] ← EMB, ERB

0 1 a13 a12 a11 a10 a9 a8 [(SP–3) (SP–4)] ← PC7–0

a7 a6 a5 a4 a3 a2 a1 a0 [(SP–5) (SP–6)] ← PC13–8

CALLS ADR 1 1 1 0 1 a10 a9 a8 [(SP–1) (SP–2)] ← EMB, ERB

a7 a6 a5 a4 a3 a2 a1 a0 [(SP–3) (SP–4)] ← PC7–0

[(SP–5) (SP–6)] ← PC14–8

First Byte Condition

* JR #im 0 0 0 1 a3 a2 a1 a0 PC ← PC+2 to PC+16

0 0 0 0 a3 a2 a1 a0 PC ← PC–1 to PC–15

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-16

Table 5-16. Program Control Instructions — Binary Code Summary (Continued)

Name Operand Binary Code Operation Notation

RET – 1 1 0 0 0 1 0 1 PC13–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 3) (SP + 2)
EMB,ERB ← (SP + 4)
SP ← SP + 6

IRET – 1 1 0 1 0 1 0 1 PC13–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 3) (SP + 2)
PSW ← (SP + 5) (SP + 4)
SP ← SP + 6

SRET – 1 1 1 0 0 1 0 1 PC13–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 3) (SP + 2)
EMB,ERB ← (SP + 4)
SP ← SP + 6

Table 5-17. Data Transfer Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

XCH A,DA 0 1 1 1 1 0 0 1 A ↔ DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 0 1 1 0 1 r2 r1 r0 A ↔ Ra

A,@RRa 0 1 1 1 1 i2 i1 i0 A ↔ (RRa)

EA,DA 1 1 0 0 1 1 1 1 A ↔ DA,E ↔ DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ↔ RRb

1 1 1 0 0 r2 r1 0

EA,@HL 1 1 0 1 1 1 0 0 A ↔ (HL), E ↔ (HL + 1)

0 0 0 0 0 0 0 1

XCHI A,@HL 0 1 1 1 1 0 1 0 A ↔ (HL), then L ← L+1;
skip if L = 0H

XCHD A,@HL 0 1 1 1 1 0 1 1 A ↔ (HL), then L ← L-1;
skip if L = 0FH

LD A,#im 1 0 1 1 d3 d2 d1 d0 A ← im

A,@RRa 1 0 0 0 1 i2 i1 i0 A ← (RRa)

A,DA 1 0 0 0 1 1 0 0 A ← DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 1 1 0 1 1 1 0 1 A ← Ra

0 0 0 0 1 r2 r1 r0

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-17

Table 5-17. Data Transfer Instructions — Binary Code Summary (Continued)

Name Operand Binary Code Operation Notation

LD Ra,#im 1 1 0 1 1 0 0 1 Ra ← im

d3 d2 d1 d0 1 r2 r1 r0

RR,#imm 1 0 0 0 0 r2 r1 1 RR ← imm

d7 d6 d5 d4 d3 d2 d1 d0

DA,A 1 0 0 0 1 0 0 1 DA ← A

a7 a6 a5 a4 a3 a2 a1 a0

Ra,A 1 1 0 1 1 1 0 1 Ra ← A

0 0 0 0 0 r2 r1 r0

EA,@HL 1 1 0 1 1 1 0 0 A ← (HL), E ← (HL + 1)

0 0 0 0 1 0 0 0

EA,DA 1 1 0 0 1 1 1 0 A ← DA, E ← DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ← RRb

1 1 1 1 1 r2 r1 0

@HL,A 1 1 0 0 0 1 0 0 (HL) ← A

DA,EA 1 1 0 0 1 1 0 1 DA ← A, DA + 1 ← E

a7 a6 a5 a4 a3 a2 a1 a0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← EA

1 1 1 1 0 r2 r1 0

@HL,EA 1 1 0 1 1 1 0 0 (HL) ← A, (HL + 1) ← E

0 0 0 0 0 0 0 0

LDI A,@HL 1 0 0 0 1 0 1 0 A ← (HL), then L ← L+1;
skip if L = 0H

LDD A,@HL 1 0 0 0 1 0 1 1 A ← (HL), then L ← L–1;
skip if L = 0FH

LDC EA,@WX 1 1 0 0 1 1 0 0 EA ← [PC12–8 + (WX)]

EA,@EA 1 1 0 0 1 0 0 0 EA ← [PC12–8 + (EA)]

RRC A 1 0 0 0 1 0 0 0 C ← A.0, A3 ← C
A.n–1 ← A.n (n = 1, 2, 3)

PUSH RR 0 0 1 0 1 r2 r1 1 ((SP–1)) ((SP–2)) ← (RR),
(SP) ← (SP)–2

SB 1 1 0 1 1 1 0 1 ((SP–1)) ← (SMB), ((SP–2)) ← (SRB),
(SP) ← (SP)–2

0 1 1 0 0 1 1 1

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-18

Table 5-17. Data Transfer Instructions — Binary Code Summary (Concluded)

Name Operand Binary Code Operation Notation

POP RR 0 0 1 0 1 r2 r1 0 RRL ← (SP), RRH ← (SP + 1)
SP ← SP + 2

SB 1 1 0 1 1 1 0 1 (SRB) ← (SP), SMB ← (SP + 1),
SP ← SP + 2

0 1 1 0 0 1 1 0

Table 5-18. Logic Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

AND A,#im 1 1 0 1 1 1 0 1 A ← A AND im

0 0 0 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 0 1 A ← A AND (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA AND RR

0 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb AND EA

0 0 0 1 0 r2 r1 0

OR A, #im 1 1 0 1 1 1 0 1 A ← A OR im

0 0 1 0 d3 d2 d1 d0

A, @HL 0 0 1 1 1 0 1 0 A ← A OR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA OR RR

0 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb OR EA

0 0 1 0 0 r2 r1 0

XOR A,#im 1 1 0 1 1 1 0 1 A ← A XOR im

0 0 1 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 1 1 A ← A XOR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA XOR (RR)

0 0 1 1 0 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb XOR EA

0 0 1 1 0 r2 r1 0

COM A 1 1 0 1 1 1 0 1 A ← A

0 0 1 1 1 1 1 1

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-19

Table 5-19. Arithmetic Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

ADC A,@HL 0 0 1 1 1 1 1 0 C, A ← A + (HL) + C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA + RR + C

1 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C, RRb ← RRb + EA + C

1 0 1 0 0 r2 r1 0

ADS A, #im 1 0 1 0 d3 d2 d1 d0 A ← A + im; skip on carry

EA,#imm 1 1 0 0 1 0 0 1 EA ← EA + imm; skip on carry

d7 d6 d5 d4 d3 d2 d1 d0

A,@HL 0 0 1 1 1 1 1 1 A ← A+ (HL); skip on carry

EA,RR 1 1 0 1 1 1 0 0 EA ← EA + RR; skip on carry

1 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb + EA; skip on carry

1 0 0 1 0 r2 r1 0

SBC A,@HL 0 0 1 1 1 1 0 0 C,A ← A–(HL)–C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA–RR–C

1 1 0 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C,RRb ← RRb–EA–C

1 1 0 0 0 r2 r1 0

SBS A,@HL 0 0 1 1 1 1 0 1 A ← A–(HL); skip on borrow

EA,RR 1 1 0 1 1 1 0 0 EA ← EA–RR; skip on borrow

1 0 1 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb–EA; skip on borrow

1 0 1 1 0 r2 r1 0

DECS R 0 1 0 0 1 r2 r1 r0 R ← R–1; skip on borrow

RR 1 1 0 1 1 1 0 0 RR ← RR–1; skip on borrow

1 1 0 1 1 r2 r1 0

INCS R 0 1 0 1 1 r2 r1 r0 R ← R+1; skip on carry

DA 1 1 0 0 1 0 1 0 DA ← DA+1; skip on carry

a7 a6 a5 a4 a3 a2 a1 a0

@HL 1 1 0 1 1 1 0 1 (HL) ← (HL)+1; skip on carry

0 1 1 0 0 0 1 0

RRb 1 0 0 0 0 r2 r1 0 RRb ← RRb+1; skip on carry

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-20

Table 5-20. Bit Manipulation Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

BTST C 1 1 0 1 0 1 1 1 Skip if C = 1

DA.b 1 1 b1 b0 0 0 1 1 Skip if DA.b = 1

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 1 Skip if mema.b = 1

memb.@L 1 1 1 1 1 0 0 1 Skip if [memb.7–2 + L.3–2].[L.1–0] = 1

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 0 0 1 Skip if [H + DA.3–0].b = 1

0 0 b1 b0 a3 a2 a1 a0

BTSF DA.b 1 1 b1 b0 0 0 1 0 Skip if DA.b = 0

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 0 Skip if mema.b = 0

memb.@L 1 1 1 1 1 0 0 0 Skip if [memb.7–2 + L.3–2].[L.1–0] = 0

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 0 0 0 Skip if [H + DA.3–0].b = 0

0 0 b1 b0 a3 a2 a1 a0

BTSTZ mema.b * 1 1 1 1 1 1 0 1 Skip if mema.b = 1 and clear

memb.@L 1 1 1 1 1 1 0 1 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 1 and clear

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 0 1 Skip if [H + DA.3–0].b =1 and clear

0 0 b1 b0 a3 a2 a1 a0

BITS DA.b 1 1 b1 b0 0 0 0 1 DA.b ← 1

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 1 mema.b ← 1

memb.@L 1 1 1 1 1 1 1 1 [memb.7–2 + L.3–2].[L.1–0] ← 1

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 1 [H + DA.3–0].b ← 1

0 0 b1 b0 a3 a2 a1 a0

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-21

Table 5-20. Bit Manipulation Instructions — Binary Code Summary (Continued)

Name Operand Binary Code Operation Notation

BITR DA.b 1 1 b1 b0 0 0 0 0 DA.b ← 0

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 0 mema.b ← 0

memb.@L 1 1 1 1 1 1 1 0 [memb.7–2 + L3–2].[L.1–0] ← 0

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 0 [H + DA.3–0].b ← 0

0 0 b1 b0 a3 a2 a1 a0

BAND C,mema.b * 1 1 1 1 0 1 0 1 C ← C AND mema.b

C,memb.@L 1 1 1 1 0 1 0 1 C ← C AND [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 1 C ← C AND [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

BOR C,mema.b * 1 1 1 1 0 1 1 0 C ← C OR mema.b

C,memb.@L 1 1 1 1 0 1 1 0 C ← C OR [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 0 C ← C OR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

BXOR C,mema.b * 1 1 1 1 0 1 1 1 C ← C XOR mema.b

C,memb.@L 1 1 1 1 0 1 1 1 C ← C XOR [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 1 C ← C XOR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-22

Table 5-20. Bit Manipulation Instructions — Binary Code Summary (Concluded)

Name Operand Binary Code Operation Notation

LDB mema.b,C * 1 1 1 1 1 1 0 0 mema.b ← C

memb.@L,C 1 1 1 1 1 1 0 0 memb.7–2 + [L.3–2]. [L.1–0] ← C

0 1 0 0 a5 a4 a3 a2

@H+DA.b,C 1 1 1 1 1 1 0 0 H+[DA.3–0].b ← (C)

0 0 b1 b0 a3 a2 a1 a0

C,mema.b * 1 1 1 1 0 1 0 0 C ← mema.b

C,memb.@L 1 1 1 1 0 1 0 0 C ← memb.7–2+[L.3–2] . [L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 0 C ← [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-23

INSTRUCTION DESCRIPTIONS

This section contains detailed information and programming examples for each instruction of the SAM47
instruction set. Information is arranged in a consistent format to improve readability and for use as a quick-
reference resource for application programmers.

If you are reading this user's manual for the first time, please just scan this very detailed information briefly in
order to acquaint yourself with the basic features of the instruction set. The information elements of the
instruction description format are as follows:

— Instruction name (mnemonic)

— Full instruction name

— Source/destination format of the instruction operand

— Operation overview (from the "High-Level Summary" table)

— Textual description of the instruction's effect

— Binary code overview (from the "Binary Code Summary" table)

— Programming example(s) to show how the instruction is used

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-24

ADC — Add with Carry

ADC dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Add indirect data memory to A with carry 1 1

EA,RR Add register pair (RR) to EA with carry 2 2

RRb,EA Add EA to register pair (RRb) with carry 2 2

Description: The source operand, along with the setting of the carry flag, is added to the destination operand
and the sum is stored in the destination. The contents of the source are unaffected. If there is an
overflow from the most significant bit of the result, the carry flag is set; otherwise, the carry flag
is cleared.

If 'ADC A,@HL' is followed by an 'ADS A,#im' instruction in a program, ADC skips the ADS
instruction if an overflow occurs. If there is no overflow, the ADS instruction is executed normally.
(This condition is valid only for 'ADC A,@HL' instructions. If an overflow occurs following an
'ADS A,#im' instruction, the next instruction will not be skipped.)

Operand Binary Code Operation Notation

A,@HL 0 0 1 1 1 1 1 0 C, A ← A + (HL) + C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA + RR + C

1 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C, RRb ← RRb + EA + C

1 0 1 0 0 r2 r1 0

Examples: 1. The extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag is set to "1":

SCF ; C ← "1"
ADC EA,HL ; EA ← 0C3H + 0AAH + 1H = 6EH, C ← "1"
JPS XXX ; Jump to XXX;no skip after ADC

2. If the extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag is cleared to "0":

RCF ; C ← "0"
ADC EA,HL ; EA ← 0C3H + 0AAH + 0H = 6DH, C ← "1"
JPS XXX ; Jump to XXX; no skip after ADC

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-25

ADC — Add with Carry

ADC (Continued)

Examples: 3. If ADC A,@HL is followed by an ADS A,#im, the ADC skips on carry to the instruction
immediately after the ADS. An ADS instruction immediately after the ADC does not skip

even if an overflow occurs. This function is useful for decimal adjustment operations.

a. 8 + 9 decimal addition (the contents of the address specified by the HL register is 9H):

RCF ; C ← "0"
LD A,#8H ; A ← 8H
ADS A,#6H ; A ← 8H + 6H = 0EH
ADC A,@HL ; A ← 0EH + 9H + C(0), C ← "1"
ADS A,#0AH ; Skip this instruction because C = "1" after ADC result
JPS XXX

b. 3 + 4 decimal addition (the contents of the address specified by the HL register is 4H):

RCF ; C ← "0"
LD A,#3H ; A ← 3H
ADS A,#6H ; A ← 3H + 6H = 9H
ADC A,@HL ; A ← 9H + 4H + C(0) = 0DH
ADS A,#0AH ; No skip. A ← 0DH + 0AH = 7H

; (The skip function for 'ADS A,#im' is inhibited after an
; 'ADC A,@HL' instruction even if an overflow occurs.)

JPS XXX

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-26

ADS — Add and Skip on Overflow

ADS dst,src

Operation: Operand Operation Summary Bytes Cycles

A, #im Add 4-bit immediate data to A and skip on overflow 1 1 + S

EA, #imm Add 8-bit immediate data to EA and skip on overflow 2 2 + S

A,@HL Add indirect data memory to A and skip on overflow 1 1 + S

EA,RR Add register pair (RR) contents to EA and skip on
overflow

2 2 + S

RRb, EA Add EA to register pair (RRb) and skip on overflow 2 2 + S

Description: The source operand is added to the destination operand and the sum is stored in the destination.
The contents of the source are unaffected. If there is an overflow from the most significant bit of
the result, the skip signal is generated and a skip is executed, but the carry flag value is
unaffected.

If 'ADS A,#im' follows an 'ADC A,@HL' instruction in a program, ADC skips the ADS instruction
if an overflow occurs. If there is no overflow, the ADS instruction is executed normally. This skip
condition is valid only for 'ADC A,@HL' instructions, however. If an overflow occurs following an
ADS instruction, the next instruction is not skipped.

Operand Binary Code Operation Notation

A, #im 1 0 1 0 d3 d2 d1 d0 A ← A + im; skip on overflow

EA,#imm 1 1 0 0 1 0 0 1 EA ← EA + imm; skip on overflow

d7 d6 d5 d4 d3 d2 d1 d0

A,@HL 0 0 1 1 1 1 1 1 A ← A + (HL); skip on overflow

EA,RR 1 1 0 1 1 1 0 0 EA ← EA + RR; skip on overflow

1 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb + EA; skip on overflow

1 0 0 1 0 r2 r1 0

Examples: 1. The extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag = "0":

ADS EA,HL ; EA ← 0C3H + 0AAH = 6DH
; ADS skips on overflow, but carry flag value is not
; affected.

JPS XXX ; This instruction is skipped since ADS had an overflow.
JPS YYY ; Jump to YYY.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-27

ADS — Add and Skip on Overflow

ADS (Continued)

Examples: 2. If the extended accumulator contains the value 0C3H, register pair HL the value 12H, and
the carry flag = "0":

ADS EA,HL ; EA ← 0C3H + 12H = 0D5H
JPS XXX ; Jump to XXX; no skip after ADS.

3. If 'ADC A,@HL' is followed by an 'ADS A,#im', the ADC skips on overflow to the instruction
mmediately after the ADS. An 'ADS A,#im' instruction immediately after the 'ADC A,@HL'
does not skip even if overflow occurs. This function is useful for decimal adjustment
operations.

a. 8 + 9 decimal addition (the contents of the address specified by the HL register is 9H):

RCF ; C ← "0"
LD A,#8H ; A ← 8H
ADS A,#6H ; A ← 8H + 6H = 0EH
ADC A,@HL ; A ← 0EH + 9H + C(0) = 7H, C ← "1"
ADS A,#0AH ; Skip this instruction because C = "1" after ADC result.
JPS XXX

b. 3 + 4 decimal addition (the contents of the address specified by the HL register is 4H):

RCF ; C ← "0"
LD A,#3H ; A ← 3H
ADS A,#6H ; A ← 3H + 6H = 9H
ADC A,@HL ; A ← 9H + 4H + C(0) = 0DH, C ← "0"
ADS A,#0AH ; No skip. A ← 0DH + 0AH = 7H

; (The skip function for 'ADS A,#im' is inhibited after an
; 'ADC A,@HL' instruction even if an overflow occurs.)

JPS XXX

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-28

AND — Logical AND

AND dst,src

Operation: Operand Operation Summary Bytes Cycles

A,#im Logical-AND A immediate data to A 2 2

A,@HL Logical-AND A indirect data memory to A 1 1

EA,RR Logical-AND register pair (RR) to EA 2 2

RRb,EA Logical-AND EA to register pair (RRb) 2 2

Description: The source operand is logically ANDed with the destination operand. The result is stored in the
destination. The logical AND operation results in a "1" whenever the corresponding bits in the two
operands are both "1"; otherwise a "0" is stored in the corresponding destination bit. The contents
of the source are unaffected.

Operand Binary Code Operation Notation

A,#im 1 1 0 1 1 1 0 1 A ← A AND im

0 0 0 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 0 1 A ← A AND (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA AND RR

0 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb AND EA

0 0 0 1 0 r2 r1 0

Example: If the extended accumulator contains the value 0C3H (11000011B) and register pair HL the value
55H (01010101B), the instruction

AND EA,HL

leaves the value 41H (01000001B) in the extended accumulator EA .

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-29

BAND — Bit Logical AND

BAND C,src.b

Operation: Operand Operation Summary Bytes Cycles

C,mema.b Logical-AND carry flag with memory bit 2 2

C,memb.@L 2 2

C,@H+DA.b 2 2

Description: The specified bit of the source is logically ANDed with the carry flag bit value. If the Boolean
value of the source bit is a logic zero, the carry flag is cleared to "0"; otherwise, the current carry
flag setting is left unaltered. The bit value of the source operand is not affected.

Operand Binary Code Operation Notation

C,mema.b * 1 1 1 1 0 1 0 1 C ← C AND mema.b

C,memb.@L 1 1 1 1 0 1 0 1 C ← C AND [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 1 C ← C AND [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. The following instructions set the carry flag if P1.0 (port 1.0) is equal to "1" (and assuming
the carry flag is already set to "1"):

SMB 15 ; C ← "1"
BAND C,P1.0 ; If P1.0 = "1", C ← "1"

; If P1.0 = "0", C ← "0"

2. Assume the P1 address is FF1H and the value for register L is 5H (0101B). The address
(memb.7–2) is 111100B; (L.3–2) is 01B. The resulting address is 11110001B or FF1H,
specifying P1. The bit value for the BAND instruction, (L.1–0) is 01B which specifies bit 1.
Therefore, P1.@L = P1.1:

LD L,#5H
BAND C,P1.@L ; P1.@L is specified as P1.1

; C AND P1.1

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-30

BAND — Bit Logical AND

BAND (Continued)

Examples: 3. Register H contains the value 2H and FLAG = 20H.3. The address of H is 0010B and
FLAG(3–0) is 0000B. The resulting address is 00100000B or 20H. The bit value for the BAND
instruction is 3. Therefore, @H+FLAG = 20H.3:

FLAG EQU 20H.3
LD H,#2H
BAND C,@H+FLAG ; C AND FLAG (20H.3)

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-31

BITR — Bit Reset

BITR dst.b

Operation: Operand Operation Summary Bytes Cycles

DA.b Clear specified memory bit to logic zero 2 2

mema.b 2 2

memb.@L 2 2

@H+DA.b 2 2

Description: A BITR instruction clears to logic zero (resets) the specified bit within the destination operand. No
other bits in the destination are affected.

Operand Binary Code Operation Notation

DA.b 1 1 b1 b0 0 0 0 0 DA.b ← 0

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 0 mema.b ← 0

memb.@L 1 1 1 1 1 1 1 0 [memb.7–2 + L3–2].[L.1–0] ← 0

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 0 [H + DA.3–0].b ← 0

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. If the Bit location 30H.2 in the RAM has a current value of "1". The following instruction
clears the third bit of location 30H to "0":

BITR 30H.2 ; 30H.2 ← "0"

2. You can use BITR in the same way to manipulate a port address bit:

BITR P0.0 ; P0.0 ← "0"

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-32

BITR — Bit Reset

BITR (Continued)

Examples: 3. For clearing P0.2, P0.3, and P1.0–P1.3 to "0":

LD L,#2H
BP2 BITR P0.@L ; First, P0.@2H = P0.2

; (111100B) + 00B.10B = 0F0H.2
INCS L
CPSE L,#8H
JR BP2

4. If bank 0, location 0A0H.0 is cleared (and regardless of whether the EMB value is logic
zero), BITR has the following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BITR @H+FLAG ; Bank 0 (AH + 0H).0 = 0A0H.0 ← "0”

NOTE: Since the BITR instruction is used for output functions, the pin names used in the examples above may change for
different devices in the SAM47 product family.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-33

BITS — Bit Set

BITS dst.b

Operation: Operand Operation Summary Bytes Cycles

DA.b Set specified memory bit 2 2

mema.b 2 2

memb.@L 2 2

@H+DA.b 2 2

Description: This instruction sets the specified bit within the destination without affecting any other bits in the
destination. BITS can manipulate any bit that is addressable using direct or indirect addressing
modes.

Operand Binary Code Operation Notation

DA.b 1 1 b1 b0 0 0 0 1 DA.b ← 1

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 1 mema.b ← 1

memb.@L 1 1 1 1 1 1 1 1 [memb.7–2 + L.3–2].b [L.1–0] ← 1

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 1 [H + DA.3–0].b ← 1

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. If the bit location 30H.2 in the RAM has a current value of "0", the following instruction sets
the second bit of location 30H to "1".

BITS 30H.2 ; 30H.2 ← "1"

2. You can use BITS in the same way to manipulate a port address bit:

BITS P0.0 ; P0.0 ← "1"

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-34

BITS — Bit Set

BITS (Continued)

Examples: 3. For setting P0.2, P0.3, and P1.0–P1.3 to "1":

LD L,#2H
BP2 BITS P0.@L ; First, P0.@02H = P0.2

; (111100B) + 00B.10B = 0F0H.2
INCS L
CPSE L,#8H
JR BP2

4. If bank 0, location 0A0H.0, is set to "1" and the EMB = "0", BITS has the following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BITS @H+FLAG ; Bank 0 (AH + 0H).0 = 0A0H.0 ← "1"

NOTE: Since the BITS instruction is used for output functions, pin names used in the examples above may change for
different devices in the SAM47 product family.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-35

BOR — Bit Logical OR

BOR C,src.b

Operation: Operand Operation Summary Bytes Cycles

C,mema.b Logical-OR carry with specified memory bit 2 2

C,memb.@L 2 2

C,@H+DA.b 2 2

Description: The specified bit of the source is logically ORed with the carry flag bit value. The value of the
source is unaffected.

Operand Binary Code Operation Notation

C,mema.b * 1 1 1 1 0 1 1 0 C ← C OR mema.b

C,memb.@L 1 1 1 1 0 1 1 0 C ← C OR [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 0 C ← C OR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. The carry flag is logically ORed with the P1.0 value:

RCF ; C ← "0"
BOR C,P1.0 ; If P1.0 = "1", then C ← "1"; if P1.0 = "0", then C ← "0"

2. The P1 address is FF1H and register L contains the value 1H (0001B). The address
(memb.7–2) is 111100B and (L.3–2) = 00B. The resulting address is 11110000B or FF0H,
specifying P0. The bit value for the BOR instruction, (L.1–0) is 01B which specifies bit 1.
Therefore, P1.@L = P0.1:

LD L,#1H
BOR C,P1.@L ; P1.@L is specified as P0.1; C OR P0.1

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-36

BOR — Bit Logical OR

BOR (Continued)

Examples: 3. Register H contains the value 2H and FLAG = 20H.3. The address of H is 0010B and
FLAG(3–0) is 0000B. The resulting address is 00100000B or 20H. The bit value for the BOR
instruction is 3. Therefore, @H+FLAG = 20H.3:

FLAG EQU 20H.3
LD H,#2H
BOR C,@H+FLAG ; C OR FLAG (20H.3)

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-37

BTSF — Bit Test and Skip on False

BTSF dst.b

Operation: Operand Operation Summary Bytes Cycles

DA.b Test specified memory bit and skip if bit equals "0" 2 2 + S

mema.b 2 2 + S

memb.@L 2 2 + S

@H+DA.b 2 2 + S

Description: The specified bit within the destination operand is tested. If it is a "0", the BTSF instruction skips
the instruction which immediately follows it; otherwise the instruction following the BTSF is
executed. The destination bit value is not affected.

Operand Binary Code Operation Notation

DA.b 1 1 b1 b0 0 0 1 0 Skip if DA.b = 0

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 0 Skip if mema.b = 0

memb.@L 1 1 1 1 1 0 0 0 Skip if [memb.7–2 + L.3-2].
[L.1–0] = 0

0 1 0 0 a5 a4 a3 a2

@H + DA.b 1 1 1 1 1 0 0 0 Skip if [H + DA.3–0].b = 0

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FF0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. If RAM bit location 30H.2 is set to “0”, the following instruction sequence will cause the
program to continue execution from the instruction identifed as LABEL2:

BTSF 30H.2 ; If 30H.2 = "0", then skip
RET ; If 30H.2 = "1", return
JP LABEL2

2. You can use BTSF in the same way to test a port pin address bit:

BTSF P1.0 ; If P1.0 = "0", then skip
RET ; If P1.0 = "1", then return
JP LABEL3

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-38

BTSF — Bit Test and Skip on False

BTSF (Continued)

Examples: 3. P0.2, P0.3 and P1.0–P1.3 are tested:

LD L,#2H
BP2 BTSF P0.@L ; First, P1.@02H = P0.2

; (111100B) + 00B.10B = 0F0H.2
RET
INCS L
CPSE L,#8H
JR BP2

4. Bank 0, location 0A0H.0, is tested and (regardless of the current EMB value) BTSF has the
following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BTSF @H+FLAG ; If bank 0 (AH + 0H).0 = 0A0H.0 = "0", then skip
RET
•
•
•

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-39

BTST — Bit Test and Skip on True

BTST dst.b

Operation: Operand Operation Summary Bytes Cycles

C Test carry bit and skip if set (= "1") 1 1 + S

DA.b Test specified bit and skip if memory bit is set 2 2 + S

mema.b 2 2 + S

memb.@L 2 2 + S

@H+DA.b 2 2 + S

Description: The specified bit within the destination operand is tested. If it is "1", the instruction that
immediately follows the BTST instruction is skipped; otherwise the instruction following the BTST
instruction is executed. The destination bit value is not affected.

Operand Binary Code Operation Notation

C 1 1 0 1 0 1 1 1 Skip if C = 1

DA.b 1 1 b1 b0 0 0 1 1 Skip if DA.b = 1

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 1 Skip if mema.b = 1

memb.@L 1 1 1 1 1 0 0 1 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 1

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 0 0 1 Skip if [H + DA.3–0].b = 1

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. If RAM bit location 30H.2 is set to “0”, the following instruction sequence will execute the
RET instruction:

BTST 30H.2 ; If 30H.2 = "1", then skip
RET ; If 30H.2 = "0", return
JP LABEL2

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-40

BTST — Bit Test and Skip on True

BTST (Continued)

Examples: 2. You can use BTST in the same way to test a port pin address bit:

BTST P1.0 ; If P1.0 = "1", then skip
RET ; If P1.0 = "0", then return
JP LABEL3

3. P0.2, P0.3 and P1.0–P1.3 are tested:

LD L,#2H
BP2 BTST P0.@L ; First, P0.@02H = P0.2

; (111100B) + 00B.10B = 0F0H.2
RET
INCS L
CPSE L,#8H
JR BP2

4. Bank 0, location 0A0H.0, is tested and (regardless of the current EMB value) BTST has the
following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BTST @H+FLAG ; If bank 0 (AH + 0H).0 = 0A0H.0 = "1", then skip
RET
•
•
•

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-41

BTSTZ — Bit Test and Skip on True; Clear Bit

BTSTZ dst.b

Operation: Operand Operation Summary Bytes Cycles

mema.b Test specified bit; skip and clear if memory bit is set 2 2 + S

memb.@L 2 2 + S

@H+DA.b 2 2 + S

Description: The specified bit within the destination operand is tested. If it is a "1", the instruction immediately
following the BTSTZ instruction is skipped; otherwise the instruction following the BTSTZ is
executed. The destination bit value is cleared.

Operand Binary Code Operation Notation

mema.b * 1 1 1 1 1 1 0 1 Skip if mema.b = 1 and clear

memb.@L 1 1 1 1 1 1 0 1 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 1 and clear

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 0 1 Skip if [H + DA.3–0].b =1 and clear

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. Port pin P0.0 is toggled by checking the P0.0 value (level):

BTSTZ P0.0 ; If P0.0 = "1", then P0.0 ← "0" and skip
BITS P0.0 ; If P0.0 = "0", then P0.0 ← "1"
JP LABEL3

2. For toggling P2.2, P2.3, and P3.0–P3.3:

LD L,#0AH
BP2 BTSTZ P2.@L ; First, P2.@0AH = P2.2

; (111100B) + 10B.10B = 0F2H.2
BITS P2.@L
INCS L
JR BP2

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-42

BTSTZ — Bit Test and Skip on True; Clear Bit

BTSTZ (Continued)

Examples: 3. Bank 0, location 0A0H.0, is tested and EMB = "0":

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BTSTZ @H+FLAG ; If bank 0 (AH + 0H).0 = 0A0H.0 = "1", clear and skip
BITS @H+FLAG ; If 0A0H.0 = "0", then 0A0H.0 ← "1"

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-43

BXOR — Bit Exclusive OR

BXOR C,src.b

Operation: Operand Operation Summary Bytes Cycles

C,mema.b Exclusive-OR carry with memory bit 2 2

C,memb.@L 2 2

C,@H+DA.b 2 2

Description: The specified bit of the source is logically XORed with the carry bit value. The resultant bit is
written to the carry flag. The source value is unaffected.

Operand Binary Code Operation Notation

C,mema.b * 1 1 1 1 0 1 1 1 C ← C XOR mema.b

C,memb.@L 1 1 1 1 0 1 1 1 C ← C XOR [memb.7–2 + L.3-2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 1 C ← C XOR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. The carry flag is logically XORed with the P1.0 value:

RCF ; C ← "0"
BXOR C,P1.0 ; If P1.0 = "1", then C ← "1"; if P1.0 = "0", then C ← "0"

2. The P1 address is FF1H and register L contains the value 1H (0001B). The address
(memb.7–2) is 111100B and (L.3–2) = 00B. The resulting address is 11110000B or FF0H,
specifying P0. The bit value for the BXOR instruction, (L.1–0) is 01B which specifies bit 1.
Therefore, P1.@L = P0.1:

LD L,#0001B
BXOR C,P0.@L ; P1.@L is specified as P0.1; C XOR P0.1

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-44

BXOR — Bit Exclusive OR

BXOR (Continued)

Examples: 3. Register H contains the value 2H and FLAG = 20H.3. The address of H is 0010B and
FLAG(3–0) is 0000B. The resulting address is 00100000B or 20H. The bit value for the BOR
instruction is 3. Therefore, @H+FLAG = 20H.3:

FLAG EQU 20H.3
LD H,#2H
BXOR C,@H+FLAG ; C XOR FLAG (20H.3)

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-45

CALL — Call Procedure

CALL dst

Operation: Operand Operation Summary Bytes Cycles

ADR Call direct in page (14 bits) 3 4

Description: CALL calls a subroutine located at the destination address. The instruction adds three to the
program counter to generate the return address and then pushes the result onto the stack,
decreasing the stack pointer by six. The EMB and ERB are also pushed to the stack. Program
execution continues with the instruction at this address. The subroutine may therefore begin
anywhere in the full 16 K byte program memory address space.

Operand Binary Code Operation Notation

ADR 1 1 0 1 1 0 1 1 [(SP–1) (SP–2)] ← EMB, ERB

0 1 a13 a12 a11 a10 a9 a8 [(SP–3) (SP–4)] ← PC7–0

a7 a6 a5 a4 a3 a2 a1 a0 [(SP–5) (SP–6)] ← PC13–8

Example: The stack pointer value is 00H and the label 'PLAY' is assigned to program memory location
0E3FH. Executing the instruction

CALL PLAY

at location 0123H will generate the following values:

SP = 0FAH
0FFH = 0H
0FEH = EMB, ERB
0FDH = 2H
0FCH = 3H
0FBH = 0H
0FAH = 1H
PC = 0E3FH

Data is written to stack locations 0FFH–0FAH as follows:

SP - 6 (0FAH) PC11 – PC8

SP - 5 (0FBH) 0 0 PC13 PC12

SP - 4 (0FCH) PC3 – PC0

SP - 3 (0FDH) PC7 – PC4

SP - 2 (0FEH) 0 0 EMB ERB

SP - 1 (0FFH) 0 0 0 0

SP → (00H)

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-46

CALLS — Call Procedure (Short)

CALLS dst

Operation: Operand Operation Summary Bytes Cycles

ADR Call direct in page (11 bits) 2 3

Description: The CALLS instruction unconditionally calls a subroutine located at the indicated address. The
instruction increments the PC twice to obtain the address of the following instruction. Then, it
pushes the result onto the stack, decreasing the stack pointer six times. The higher bits of the
PC, with the exception of the lower 11 bits, are cleared. The CALLS instruction can be used in
the all range (0000H–3FFFH), but the subroutine call must therefore be located within the 2 K
byte block (0000H–07FFH) of program memory.

Operand Binary Code Operation Notation

ADR 1 1 1 0 1 a10 a9 a8 [(SP–1) (SP–2)] ← EMB, ERB

a7 a6 a5 a4 a3 a2 a1 a0 [(SP–3) (SP–4)] ← PC7–0

[(SP–5) (SP–6)] ← PC14–8

Example: The stack pointer value is 00H and the label 'PLAY' is assigned to program memory location
0345H. Executing the instruction

CALLS PLAY

at location 0123H will generate the following values:

SP = 0FAH
0FFH = 0H
0FEH = EMB, ERB
0FDH = 2H
0FCH = 3H
0FBH = 0H
0FAH = 1H
PC = 0345H

Data is written to stack locations 0FFH–0FAH as follows:

SP - 6 (0FAH) PC11 – PC8

SP - 5 (0FBH) 0 PC14 PC13 PC12

SP - 4 (0FCH) PC3 – PC0

SP - 3 (0FDH) PC7 – PC4

SP - 2 (0FEH) 0 0 EMB ERB

SP - 1 (0FFH) 0 0 0 0

SP → (00H)

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-47

CCF — Complement Carry Flag

CCF

Operation: Operand Operation Summary Bytes Cycles

– Complement carry flag 1 1

Description: The carry flag is complemented; if C = "1" it is changed to C = "0" and vice-versa.

Operand Binary Code Operation Notation

– 1 1 0 1 0 1 1 0 C ← C

Example: If the carry flag is logic zero, the instruction

CCF

changes the value to logic one.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-48

COM — Complement Accumulator

COM A

Operation: Operand Operation Summary Bytes Cycles

A Complement accumulator (A) 2 2

Description: The accumulator value is complemented; if the bit value of A is "1", it is changed to "0" and vice
versa.

Operand Binary Code Operation Notation

A 1 1 0 1 1 1 0 1 A ← A

0 0 1 1 1 1 1 1

Example: If the accumulator contains the value 4H (0100B), the instruction

COM A

leaves the value 0BH (1011B) in the accumulator.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-49

CPSE — Compare and Skip if Equal

CPSE dst,src

Operation: Operand Operation Summary Bytes Cycles

R,#im Compare and skip if register equals #im 2 2 + S

@HL,#im Compare and skip if indirect data memory equals #im 2 2 + S

A,R Compare and skip if A equals R 2 2 + S

A,@HL Compare and skip if A equals indirect data memory 1 1 + S

EA,@HL Compare and skip if EA equals indirect data memory 2 2 + S

EA,RR Compare and skip if EA equals RR 2 2 + S

Description: CPSE compares the source operand (subtracts it from) the destination operand, and skips the
next instruction if the values are equal. Neither operand is affected by the comparison.

Operand Binary Code Operation Notation

R,#im 1 1 0 1 1 0 0 1 Skip if R = im

d3 d2 d1 d0 0 r2 r1 r0

@HL,#im 1 1 0 1 1 1 0 1 Skip if (HL) = im

0 1 1 1 d3 d2 d1 d0

A,R 1 1 0 1 1 1 0 1 Skip if A = R

0 1 1 0 1 r2 r1 r0

A,@HL 0 0 1 1 1 0 0 0 Skip if A = (HL)

EA,@HL 1 1 0 1 1 1 0 0 Skip if A = (HL), E = (HL+1)

0 0 0 0 1 0 0 1

EA,RR 1 1 0 1 1 1 0 0 Skip if EA = RR

1 1 1 0 1 r2 r1 0

Example: The extended accumulator contains the value 34H and register pair HL contains 56H. The
second instruction (RET) in the instruction sequence

CPSE EA,HL
RET

is not skipped. That is, the subroutine returns since the result of the comparison is 'not equal.'

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-50

DECS — Decrement and Skip on Borrow

DECS dst

Operation: Operand Operation Summary Bytes Cycles

R Decrement register (R); skip on borrow 1 1 + S

RR Decrement register pair (RR); skip on borrow 2 2 + S

Description: The destination is decremented by one. An original value of 00H will underflow to 0FFH. If a
borrow occurs, a skip is executed. The carry flag value is unaffected.

Operand Binary Code Operation Notation

R 0 1 0 0 1 r2 r1 r0 R ← R–1; skip on borrow

RR 1 1 0 1 1 1 0 0 RR ← RR–1; skip on borrow

1 1 0 1 1 r2 r1 0

Examples: 1. Register pair HL contains the value 7FH (01111111B). The following instruction leaves the
value 7EH in register pair HL:

DECS HL

2. Register A contains the value 0H. The following instruction sequence leaves the value 0FFH
in register A. Since a "borrow" occurs, the 'CALL PLAY1' instruction is skipped and the 'CALL
PLAY2' instruction is executed:

DECS A ; "Borrow" occurs
CALL PLAY1 ; Skipped
CALL PLAY2 ; Executed

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-51

DI — Disable Interrupts

DI

Operation: Operand Operation Summary Bytes Cycles

– Disable all interrupts 2 2

Description: Bit 3 of the interrupt priority register IPR, IME, is cleared to logic zero, disabling all interrupts.
Interrupts can still set their respective interrupt status latches, but the CPU will not directly
service them.

Operand Binary Code Operation Notation

– 1 1 1 1 1 1 1 0 IME ← 0

1 0 1 1 0 0 1 0

Example: If the IME bit (bit 3 of the IPR) is logic one (e.g., all instructions are enabled), the instruction

DI

sets the IME bit to logic zero, disabling all interrupts.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-52

EI — Enable Interrupts

EI

Operation: Operand Operation Summary Bytes Cycles

– Enable all interrupts 2 2

Description: Bit 3 of the interrupt priority register IPR (IME) is set to logic one. This allows all interrupts to be
serviced when they occur, assuming they are enabled. If an interrupt's status latch was
previously enabled by an interrupt, this interrupt can also be serviced.

Operand Binary Code Operation Notation

– 1 1 1 1 1 1 1 1 IM ← 1

1 0 1 1 0 0 1 0

Example: If the IME bit (bit 3 of the IPR) is logic zero (e.g., all instructions are disabled), the instruction

EI

sets the IME bit to logic one, enabling all interrupts.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-53

IDLE — Idle Operation

IDLE

Operation: Operand Operation Summary Bytes Cycles

– Engage CPU idle mode 2 2

Description: IDLE causes the CPU clock to stop while the system clock continues oscillating by setting bit 2 of
the power control register (PCON). After an IDLE instruction has been executed, peripheral hard-
ware remains operative.

In application programs, an IDLE instruction must be immediately followed by at least three NOP
instructions. This ensures an adequate time interval for the clock to stabilize before the next
instruction is executed. If three or more NOP instructions are not used after IDLE instruction,
leakage current could be flown because of the floating state in the internal bus.

Operand Binary Code Operation Notation

– 1 1 1 1 1 1 1 1 PCON.2 ← 1

1 0 1 0 0 0 1 1

Example: The instruction sequence

IDLE
NOP
NOP
NOP

sets bit 2 of the PCON register to logic one, stopping the CPU clock. The three NOP instructions
provide the necessary timing delay for clock stabilization before the next instruction in the
program sequence is executed.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-54

INCS — Increment and Skip on Carry

INCS dst

Operation: Operand Operation Summary Bytes Cycles

R Increment register (R); skip on carry 1 1 + S

DA Increment direct data memory; skip on carry 2 2 + S

@HL Increment indirect data memory; skip on carry 2 2 + S

RRb Increment register pair (RRb); skip on carry 1 1 + S

Description: The instruction INCS increments the value of the destination operand by one. An original value
of 0FH will, for example, overflow to 00H. If a carry occurs, the next instruction is skipped. The
carry flag value is unaffected.

Operand Binary Code Operation Notation

R 0 1 0 1 1 r2 r1 r0 R ← R + 1; skip on carry

DA 1 1 0 0 1 0 1 0 DA ← DA + 1; skip on carry

a7 a6 a5 a4 a3 a2 a1 a0

@HL 1 1 0 1 1 1 0 1 (HL) ← (HL) + 1; skip on carry

0 1 1 0 0 0 1 0

RRb 1 0 0 0 0 r2 r1 0 RRb ← RRb + 1; skip on carry

Example: Register pair HL contains the value 7EH (01111110B). RAM location 7EH contains 0FH. The
instruction sequence

INCS @HL ; 7EH ← "0"
INCS HL ; Skip
INCS @HL ; 7EH ← "1"

leaves the register pair HL with the value 7EH and RAM location 7EH with the value 1H. Since a
carry occurred, the second instruction is skipped. The carry flag value remains unchanged.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-55

IRET — Return from Interrupt

IRET

Operation: Operand Operation Summary Bytes Cycles

– Return from interrupt 1 3

Description: IRET is used at the end of an interrupt service routine. It pops the PC values successively from
the stack and restores them to the program counter. The stack pointer is incremented by six and
the PSW, enable memory bank (EMB) bit, and enable register bank (ERB) bit are also
automatically restored to their pre-interrupt values. Program execution continues from the
resulting address, which is generally the instruction immediately after the point at which the
interrupt request was detected. If a lower-level or same-level interrupt was pending when the
IRET was executed, IRET will be executed before the pending interrupt is processed.

Since the 'a14' bit of an interrupt return address is not stored in the stack, this bit location is
always interpreted as a logic zero. The starting address in the ROM must for this reason be
located in 0000H–3FFFH.

Operand Binary Code Operation Notation

– 1 1 0 1 0 1 0 1 PC13–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 3) (SP + 2)
PSW ← (SP + 5) (SP + 4)
SP ← SP + 6

Example: The stack pointer contains the value 0FAH. An interrupt is detected in the instruction at location
0123H. RAM locations 0FDH, 0FCH, and 0FAH contain the values 2H, 3H, and 1H, respectively.
The instruction

IRET

leaves the stack pointer with the value 00H and the program returns to continue execution at
location 0123H.

During a return from interrupt, data is popped from the stack to the program counter. The data in
stack locations 0FFH–0FAH is organized as follows:

SP → (0FAH) PC11 – PC8

SP + 1 (0FBH) 0 0 PC13 PC12

SP + 2 (0FCH) PC3 – PC0

SP + 3 (0FDH) PC7 – PC4

SP + 4 (0FEH) IS1 IS0 EMB ERB

SP + 5 (0FFH) C SC2 SC1 SC0

SP + 6 (00H)

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-56

JP — Jump

JP dst

Operation: Operand Operation Summary Bytes Cycles

ADR Jump to direct address (14 bits) 3 3

Description: JP causes an unconditional branch to the indicated address by replacing the contents of the
program counter with the address specified in the destination operand. The destination can be
anywhere in the 16 K byte program memory address space.

Operand Binary Code Operation Notation

ADR 1 1 0 1 1 0 1 1 PC13–0 ← ADR13–0

0 0 a13 a12 a11 a10 a9 a8

a7 a6 a5 a4 a3 a2 a1 a0

Example: The label 'SYSCON' is assigned to the instruction at program location 07FFH. The instruction

JP SYSCON

at location 0123H will load the program counter with the value 07FFH.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-57

JPS — Jump (Short)

JPS dst

Operation: Operand Operation Summary Bytes Cycles

ADR Jump direct in page (12 bits) 2 2

Description: JPS causes an unconditional branch to the indicated address with the 4 K byte program memory
address space. Bits 0–11 of the program counter are replaced with the directly specified address.
The destination address for this jump is specified to the assembler by a label or by an actual
address in program memory.

Operand Binary Code Operation Notation

ADR 1 0 0 1 a11 a10 a9 a8 PC13–0 ← PC13–12+ADR11–0

a7 a6 a5 a4 a3 a2 a1 a0

Example: The label 'SUB' is assigned to the instruction at program memory location 00FFH. The instruction

JPS SUB

at location 0EABH will load the program counter with the value 00FFH. Normally, the JPS
instruction jumps to the address in the block in which the instruction is located. If the first byte of
the instruction code is located at address xFFEH or xFFFH, the instruction will jump to the next
block. If the instruction 'JPS SUB' were located instead at program memory address 0FFEH or
0FFFH, the instruction 'JPS SUB' would load the PC with the value 10FFH, causing a program
malfunction.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-58

JR — Jump Relative (Very Short)

JR dst

Operation: Operand Operation Summary Bytes Cycles

#im Branch to relative immediate address 1 2

@WX Branch relative to contents of WX register 2 3

@EA Branch relative to contents of EA 2 3

Description: JR causes the relative address to be added to the program counter and passes control to the
instruction whose address is now in the PC. The range of the relative address is current PC – 15
to current PC + 16. The destination address for this jump is specified to the assembler by a label,
an actual address, or by immediate data using a plus sign (+) or a minus sign (–).

For immediate addressing, the (+) range is from 2 to 16 and the (–) range is from –1 to –15. If a
0, 1, or any other number that is outside these ranges are used, the assembler interprets it as an
error.

For JR @WX and JR @EA branch relative instructions, the valid range for the relative address is
0H–0FFH. The destination address for these jumps can be specified to the assembler by a label
that lies anywhere within the current 256-byte block.

Normally, the 'JR @WX' and 'JR @EA' instructions jump to the address in the page in which the
instruction is located. However, if the first byte of the instruction code is located at address
xxFEH or xxFFH, the instruction will jump to the next page.

Operand Binary Code Operation Notation

#im * PC13–0 ← ADR (PC–15 to
PC+16)

@WX 1 1 0 1 1 1 0 1 PC13–0 ← PC13–8 + (WX)

0 1 1 0 0 1 0 0

@EA 1 1 0 1 1 1 0 1 PC13–0 ← PC13–8 + (EA)

0 1 1 0 0 0 0 0

First Byte Condition

* JR #im 0 0 0 1 a3 a2 a1 a0 PC ← PC+2 to PC+16

0 0 0 0 a3 a2 a1 a0 PC ← PC–1 to PC–15

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-59

JR — Jump Relative (Very Short)

JR (Continued)

Examples: 1. A short form for a relative jump to label 'KK' is the instruction

JR KK

where 'KK' must be within the allowed range of current PC–15 to current PC+16. The JR
instruction has in this case the effect of an unconditional JP instruction.

2. In the following instruction sequence, if the instruction 'LD WX, #02H' were to be executed in
place of 'LD WX,#00H', the program would jump to 1004H and 'JPS CCC' would be
executed. If 'LD WX,#03H' were to be executed, the jump would be to1006H and 'JPS DDD'
would be executed.

ORG 1000H

JPS AAA
JPS BBB
JPS CCC
JPS DDD

XXX LD WX,#00H ; WX ← 00H
LD EA,WX
ADS WX,EA ; WX ← (WX) + (EA)
JR @WX ; Current PC12–8 (10H) + WX (00H) = 1000H

; Jump to address 1000H and execute JPS AAA

3. Here is another example:

ORG 1100H

LD A,#0H
LD A,#1H
LD A,#2H
LD A,#3H
LD 30H,A ; Address 30H ← A
JPS YYY

XXX LD EA,#00H ; EA ← 00H
JR @EA ; Jump to address 1100H

; Address 30H ← 00H

If 'LD EA,#01H' were to be executed in place of 'LD EA,#00H', the program would jump to
1101H and address 30H would contain the value 1H. If 'LD EA,#02H' were to be executed,
the jump would be to 1102H and address 30H would contain the value 2H.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-60

LD — Load

LD dst,src

Operation: Operand Operation Summary Bytes Cycles

A,#im Load 4-bit immediate data to A 1 1

A,@RRa Load indirect data memory contents to A 1 1

A,DA Load direct data memory contents to A 2 2

A,Ra Load register contents to A 2 2

Ra,#im Load 4-bit immediate data to register 2 2

RR,#imm Load 8-bit immediate data to register 2 2

DA,A Load contents of A to direct data memory 2 2

Ra,A Load contents of A to register 2 2

EA,@HL Load indirect data memory contents to EA 2 2

EA,DA Load direct data memory contents to EA 2 2

EA,RRb Load register contents to EA 2 2

@HL,A Load contents of A to indirect data memory 1 1

DA,EA Load contents of EA to data memory 2 2

RRb,EA Load contents of EA to register 2 2

@HL,EA Load contents of EA to indirect data memory 2 2

Description: The contents of the source are loaded into the destination. The source's contents are unaffected.

If an instruction such as 'LD A,#im' (LD EA,#imm) or 'LD HL,#imm' is written more than two
times in succession, only the first LD will be executed; the other similar instructions that
immediately follow the first LD will be treated like a NOP. This is called the 'redundancy effect'
(see examples below).

Operand Binary Code Operation Notation

A,#im 1 0 1 1 d3 d2 d1 d0 A ← im

A,@RRa 1 0 0 0 1 i2 i1 i0 A ← (RRa)

A,DA 1 0 0 0 1 1 0 0 A ← DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 1 1 0 1 1 1 0 1 A ← Ra

0 0 0 0 1 r2 r1 r0

Ra,#im 1 1 0 1 1 0 0 1 Ra ← im

d3 d2 d1 d0 1 r2 r1 r0

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-61

LD — Load

LD (Continued)

Description: Operand Binary Code Operation Notation

RR,#imm 1 0 0 0 0 r2 r1 1 RR ← imm

d7 d6 d5 d4 d3 d2 d1 d0

DA,A 1 0 0 0 1 0 0 1 DA ← A

a7 a6 a5 a4 a3 a2 a1 a0

Ra,A 1 1 0 1 1 1 0 1 Ra ← A

0 0 0 0 0 r2 r1 r0

EA,@HL 1 1 0 1 1 1 0 0 A ← (HL), E ← (HL + 1)

0 0 0 0 1 0 0 0

EA,DA 1 1 0 0 1 1 1 0 A ← DA, E ← DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ← RRb

1 1 1 1 0 r2 r1 0

@HL,A 1 1 0 0 0 1 0 0 (HL) ← A

DA,EA 1 1 0 0 1 1 0 1 DA ← A, DA + 1 ← E

a7 a6 a5 a4 a3 a2 a1 a0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← EA

1 1 1 1 0 r2 r1 0

@HL,EA 1 1 0 1 1 1 0 0 (HL) ← A, (HL + 1) ← E

0 0 0 0 0 0 0 0

Examples: 1. RAM location 30H contains the value 4H. The RAM location values are 40H, 41H and 0AH,
3H respectively. The following instruction sequence leaves the value 40H in point pair HL,
0AH in the accumulator and in RAM location 40H, and 3H in register E.

LD HL,#30H ; HL ← 30H
LD A,@HL ; A ← 4H
LD HL,#40H ; HL ← 40H
LD EA,@HL ; A ← 0AH, E ← 3H
LD @HL,A ; RAM (40H) ← 0AH

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-62

LD — Load

LD (Continued)

Examples: 2. If an instruction such as LD A,#im (LD EA,#imm) or LD HL,#imm is written more than two
times in succession, only the first LD is executed; the next instructions are treated as NOPs.
Here are two examples of this 'redundancy effect':

LD A,#1H ; A ← 1H
LD EA,#2H ; NOP
LD A,#3H ; NOP
LD 23H,A ; (23H) ← 1H

LD HL,#10H ; HL ← 10H
LD HL,#20H ; NOP
LD A,#3H ; A ← 3H
LD EA,#35 ; NOP
LD @HL,A ; (10H) ← 3H

The following table contains descriptions of special characteristics of the LD instruction when
used in different addressing modes:

Instruction Operation Description and Guidelines

LD A,#im Since the 'redundancy effect' occurs with instructions like LD EA,#imm, if this
instruction is used consecutively, the second and additional instructions of the
same type will be treated like NOPs.

LD A,@RRa Load the data memory contents pointed to by 8-bit RRa register pairs (HL, WX,
WL) to the A register.

LD A,DA Load direct data memory contents to the A register.

LD A,Ra Load 4-bit register Ra (E, L, H, X, W, Z, Y) to the A register.

LD Ra,#im Load 4-bit immediate data into the Ra register (E, L, H, X, W, Y, Z).

LD RR,#imm Load 8-bit immediate data into the Ra register (EA, HL, WX, YZ). There is a
redundancy effect if the operation addresses the HL or EA registers.

LD DA,A Load contents of register A to direct data memory address.

LD Ra,A Load contents of register A to 4-bit Ra register (E, L, H, X, W, Z, Y).

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-63

LD — Load

LD (Concluded)

Examples: Instruction Operation Description and Guidelines

LD EA,@HL Load data memory contents pointed to by 8-bit register HL to the A register,
and the contents of HL+1 to the E register. The contents of register L must be
an even number. If the number is odd, the LSB of register L is recognized as a
logic zero (an even number), and it is not replaced with the true value. For
example, 'LD HL,#36H' loads immediate 36H to HL and the next instruction
'LD EA,@HL' loads the contents of 36H to register A and the contents of 37H
to register E.

LD EA,DA Load direct data memory contents of DA to the A register, and the next direct
data memory contents of DA + 1 to the E register. The DA value must be an
even number. If it is an odd number, the LSB of DA is recognized as a logic
zero (an even number), and it is not replaced with the true value. For example,
'LD EA,37H' loads the contents of 36H to the A register and the contents of
37H to the E register.

LD EA,RRb Load 8-bit RRb register (HL, WX, YZ) to the EA register. H, W, and Y register
values are loaded into the E register, and the L, X, and Z values into the A
register.

LD @HL,A Load A register contents to data memory location pointed to by the 8-bit HL
register value.

LD DA,EA Load the A register contents to direct data memory and the E register contents
to the next direct data memory location. The DA value must be an even
number. If it is an odd number, the LSB of the DA value is recognized as logic
zero (an even number), and is not replaced with the true value.

LD RRb,EA Load contents of EA to the 8-bit RRb register (HL, WX, YZ). The E register is
loaded into the H, W, and Y register and the A register into the L, X, and Z
register.

LD @HL,EA Load the A register to data memory location pointed to by the 8-bit HL register,
and the E register contents to the next location, HL + 1. The contents of the L
register must be an even number. If the number is odd, the LSB of the L
register is recognized as logic zero (an even number), and is not replaced with
the true value. For example, 'LD HL,#36H' loads immediate 36H to register
HL; the instruction 'LD @HL,EA' loads the contents of A into address 36H and
the contents of E into address 37H.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-64

LDB — Load Bit

LDB dst,src.b
LDB dst.b,src

Operation: Operand Operation Summary Bytes Cycles

mema.b,C Load carry bit to a specified memory bit 2 2

memb.@L,C Load carry bit to a specified indirect memory bit 2 2

@H+DA.b,C 2 2

C,mema.b Load memory bit to a specified carry bit 2 2

C,memb.@L Load indirect memory bit to a specified carry bit 2 2

C,@H+DA.b 2 2

Description: The Boolean variable indicated by the first or second operand is copied into the location specified
by the second or first operand. One of the operands must be the carry flag; the other may be any
directly or indirectly addressable bit. The source is unaffected.

Operand Binary Code Operation Notation

mema.b,C * 1 1 1 1 1 1 0 0 mema.b ← C

memb.@L,C 1 1 1 1 1 1 0 0 memb.7–2 + [L.3–2]. [L.1–0] ← C

0 1 0 0 a5 a4 a3 a2

@H+DA.b,C 1 1 1 1 1 1 0 0 H + [DA.3–0].b ← (C)

0 0 b1 b0 a3 a2 a1 a0

C,mema.b* 1 1 1 1 0 1 0 0 C ← mema.b

C,memb.@L 1 1 1 1 0 1 0 0 C ← memb.7–2 + [L.3–2] . [L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 0 C ← [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-65

LDB — Load Bit

LDB (Continued)

Examples: 1. The carry flag is set and the data value at input pin P1.0 is logic zero. The following
instruction clears the carry flag to logic zero.

LDB C,P1.0

2. The P1 address is FF1H and the L register contains the value 1H (0001B). The address
(memb.7–2) is 111100B and (L.3–2) is 00B. The resulting address is 11110000B or FF0H
and P0 is addressed. The bit value (L.1–0) is specified as 01B (bit 1).

LD L,#0001B
LDB C,P1.@L ; P1.@L specifies P0.1 and C ← P0.1

3. The H register contains the value 2H and FLAG = 20H.3. The address for H is 0010B and for
FLAG(3–0) the address is 0000B. The resulting address is 00100000B or 20H. The bit value
is 3. Therefore, @H+FLAG = 20H.3.

FLAG EQU 20H.3
LD H,#2H
LDB C,@H+FLAG ; C ← FLAG (20H.3)

4. The following instruction sequence sets the carry flag and the loads the "1" data value to the
output pin P1.0, setting it to output mode:

SCF ; C ← "1"
LDB P1.0,C ; P1.0 ← "1"

5. The P1 address is FF1H and L = 01H (0001B). The address (memb.7–2) is 111100B and
(L.3–2) is 00B. The resulting address, 11110000B specifies P0. The bit value (L.1–0) is
specified as 01B (bit 1). Therefore, P1.@L = P0.1.

SCF ; C ← "1"
LD L,# 0001B
LDB P1.@L,C ; P1.@L specifies P0.1

; P0.1 ← "1"

6. In this example, H = 2H and FLAG = 20H.3 and the address 20H is specified. Since the bit
value is 3, @H+FLAG = 20H.3:

FLAG EQU 20H.3
RCF ; C ← "0"
LD H,#2H
LDB @H+FLAG,C ; FLAG(20H.3) ← "0"

NOTE: Port pin names used in examples 4 and 5 may vary with different SAM47 devices.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-66

LDC — Load Code Byte

LDC dst,src

Operation: Operand Operation Summary Bytes Cycles

EA,@WX Load code byte from WX to EA 1 3

EA,@EA Load code byte from EA to EA 1 3

Description: This instruction is used to load a byte from program memory into an extended accumulator. The
address of the byte fetched is the six highest bit values in the program counter and the contents
of an 8-bit working register (either WX or EA). The contents of the source are unaffected.

Operand Binary Code Operation Notation

EA,@WX 1 1 0 0 1 1 0 0 EA ← [PC13–8 + (WX)]

EA,@EA 1 1 0 0 1 0 0 0 EA ← [PC13–8 + (EA)]

Examples: 1. The following instructions will load one of four values defined by the define byte (DB)
directive to the extended accumulator:

LD EA,#00H
CALL DISPLAY
JPS MAIN

ORG 0500H

DB 66H
DB 77H
DB 88H
DB 99H

DISPLAY LDC EA,@EA ; EA ← address 0500H = 66H
RET

If the instruction 'LD EA,#01H' is executed in place of 'LD EA,#00H', The content of 0501H
(77H) is loaded to the EA register. If 'LD EA,#02H' is executed, the content of address 0502H
(88H) is loaded to EA.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-67

LDC — Load Code Byte

LDC (Continued)

Examples: 2. The following instructions will load one of four values defined by the define byte (DB)
directive to the extended accumulator:

ORG 0500H

DB 66H
DB 77H
DB 88H
DB 99H

DISPLAY LD WX,#00H
LDC EA,@WX ; EA ← address 0500H = 66H
RET

If the instruction 'LD WX,#01H' is executed in place of 'LD WX,#00H', then
EA ← address 0501H = 77H.

If the instruction 'LD WX,#02H' is executed in place of 'LD WX,#00H', then
EA ← address 0502H = 88H.

3. Normally, the LDC EA, @EA and the LDC EA, @WX instructions reference the table data
on the page on which the instruction is located. If, however, the instruction is located at
address xxFFH, it will reference table data on the next page. In this example, the upper 4 bits
of the address at location 0200H is loaded into register E and the lower 4 bits into register A:

ORG 01FDH
01FDH LD WX,#00H
01FFH LDC EA,@WX ; E ← upper 4 bits of 0200H address

; A ← lower 4 bits of 0200H address

4. Here is another example of page referencing with the LDC instruction:

ORG 0100H
DB 67H
SMB 0
LD HL,#30H ; Even number
LD WX,#00H
LDC EA,@WX ; E ← upper 4 bits of 0100H address

; A ← lower 4 bits of 0100H address
LD @HL,EA ; RAM (30H) ← 7, RAM (31H) ← 6

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-68

LDD — Load Data Memory and Decrement

LDD dst

Operation: Operand Operation Summary Bytes Cycles

A,@HL Load indirect data memory contents to A; decrement
register L contents and skip on borrow

1 2 + S

Description: The contents of a data memory location are loaded into the accumulator, and the contents of the
register L are decreased by one. If a "borrow" occurs (e.g., if the resulting value in register L is
0FH), the next instruction is skipped. The contents of data memory and the carry flag value are
not affected.

Operand Binary Code Operation Notation

A,@HL 1 0 0 0 1 0 1 1 A ← (HL), then L ← L–1;
skip if L = 0FH

Example: In this example, assume that register pair HL contains 20H and internal RAM location 20H
contains the value 0FH:

LD HL,#20H
LDD A,@HL ; A ← (HL) and L ← L–1
JPS XXX ; Skip
JPS YYY ; H ← 2H and L ← 0FH

The instruction 'JPS XXX' is skipped since a "borrow" occurred after the 'LDD A,@HL' and
instruction 'JPS YYY' is executed.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-69

LDI — Load Data Memory and Increment

LDI dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Load indirect data memory to A; increment register L
contents and skip on overflow

1 2 + S

Description: The contents of a data memory location are loaded into the accumulator, and the contents of the
register L are incremented by one. If an overflow occurs (e.g., if the resulting value in register L
is 0H), the next instruction is skipped. The contents of data memory and the carry flag value are
unaffected.

Operand Binary Code Operation Notation

A,@HL 1 0 0 0 1 0 1 0 A ← (HL), then L ← L+1;
skip if L = 0H

Example: Assume that register pair HL contains the address 2FH and internal RAM location 2FH contains
the value 0FH:

LD HL,#2FH
LDI A,@HL ; A ← (HL) and L ← L+1
JPS XXX ; Skip
JPS YYY ; H ← 2H and L ← 0H

The instruction 'JPS XXX' is skipped since an overflow occurred after the 'LDI A,@HL' and the
instruction 'JPS YYY' is executed.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-70

NOP — No Operation

NOP

Operation: Operand Operation Summary Bytes Cycles

– No operation 1 1

Description: No operation is performed by a NOP instruction. It is typically used for timing delays.

One NOP causes a 1-cycle delay: with a 1 µs cycle time, five NOPs would therefore cause a 5 µs
delay. Program execution continues with the instruction immediately following the NOP. Only the
PC is affected. At least three NOP instructions should follow a STOP or IDLE instruction.

Operand Binary Code Operation Notation

– 1 0 1 0 0 0 0 0 No operation

Example: Three NOP instructions follow the STOP instruction to provide a short interval for clock
stabilization before power-down mode is initiated:

STOP
NOP
NOP
NOP

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-71

OR — Logical OR

OR dst,src

Operation: Operand Operation Summary Bytes Cycles

A, #im Logical-OR immediate data to A 2 2

A, @HL Logical-OR indirect data memory contents to A 1 1

EA,RR Logical-OR double register to EA 2 2

RRb,EA Logical-OR EA to double register 2 2

Description: The source operand is logically ORed with the destination operand. The result is stored in the
destination. The contents of the source are unaffected.

Operand Binary Code Operation Notation

A, #im 1 1 0 1 1 1 0 1 A ← A OR im

0 0 1 0 d3 d2 d1 d0

A, @HL 0 0 1 1 1 0 1 0 A ← A OR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA OR RR

0 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb OR EA

0 0 1 0 0 r2 r1 0

Example: If the accumulator contains the value 0C3H (11000011B) and register pair HL the value 55H
(01010101B), the instruction

OR EA,@HL

leaves the value 0D7H (11010111B) in the accumulator .

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-72

POP — Pop from Stack

POP dst

Operation: Operand Operation Summary Bytes Cycles

RR Pop to register pair from stack 1 1

SB Pop SMB and SRB values from stack 2 2

Description: The contents of the RAM location addressed by the stack pointer is read, and the SP is
incremented by two. The value read is then transferred to the variable indicated by the
destination operand.

Operand Binary Code Operation Notation

RR 0 0 1 0 1 r2 r1 0 RRL ← (SP), RRH ← (SP+1)
SP ← SP+2

SB 1 1 0 1 1 1 0 1 (SRB) ← (SP), SMB ← (SP+1),
SP ← SP+2

0 1 1 0 0 1 1 0

Example: The SP value is equal to 0EDH, and RAM locations 0EFH through 0EDH contain the values 2H,
3H, and 4H, respectively. The instruction

POP HL

leaves the stack pointer set to 0EFH and the data pointer pair HL set to 34H.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-73

PUSH — Push Onto Stack

PUSH src

Operation: Operand Operation Summary Bytes Cycles

RR Push register pair onto stack 1 1

SB Push SMB and SRB values onto stack 2 2

Description: The SP is then decreased by two and the contents of the source operand are copied into the
RAM location addressed by the stack pointer, thereby adding a new element to the top of the
stack.

Operand Binary Code Operation Notation

RR 0 0 1 0 1 r2 r1 1 (SP–1) ← RRH, (SP–2) ← RRL
SP ← SP–2

SB 1 1 0 1 1 1 0 1 (SP–1) ← SMB, (SP–2) ← SRB;
(SP) ← SP–2

0 1 1 0 0 1 1 1

Example: As an interrupt service routine begins, the stack pointer contains the value 0FAH and the data
pointer register pair HL contains the value 20H. The instruction

PUSH HL

leaves the stack pointer set to 0F8H and stores the values 2H and 0H in RAM locations 0F9H
and 0F8H, respectively.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-74

RCF — Reset Carry Flag

RCF

Operation: Operand Operation Summary Bytes Cycles

– Reset carry flag to logic zero 1 1

Description: The carry flag is cleared to logic zero, regardless of its previous value.

Operand Binary Code Operation Notation

– 1 1 1 0 0 1 1 0 C ← 0

Example: Assuming the carry flag is set to logic one, the instruction

RCF

resets (clears) the carry flag to logic zero.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-75

REF — Reference Instruction

REF dst

Operation: Operand Operation Summary Bytes Cycles

memc Reference code 1 1 (note)

NOTE: The instruction referenced by REF determines instruction cycles.

Description: The REF instruction is used to rewrite into 1-byte form, arbitrary 2-byte or 3-byte instructions (or
two 1-byte instructions) stored in the REF instruction reference area in program memory. REF
reduces the number of program memory accesses for a program.

Operand Binary Code Operation Notation

memc t7 t6 t5 t4 t3 t2 t1 t0 PC13–0 ← memc.5–0 + (memc +
1).7–0

TJP and TCALL are 2-byte pseudo-instructions that are used only to specify the reference area:

1. When the reference area is specified by the TJP instruction,
memc.7–6 = 00
PC13–0 ← memc.5–0 + (memc + 1).7–0

2. When the reference area is specified by the TCALL instruction,
memc.7–6 = 01
(SP–4) (SP–1) (SP–2) ← PC11–0
SP–3 ← EMB, ERB, PC13–12
PC13–0 ← memc.5–0 + (memc + 1).7–0
SP ← SP–4

When the reference area is specified by any other instruction, the 'memc' and 'memc + 1'
instructions are executed.

Instructions referenced by REF occupy 2 bytes of memory space (for two 1-byte instructions or
one 2-byte instruction) and must be written as an even number from 0020H to 007FH in ROM. In
addition, the destination address of the TJP and TCALL instructions must be located with the
3FFFH address. TJP and TCALL are reference instructions for JP/JPS and CALL/CALLS.

If the instruction following a REF is subject to the 'redundancy effect', the redundant instruction is
skipped. If, however, the REF follows a redundant instruction, it is executed.

On the other hand, the binary code of a REF instruction is 1 byte. The upper 4 bits become the
higher address bits of the referenced instruction, and the lower 4 bits of the referenced instruction
becomes the lower address, producing a total of 8 bits or 1 byte (see Example 3 below).

NOTE: If the MSB value of the first one-byte binary code in instruction is “0”, the instruction cannot be referenced by a REF
instruction.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-76

REF — Reference Instruction

REF (Continued)

Examples: 1. Instructions can be executed efficiently using REF, as shown in the following example:

ORG 0020H
AAA LD HL,#00H
BBB LD EA,#FFH
CCC TCALL SUB1
DDD TJP SUB2

•
•
•
ORG 0080H
REF AAA ; LD HL,#00H
REF BBB ; LD EA,#FFH
REF CCC ; CALL SUB1
REF DDD ; JP SUB2

2. The following example shows how the REF instruction is executed in relation to LD
instructions that have a 'redundancy effect':

ORG 0020H
AAA LD EA,#40H

•
•
•
ORG 0100H
LD EA,#30H
REF AAA ; Not skipped
•
•
•
REF AAA
LD EA,#50H ; Skipped
SRB 2

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-77

REF — Reference Instruction

REF (Concluded)

Examples: 3. In this example the binary code of 'REF A1' at locations 20H–21H is 20H, for 'REF A2' at
locations 22H–23H, it is 21H, and for 'REF A3' at 24H–25H, the binary code is 22H :

Opcode Symbol Instruction

ORG 0020H

83 00 A1 LD HL,#00H
83 03 A2 LD HL,#03H
83 05 A3 LD HL,#05H
83 10 A4 LD HL,#10H
83 26 A5 LD HL,#26H
83 08 A6 LD HL,#08H
83 0F A7 LD HL,#0FH
83 F0 A8 LD HL,#0F0H
83 67 A9 LD HL,#067H
41 0B A10 TCALL SUB1
01 0D A11 TJP SUB2

•
•
•
ORG 0100H

20 REF A1 ; LD HL,#00H
21 REF A2 ; LD HL,#03H
22 REF A3 ; LD HL,#05H
23 REF A4 ; LD HL,#10H
24 REF A5 ; LD HL,#26H
25 REF A6 ; LD HL,#08H
26 REF A7 ; LD HL,#0FH
27 REF A8 ; LD HL,#0F0H
30 REF A9 ; LD HL,#067H
31 REF A10 ; CALL SUB1
32 REF A11 ; JP SUB2

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-78

RET — Return from Subroutine

RET

Operation: Operand Operation Summary Bytes Cycles

– Return from subroutine 1 3

Description: RET pops the PC values successively from the stack, incrementing the stack pointer by six.
Program execution continues from the resulting address, generally the instruction immediately
following a CALL or CALLS.

Operand Binary Code Operation Notation

– 1 1 0 0 0 1 0 1 PC13–8 ← (SP+1) (SP)
PC7–0 ← (SP+3) (SP+2)
EMB,ERB ← (SP+4)
SP ← SP+6

Example: The stack pointer contains the value 0FAH. RAM locations 0FAH, 0FBH, 0FCH, and 0FDH
contain 1H, 0H, 5H, and 2H, respectively. The instruction

RET

leaves the stack pointer with the new value of 00H and program execution continues from
location 0125H.

During a return from subroutine, PC values are popped from stack locations as follows:

SP → (0FAH) PC11 – PC8

SP + 1 (0FBH) 0 0 PC13 PC12

SP + 2 (0FCH) PC3 – PC0

SP + 3 (0FDH) PC7 – PC4

SP + 4 (0FEH) 0 0 EMB ERB

SP + 5 (0FFH) 0 0 0 0

SP + 6 (000H)

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-79

RRC — Rotate Accumulator Right through Carry

RRC A

Operation: Operand Operation Summary Bytes Cycles

A Rotate right through carry bit 1 1

Description: The four bits in the accumulator and the carry flag are together rotated one bit to the right. Bit 0
moves into the carry flag and the original carry value moves into the bit 3 accumulator position.

C

3 0

Operand Binary Code Operation Notation

A 1 0 0 0 1 0 0 0 C ← A.0, A3 ← C
A.n–1 ← A.n (n = 1, 2, 3)

Example: The accumulator contains the value 5H (0101B) and the carry flag is cleared to logic zero. The
instruction

RRC A

leaves the accumulator with the value 2H (0010B) and the carry flag set to logic one.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-80

SBC — Subtract with Carry

SBC dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Subtract indirect data memory from A with carry 1 1

EA,RR Subtract register pair (RR) from EA with carry 2 2

RRb,EA Subtract EA from register pair (RRb) with carry 2 2

Description: SBC subtracts the source and carry flag value from the destination operand, leaving the result in
the destination. SBC sets the carry flag if a borrow is needed for the most significant bit;
otherwise it clears the carry flag. The contents of the source are unaffected.

If the carry flag was set before the SBC instruction was executed, a borrow was needed for the
previous step in multiple precision subtraction. In this case, the carry bit is subtracted from the
destination along with the source operand.

Operand Binary Code Operation Notation

A,@HL 0 0 1 1 1 1 0 0 C,A ← A – (HL) – C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA –RR – C

1 1 0 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C,RRb ← RRb – EA – C

1 1 0 0 0 r2 r1 0

Examples: 1. The extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag is set to "1":

SCF ; C ← "1"
SBC EA,HL ; EA ← 0C3H – 0AAH – 1H, C ← "0"
JPS XXX ; Jump to XXX; no skip after SBC

2. If the extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag is cleared to "0":

RCF ; C ← "0"
SBC EA,HL ; EA ← 0C3H – 0AAH – 0H = 19H, C ← "0"
JPS XXX ; Jump to XXX; no skip after SBC

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-81

SBC — Subtract with Carry

SBC (Continued)

Examples: 3. If SBC A,@HL is followed by an ADS A,#im, the SBC skips on 'no borrow' to the instruction
immediately after the ADS. An 'ADS A,#im' instruction immediately after the 'SBC A,@HL'
instruction does not skip even if an overflow occurs. This function is useful for decimal
adjustment operations.

a. 8 – 6 decimal addition (the contents of the address specified by the HL register is 6H):

RCF ; C ← "0"
LD A,#8H ; A ← 8H
SBC A,@HL ; A ← 8H – 6H – C(0) = 2H, C ← "0"
ADS A,#0AH ; Skip this instruction because no borrow after SBC result
JPS XXX

b. 3 – 4 decimal addition (the contents of the address specified by the HL register is 4H):

RCF ; C ← "0"
LD A,#3H ; A ← 3H
SBC A,@HL ; A ← 3H – 4H – C(0) = 0FH, C ← "1"
ADS A,#0AH ; No skip. A ← 0FH + 0AH = 9H

; (The skip function of 'ADS A,#im' is inhibited after a
; 'SBC A,@HL' instruction even if an overflow occurs.)

JPS XXX

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-82

SBS — Subtract

SBS dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Subtract indirect data memory from A; skip on borrow 1 1 + S

EA,RR Subtract register pair (RR) from EA; skip on borrow 2 2 + S

RRb,EA Subtract EA from register pair (RRb); skip on borrow 2 2 + S

Description: The source operand is subtracted from the destination operand and the result is stored in the
destination. The contents of the source are unaffected. A skip is executed if a borrow occurs. The
value of the carry flag is not affected.

Operand Binary Code Operation Notation

A,@HL 0 0 1 1 1 1 0 1 A ← A – (HL); skip on borrow

EA,RR 1 1 0 1 1 1 0 0 EA ← EA – RR; skip on borrow

1 0 1 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb – EA; skip on borrow

1 0 1 1 0 r2 r1 0

Examples: 1. The accumulator contains the value 0C3H, register pair HL contains the value 0C7H, and the
carry flag is cleared to logic zero:

RCF ; C ← "0"
SBS EA,HL ; EA ← 0C3H – 0C7H

; SBS instruction skips on borrow,
; but carry flag value is not affected

JPS XXX ; Skip because a borrow occurred
JPS YYY ; Jump to YYY is executed

2. The accumulator contains the value 0AFH, register pair HL contains the value 0AAH, and the
carry flag is set to logic one:

SCF ; C ← "1"
SBS EA,HL ; EA ← 0AFH – 0AAH
JPS XXX ; Jump to XXX

; JPS was not skipped since no "borrow" occurred after
; SBS

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-83

SCF — Set Carry Flag

SCF

Operation: Operand Operation Summary Bytes Cycles

– Set carry flag to logic one 1 1

Description: The SCF instruction sets the carry flag to logic one, regardless of its previous value.

Operand Binary Code Operation Notation

– 1 1 1 0 0 1 1 1 C ← 1

Example: If the carry flag is cleared to logic zero, the instruction

SCF

sets the carry flag to logic one.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-84

SMB — Select Memory Bank

SMB n

Operation: Operand Operation Summary Bytes Cycles

n Select memory bank 2 2

Description: The SMB instruction sets the upper four bits of a 12-bit data memory address to select a specific
memory bank. The constants 0, n, and 15 are usually used as the SMB operand to select the
corresponding memory bank. All references to data memory addresses fall within the following
address ranges:

Please note that since data memory spaces differ for various devices in the SAM4 product
family, the 'n' value of the SMB instruction will also vary.

Addresses Register Areas Bank SMB

000H–01FH Working registers 0 0

020H–0FFH Stack and general-purpose registers

n00H–nFFH General-purpose registers n
(n = 1–14)

n
(n = 1–14)

F80H–FFFH I/O-mapped hardware registers 15 15

The enable memory bank (EMB) flag must always be set to "1" in order for the SMB instruction
to execute successfully for memory banks 0–15.

Format Binary Code Operation Notation

n 1 1 0 1 1 1 0 1 SMB ← n (n = 0-15)

0 1 0 0 d3 d2 d1 d0

Example: If the EMB flag is set, the instruction

SMB 0

selects the data memory address range for bank 0 (000H–0FFH) as the working memory bank.

NOTE: The number of memory balk selected by SMB may change for different devices in the SAM47 product family.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-85

SRB — Select Register Bank

SRB n

Operation: Operand Operation Summary Bytes Cycles

n Select register bank 2 2

Description: The SRB instruction selects one of four register banks in the working register memory area. The
constant value used with SRB is 0, 1, 2, or 3. The following table shows the effect of SRB
settings:

ERB Setting SRB Settings Selected Register Bank

3 2 1 0

0 0 0 x x Always set to bank 0

0 0 Bank 0

1 0 0 0 1 Bank 1

1 0 Bank 2

1 1 Bank 3

NOTE: 'x' = not applicable.

The enable register bank flag (ERB) must always be set for the SRB instruction to execute
successfully for register banks 0, 1, 2, and 3. In addition, if the ERB value is logic zero, register
bank 0 is always selected, regardless of the SRB value.

Operand Binary Code Operation Notation

n 1 1 0 1 1 1 0 1 SRB ← n (n = 0, 1, 2, 3)

0 1 0 1 0 0 d1 d0

Example: If the ERB flag is set, the instruction

SRB 3

selects register bank 3 (018H–01FH) as the working memory register bank.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-86

SRET — Return from Subroutine and Skip

SRET

Operation: Operand Operation Summary Bytes Cycles

– Return from subroutine and skip 1 3 + S

Description: SRET is normally used to return to the previously executing procedure at the end of a subroutine
that was initiated by a CALL or CALLS instruction. SRET skips the resulting address, which is
generally the instruction immediately after the point at which the subroutine was called. Then,
program execution continues from the resulting address and the contents of the location
addressed by the stack pointer are popped into the program counter.

Operand Binary Code Operation Notation

– 1 1 1 0 0 1 0 1 PC13–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 3) (SP + 2)
EMB,ERB ← (SP + 4)
SP ← SP + 6

Example: If the stack pointer contains the value 0FAH and RAM locations 0FAH, 0FBH, 0FCH, and 0FDH
contain the values 1H, 0H, 5H, and 2H, respectively, the instruction

SRET

leaves the stack pointer with the value 00H and the program returns to continue execution at
location 0125H, then skips unconditionally.

During a return from subroutine, data is popped from the stack to the PC as follows:

SP → (0FAH) PC11 – PC8

SP + 1 (0FBH) 0 0 PC13 PC12

SP + 2 (0FCH) PC3 – PC0

SP + 3 (0FDH) PC7 – PC4

SP + 4 (0FEH) 0 0 EMB ERB

SP + 5 (0FFH) 0 0 0 0

SP + 6 (000H)

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-87

STOP — Stop Operation

STOP

Operation: Operand Operation Summary Bytes Cycles

– Engage CPU stop mode 2 2

Description: The STOP instruction stops the system clock by setting bit 3 of the power control register
(PCON) to logic one. When STOP executes, all system operations are halted with the exception
of some peripheral hardware with special power-down mode operating conditions.

In application programs, a STOP instruction must be immediately followed by at least three NOP
instructions. This ensures an adequate time interval for the clock to stabilize before the next
instruction is executed. If three or more NOP instructions are not used after STOP instruction,
leakage current could be flown because of the floating state in the internal bus.

Operand Binary Code Operation Notation

– 1 1 1 1 1 1 1 1 PCON.3 ← 1

1 0 1 1 0 0 1 1

Example: Given that bit 3 of the PCON register is cleared to logic zero, and all systems are operational, the
instruction sequence

STOP
NOP
NOP
NOP

sets bit 3 of the PCON register to logic one, stopping all controller operations (with the exception
of some peripheral hardware). The three NOP instructions provide the necessary timing delay for
clock stabilization before the next instruction in the program sequence is executed.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-88

VENT — Load EMB, ERB, and Vector Address

VENTn dst

Operation: Operand Operation Summary Bytes Cycles

EMB (0,1)
ERB (0,1)
ADR

Load enable memory bank flag (EMB) and the enable
register bank flag (ERB) and program counter to
vector address, then branch to the corresponding
location.

2 2

Description: The VENT instruction loads the contents of the enable memory bank flag (EMB) and enable
register bank flag (ERB) into the respective vector addresses. It then points the interrupt service
routine to the corresponding branching locations. The program counter is loaded automatically
with the respective vector addresses which indicate the starting address of the respective vector
interrupt service routines.

The EMB and ERB flags should be modified using VENT before the vector interrupts are
acknowledged. Then, when an interrupt is generated, the EMB and ERB values of the previous
routine are automatically pushed onto the stack and then popped back when the routine is
completed.

After the return from interrupt (IRET) you do not need to set the EMB and ERB values again.
Instead, use BITR and BITS to clear these values in your program routine.

The starting addresses for vector interrupts and reset operations are pointed to by the VENTn
instruction. These starting addresses must be located in ROM ranges 0000H–3FFFH. Generally,
the VENTn instructions are coded starting at location 0000H.

The format for VENT instructions is as follows:

VENTn d1,d2,ADDR

EMB ← d1 ("0" or "1")
ERB ← d2 ("0" or "1")
PC ← ADDR (address to branch
n = device-specific module address code (n = 0–n)

Operand Binary Code Operation Notation

EMB (0,1)
ERB (0,1)
ADR

E
M
B

E
R
B

a13 a12 a11 a10 a9 a8 ROM (2 x n) 7–6 → EMB, ERB
ROM (2 x n) 5–4 → PC13–12
ROM (2 x n) 3–0 → PC11–8
ROM (2 x n + 1) 7–0 → PC7–0
(n = 0, 1, 2, 3, 4, 5, 6, 7)

a7 a6 a5 a4 a3 a2 a1 a0

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-89

VENT — Load EMB, ERB, and Vector Address

VENTn (Continued)

Example: The instruction sequence

ORG 0000H
VENT0 1,0,RESET
VENT1 0,1,INTA
VENT2 0,1,INTB
VENT3 0,1,INTC
VENT4 0,1,INTD
VENT6 0,1,INTE
VENT7 0,1,INTF

causes the program sequence to branch to the RESET routine labeled 'RESET', setting EMB to
"1" and ERB to "0" when RESET is activated. When a basic timer interrupt is generated, VENT1
causes the program to branch to the basic timer's interrupt service routine, INTA, and to set the
EMB value to "0" and the ERB value to "1". VENT2 then branches to INTB, VENT3 to INTC, and
so on, setting the appropriate EMB and ERB values.

NOTE: The number of VENTn interrupt names used in the examples above may change for different devices in the SAM47
product family.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-90

XCH — Exchange A or EA with Nibble or Byte

XCH dst,src

Operation: Operand Operation Summary Bytes Cycles

A,DA Exchange A and data memory contents 2 2

A,Ra Exchange A and register (Ra) contents 1 1

A,@RRa Exchange A and indirect data memory 1 1

EA,DA Exchange EA and direct data memory contents 2 2

EA,RRb Exchange EA and register pair (RRb) contents 2 2

EA,@HL Exchange EA and indirect data memory contents 2 2

Description: The instruction XCH loads the accumulator with the contents of the indicated destination variable
and writes the original contents of the accumulator to the source.

Operand Binary Code Operation Notation

A,DA 0 1 1 1 1 0 0 1 A ↔ DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 0 1 1 0 1 r2 r1 r0 A ↔ Ra

A,@RRa 0 1 1 1 1 i2 i1 i0 A ↔ (RRa)

EA,DA 1 1 0 0 1 1 1 1 A ↔ DA,E ↔ DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ↔ RRb

1 1 1 0 0 r2 r1 0

EA,@HL 1 1 0 1 1 1 0 0 A ↔ (HL), E ↔ (HL + 1)

0 0 0 0 0 0 0 1

Example: Double register HL contains the address 20H. The accumulator contains the value 3FH
(00111111B) and internal RAM location 20H the value 75H (01110101B). The instruction

XCH EA,@HL

leaves RAM location 20H with the value 3FH (00111111B) and the extended accumulator with
the value 75H (01110101B).

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-91

XCHD — Exchange and Decrement

XCHD dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Exchange A and data memory contents; decrement
contents of register L and skip on borrow

1 2 + S

Description: The instruction XCHD exchanges the contents of the accumulator with the RAM location
addressed by register pair HL and then decrements the contents of register L. If the content of
register L is 0FH, the next instruction is skipped. The value of the carry flag is unaffected.

Operand Binary Code Operation Notation

A,@HL 0 1 1 1 1 0 1 1 A ↔ (HL), then L ← L–1;
skip if L = 0FH

Example: Register pair HL contains the address 20H and internal RAM location 20H contains the value
0FH:

LD HL,#20H
LD A,#0H
XCHD A,@HL ; A ← 0FH and L ← L – 1, (HL) ← "0"
JPS XXX ; Skipped since a borrow occurred
JPS YYY ; H ← 2H, L ← 0FH

YYY XCHD A,@HL ; (2FH) ← 0FH, A ← (2FH), L ← L – 1 = 0EH
•
•
•

The 'JPS YYY' instruction is executed since a skip occurs after the XCHD instruction.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-92

XCHI — Exchange and Increment

XCHI dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Exchange A and data memory contents; increment
contents of register L and skip on overflow

1 2 + S

Description: The instruction XCHI exchanges the contents of the accumulator with the RAM location
addressed by register pair HL and then increments the contents of register L. If the content of
register L is 0H, a skip is executed. The value of the carry flag is unaffected.

Operand Binary Code Operation Notation

A,@HL 0 1 1 1 1 0 1 0 A ↔ (HL), then L ← L+1;
skip if L = 0H

Example: Register pair HL contains the address 2FH and internal RAM location 2FH contains 0FH:

LD HL,#2FH
LD A,#0H
XCHI A,@HL ; A ← 0FH and L ← L + 1 = 0, (HL) ← "0"
JPS XXX ; Skipped since an overflow occurred
JPS YYY ; H ← 2H, L ← 0H

YYY XCHI A,@HL ; (20H) ← 0FH, A ← (20H), L ← L + 1 = 1H
•
•
•

The 'JPS YYY' instruction is executed since a skip occurs after the XCHI instruction.

KS57C21516/P21516 MICROCONTROLLER SAM47 INSTRUCTION SET

5-93

XOR — Logical Exclusive OR

XOR dst,src

Operation: Operand Operation Summary Bytes Cycles

A,#im Exclusive-OR immediate data to A 2 2

A,@HL Exclusive-OR indirect data memory to A 1 1

EA,RR Exclusive-OR register pair (RR) to EA 2 2

RRb,EA Exclusive-OR register pair (RRb) to EA 2 2

Description: XOR performs a bitwise logical XOR operation between the source and destination variables and
stores the result in the destination. The source contents are unaffected.

Operand Binary Code Operation Notation

A,#im 1 1 0 1 1 1 0 1 A ← A XOR im

0 0 1 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 1 1 A ← A XOR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA XOR (RR)

0 0 1 1 0 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb XOR EA

0 0 1 1 0 r2 r1 0

Example: If the extended accumulator contains 0C3H (11000011B) and register pair HL contains 55H
(01010101B), the instruction

XOR EA,HL

leaves the value 96H (10010110B) in the extended accumulator.

SAM47 INSTRUCTION SET KS57C21516/P21516 MICROCONTROLLER

5-94

NOTES

Oscillator Circuits

Interrupts

Power-Down

RESET

I/O Ports

Timers and Timer/Counters

LCD Controller/Driver

Serial I/O Interface

Electrical Data

Mechanical Data

KS57P21516 OTP

Development Tools

KS57C21516/P21516 MICROCONTROLLER OSCILLATOR CIRCUITS

6–1

6 OSCILLATOR CIRCUITS

OVERVIEW

The KS57C21516 microcontroller have two oscillator circuits: a main system clock circuit, and a subsystem clock
circuit. The CPU and peripheral hardware operate on the system clock frequency supplied through these circuits.
Specifically, a clock pulse is required by the following peripheral modules:

— LCD controller

— Basic timer

— Timer/counters 0 and 1

— Watch timer

— Serial I/O interface

— Clock output circuit

CPU Clock Notation

In this document, the following notation is used for descriptions of the CPU clock:

fx Main system clock

fxt Subsystem clock

fxx Selected system clock

Clock Control Registers

When the system clock mode register, SCMOD, and the power control register, PCON, are both cleared to zero
after RESET, the normal CPU operating mode is enabled, a main system clock is selected as fx/64, and main
system clock oscillation is initiated.

The PCON is used to select normal CPU operating mode or one of two power down mode-stop or idle. Bits 3 and
2 of the PCON register can be manipulated by STOP of IDLE instruction to engage stop or idle power down
mode.

The SCMOD, lets you select the main system clock (fx) or a subsystem clock (fxt) as the CPU clock and start (or
stop) main/sub system clock oscillation. The resulting clock source, either main system clock or subsystem clock,
is referred to the selected system clock (fxx).

The main system clock is selected and oscillation started when all SCMOD bits are cleared to “0”. By setting
SCMOD.3, SCMOD.2 and SCMOD.0 to different values, you can select a subsystem clock source and start or
stop main/sub system clock oscillation. To stop main system clock oscillation, you must use the STOP instruction
(assuming the main system clock is selected) or manipulate SCMOD.3 to (assuming the sub system clock is
selected).

The main system clock frequencies can be divided by 4, 8, or 64 and a subsystem clock frequencies can only be
divided by 4. By manipulating PCON bits 1 and 0, you select one of the following frequencies as the CPU clock.

fx/4, fxt/4, fx/8, fx/64

OSCILLATOR CIRCUITS KS57C21516/P21516 MICROCONTROLLER

6–2

Using a Subsystem Clock

If a subsystem clock is being used as the selected system clock, the idle power-down mode can be initiated by
executing an IDLE instruction.

The watch timer, buzzer and LCD display operate normally with a subsystem clock source, since they operate at
very low speed (as low as 122 µs at 32.768 kHz) and with very low power consumption.

XTin XTout

Oscillator
stop

CPU clock

Wait release signal

Internal RESET signal

Power down release signal

PCON.3, .2 clear

IDLE

STOP

fxtfx

Watch Timer
LCD Controller

Basic Timer
Timer/Counter
Watch Timer
LCD Controller
Clock Output Circuit

fxx

CPU stop signal
(IDLE mode)

Xin Xout

 fx : Main-system clock
 fxt : Sub-system clock
 fxx : System clock

Sub-system
Oscillator

Circuit

1 / 4

Main-system
Oscillator

Circuit

Selector
SCMOD.3

SCMOD.0

SCMOD.2

PCON.0

PCON.1

PCON.2

PCON.3

Frequency
Dividing
Circuit

1/1 - 1/4096

Selector

1/2 1/16

Oscillator
Control
Circuit

Selector

fxtfx/1,2,16

Oscillator
stop

Figure 6-1. Clock Circuit Diagram

KS57C21516/P21516 MICROCONTROLLER OSCILLATOR CIRCUITS

6–3

MAIN SYSTEM OSCILLATOR CIRCUITS

XTin

XTout

Figure 6-2. Crystal/Ceramic Oscillator (fx)

Xin

Xout

External
Clock

Figure 6-3. External Oscillator (fx)

Xin

Xout

R

Figure 6-4. RC Oscillator (fx)

SUB SYSTEM OSCILLATOR CIRCUITS

XTin

XTout
32.768 kHz

Figure 6-5. Crystal/Ceramic Oscillator (fxt)

XTin

XTout

Figure 6-6. External Oscillator (fxt)

OSCILLATOR CIRCUITS KS57C21516/P21516 MICROCONTROLLER

6–4

POWER CONTROL REGISTER (PCON)

The power control register, PCON, is a 4-bit register that is used to select the CPU clock frequency and to control
CPU operating and power-down modes. PCON can be addressed directly by 4-bit write instructions or indirectly
by the instructions IDLE and STOP.

FB3H PCON.3 PCON.2 PCON.1 PCON.0

PCON bits 3 and 2 are addressed by the STOP and IDLE instructions, respectively, to engage the idle and stop
power-down modes. Idle and stop modes can be initiated by these instruction despite the current value of the
enable memory bank flag (EMB). PCON bits 1 and 0 are used to select a specific system clock frequency. There
are two basic choices:

— Main system clock (fx) or subsystem clock (fxt);

— Divided fx/4, 8, 64 or fxt/4 clock frequency.

PCON.1 and PCON.0 settings are also connected with the system clock mode control register, SCMOD. If
SCMOD.0 = "0" the main system clock is always selected by the PCON.1 and PCON.0 setting; if SCMOD.0 =
"1" the subsystem clock is selected.

RESET sets PCON register values (and SCMOD) to logic zero: SCMOD.3 and SCMOD.0 select the main system
clock (fx) and start clock oscillation; PCON.1 and PCON.0 divide the selected fx frequency by 64, and PCON.3
and PCON.2 enable normal CPU operating mode.

Table 6-1. Power Control Register (PCON) Organization

PCON Bit Settings Resulting CPU Operating Mode

PCON.3 PCON.2

0 0 Normal CPU operating mode

0 1 Idle power-down mode

1 0 Stop power-down mode

PCON Bit Settings Resulting CPU Clock Frequency

PCON.1 PCON.0 If SCMOD.0 = "0" If SCMOD.0 = "1"

0 0 fx/64 fxt/4

1 0 fx/8

1 1 fx/4

++ PROGRAMMING TIP — Setting the CPU Clock

To set the CPU clock to 0.95 µs at 4.19 MHz:

BITS EMB
SMB 15
LD A,#3H
LD PCON,A

KS57C21516/P21516 MICROCONTROLLER OSCILLATOR CIRCUITS

6–5

INSTRUCTION CYCLE TIMES

The unit of time that equals one machine cycle varies depending on whether the main system clock (fx) or a
subsystem clock (fxt) is used, and on how the oscillator clock signal is divided (by 4, 8, or 64). Table 6-2 shows
corresponding cycle times in microseconds.

Table 6-2. Instruction Cycle Times for CPU Clock Rates

Selected
CPU Clock

Resulting Frequency Oscillation
Source

Cycle Time (µsec)

fx/64 65.5 kHz 15.3

fx/8 524.0 kHz fx = 4.19 MHz 1.91

fx/4 1.05 MHz 0.95

fxt/4 8.19 kHz fxt = 32.768 kHz 122.0

OSCILLATOR CIRCUITS KS57C21516/P21516 MICROCONTROLLER

6–6

SYSTEM CLOCK MODE REGISTER (SCMOD)

The system clock mode register, SCMOD, is a 4-bit register that is used to select the CPU clock and to control
main and sub-system clock oscillation. The SCMOD is mapped to the RAM address FB7H.

The main clock oscillation is stopped by setting SCMOD.3 when the clock source is subsystem clock and
subsystem clock can be stopped by setting SCMOD.2 when the clock source is main system clock. SCMOD.0,
SCMOD.3 cannot be simultaneously modified.

The subsystem clock is stopped only by setting SCMOD.2, and PCON which revokes stop mode cannot stop the
subsystem clock. The stop of subsystem clock is released by RESET when the selected system clock is main
system clock or subsystem clock and is released by setting SCMOD.2 when the selected system clock is main
system clock.

RESET clears all SCMOD values to logic zero, selecting the main system clock (fx) as the CPU clock and starting
clock oscillation. The reset value of the SCMOD is “0”

SCMOD.0, SCMOD.2, and SCMOD.3 bits can be manipulated by 1-bit write instructions (In other words,
SCMOD.0, SCMOD.2, and SCMOD.3 cannot be modified simultaneously by a 4-bit write).
Bit 1 is always logic zero.

FB7H SCMOD.3 SCMOD.2 "0" SCMOD.0

A subsystem clock (fxt) can be selected as the system clock by manipulating the SCMOD.3 and SCMOD.0 bit
settings. If SCMOD.3 = "0" and SCMOD.0 = "1", the subsystem clock is selected and main system clock
oscillation continues. If SCMOD.3 = "1" and SCMOD.0 = "1", fxt is selected, but main system clock oscillation
stops.

Even if you have selected fx as the CPU clock, setting SCMOD.3 to "1" will stop main system clock oscillation,
and malfunction may be occured. To operate safely, main system clock should be stopped by a stop instruction
is main system clock mode.

Table 6-3. System Clock Mode Register (SCMOD) Organization

SCMOD Register Bit Settings Resulting Clock Selection

SCMOD.3 SCMOD.0 CPU Clock Source fx Oscillation

0 0 fx On

0 1 fxt On

1 1 fxt Off

SCMOD.2 Sub-oscillation on/off

0 Enable sub system clock

1 Disable sub system clock

NOTE: You can use SCMOD.2 as follows (ex; after data bank was used, a few minutes have passed):
Main operation → sub-operation → sub-idle (LCD on, after a few minutes later without any external
input) → sub-operation → main operation → SCMOD.2 = 1 → main stop mode (LCD off).

KS57C21516/P21516 MICROCONTROLLER OSCILLATOR CIRCUITS

6–7

Table 6-4. Main/Sub Oscillation Stop Mode

Mode Condition Method to issue Osc Stop Osc Stop Release Source (2)

Main
Oscillation
STOP Mode

Main oscillator runs.
Sub oscillator runs
(stops).
System clock is the
main oscillation clock.

STOP instruction:
Main oscillator stops.
CPU is in idle mode.
Sub oscillator still runs
(stops).

Interrupt and RESET:
After releasing stop mode, main
oscillation starts and oscillation
stabilization time is elapsed. And then
the CPU operates.
Oscillation stabilization time is
1/ {256 x BT clock (fx)}.

When SCMOD.3 is set to “1”
(1), main oscillator stops,
halting the CPU operation.
Sub oscillator still runs
(stops).

RESET:
Interrupt can’t start the main
oscillation. Therefore, the CPU
operation can never be restarted.

Main oscillator runs.
Sub oscillator runs.
System clock is the
sub oscillation clock.

STOP instruction:
Main oscillator stops.
CPU is in idle mode.
Sub oscillator still runs
(stops).
Sub oscillator still runs.

BT overflow, interrupt, and RESET:
After the overflow of basic timer [1/
{256 x BT clock (fxt)}], CPU operation
and main oscillation automatically
start.

When SCMOD.3 is set to
“1”, main oscillator stops.
The CPU, however, would
still operate.
Sub oscillator still runs.

Set SCMOD.3 to “0” or RESET

Sub
Oscillation
STOP Mode

Main oscillator runs.
Sub oscillator runs.
System clock is the
main oscillation clock.

When SCMOD.2 to “1”, sub
oscillator stops, while main
oscillator and the CPU would
still operate.

Set SCMOD.2 to “0” or RESET

Main oscillator runs
(stops).
Sub oscillator runs.
System clock is the
sub oscillation clock.

When SCMOD.2 to “1”, sub
oscillator stops, halting the
CPU operation.
Main oscillator still runs
(stops).

RESET

NOTES:
1. This mode must not be used.
2. Oscillation stabilization time by interrupt is 1/ (256 x BT clocks). Oscillation stabilization time by a reset is

 31.3ms at 4.19Mhz, main oscillation clock.

OSCILLATOR CIRCUITS KS57C21516/P21516 MICROCONTROLLER

6–8

SWITCHING THE CPU CLOCK

Together, bit settings in the power control register, PCON, and the system clock mode register, SCMOD,
determine whether a main system or a subsystem clock is selected as the CPU clock, and also how this
frequency is to be divided. This makes it possible to switch dynamically between main and subsystem clocks and
to modify operating frequencies.

SCMOD.3, SCMOD.2, and SCMOD.0 select the main system clock (fx) or a subsystem clock (fxt) and start or
stop main system clock oscillation. PCON.1 and PCON.0 control the frequency divider circuit, and divide the
selected fx clock by 4, 8, or 64,or fxt clock by 4.

NOTE

A clock switch operation does not go into effect immediately when you make the SCMOD and PCON
register modifications — the previously selected clock continues to run for a certain number of machine
cycles.

For example, you are using the default CPU clock (normal operating mode and a main system clock of fx/64)
and you want to switch from the fx clock to a subsystem clock and to stop the main system clock. To do this, you
first need to set SCMOD.0 to "1". This switches the clock from fx to fxt but allows main system clock oscillation
to continue. Before the switch actually goes into effect, a certain number of machine cycles must elapse. After
this time interval, you can then disable main system clock oscillation by setting SCMOD.3 to "1".

This same 'stepped' approach must be taken to switch from a subsystem clock to the main system clock: first,
clear SCMOD.3 to "0" to enable main system clock oscillation. Then, after a certain number of machine cycles
has elapsed, select the main system clock by clearing all SCMOD values to logic zero.

Following a RESET, CPU operation starts with the lowest main system clock frequency of 15.3 µs at 4.19 MHz
after the standard oscillation stabilization interval of 31.3 ms has elapsed. Table 6-4 details the number of
machine cycles that must elapse before a CPU clock switch modification goes into effect.

Table 6-5. Elapsed Machine Cycles During CPU Clock Switch

AFTER SCMOD.0 = 0 SCMOD.0 = 1

BEFORE PCON.1 = 0 PCON.0 = 0 PCON.1 = 1 PCON.0 = 0 PCON.1 = 1 PCON.0 = 1

PCON.1 = 0 N/A 1 MACHINE CYCLE 1 MACHINE CYCLE N/A

PCON.0 = 0

SCMOD.0 = 0 PCON.1 = 1 8 MACHINE CYCLES N/A 1 MACHINE CYCLES N/A

PCON.0 = 0

PCON.1 = 1 16 MACHINE CYCLES 1 MACHINE CYCLES N/A fx / 4fxt

PCON.0 = 1

SCMOD.0 = 1 N/A N/A 1MACHINE CYCLES N/A

NOTES:
1. Even if oscillation is stopped by setting SCMOD.3 during main system clock operation, the stop mode is not entered.
2. Since the XIN input is connected internally to VSS to avoid current leakage due to the crystal oscillator in stop mode, do

not set SCMOD.3 to "1" or do not use stop instruction when an external clock is used as the main system clock.
3. When the system clock is switched to the subsystem clock, it is necessary to disable any interrupts which may occur

during the time intervals shown in Table 6-4.
4. 'N/A' means 'not available'.
5. fx: Main-system clock, fxt: Sub-system clock. When fx is 4.19 MHz, and fxt is 32.768 kHz.

KS57C21516/P21516 MICROCONTROLLER OSCILLATOR CIRCUITS

6–9

++ PROGRAMMING TIP — Switching Between Main System and Subsystem Clock

1. Switch from the main system clock to the subsystem clock:

MA2SUB BITS SCMOD.0 ; Switches to subsystem clock
CALL DLY80 ; Delay 80 machine cycles
BITS SCMOD.3 ; Stop the main system clock
RET

DLY80 LD A,#0FH
DEL1 NOP

NOP
DECS A
JR DEL1
RET

2. Switch from the subsystem clock to the main system clock:

SUB2MA BITR SCMOD.3 ; Start main system clock oscillation
CALL DLY80 ; Delay 160 machine cycles
CALL DLY80
BITR SCMOD.0 ; Switch to main system clock
RET

OSCILLATOR CIRCUITS KS57C21516/P21516 MICROCONTROLLER

6–10

CLOCK OUTPUT MODE REGISTER (CLMOD)

The clock output mode register, CLMOD, is a 4-bit register that is used to enable or disable clock output to the
CLO pin and to select the CPU clock source and frequency. CLMOD is addressable by 4-bit write instructions
only.

FD0H CLMOD.3 "0" CLMOD.1 CLMOD.0

RESET clears CLMOD to logic zero, which automatically selects the CPU clock as the clock source (without
initiating clock oscillation), and disables clock output.

CLMOD.3 is the enable/disable clock output control bit; CLMOD.1 and CLMOD.0 are used to select one of four
possible clock sources and frequencies: normal CPU clock, fxx/8, fxx/16, or fxx/64.

Table 6-6. Clock Output Mode Register (CLMOD) Organization

CLMOD Bit Settings Resulting Clock Output

CLMOD.1 CLMOD.0 Clock Source Frequency

0 0 CPU clock (fx/4, fx/8, fx/64, fxt/4) 1.05 MHz, 524 kHz, 65.5 kHz, 8.2 kHz

0 1 fxx/8 524 kHz

1 0 fxx/16 262 kHz

1 1 fxx/64 65.5 kHz

CLMOD.3 Result of CLMOD.3 Setting

0 Disable clock output at the CLO pin

1 Enable clock output at the CLO pin

NOTE: Frequencies assume that fxx, fx = 4.19 MHz and fxt = 32.768 kHz.

KS57C21516/P21516 MICROCONTROLLER OSCILLATOR CIRCUITS

6–11

CLOCK OUTPUT CIRCUIT

The clock output circuit, used to output clock pulses to the CLO pin, has the following components:

— 4-bit clock output mode register (CLMOD)

— Clock selector

— Output latch

— Port mode flag

— CLO output pin (P2.0)

CLO

clocks
(fxx/8, fxx/16, fxx/64, CPU clock)

4

Clock
Selector

CLMOD.3

CLMOD.2

CLMOD.1

CLMOD.0

P2.0 OUTPUT LATCH PM 2

Figure 6-7. CLO Output Pin Circuit Diagram

CLOCK OUTPUT PROCEDURE

The procedure for outputting clock pulses to the CLO pin may be summarized as follows:

1. Disable clock output by clearing CLMOD.3 to logic zero.

2. Set the clock output frequency (CLMOD.1, CLMOD.0).

3. Load a "0" to the output latch of the CLO pin (P2.0).

4. Set the P2.0 mode flag (PM2.0) to output mode.

5. Enable clock output by setting CLMOD.3 to logic one.

++ PROGRAMMING TIP — CPU Clock Output to the CLO Pin

To output the CPU clock to the CLO pin:

BITS EMB
SMB 15
LD EA,#10H
LD PMG1,EA ; P2.0 ← Output mode
BITR P2.0 ; Clear P2.0 output latch
LD A,#9H
LD CLMOD,A

OSCILLATOR CIRCUITS KS57C21516/P21516 MICROCONTROLLER

6–12

NOTES

KS57C21516/P21516 MICROCONTROLLER INTERRUPTS

7–1

7 INTERRUPTS

OVERVIEW

The KS57C21516 interrupt control circuit has five functional components:

— Interrupt enable flags (IEx)

— Interrupt request flags (IRQx)

— Interrupt master enable register (IME)

— Interrupt priority register (IPR)

— Power-down release signal circuit

Three kinds of interrupts are supported:

— Internal interrupts generated by on-chip processes

— External interrupts generated by external peripheral devices

— Quasi-interrupts used for edge detection and as clock sources

Table 7–1. Interrupt Types and Corresponding Port Pin(s)

Interrupt Type Interrupt Name Corresponding Port Pins

External interrupts INT0, INT1, INT4, INTK P1.0, P1.1, P1.3, K0–K7

Internal interrupts INTB, INTT0, INTT1, INTS Not applicable

Quasi-interrupts INT2 P1.2

INTW Not applicable

INTERRUPTS KS57C21516/P21516 MICROCONTROLLER

7–2

Vectored Interrupts

Interrupt requests may be processed as vectored interrupts in hardware, or they can be generated by program
software. A vectored interrupt is generated when the following flags and register settings, corresponding to the
specific interrupt (INTn) are set to logic one:

— Interrupt enable flag (IEx)

— Interrupt master enable flag (IME)

— Interrupt request flag (IRQx)

— Interrupt status flags (IS0, IS1)

— Interrupt priority register (IPR)

If all conditions are satisfied for the execution of a requested service routine, the start address of the interrupt is
loaded into the program counter and the program starts executing the service routine from this address.

EMB and ERB flags for RAM memory banks and registers are stored in the vector address area of the ROM
during interrupt service routines. The flags are stored at the beginning of the program with the VENT instruction.
The initial flag values determine the vectors for resets and interrupts. Enable flag values are saved during the
main routine, as well as during service routines. Any changes that are made to enable flag values during a
service routine are not stored in the vector address.

When an interrupt occurs, the EMB and the ERB flags before the interrupt is initiated are saved along with the
program status word (PSW), and the EMB and the ERB flag for the interrupt is fetched from the respective vector
address. Then, if necessary, you can modify the enable flags during the interrupt service routine. When the
interrupt service routine is returned to the main routine by the IRET instruction, the original values saved in the
stack are restored and the main program continues program execution with these values.

Software-Generated Interrupts

To generate an interrupt request from software, the program manipulates the appropriate IRQx flag. When the
interrupt request flag value is set, it is retained until all other conditions for the vectored interrupt have been met,
and the service routine can be initiated.

Multiple Interrupts

By manipulating the two interrupt status flags (IS0 and IS1), you can control service routine initialization and
thereby process multiple interrupts simultaneously.

If more than four interrupts are being processed at one time, you can avoid possible loss of working register data
by using the PUSH RR instruction to save register contents to the stack before the service routines are executed
in the same register bank. When the routines have executed successfully, you can restore the register contents
from the stack to working memory using the POP instruction.

Power-Down Mode Release

An interrupt can be used to release power-down mode (stop or idle). Interrupts for power-down mode release are
initiated by setting the corresponding interrupt enable flag. Even if the IME flag is cleared to zero, power-down
mode will be released by an interrupt request signal when the interrupt enable flag has been set. In such cases,
the interrupt routine will not be executed since IME = "0".

KS57C21516/P21516 MICROCONTROLLER INTERRUPTS

7–3

Request flag (IRQx) <-- 1

Interrupt is generated (INT xx)

Generate corresponding vector interrupt
and release power-down mode

High-priority interrupt?

IS1,0 = 0,0?

IS1,0 = 0,1 ?

Store contents of PC and PSW in the stack area;
set PC contents to corresponding vector address

IS1,0 = 0,1

Reset corresponding IRQx flag

Jump to interrupt start address

Retain value until interrupt
service routine is completed

Retain value until IME = 1IME = 1?

IS1,0 = 1,0

NO

NO

NO

NO

YES

YES

YES

YES

YES

NO

Retain value until IEx = 1IEx = 1?

Are both interrupt sources
of shared vector address used?

IRQx flag value remains 1

Jump to interrupt start address

Verify interrupt source and clear
IRQx with a BTSTZ instruction

YES

NO

Figure 7–1. Interrupt Execution Flowchart

INTERRUPTS KS57C21516/P21516 MICROCONTROLLER

7–4

@

IRQB

IRQ4

IRQ0

IRQ1

IRQS

IRQT0

IRQT1

IRQK

IRQW

IRQ2

IMOD1 IMOD0

INTB

INTS

INTT0

INTT1

POWER-DOWN
MODE

RELEASE SIGNAL

IME IPR

IS1 IS0
INTERRUPT CONTROL UNIT

VECTOR INTERRUPT
GENERATOR

@ = EDGE DETECTION CIRCUIT

@

INT4

INT0

INT1

IETK IET1 IET0 IES IE1 IE0IEWIE2 IE4 IEB

@K0-K7

INTW
IMODK

@INT2

IMOD2

Figure 7–2. Interrupt Control Circuit Diagram

KS57C21516/P21516 MICROCONTROLLER INTERRUPTS

7–5

Multiple Interrupts

The interrupt controller can service multiple interrupts in two ways: as two-level interrupts, where either all inter-
rupt requests or only those of highest priority are serviced, or as multi-level interrupts, when the interrupt service
routine for a lower-priority request is accepted during the execution of a higher priority routine.

Two-Level Interrupt Handling

Two-level interrupt handling is the standard method for processing multiple interrupts. When the IS1 and IS0 bits
of the PSW (FB0H.3 and FB0H.2, respectively) are both logic zero, program execution mode is normal and all
interrupt requests are serviced (see Figure 7–3).

Whenever an interrupt request is accepted, IS1 and IS0 are incremented by one and the values are stored in the
stack along with the other PSW bits. After the interrupt routine has been serviced, the modified IS1 and IS0
values are automatically restored from the stack by an IRET instruction.

IS0 and IS1 can be manipulated directly by 1-bit write instructions, regardless of the current value of the enable
memory bank flag (EMB). Before you can modify an interrupt service flag, however, you must first disable
interrupt processing with a DI instruction.

When IS1 = "0" and IS0 = "1", all interrupt service routines are inhibited except for the highest priority interrupt
currently defined by the interrupt priority register (IPR).

INT DISABLE
SET IPR

INT ENABLE

LOW OR
HIGH LEVEL
INTERRUPT

GENERATED

NORMAL PROGRAM
PROCESSING
(STATUS 0)

HIGH-LEVEL
INTERRUPT

GENERATED

HIGH OR LOW LEVEL
INTERRUPT PROCESSING

(STATUS 1)
HIGH LEVEL INTERRUPT

PROCESSING
(STATUS 2)

Figure 7–3. Two-Level Interrupt Handling

INTERRUPTS KS57C21516/P21516 MICROCONTROLLER

7–6

Multi-Level Interrupt Handling

With multi-level interrupt handling, a lower-priority interrupt request can be executed while a high-priority interrupt
is being serviced. This is done by manipulating the interrupt status flags, IS0 and IS1 (see Table 7–2).

When an interrupt is requested during normal program execution, interrupt status flags IS0 and IS1 are set to "1"
and "0", respectively. This setting allows only highest-priority interrupts to be serviced. When a high-priority
request is accepted, both interrupt status flags are then cleared to "0" by software so that a request of any priority
level can be serviced. In this way, the high- and low-priority requests can be serviced in parallel (see Figure 7–4).

Table 7–2. IS1 and IS0 Bit Manipulation for Multi-Level Interrupt Handling

Process Status Before INT Effect of ISx Bit Setting After INT ACK

IS1 IS0 IS1 IS0

0 0 0 All interrupt requests are serviced. 0 1

1 0 1 Only high-priority interrupts as determined by the
current settings in the IPR register are serviced.

1 0

2 1 0 No additional interrupt requests will be serviced. – –

– 1 1 Value undefined – –

INT DISABLE

SET IPR

INT ENABLE

LOW OR
HIGH LEVEL
INTERRUPT

GENERATED

NORMAL PROGRAM
PROCESSING

(STATUS 0)

LOW OR HIGH
LEVEL

INTERRUPT
GENERATED

SINGLE
INTERRUPT

2-LEVEL
INTERRUPT

STATUS 1

STATUS 1

STATUS 0

STATUS 0

INT ENABLE
MODIFY STATUS

INT DISABLE

HIGH-LEVEL
INTERRUPT

GENERATED

STATUS 2

3-LEVEL
INTERRUPT

Figure 7–4. Multi-Level Interrupt Handling

KS57C21516/P21516 MICROCONTROLLER INTERRUPTS

7–7

INTERRUPT PRIORITY REGISTER (IPR)

The 4-bit interrupt priority register (IPR) is used to control multi-level interrupt handling. Its reset value is logic
zero. Before the IPR can be modified by 4-bit write instructions, all interrupts must first be disabled by a DI
instruction.

FB2H IME IPR.2 IPR.1 IPR.0

By manipulating the IPR settings, you can choose to process all interrupt requests with the same priority level, or
you can select one type of interrupt for high-priority processing. A low-priority interrupt can itself be interrupted by
a high-priority interrupt, but not by another low-priority interrupt. A high-priority interrupt cannot be interrupted by
any other interrupt source.

Table 7–3. Standard Interrupt Priorities

Interrupt Default Priority

INTB, INT4 1

INT0 2

INT1 3

INTS 4

INTT0 5

INTT1 6

INTK 7

The MSB of the IPR, the interrupt master enable flag (IME), enables and disables all interrupt processing. Even if
an interrupt request flag and its corresponding enable flag are set, a service routine cannot be executed until the
IME flag is set to logic one. The IME flag can be directly manipulated by EI and DI instructions, regardless of the
current enable memory bank (EMB) value.

Table 7–4. Interrupt Priority Register Settings

IPR.2 IPR.1 IPR.0 Result of IPR Bit Setting

0 0 0 Process all interrupt requests at low priority (NOTE)

0 0 1 Only INTB and INT4 interrupts are at high priority

0 1 0 Only INT0 interrupts is at high priority

0 1 1 Only INT1 interrupts is at high priority

1 0 0 Only INTS interrupts is at high priority

1 0 1 Only INTT0 interrupts is at high priority

1 1 0 Only INTT1 interrupts is at high priority

1 1 1 Only INTK interrupts is at high priority

NOTE: When all interrupts are low priority (the lower three bits of the IPR register are logic zero), the interrupt requested
first will have high priority. Therefore, the first-request interrupt cannot be superceded by any other interrupt. If two
or more interrupt requests are received simultaneously, the priority level is determined according to the standard
interrupt priorities in Table 7–3 (the default priority assigned by hardware when the lower three IPR bits = "0"). In
this case, the higher-priority interrupt request is serviced and the other interrupt is inhibited. Then, when the high-
priority interrupt is returned from its service routine by an IRET instruction, the inhibited service routine is started.

INTERRUPTS KS57C21516/P21516 MICROCONTROLLER

7–8

++ PROGRAMMING TIP — Setting the INT Interrupt Priority

The following instruction sequence sets the INT1 interrupt to high priority:

BITS EMB
SMB 15
DI ; IPR.3 (IME) ← 0
LD A,#3H
LD IPR,A
EI ; IPR.3 (IME) ← 1

EXTERNAL INTERRUPT 0, 1 AND 2 MODE REGISTERS (IMOD0, IMOD1 AND IMOD2)

The following components are used to process external interrupts at the INT0, INT1 and INT2 pins:

— Edge detection circuit

— Three mode registers, IMOD0, IMOD1 and IMOD2

The mode registers are used to control the triggering edge of the input signal. IMOD0, IMOD1 and IMOD2
settings let you choose either the rising or falling edge of the incoming signal as the interrupt request trigger. The
INT4 interrupt is an exception since its input signal generates an interrupt request on both rising and falling
edges. Since INT2 is a qusi-interrupt, the interrupt request flag (IRQ2) must be cleared by software.

FB4H "0" "0" IMOD0.1 IMOD0.0

FB5H "0" "0" "0" IMOD1.0

FDAH "0" "0" "0" IMOD2.0

IMOD0, IMOD1 and IMOD2 are addressable by 4-bit write instructions. RESET clears all IMOD values to logic
zero, selecting rising edges as the trigger for incoming interrupt requests.

Table 7–5. IMOD0, 1 and 2 Register Organization

IMOD0 0 0 IMOD0.1 IMOD0.0 Effect of IMOD0 Settings

0 0 Rising edge detection

0 1 Falling edge detection

1 0 Both rising and falling edge detection

1 1 IRQ0 flag cannot be set to "1"

IMOD1
IMOD2

0 0 0 IMOD1.0
IMOD2.0

Effect of IMOD1 and IMOD2 Settings

0 Rising edge detection

1 Falling edge detection

KS57C21516/P21516 MICROCONTROLLER INTERRUPTS

7–9

EXTERNAL INTERRUPT 0, 1 and 2 MODE REGISTERS (Continued)

INT1

INT2

IRQ1

P1.1 P1.0

EDGE DETECTION IRQ2

IMOD2 IMOD1

IRQ0

IMOD0

2

EDGE DETECTION

EDGE DETECTION

INT0

P1.2

Figure 7–5. Circuit Diagram for INT0, INT1 and INT2 Pins

When modifying the IMOD registers, it is possible to accidentally set an interrupt request flag. To avoid unwanted
interrupts, take these precautions when writing your programs:

1. Disable all interrupts with a DI instruction.

2. Modify the IMOD register.

3. Clear all relevant interrupt request flags.

4. Enable the interrupt by setting the appropriate IEx flag.

5. Enable all interrupts with an EI instructions.

INTERRUPTS KS57C21516/P21516 MICROCONTROLLER

7–10

EXTERNAL KEY INTERRUPT MODE REGISTER (IMODK)

The mode register for external key interrupts at the K0–K7 pins, IMODK, is addressable only by 4-bit write
instructions. RESET clears all IMODK bits to logic zero.

FB6H "0" IMODK.2 IMODK.1 IMODK.0

Rising or falling edge can be detected by bit IMODK.2 settings. If a rising or falling edge is detected at any one of
the selected K pin by the IMODK register, the IRQK flag is set to logic one and a release signal for power-down
mode is generated.

Table 7–6. IMODK Register Bit Settings

IMODK 0 IMODK.2 IMODK.1 IMODK.0 Effect of IMODK Settings

0, 1 0 0 Disable key interrupt

0 1 Enable edge detection at the K0–K3 pins

1 0 Enable edge detection at the K4–K7 pins

1 1 Enable edge detection at the K0–K7 pins

IMODK.2 0 Falling edge detection

1 Rising edge detection

NOTES:
1. To generate a key interrupt, the selected pins must be configured to input mode. If any one pin of the selected pins is

configured to output mode, only falling edge can be detected.
2. To generate a key interrupt, all of the selected pins must be at input high state for falling edge detection, or all of the

selected pins must be at input low state for rising edge detection. If any one of them or more is at input low state or input
high state, the interrupt may be not occurred at falling edge or rising edge.

3. To generate a key interrupt, first, configure pull-up resistors or external pull-down resistors. And then, select edge
detection and pins by setting IMODK register.

KS57C21516/P21516 MICROCONTROLLER INTERRUPTS

7–11

P0.0/K0

IRQK

P0.3/K3

P0.2/K2

P0.1/K1

ENABLE/
DISABLE

P6.0/K4

P6.3/K7

P6.2/K6

P6.1/K5

RISING/
FALLING
EDGE

SELECTOR

IMODK

ENABLE/
DISABLE

Figure 7–6. Circuit Diagram for INTK

INTERRUPTS KS57C21516/P21516 MICROCONTROLLER

7–12

++ PROGRAMMING TIP — Using INTK as a Key Input Interrupt

When the key interrupt is used, the selected key interrupt source pin must be set to input:

1. When K0–K7 are selected (eight pins):

BITS EMB
SMB 15
LD A,#3H
LD IMODK,A ; (IMODK) ← #3H, K0–K7 falling edge select
LD EA,#00H
LD PMG1,EA ; P0 ← input mode
LD PMG4,EA ; P6 ← input mode
LD EA,#41H
LD PUMOD1,EA ; Enable P0 and P6 pull-up resistors

2. When K0–K3 are selected (four pins):

BITS EMB
SMB 15
LD A,#1H
LD IMODK,A ; (IMODK) ← #1H, K0–K3 falling edge select
LD EA,#00H
LD PMG1,EA ; P0 ← input mode
LD EA,#1H
LD PUMOD1,EA ; Enable P0 pull-up resistors

KS57C21516/P21516 MICROCONTROLLER INTERRUPTS

7–13

INTERRUPT FLAGS

There are three types of interrupt flags: interrupt request and interrupt enable flags that correspond to each in-
terrupt, the interrupt master enable flag, which enables or disables all interrupt processing.

Interrupt Master Enable Flag (IME)

The interrupt master enable flag, IME, enables or disables all interrupt processing. Therefore, even when an
IRQx flag is set and its corresponding IEx flag is enabled, the interrupt service routine is not executed until the
IME flag is set to logic one.

The IME flag is located in the IPR register (IPR.3). It can be directly be manipulated by EI and DI instructions,
regardless of the current value of the enable memory bank flag (EMB).

IME IPR.2 IPR.1 IPR.0 Effect of Bit Settings

0 Inhibit all interrupts

1 Enable all interrupts

Interrupt Enable Flags (IEx)

IEx flags, when set to logical one, enable specific interrupt requests to be serviced. When the interrupt request
flag is set to logical one, an interrupt will not be serviced until its corresponding IEx flag is also enabled.

Interrupt enable flags can be read, written, or tested directly by 1-bit instructions. IEx flags can be addressed
directly at their specific RAM addresses, despite the current value of the enable memory bank (EMB) flag.

Table 7–7. Interrupt Enable and Interrupt Request Flag Addresses

Address Bit 3 Bit 2 Bit 1 Bit 0

FB8H IE4 IRQ4 IEB IRQB

FBAH 0 0 IEW IRQW

FBBH IEK IRQK IET1 IRQT1

FBCH 0 0 IET0 IRQT0

FBDH 0 0 IES IRQS

FBEH IE1 IRQ1 IE0 IRQ0

FBFH 0 0 IE2 IRQ2

NOTES:
1. IEx refers to all interrupt enable flags.
2. IRQx refers to all interrupt request flags.
3. IEx = 0 is interrupt disable mode.
4. IEx = 1 is interrupt enable mode.

INTERRUPTS KS57C21516/P21516 MICROCONTROLLER

7–14

Interrupt Request Flags (IRQx)

Interrupt request flags are read/write addressable by 1-bit or 4-bit instructions.IRQx flags can be addressed
directly at their specific RAM addresses, regardless of the current value of the enable memory bank (EMB) flag.

When a specific IRQx flag is set to logic one, the corresponding interrupt request is generated. The flag is then
automatically cleared to logic zero when the interrupt has been serviced. Exceptions are the watch timer interrupt
request flags, IRQW, and the external interrupt 2 flag IRQ2, which must be cleared by software after the interrupt
service routine has executed. IRQx flags are also used to execute interrupt requests from software. In summary,
follow these guidelines for using IRQx flags:

1. IRQx is set to request an interrupt when an interrupt meets the set condition for interrupt generation.

2. IRQx is set to "1" by hardware and then cleared by hardware when the interrupt has been serviced (with the
exception of IRQW and IRQ2).

3. When IRQx is set to "1" by software, an interrupt is generated.

When two interrupts share the same service routine start address, interrupt processing may occur in one of two
ways:

— When only one interrupt is enabled, the IRQx flag is cleared automatically when the interrupt has been
serviced.

— When two interrupts are enabled, the request flag is not automatically cleared so that the user has an
opportunity to locate the source of the interrupt request. In this case, the IRQx setting must be cleared
manually using a BTSTZ instruction.

Table 7–8. Interrupt Request Flag Conditions and Priorities

Interrupt
Source

Internal /
External

Pre-condition for IRQx Flag Setting Interrupt
Priority

IRQ Flag
Name

INTB I Reference time interval signal from basic
timer

1 IRQB

INT4 E Both rising and falling edges detected at INT4 1 IRQ4

INT0 E Rising or falling edge detected at INT0 pin 2 IRQ0

INT1 E Rising or falling edge detected at INT1 pin 3 IRQ1

INTS I Completion signal for serial transmit-and-re-
ceive or receive-only operation

4 IRQS

INTT0 I Signals for TCNT0 and TREF0 registers
match

5 IRQT0

INTT1 I Signals for TCNT1 and TREF1 registers
match

6 IRQT1

INTK E When a rising or falling edge detected at any
one of the K0–K7 pins

7 IRQK

INT2 E Rising or falling edge detected at INT2 – IRQ2

INTW I Time interval of 0.5 secs or 3.19 msecs – IRQW

KS57C21516/P21516 MICROCONTROLLER INTERRUPTS

7–15

++ PROGRAMMING TIP — Enabling the INTB and INT4 Interrupts

To simultaneously enable INTB and INT4 interrupts:

INTB DI
BTSTZ IRQB ; IRQB = 1 ?
JR INT4 ; If no, INT4 interrupt; if yes, INTB interrupt is processed
•
•
•
EI
IRET

;
INT4 BITR IRQ4 ; INT4 is processed

•
•
•
EI
IRET

INTERRUPTS KS57C21516/P21516 MICROCONTROLLER

7–16

NOTES

KS57C21516/P21516 MICROCONTROLLER POWER-DOWN

8–1

8 POWER-DOWN

OVERVIEW

The KS57C21516 microcontroller has two power-down modes to reduce power consumption: idle and stop. Idle
mode is initiated by the IDLE instruction and stop mode by the instruction STOP. (Several NOP instructions must
always follow an IDLE or STOP instruction in a program.) In idle mode, the CPU clock stops while peripherals
and the oscillation source continue to operate normally.

When RESET occurs during normal operation or during a power-down mode, a reset operation is initiated and the
CPU enters idle mode. When the standard oscillation stabilization time interval (31.3 ms at 4.19 MHz) has
elapsed, normal CPU operation resumes.

In stop mode, main system clock oscillation is halted (assuming it is currently operating), and peripheral hard-
ware components are powered-down. The effect of stop mode on specific peripheral hardware components —
CPU, basic timer, serial I/O, timer/ counters 0 and 1, watch timer, and LCD controller — and on external interrupt
requests, is detailed in Table 8–1.

Idle or stop modes are terminated either by a RESET, or by an interrupt which is enabled by the corresponding
interrupt enable flag, IEx. When power-down mode is terminated by RESET, a normal reset operation is
executed. Assuming that both the interrupt enable flag and the interrupt request flag are set to "1", power-down
mode is released immediately upon entering power-down mode.

When an interrupt is used to release power-down mode, the operation differs depending on the value of the
interrupt master enable flag (IME):

— If the IME flag = “0”; If the power down mode release signal is generated, after releasing the power-down
mode, program execution starts immediately under the instruction to enter power down mode without
execution of interrupt service routine. The interrupt request flag remains set to logic one.

— If the IME flag = "1"; If the power down mode release signal is generated, after releasing the power down
mode, two instructions following the instruction to enter power down mode are executed first and the interrupt
service routine is executed, finally program is resumed.
However, when the release signal is caused by INT2 or INTW, the operation is identical to the IME = “0”
condition because INT2 and INTW are a quasi-interrupt.

NOTE

Do not use stop mode if you are using an external clock source because XIN input must be restricted
internally to VSS to reduce current leakage.

POWER-DOWN KS57C21516/P21516 MICROCONTROLLER

8–2

Table 8–1. Hardware Operation During Power-Down Modes

Operation Stop Mode (STOP) Idle Mode (IDLE)

System clock status STOP mode can be used only if the
main system clock is selected as system
clock
(CPU clock)

Idle mode can be used if the main
system clock or subsystem clock is
selected as system clock (CPU clock)

Clock oscillator Main system clock oscillation stops CPU clock oscillation stops (main and
subsystem clock oscillation continues)

Basic timer Basic timer stops Basic timer operates (with IRQB set at
each reference interval)

Serial I/O interface Operates only if external SCK input is
selected as the serial I/O clock

Operates if a clock other than the CPU
clock is selected as the serial I/O clock

Timer/counter 0 Operates only if TCL0 is selected as the
counter clock

Timer/counter 0 operates

Timer/counter 1 Operates only if TCL1 is selected as the
counter clock

Timer/counter 1 operates

Watch timer Operates only if subsystem clock (fxt) is
selected as the counter clock

Watch timer operates

LCD controller Operates only if a subsystem clock is se-
lected as LCDCK

LCD controller operates

External interrupts INTO, INT1, INT2, INT4, and INTK are
acknowledged

INT0, INT1, INT2, INT4 and INTK are
acknowledged

CPU All CPU operations are disabled All CPU operations are disabled

Mode release signal Interrupt request signals are enabled by
an interrupt enable flag or by RESET
input

Interrupt request signals are enabled by
an interrupt enable flag or by RESET
input

KS57C21516/P21516 MICROCONTROLLER POWER-DOWN

8–3

Table 8-2. System Operating Mode Comparison

Mode Condition STOP/IDLE Mode Start
Method

Current Consumption

Main operating
mode

Main oscillator runs.
Sub oscillator runs (stops).
System clock is the main
oscillation clock.

– A

Main Idle mode Main oscillator runs.
Sub oscillator runs (stops).
System clock is the main
oscillation clock.

IDLE instruction B

Main Stop
mode

Main oscillator runs.
Sub oscillator runs.
System clock is the main
oscillation clock.

STOP instruction D

Sub operating
mode

Main oscillator is stopped by
SCMOD.3.
Sub oscillator runs.
System clock is the sub
oscillation clock.

– C

Sub ldle Mode Main oscillator is stopped by
SCMOD.3.
Sub oscillator runs.
System clock is the sub
oscillation clock.

IDLE instruction D

Sub Stop mode Main oscillator is stopped by
SCMOD.3.
Sub oscillator runs.
System clock is the sub
oscillation clock.

Setting SCMOD.2 to “1”:
This mode can be released
only by an external RESET.

E

Main/Sub Stop
mode

Main oscillator runs.
Sub oscillator is stopped by
SCMOD.2.
System clock is the main
oscillation clock.

STOP instruction:
This mode can be released by
an interrupt and RESET.

E

NOTE: The current consumption is: A > B > C > D > E.

POWER-DOWN KS57C21516/P21516 MICROCONTROLLER

8–4

IDLE MODE TIMING DIAGRAMS

CLOCK
SIGNAL

IDLE
INSTRUCTION

OSCILLATOR
STABILIZATION WAIT TIME

(31.3 ms / 4.19 MHz)

NORMAL MODE IDLE MODE NORMAL MODE

NORMAL OSCILLATION

RESET

Figure 8–1. Timing When Idle Mode is Released by RESET

NORMAL MODE IDLE MODE NORMAL MODE

NORMAL OSCILLATION

MODE
RELEASE
SIGNAL

IDLE
INSTRUCTION

CLOCK
SIGNAL

INTERRUPT ACKNOWLEDGE (IME = 1)

Figure 8–2. Timing When Idle Mode is Released by an Interrupt

KS57C21516/P21516 MICROCONTROLLER POWER-DOWN

8–5

STOP MODE TIMING DIAGRAMS

STOP
INSTRUCTION

OSCILLATOR
STABILIZATION WAIT TIME

(31.3 ms / 4.19 MHz)

RESET

CLOCK
SIGNAL

NORMAL MODE IDLE MODE NORMAL MODE

OSCILLATION RESUMES

STOP MODE

OSCILLATION
STOPS

Figure 8–3. Timing When Stop Mode is Released by RESET

OSCILLATOR
STABILIZATION WAIT TIME

(BMOD SETTING)

NORMAL MODE IDLE MODE NORMAL MODE

OSCILLATION RESUMES

STOP MODE

OSCILLATION
STOPS

MODE
RELEASE
SIGNAL

STOP
INSTRUCTION

CLOCK
SIGNAL

INT ACK (IME = 1)

Figure 8–4. Timing When Stop Mode is Released by an Interrupt

POWER-DOWN KS57C21516/P21516 MICROCONTROLLER

8–6

++ PROGRAMMING TIP — Reducing Power Consumption for Key Input Interrupt Processing

The following code shows real-time clock and interrupt processing for key inputs to reduce power consumption.
In this example, the system clock source is switched from the main system clock to a subsystem clock and the
LCD display is turned on:

KEYCLK DI
CALL MA2SUB ; Main system → clock subsystem clock switch subroutine
SMB 15
LD EA,#00H
LD P4,EA ; All key strobe outputs to low level
LD A,#3H
LD IMODK,A ; Select K0–K7 enable
SMB 0
BITR IRQW
BITR IRQK
BITS IEW
BITS IEK

CLKS1 CALL WATDIS ; Execute clock and display changing subroutine
BTSTZ IRQK
JR CIDLE
CALL SUB2MA ; Subsystem clock → main system clock switch

subroutine
EI
RET

CIDLE IDLE ; Engage idle mode
NOP
NOP
JPS CLKS1

KS57C21516/P21516 MICROCONTROLLER POWER-DOWN

8–7

RECOMMENDED CONNECTIONS FOR UNUSED PINS

To reduce overall power consumption, please configure unused pins according to the guidelines described in
Table 8–2.

Table 8-3. Unused Pin Connections for Reducing Power Consumption

Pin/Share Pin Names Recommended Connection

P0.0 / SCK / K0
P0.1 / SO / K1
P0.2 / SI / K2
P0.3 / BUZ / K3

Input mode: Connect to VDD
Output mode: No connection

P1.0 / INT0 – P1.2 / INT2 Connect to VDD

P1.3 / INT4 Connect to VDD

P2.0 / CLO
P2.1 / LCDCK
P2.2 / LCDSY
P3.0 / TCLO0
P3.1 / TCLO1
P3.2 / TCL0
P3.3 / TCL1
P4.0 / COM8–P4.3 / COM11
P5.0 / COM12–P5.3 / COM15
P6.0 / SEG55 / K4 – P6.3 /
SEG52 / K7
P7.0 / SEG51–P7.3 / SEG48
P8.0 / SEG47–P8.3 / SEG44
P9.0 / SEG43–P9.3 / SEG40

Input mode: Connect to VDD
Output mode: No connection

SEG0–SEG39
COM0–COM7

No connection

VLC1–VLC5 No connection

XTin
(note) Stop sub-oscillator by setting the SCMOD.2 to logic “1”

XTout No connection

TEST Connect to VSS

NOTE: You can stop the sub-oscillator by setting the SCMOD.2 to one.

POWER-DOWN KS57C21516/P21516 MICROCONTROLLER

8–8

NOTES

KS57C21516/P21516 MICROCONTROLLER RESET

9–1

9 RESET

OVERVIEW

When a RESET signal is input during normal operation or power-down mode, a hardware reset operation is
initiated and the CPU enters idle mode. Then, when the standard oscillation stabilization interval of 31.3 ms at
4.19 MHz has elapsed, normal system operation resumes.

Regardless of when the RESET occurs — during normal operating mode or during a power-down mode — most
hardware register values are set to the reset values described in Table 9–1. The current status of several register
values is, however, always retained when a RESET occurs during idle or stop mode; If a RESET occurs during
normal operating mode, their values are undefined. Current values that are retained in this case are as follows:

— Carry flag

— Data memory values

— General-purpose registers E, A, L, H, X, W, Z, and Y

— Serial I/O buffer register (SBUF)

 RESET

INPUT

NORMAL MODE
OR

POWER-DOWN
MODE

OSCILLATOR
STABILIZATION WAIT TIME

(31.3 ms / 4.19 MHz)

IDLE MODE NORMAL MODE

 RESET OPERATION

Figure 9–1. Timing for Oscillation Stabilization after RESET

HARDWARE REGISTER VALUES AFTER RESET

Table 9–1 gives you detailed information about hardware register values after a RESET occurs during power-
down mode or during normal operation.

RESET KS57C21516/P21516 MICROCONTROLLER

9–2

Table 9–1. Hardware Register Values After RESET

Hardware Component
or Subcomponent

If RESET Occurs During
Power-Down Mode

If RESET Occurs During
Normal Operation

Program counter (PC) Lower six bits of address 0000H
are transferred to PC13–8, and
the contents of 0001H to PC7–0.

Lower six bits of address 0000H
are transferred to PC13–8, and
the contents of 0001H to PC7–0.

Program Status Word (PSW):

Carry flag (C) Retained Undefined

Skip flag (SC0–SC2) 0 0

Interrupt status flags (IS0, IS1) 0 0

Bank enable flags (EMB, ERB) Bit 6 of address 0000H in
program memory is transferred
to the ERB flag, and bit 7 of the
address to the EMB flag.

Bit 6 of address 0000H in
program memory is transferred
to the ERB flag, and bit 7 of the
address to the EMB flag.

Stack pointer (SP) Undefined Undefined

Data Memory (RAM):

General registers E, A, L, H, X, W, Z, Y Values retained Undefined

General-purpose registers Values retained (note) Undefined

Bank selection registers (SMB, SRB) 0, 0 0, 0

BSC register (BSC0–BSC3) 0 0

Clocks:

Power control register (PCON) 0 0

Clock output mode register (CLMOD) 0 0

System clock mode register (SCMOD) 0 0

Interrupts:

Interrupt request flags (IRQx) 0 0

Interrupt enable flags (IEx) 0 0

Interrupt priority flag (IPR) 0 0

Interrupt master enable flag (IME) 0 0

INT0 mode register (IMOD0) 0 0

INT1 mode register (IMOD1) 0 0

INT2 mode register (IMOD2) 0 0

INTK mode register (IMODK) 0 0

NOTE: The values of the 0F8H–0FDH are not retained when a RESET signal is input.

KS57C21516/P21516 MICROCONTROLLER RESET

9–3

Table 9–1. Hardware Register Values After RESET (Continued)

Hardware Component
or Subcomponent

If RESET Occurs During
Power-Down Mode

If RESET Occurs During
Normal Operation

I/O Ports:

Output buffers Off Off

Output latches 0 0

Port mode flags (PM) 0 0

Pull-up resistor mode reg (PUMOD1/2) 0 0

Basic Timer:

Count register (BCNT) Undefined Undefined

Mode register (BMOD) 0 0

Mode register (WDMOD) A5H A5H

Counter clear flag (WDTCF) 0 0

Timer/Counters 0 and 1:

Count registers (TCNT0/1) 0 0

Reference registers (TREF0/1) FFH, FFFFH FFH, FFFFH

Mode registers (TMOD0/1) 0 0

Output enable flags (TOE0/1) 0 0

Watch Timer:

Watch timer mode register (WMOD) 0 0

LCD Driver/Controller:

LCD mode register (LMOD) 0 0

LCD control register (LCON) 0 0

Display data memory Values retained Undefined

Output buffers Off Off

Serial I/O Interface:

SIO mode register (SMOD) 0 0

SIO interface buffer (SBUF) Values retained Undefined

N-Channel Open-Drain Mode Register

PNE0/3 0 0

RESET KS57C21516/P21516 MICROCONTROLLER

9–4

NOTES

KS57C21516/P21516 MICROCONTROLLER I/O PORTS

10–1

10 I/O PORTS

OVERVIEW

The KS57C21516 has 10 ports. There are total of 4 input pins and 35 configurable I/O pins, for a maximum
number of 39 pins.

Pin addresses for all ports are mapped to bank 15 of the RAM. The contents of I/O port pin latches can be read,
written, or tested at the corresponding address using bit manipulation instructions.

Port Mode Flags

Port mode flags (PM) are used to configure I/O ports to input or output mode by setting or clearing the
corresponding I/O buffer.

Pull-up Resistor Mode Register (PUMOD)

The pull-up register mode registers (PUMOD1, 2) are used to assign internal pull-up resistors by software to
specific ports. When a configurable I/O port pin is used as an output pin, its assigned pull-up resistor is
automatically disabled, even though the pin's pull-up is enabled by a corresponding PUMOD bit setting.

I/O PORTS KS57C21516/P21516 MICROCONTROLLER

10–2

Table 10–1. I/O Port Overview

Port I/O Pins Pin Names Address Function Description

0 I/O 4 P0.0–P0.3 FF0H 4-bit I/O port.
1-bit and 4-bit read/write and test is possible.
Individual pins are software configurable as
input or output.
Individual pins are software configurable as
open-drain or push-pull output.
4-bit pull-up resistors are software assignable;
pull-up resistors are automatically disabled for
output pins.

1 I 4 P1.0–P1.3 FF1H 4-bit input port.
1-bit and 4-bit read and test is possible.
4-bit pull-up resistors are assignable.

2 I/O 3 P2.0–P2.2 FF2H Same as port 0 except that port 2 is 3-bit I/O
port.

3 I/O 4 P3.0–P3.3 FF3H Same as port 0.

4, 5 I/O 8 P4.0–P4.3
P5.0–P5.3

FF4H
FF5H

4-bit I/O ports.
1-, 4-bit or 8-bit read/write and test is possible.
Individual pins are software configurable as
input or output.
4-bit pull-up resistors are software assignable;
pull-up resistors are automatically disabled for
output pins.

6, 7 I/O 8 P6.0–P6.3
P7.0–P7.3

FF6H
FF7H

Same as P4 and P5.

8, 9 I/O 8 P8.0–P8.3
P9.0–P9.3

FF8H
FF9H

Same as P4 and P5.

Table 10–2. Port Pin Status During Instruction Execution

Instruction Type Example Input Mode Status Output Mode Status

1-bit test
1-bit input
4-bit input
8-bit input

BTST
LDB
LD
LD

P0.1
C,P1.3
A,P7
EA,P4

Input or test data at each pin Input or test data at output latch

1-bit output BITR P2.3 Output latch contents undefined Output pin status is modified

4-bit output
8-bit output

LD
LD

P2,A
P6,EA

Transfer accumulator data to the
output latch

Transfer accumulator data to the
output pin

KS57C21516/P21516 MICROCONTROLLER I/O PORTS

10–3

PORT MODE FLAGS (PM FLAGS)

Port mode flags (PM) are used to configure I/O ports to input or output mode by setting or clearing the
corresponding I/O buffer.

For convenient program reference, PM flags are organized into five groups — PMG1, PMG2, PMG3, PMG4 and
PMG5 as shown in Table 10–3. They are addressable by 8-bit write instructions only.

When a PM flag is "0", the port is set to input mode; when it is "1", the port is enabled for output. RESET clears all
port mode flags to logical zero, automatically configuring the corresponding I/O ports to input mode.

Table 10–3. Port Mode Group Flags

PM Group ID Address Bit 3 Bit 2 Bit 1 Bit 0

PMG1 FE6H PM0.3 PM0.2 PM0.1 PM0.0

FE7H "0" PM2.2 PM2.1 PM2.0

PMG2 FE8H PM3.3 PM3.2 PM3.1 PM3.0

FE9H "0" "0" "0" "0"

PMG3 FEAH PM4.3 PM4.2 PM4.1 PM4.0

FEBH PM5.3 PM5.2 PM5.1 PM5.0

PMG4 FECH PM6.3 PM6.2 PM6.1 PM6.0

FEDH PM7.3 PM7.2 PM7.1 PM7.0

PMG5 FEEH PM8.3 PM8.2 PM8.1 PM8.0

FEFH PM9.3 PM9.2 PM9.1 PM9.0

NOTE: If bit = "0", the corresponding I/O pin is set to input mode. If bit = "1", the pin is set to output mode: PM0.0 for
P0.0, PM0.1 for P0.1, etc,. All flags are cleared to "0" following RESET.

++ PROGRAMMING TIP — Configuring I/O Ports to Input or Output

Configure ports 0 and 2 as an output port:

BITS EMB
SMB 15
LD EA,#7FH
LD PMG1,EA ; P0 and P2 ← Output

I/O PORTS KS57C21516/P21516 MICROCONTROLLER

10–4

PULL-UP RESISTOR MODE REGISTER (PUMOD)

The pull-up resistor mode registers (PUMOD1 and PUMOD2) are used to assign internal pull-up resistors by soft-
ware to specific ports. When a configurable I/O port pin is used as an output pin, its assigned pull-up resistor is
automatically disabled, even though the pin's pull-up is enabled by a corresponding PUMOD bit setting.

PUMOD1 is addressable by 8-bit write instructions only, and PUMOD2 by 4-bit write instruction only. RESET
clears PUMOD register values to logic zero, automatically disconnecting all software-assignable port pull-up
resistors.

Table 10–4. Pull-Up Resistor Mode Register (PUMOD) Organization

PUMOD ID Address Bit 3 Bit 2 Bit 1 Bit 0

PUMOD1 FDCH PUR3 PUR2 PUR1 PUR0

FDDH PUR7 PUR6 PUR5 PUR4

PUMOD2 FDEH "0" "0" PUR9 PUR8

NOTE: When bit = "1", a pull-up resistor is assigned to the corresponding I/O port: PUR3 for port 3, PUR2 for port 2,
and so on.

++ PROGRAMMING TIP — Enabling and Disabling I/O Port Pull-Up Resistors

P6 and P7 enable pull-up resistors.

BITS EMB
SMB 15
LD EA,#0C0H
LD PUMOD1,EA ; P6 and P7 enable

N-CHANNEL OPEN-DRAIN MODE REGISTER (PNE)

The n-channel, open-drain mode register (PNE) is used to configure ports 0, 2 and 3 to n-channel, open-drain or
as push-pull outputs. When a bit in the PNE register is set to "1", the corresponding output pin is configured to n-
channel, open-drain; when set to "0", the output pin is configured to push-pull. The PNE register consists of an 8-
bit register and a 4-bit register; PNE0 can be addressed by 8-bit write instructions only and PNE3 by 4-bit write
instructions only.

FD6H PNE0.3 PNE0.2 PNE0.1 PNE0.0 PNE1

FD7H PNE2.3 PNE2.2 PNE2.1 PNE2.0

FD8H PNE3.3 PNE3.2 PNE3.1 PNE3.0 PNE2

KS57C21516/P21516 MICROCONTROLLER I/O PORTS

10–5

PORT 0 CIRCUIT DIAGRAM

Output
Data

VDD

PUR0

PUR0

PUR0

PUR0

1, 4

1, 4

When a port pin serves as an output, its pull-up resistor is automatically disabled, even though the
port's pull-up resistor is enabled by bit settings in the pull-up resistor mode register (PUMOD).

NOTE:

M

U

X

P0.0/SCK

CMOS PUSH -PULL,
N-CHANNEL
OPEN-DRAIN

PM0.0

PM0.2

P0.3/BUZ

P0.2/SI

P0.1/SO

SCK

SO

BUZ

OUTPUT
LATCH

SCK

SI

Type B

Type B

Type B

Type B

PM0.2

PM0.3

PM0.1

PM0.0

PM0.x

Input
Data N-CH

P-CH

VDD

x = 0-3

Type B

PNE0.x

Figure 10–1. Port 0 Circuit Diagram

I/O PORTS KS57C21516/P21516 MICROCONTROLLER

10–6

PORT 1 CIRCUIT DIAGRAM

VDD

PUMOD.1

INT0

P1.1/INT1

P1.2/INT2

P1.3/INT4

P1.0/INT0

INT1 INT2 INT4

N/R = Noise Reduction

Figure 10–2. Port 1 Circuit Diagram

KS57C21516/P21516 MICROCONTROLLER I/O PORTS

10–7

PORT 2 CIRCUIT DIAGRAM

Output
Data

PM2.2

PM2.1

PM2.0

VDD

PUR2

PUR2

PUR2

1, 4P2.1/LCDCK

1, 4

M

U

X

CMOS PUSH-PULL,
N-CHANNEL
OPEN-DRAIN

NOTE: When a port pin serves as an output, its pull-up resistor is automatically disabled, even though the
port's pull-up resistor is enabled by bit settings to the pull-up resistor mode register (PUMOD).

PM2.0

PM2.1

PM2.2

P2.0/CLO

CLO

LCDCK

P2.2/LCDSY

LCDSY

OUTPUT
LATCH

PM2.x

Input
Data N-CH

P-CH

VDD

x = 0-2

Type B

PNE2.x

Type B

Type B

Type B

Figure 10–3. Port 2 Circuit Diagram

I/O PORTS KS57C21516/P21516 MICROCONTROLLER

10–8

PORT 3 CIRCUIT DIAGRAM

Output
Data

VDD

PM3.2

PM3.3

PM3.1

PM3.0

PUR3

PUR3

PUR3

PUR3

1, 4

1, 4

When a port pin serves as an output, its pull-up resistor is automatically disabled, even though the
port's pull-up resistor is enabled by bit settings in the pull-up resistor mode register (PUMOD).

NOTE:

M

U

X

P3.0/TCLO0

CMOS PUSH-PULL,
N-CHANNEL
OPEN-DRAIN

PM3.0

P3.3/TCL1

P3.2/TCL0

P3.1/TCLO1

TCLO0

TCLO1

OUTPUT
LATCH

PM3.1

TCL1

TCL0

PM3.x

Input
Data N-CH

P-CH

VDD

x = 0-3

Type B

PNE3.x

Type B

Type B

Type B

Type B

Figure 10–4. Port 3 Circuit Diagram

KS57C21516/P21516 MICROCONTROLLER I/O PORTS

10–9

PORT 4, 5, 6, 7, 8, 9 CIRCUIT DIAGRAM

VDD

1, 4, 8

1, 4, 8

When a port pin serves as an output, its pull-up resistor is automatically disabled, even though
the port's pull-up resistor is enabled by bit settings to the pull-up resistor mode register (PUMOD).
Port 6 is a schmitt trigger input.

NOTE:

M

U

X

PMx.2

PMx.3

Px.0

Px.1

Px.2

Px.3

OUTPUT
LATCH

PMx.1

PMx.0

PURx

PURx

PURx

PURx

x = port number (4, 5, 6, 7, 8, 9)

PMx.0

PMx.1

PMx.2

PMx.3

Figure 10–5. Ports 4, 5, 6, 7, 8, and 9 Circuit Diagram

I/O PORTS KS57C21516/P21516 MICROCONTROLLER

10–10

NOTES

KS57C21516/P21516 MICROCONTROLLER I/O PORTS

10–11

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–1

11 TIMERS and TIMER/COUNTERS

OVERVIEW

The KS57C21516 microcontroller has four timer and timer/counter modules:

— 8-bit basic timer (BT)

— 8-bit timer/counter (TC0)

— 16-bit timer/counter (TC1)

— Watch timer (WT)

The 8-bit basic timer (BT) is the microcontroller's main interval timer and watch-dog timer. It generates an
interrupt request at a fixed time interval when the appropriate modification is made to its mode register. The
basic timer is also used to determine clock oscillation stabilization time when stop mode is released by an
interrupt and after a RESET.

The 8-bit timer/counter (TC0) and the 16-bit timer/counter (TC1) are programmable timer/counters that are used
primarily for event counting and for clock frequency modification and output. In addition, TC0 generates a clock
signal that can be used by the serial I/O interface.

The watch timer (WT) module consists of an 8-bit watch timer mode register, a clock selector, and a frequency
divider circuit. Watch timer functions include real-time and watch-time measurement, main and subsystem clock
interval timing, buzzer output generation. It also generates a clock signal for the LCD controller.

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–2

BASIC TIMER (BT)

OVERVIEW

The 8-bit basic timer (BT) has six functional components:

— Clock selector logic

— 4-bit mode register (BMOD)

— 8-bit counter register (BCNT)

— 8-bit watchdog timer mode register (WDMOD)

— Watchdog timer counter clear flag (WDTCF)

The basic timer generates interrupt requests at precise intervals, based on the frequency of the system clock.
You can use the basic timer as a "watchdog" timer for monitoring system events or use BT output to stabilize
clock oscillation when stop mode is released by an interrupt and following RESET. Bit settings in the basic timer
mode register BMOD turns the BT module on and off, selects the input clock frequency, and controls interrupt or
stabilization intervals.

Interval Timer Function

The basic timer's primary function is to measure elapsed time intervals. The standard time interval is equal to
256 basic timer clock pulses.

To restart the basic timer, one bit setting is required: bit 3 of the mode register BMOD should be set to logic one.
The input clock frequency and the interrupt and stabilization interval are selected by loading the appropriate bit
values to BMOD.2–BMOD.0.

The 8-bit counter register, BCNT, is incremented each time a clock signal is detected that corresponds to the
frequency selected by BMOD. BCNT continues incrementing as it counts BT clocks until an overflow occurs (≥
255). An overflow causes the BT interrupt request flag (IRQB) to be set to logic one to signal that the designated
time interval has elapsed. An interrupt request is than generated, BCNT is cleared to logic zero, and counting
continues from 00H.

Watchdog Timer Function

The basic timer can also be used as a "watchdog" timer to signal the occurrence of system or program operation
error. For this purpose, instruction that clear the watchdog timer (BITS WDTCF) should be executed at proper
points in a program within given period. If an instruction that clears the watchdog timer is not executed within the
given period and the watchdog timer overflows, reset signal is generated and the system restarts with reset
status. An operation of watchdog timer is as follows:

— Write some values (except #5AH) to watchdog timer mode register, WDMOD.

— If WDCNT overflows, system reset is generated.

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–3

Oscillation Stabilization Interval Control

Bits 2–0 of the BMOD register are used to select the input clock frequency for the basic timer. This setting also
determines the time interval (also referred to as ‘wait time’) required to stabilize clock signal oscillation when stop
mode is released by an interrupt. When a RESET signal is inputted, the standard stabilization interval for system
clock oscillation following the RESET is 31.3 ms at 4.19 MHz.

Table 11-1. Basic Timer Register Overview

Register
Name

Type Description Size RAM
Address

Addressing
Mode

Reset
Value

BMOD Control Controls the clock frequency (mode)
of the basic timer; also, the
oscillation stabilization interval after
stop mode release or RESET

4-bit F85H 4-bit write-only;
BMOD.3: 1-bit
writeable

“0”

BCNT Counter Counts clock pulses matching the
BMOD frequency setting

8-bit F86H–F87H 8-bit read-only U(note)

WDMOD Control Controls watchdog timer operation. 8-bit F98H–F99H 8-bit write-only A5H

WDTCF Control Clears the watchdog timer’s counter. 1-bit F9AH.3 1-, 4-bit write “0”

NOTE: 'U' means the value is undetermined after a RESET.

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–4

OVERFLOW

"CLEAR" SIGNAL

BITS
INSTRUCTION

CLOCK
SELECTOR

BCNT IRQB

INTERRUPT
REQUESTOVERFLOW

CPU CLOCK
START SIGNAL
(POWER-DOWN RELEASE)

1-BIT R/W

CLOCK INPUT

CLEAR
IRQB

4

CLEAR
BCNT

8

BMOD.3

BMOD.2

BMOD.1

BMOD.0

WDCNT
RESET SIGNAL
GENERATION

8

WDTCF DELAY

WAIT (note)

RESET

STOP

BITS
INSTRUCTION

1 pulse period=BT input clock 2 (1/2 duty)

Clear

Clear

3-BIT COUNTER

RESET

8

2. The signal can be generated if the WDMOD is toggled for 8 times where “toggle”
 means change from 5AH to other value and vice versa.
3. When the watchdog timer is enabled or the 3-bit counter of the watchdog timer is cleared
 to “0”, the BCNT value is not cleared but increased continuously.
 As a result, the 3-bit counter of the watchdog timer (WDCNT) can be increased by 1.
 For example, when the BMOD value is x000B and the watchdog timer is enabled,
 the watchdog timer interval time is either 2 x 2 x 2 /fxx or (2 -1) x 2 x 2 /fxx.

WDMOD

NOTES:
1. WAIT means stabilization time after or stabilization time after STOP mode release.RESET

RESET

3 12 8 3 12 8

Figure 11-1. Basic Timer Circuit Diagram

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–5

BASIC TIMER MODE REGISTER (BMOD)

The basic timer mode register, BMOD, is a 4-bit write-only register. Bit 3, the basic timer start control bit, is also
1-bit addressable. All BMOD values are set to logic zero following RESET and interrupt request signal generation
is set to the longest interval. (BT counter operation cannot be stopped.) BMOD settings have the following
effects:

— Restart the basic timer;

— Control the frequency of clock signal input to the basic timer;

— Determine time interval required for clock oscillation to stabilize following the release of stop mode by an
interrupt.

By loading different values into the BMOD register, you can dynamically modify the basic timer clock frequency
during program execution. Four BT frequencies, ranging from fxx/212 to fxx/25, are selectable. Since BMOD's
reset value is logic zero, the default clock frequency setting is fxx/212.

The most significant bit of the BMOD register, BMOD.3, is used to restart the basic timer. When BMOD.3 is set
to logic one by a 1-bit write instruction, the contents of the BT counter register (BCNT) and the BT interrupt
request flag (IRQB) are both cleared to logic zero, and timer operation restarts.

The combination of bit settings in the remaining three registers — BMOD.2, BMOD.1, and BMOD.0 — determine
the clock input frequency and oscillation stabilization interval.

Table 11-2. Basic Timer Mode Register (BMOD) Organization

BMOD.3 Basic Timer Start Control Bit

1 Start basic timer; clear IRQB, BCNT, and BMOD.3 to "0"

BMOD.2 BMOD.1 BMOD.0 Basic Timer Input Clock Interrupt Interval Time
(Wait Time)

0 0 0 fxx/212 (1.02 kHz) 220/fxx (250 ms)

0 1 1 fxx/29 (8.18 kHz) 217/fxx (31.3 ms)

1 0 1 fxx/27 (32.7 kHz) 215/fxx (7.82 ms)

1 1 1 fxx/25 (131 kHz) 213/fxx (1.95 ms)

NOTES
1. Clock frequencies and interrupt interval time assume a system oscillator clock frequency (fxx) of 4.19 MHz.
2. fxx = system clock frequency.
3. Wait time is the time required to stabilize clock signal oscillation after stop mode is released. The

data in the table column "Interrupt Interval Time" can also be interpreted as "Oscillation Stabilization."
4. The standard stabilization time for system clock oscillation following a RESET is 31.3 ms at 4.19 MHz.

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–6

BASIC TIMER COUNTER (BCNT)

BCNT is an 8-bit counter for the basic timer. It can be addressed by 8-bit read instructions. RESET leaves the
BCNT counter value undetermined. BCNT is automatically cleared to logic zero whenever the BMOD register
control bit (BMOD.3) is set to "1" to restart the basic timer. It is incremented each time a clock pulse of the
frequency determined by the current BMOD bit settings is detected.

When BCNT has incrementing to hexadecimal ‘FFH’ (≥ 255 clock pulses), it is cleared to ‘00H’ and an overflow is
generated. The overflow causes the interrupt request flag, IRQB, to be set to logic one. When the interrupt
request is generated, BCNT immediately resumes counting incoming clock signals.

NOTE

Always execute a BCNT read operation twice to eliminate the possibility of reading unstable data while
the counter is incrementing. If, after two consecutive reads, the BCNT values match, you can select the
latter value as valid data. Until the results of the consecutive reads match, however, the read operation
must be repeated until the validation condition is met.

BASIC TIMER OPERATION SEQUENCE

The basic timer's sequence of operations may be summarized as follows:

1. Set BMOD.3 to logic one to restart the basic timer.

2. BCNT is then incremented by one after each clock pulse corresponding to BMOD selection.

3. BCNT overflows if BCNT = 255 (BCNT = FFH).

4. When an overflow occurs, the IRQB flag is set by hardware to logic one.

5. The interrupt request is generated.

6. BCNT is then cleared by hardware to logic zero.

7. Basic timer resumes counting clock pulses.

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–7

++ PROGRAMMING TIP — Using the Basic Timer

1. To read the basic timer count register (BCNT):

BITS EMB
SMB 15

BCNTR LD EA,BCNT
LD YZ,EA
LD EA,BCNT
CPSE EA,YZ
JR BCNTR

2. When stop mode is released by an interrupt, set the oscillation stabilization interval to 31.3 ms:

BITS EMB
SMB 15
LD A,#0BH
LD BMOD,A ; Wait time is 31.3 ms
NOP
STOP ; Set stop power-down mode
NOP
NOP
NOP

3. To set the basic timer interrupt interval time to 1.95 ms (at 4.19 MHz):

BITS EMB
SMB 15
LD A,#0FH
LD BMOD,A
EI
BITS IEB ; Basic timer interrupt enable flag is set to "1"

4. Clear BCNT and the IRQB flag and restart the basic timer:

BITS EMB
SMB 15
BITS BMOD.3

CPU
OPERATION

NORMAL OPERATING
MODE STOP MODE IDLE MODE

NORMAL OPERATING
MODE

(31.3 ms)

STOP
INSTRUCTION

STOP MODE IS
RELEASED BY

INTERRUPT

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–8

WATCHDOG TIMER MODE REGISTER (WDMOD)

The watchdog timer mode register, WDMOD, is a 8-bit write-only register. WDMOD register controls to enable or
disable the watchdog function. WDMOD values are set to logic “A5H” following RESET and this value enables the
watchdog timer. Watchdog timer is set to the longest interval because BT overflow signal is generated with the
longest interval.

WDMOD Watchdog Timer Enable/Disable Control

5AH Disable watchdog timer function

Any other value Enable watchdog timer function

WATCHDOG TIMER COUNTER (WDCNT)

The watchdog timer counter, WDCNT, is a 3-bit counter. WDCNT is automatically cleared to logic zero, and
restarts whenever the WDTCF register control bit is set to “1”. RESET, stop, and wait signal clears the WDCNT to
logic zero also.

WDCNT increments each time a clock pulse of the overflow frequency determined by the current BMOD bit
setting is generated. When WDCNT has incremented to hexadecimal ‘07H’, it is cleared to ‘00H’ and an overflow
is generated. The overflow causes the system RESET. When the interrupt request is generated, BCNT
immediately resumes counting incoming clock signals.

WATCHDOG TIMER COUNTER CLEAR FLAG (WDTCF)

The watchdog timer counter clear flag, WDTCF, is a 1-bit write instruction. When WDTCF is set to one, it clears
the WDCNT to zero and restarts the WDCNT. WDTCF register bits 2–0 are always logic zero.

Table 11-3. Watchdog Timer Interval Time

BMOD BT Input Clock WDT Interval Time (3)

x000b fxx/212 23 × 212 × 28/fxx or (23–1) × 212 × 28/fxx 1.75–2.0 sec

x011b fxx/29 23 × 29 × 28/fxx or (23–1) × 29 × 28/fxx 218.7–250 ms

x101b fxx/27 23 × 27 × 28/fxx or (23–1) × 27 × 28/fxx 54.6–62.5ms

x111b fxx/25 23 × 25 × 28/fxx or (23–1) × 25 × 28/fxx 13.6–15.6 ms

NOTES:
1. Clock frequencies assume a system oscillator clock frequency (fx) of 4.19 MHz
2. fxx = system clock frequency.
3. When the watchdog timer is enabled or the 3-bit counter of the watchdog timer is cleared to “0”, the BCNT value is not

cleared but increased continuously. As a result, the 3-bit counter of the watchdog timer (WDCNT) can be increased
by 1. For example, when the BMOD value is x000b and the watchdog timer is enabled, the watchdog timer interval time
is either 23 × 212 × 28/fxx or (23–1) × 212 × 28/fxx.

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–9

++ PROGRAMMING TIP — Using the Watchdog Timer

RESET DI
LD EA,#00H
LD SP,EA
•
•
•
LD A,#0DH ; WDCNT input clock is 7.82 ms
LD BMOD,A
•
•
•

MAIN BITS WDTCF ; Main routine operation period must be shorter than
• ; watchdog-timer’s period
•
•
JP MAIN

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–10

8-BIT TIMER/COUNTER 0 (TC0)

OVERVIEW

Timer/counter 0 (TC0) is used to count system 'events' by identifying the transition (high-to-low or low-to-high) of
incoming square wave signals. To indicate that an event has occurred, or that a specified time interval has
elapsed, TC0 generates an interrupt request. By counting signal transitions and comparing the current counter
value with the reference register value, TC0 can be used to measure specific time intervals.

TC0 has a reloadable counter that consists of two parts: an 8-bit reference register (TREF0) into which you write
the counter reference value, and an 8-bit counter register (TCNT0) whose value is automatically incremented by
counter logic.

An 8-bit mode register, TMOD0, is used to activate the timer/counter and to select the basic clock frequency to
be used for timer/counter operations. To dynamically modify the basic frequency, new values can be loaded into
the TMOD0 register during program execution.

TC0 FUNCTION SUMMARY

8-bit programmable timer Generates interrupts at specific time intervals based on the selected clock fre-
quency.

External event counter Counts various system "events" based on edge detection of external clock sig-
nals at the TC0 input pin, TCL0. To start the event counting operation,
TMOD0.2 is set to "1" and TMOD0.6 is cleared to "0".

Arbitrary frequency output Outputs selectable clock frequencies to the TC0 output pin, TCLO0.

External signal divider Divides the frequency of an incoming external clock signal according to a
modifiable reference value (TREF0), and outputs the modified frequency to the
TCLO0 pin.

Serial I/O clock source Outputs a modifiable clock signal for use as the SCK clock source.

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–11

TC0 COMPONENT SUMMARY

Mode register (TMOD0) Activates the timer/counter and selects the internal clock frequency or the
external clock source at the TCL0 pin.

Reference register (TREF0) Stores the reference value for the desired number of clock pulses between in-
terrupt requests.

Counter register (TCNT0) Counts internal or external clock pulses based on the bit settings in TMOD0
and TREF0.

Clock selector circuit Together with the mode register (TMOD0), lets you select one of four internal
clock frequencies or an external clock.

8-bit comparator Determines when to generate an interrupt by comparing the current value of
the counter register (TCNT0) with the reference value previously programmed
into the reference register (TREF0).

Output latch (TOL0) Where a clock pulse is stored pending output to the serial I/O circuit or to the
TC0 output pin, TCLO0.

When the contents of the TCNT0 and TREF0 registers coincide, the
timer/counter interrupt request flag (IRQT0) is set to "1", the status of TOL0 is
inverted, and an interrupt is generated.

Output enable flag (TOE0) Must be set to logic one before the contents of the TOL0 latch can be output to
TCLO0.

Interrupt request flag (IRQT0) Cleared when TC0 operation starts and the TC0 interrupt service routine is
executed and set to 1 whenever the counter value and reference value
coincide.

Interrupt enable flag (IET0) Must be set to logic one before the interrupt requests generated by
timer/counter 0 can be processed.

Table 11–4. TC0 Register Overview

Register
Name

Type Description Size RAM
Address

Addressing
Mode

Reset
Value

TMOD0 Control Controls TC0 enable/disable
(bit 2); clears and resumes
counting operation (bit 3); sets
input clock and clock frequency
(bits 6–4)

8-bit F90H–F91H 8-bit write-
only;

(TMOD0.3 is
also 1-bit
writeable)

"0"

TCNT0 Counter Counts clock pulses matching
the TMOD0 frequency setting

8-bit F94H–F95H 8-bit
read-only

"0"

TREF0 Reference Stores reference value for the
timer/counter 0 interval setting

8-bit F96H–F97H 8-bit
write-only

FFH

TOE0 Flag Controls timer/counter 0 output
to the TCLO0 pin

1-bit F92H.2 1/4-bit
read/write

"0"

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–12

CLOCK
SELECTOR

TCNT0
8-BIT

COMPARATOR

TOL0IRQT0

TMOD0.7

TMOD0.6

TMOD0.5

TMOD0.4

TMOD0.3

TMOD0.2

TMOD0.1

TMOD0.0

TREF0

CLEAR

INVERTED

CLEAR

SETCLEAR

CLOCKS

(fxx/2 , fxx/2 , fxx/2 , fxx)

8
8

8

TCLO0

P3.0 LATCHPM3.0 TOE0

TCL0

SERIAL I/O

10 6 4

Figure 11–2. TC0 Circuit Diagram

TC0 ENABLE/DISABLE PROCEDURE

Enable Timer/Counter 0

— Set TMOD0.2 to logic one.

— Set the TC0 interrupt enable flag IET0 to logic one.

— Set TMOD0.3 to logic one.

TCNT0, IRQT0, and TOL0 are cleared to logic zero, and timer/counter operation starts.

Disable Timer/Counter 0

— Set TMOD0.2 to logic zero.

Clock signal input to the counter register TCNT0 is halted. The current TCNT0 value is retained and can be read
if necessary.

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–13

TC0 PROGRAMMABLE TIMER/COUNTER FUNCTION

Timer/counter 0 can be programmed to generate interrupt requests at various intervals based on the selected
system clock frequency. Its 8-bit TC0 mode register TMOD0 is used to activate the timer/counter and to select
the clock frequency. The reference register TREF0 stores the value for the number of clock pulses to be
generated between interrupt requests. The counter register, TCNT0, counts the incoming clock pulses, which are
compared to the TREF0 value as TCNT0 is incremented. When there is a match (TREF0 = TCNT0), an interrupt
request is generated.

To program timer/counter 0 to generate interrupt requests at specific intervals, choose one of four internal clock
frequencies (divisions of the system clock, fxx) and load a counter reference value into the TREF0 register.
TCNT0 is incremented each time an internal counter pulse is detected with the reference clock frequency
specified by TMOD0.4–TMOD0.6 settings. To generate an interrupt request, the TC0 interrupt request flag
(IRQT0) is set to logic one, the status of TOL0 is inverted, and the interrupt is generated. The content of TCNT0
is then cleared to 00H and TC0 continues counting. The interrupt request mechanism for TC0 includes an
interrupt enable flag (IET0) and an interrupt request flag (IRQT0).

TC0 OPERATION SEQUENCE

The general sequence of operations for using TC0 can be summarized as follows:

1. Set TMOD0.2 to "1" to enable TC0.

2. Set TMOD0.6 to "1" to enable the system clock (fxx) input.

3. Set TMOD0.5 and TMOD0.4 bits to desired internal frequency (fxx/2n).

4. Load a value to TREF0 to specify the interval between interrupt requests.

5. Set the TC0 interrupt enable flag (IET0) to "1".

6. Set TMOD0.3 bit to "1" to clear TCNT0, IRQT0, and TOL0, and start counting.

7. TCNT0 increments with each internal clock pulse.

8. When the comparator shows TCNT0 = TREF0, the IRQT0 flag is set to "1" and an interrupt request is
generated.

9. Output latch (TOL0) logic toggles high or low.

10. TCNT0 is cleared to 00H and counting resumes.

11. Programmable timer/counter operation continues until TMOD0.2 is cleared to "0".

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–14

TC0 EVENT COUNTER FUNCTION

Timer/counter 0 can monitor or detect system 'events' by using the external clock input at the TCL0 pin as the
counter source. The TC0 mode register selects rising or falling edge detection for incoming clock signals. The
counter register TCNT0 is incremented each time the selected state transition of the external clock signal occurs.

With the exception of the different TMOD0.4–TMOD0.6 settings, the operation sequence for TC0's event counter
function is identical to its programmable timer/counter function. To activate the TC0 event counter function,

— Set TMOD0.2 to "1" to enable TC0.

— Clear TMOD0.6 to "0" to select the external clock source at the TCL0 pin.

— Select TCL0 edge detection for rising or falling signal edges by loading the appropriate values to TMOD0.5
and TMOD0.4.

— P3.2 must be set to input mode.

Table 11–5. TMOD0 Settings for TCL0 Edge Detection

TMOD0.5 TMOD0.4 TCL0 Edge Detection

0 0 Rising edges

0 1 Falling edges

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–15

TC0 CLOCK FREQUENCY OUTPUT

Using timer/counter 0, a modifiable clock frequency can be output to the TC0 clock output pin, TCLO0. To select
the clock frequency, load the appropriate values to the TC0 mode register, TMOD0. The clock interval is selected
by loading the desired reference value into the reference register TREF0. To enable the output to the TCLO0 pin,
the following conditions must be met:

— TC0 output enable flag TOE0 must be set to "1".

— I/O mode flag for P3.0 (PM3.0) must be set to output mode ("1").

— Output latch value for P3.0 must be set to "0".

In summary, the operational sequence required to output a TC0-generated clock signal to the TCLO0 pin is as
follows:

1. Load a reference value to TREF0.

2. Set the internal clock frequency in TMOD0.

3. Initiate TC0 clock output to TCLO0 (TMOD0.2 = "1").

4. Set P3.0 mode flag (PM3.0) to "1".

5. Set P3.0 output latch to "0".

6. Set TOE0 flag to "1".

Each time TCNT0 overflows and an interrupt request is generated, the state of the output latch TOL0 is inverted
and the TC0-generated clock signal is output to the TCLO0 pin.

++ PROGRAMMING TIP — TC0 Signal Output to the TCLO0 Pin

Output a 30 ms pulse width signal to the TCLO0 pin:

BITS EMB
SMB 15
LD EA,#79H
LD TREF0,EA
LD EA,#4CH
LD TMOD0,EA
LD EA,#01H
LD PMG2,EA ; P3.0 ← output mode
BITR P3.0 ; P3.0 clear
BITS TOE0

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–16

TC0 SERIAL I/O CLOCK GENERATION

Timer/counter 0 can supply a clock signal to the clock selector circuit of the serial I/O interface for data shifter
and clock counter operations. (These internal SIO operations are controlled in turn by the SIO mode register,
SMOD). This clock generation function enables you to adjust data transmission rates across the serial interface.

Use TMOD0 and TREF0 register settings to select the frequency and interval of the TC0 clock signals to be used
as SCK input to the serial interface. The generated clock signal is then sent directly to the serial I/O clock
selector circuit (the TOE0 flag may be disabled).

TC0 EXTERNAL INPUT SIGNAL DIVIDER

By selecting an external clock source and loading a reference value into the TC0 reference register, TREF0, you
can divide the incoming clock signal by the TREF0 value and then output this modified clock frequency to the
TCLO0 pin. The sequence of operations used to divide external clock input can be summarized as follows:

1. Load a signal divider value to the TREF0 register.

2. Clear TMOD0.6 to "0" to enable external clock input at the TCL0 pin.

3. Set TMOD0.5 and TMOD0.4 to desired TCL0 signal edge detection.

4. Set port 3.0 mode flag (PM3.0) to output ("1").

5. Set P3.0 output latch to "0".

6. Set TOE0 flag to "1" to enable output of the divided frequency to the TCLO0 pin.

++ PROGRAMMING TIP — External TCL0 Clock Output to the TCLO0 Pin

Output external TCL0 clock pulse to the TCLO0 pin (divided by four):

EXTERNAL (TCL0)
CLOCK PULSE

TCLO0
OUTPUT

PULSE

BITS EMB
SMB 15
LD EA,#01H
LD TREF0,EA
LD EA,#0CH
LD TMOD0,EA
LD EA,#01H
LD PMG2,EA ; P3.0 ← output mode
BITR P3.0 ; P3.0 clear
BITS TOE0

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–17

TC0 MODE REGISTER (TMOD0)

TMOD0 is the 8-bit mode control register for timer/counter 0. It is addressable by 8-bit write instructions. One bit,
TMOD0.3, is also 1-bit writeable. RESET clears all TMOD0 bits to logic zero and disables TC0 operations.

F90H TMOD0.3 TMOD0.2 "0" "0"

F91H "0" TMOD0.6 TMOD0.5 TMOD0.4

TMOD0.2 is the enable/disable bit for timer/counter 0. When TMOD0.3 is set to "1", the contents of TCNT0,
IRQT0, and TOL0 are cleared, counting starts from 00H, and TMOD0.3 is automatically reset to "0" for normal
TC0 operation. When TC0 operation stops (TMOD0.2 = "0"), the contents of the TC0 counter register TCNT0 are
retained until TC0 is re-enabled.

The TMOD0.6, TMOD0.5, and TMOD0.4 bit settings are used together to select the TC0 clock source. This
selection involves two variables:

— Synchronization of timer/counter operations with either the rising edge or the falling edge of the clock signal
input at the TCL0 pin, and

— Selection of one of four frequencies, based on division of the incoming system clock frequency, for use in
internal TC0 operation.

Table 11–6. TC0 Mode Register (TMOD0) Organization

Bit Name Setting Resulting TC0 Function Address

TMOD0.7 0 Always logic zero F91H

TMOD0.6 0,1 Specify input clock edge and internal frequency

TMOD0.5

TMOD0.4

TMOD0.3 1 Clear TCNT0, IRQT0, and TOL0 and resume counting
immediately (This bit is automatically cleared to logic zero
immediately after counting resumes.)

F90H

TMOD0.2 0 Disable timer/counter 0; retain TCNT0 contents

1 Enable timer/counter 0

TMOD0.1 0 Always logic zero

TMOD0.0 0 Always logic zero

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–18

Table 11–7. TMOD0.6, TMOD0.5, and TMOD0.4 Bit Settings

TMOD0.6 TMOD0.5 TMOD0.4 Resulting Counter Source and Clock Frequency

0 0 0 External clock input (TCL0) on rising edges

0 0 1 External clock input (TCL0) on falling edges

1 0 0 fxx/210 (4.09 kHz)

1 0 1 fxx /26 (65.5 kHz)

1 1 0 fxx/24 (262 kHz)

1 1 1 fxx (4.19 MHz)

NOTE: 'fxx' = selected system clock of 4.19 MHz.

++ PROGRAMMING TIP — Restarting TC0 Counting Operation

1. Set TC0 timer interval to 4.09 kHz:

BITS EMB
SMB 15
LD EA,#4CH
LD TMOD0,EA
EI
BITS IET0

2. Clear TCNT0, IRQT0, and TOL0 and restart TC0 counting operation:

BITS EMB
SMB 15
BITS TMOD0.3

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–19

TC0 COUNTER REGISTER (TCNT0)

The 8-bit counter register for timer/counter 0, TCNT0, is read-only and can be addressed by 8-bit RAM control
instructions. RESET sets all TCNT0 register values to logic zero (00H).

Whenever TMOD0.3 is enabled, TCNT0 is cleared to logic zero and counting resumes. The TCNT0 register
value is incremented each time an incoming clock signal is detected that matches the signal edge and frequency
setting of the TMOD0 register (specifically, TMOD0.6, TMOD0.5, and TMOD0.4).

Each time TCNT0 is incremented, the new value is compared to the reference value stored in the TC0 refer-ence
buffer, TREF0. When TCNT0 = TREF0, an overflow occurs in the TCNT0 register, the interrupt request flag,
IRQT0, is set to logic one, and an interrupt request is generated to indicate that the specified timer/counter
interval has elapsed.

COUNT
CLOCK

TCNT0

TOL0

TIMER START INSTRUCTION
(TMOD0.3 IS SET)

TREF0 REFERENCE VALUE = n

0 1 2 n-1 n 0 1 2 n-1 0 1 2n

INTERVAL TIME

IRQT0 SET IRQT0 SET

MATCH MATCH

3

~ ~
~ ~

~ ~ ~ ~

~ ~

~ ~
~ ~

~ ~

Figure 11–3. TC0 Timing Diagram

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–20

TC0 REFERENCE REGISTER (TREF0)

The TC0 reference register TREF0 is an 8-bit write-only register. It is addressable by 8-bit RAM control
instructions. RESET initializes the TREF0 value to 'FFH'.

TREF0 is used to store a reference value to be compared to the incrementing TCNT0 register in order to identify
an elapsed time interval. Reference values will differ depending upon the specific function that TC0 is being used
to perform — as a programmable timer/counter, event counter, clock signal divider, or arbitrary frequency output
source.

During timer/counter operation, the value loaded into the reference register is compared to the TCNT0 value.
When TCNT0 = TREF0, the TC0 output latch (TOL0) is inverted and an interrupt request is generated to signal
the interval or event. The TREF0 value, together with the TMOD0 clock frequency selection, determines the
specific TC0 timer interval. Use the following formula to calculate the correct value to load to the TREF0
reference register:

TC0 timer interval = (TREF0 value + 1) ×
1

TMOD0 frequency setting

(TREF0 value ≠ 0)

TC0 OUTPUT ENABLE FLAG (TOE0)

The 1-bit timer/counter 0 output enable flag TOE0 controls output from timer/counter 0 to the TCLO0 pin. TOE0
is addressable by 1-bit read and write instructions.

(MSB) (LSB)

F92H TOE1 TOE0 "U" "0"

NOTE: The “U” means that the bit is undefined.

When you set the TOE0 flag to "1", the contents of TOL0 can be output to the TCLO0 pin. Whenever a RESET
occurs, TOE0 is automatically set to logic zero, disabling all TC0 output. Even when the TOE0 flag is disabled,
timer/counter 0 can continue to output an internally-generated clock frequency, via TOL0, to the serial I/O clock
selector circuit.

TC0 OUTPUT LATCH (TOL0)

TOL0 is the output latch for timer/counter 0. When the 8-bit comparator detects a correspondence between the
value of the counter register TCNT0 and the reference value stored in the TREF0 register, the TOL0 value is
inverted — the latch toggles high-to-low or low-to-high. Whenever the state of TOL0 is switched, the TC0 signal
is output. TC0 output may be directed to the TCLO0 pin, or it can be output directly to the serial I/O clock selector
circuit as the SCK signal.

Assuming TC0 is enabled, when bit 3 of the TMOD0 register is set to "1", the TOL0 latch is cleared to logic zero,
along with the counter register TCNT0 and the interrupt request flag, IRQT0, and counting resumes immediately.
When TC0 is disabled (TMOD0.2 = "0"), the contents of the TOL0 latch are retained and can be read, if
necessary.

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–21

++ PROGRAMMING TIP — Setting a TC0 Timer Interval

To set a 30 ms timer interval for TC0, given fxx = 4.19 MHz, follow these steps.

1. Select the timer/counter 0 mode register with a maximum setup time of 62.5 ms (assume the TC0 counter
 clock = fxx/210, and TREF0 is set to FFH):

2. Calculate the TREF0 value:

30 ms =
TREF0 value + 1

4.09 kHz

TREF0 + 1 =
30 ms
244 µs = 122.9 = 7AH

TREF0 value = 7AH – 1 = 79H

3. Load the value 79H to the TREF0 register:

BITS EMB
SMB 15
LD EA,#79H
LD TREF0,EA
LD EA,#4CH
LD TMOD0,EA

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–22

16-BIT TIMER/COUNTER

OVERVIEW

Timer/counter 1 (TC1) is used to count system 'events' by identifying the transition (high-to-low or low-to-high) of
incoming square wave signals. To indicate that an event has occurred, or that a specified time interval has
elapsed, TC1 generates an interrupt request. By counting signal transitions, it can be used to measure time inter-
vals. The TC1 circuit also has 16-bit comparator logic.

TC1 has a reloadable counter that consists of two parts: a 16-bit reference register (TREF1) into which you can
write data for use as a reference value, and a 16-bit counter register (TCNT1) whose contents are automatically
incremented by counter logic.

The 8-bit mode register, TMOD1, is used to activate the timer/counter and to select the basic clock frequency to
be used for timer/counter operations. You can modify the basic frequency dynamically by loading new values into
TMOD1 during program execution.

The only functional differences between TC0 and TC1 are the size of the counter and reference value registers
(8-bit versus 16-bit), and the fact that only TC0 can generate a clock signal for the serial I/O interface.

TIMER/COUNTER 1 FUNCTION SUMMARY

16-bit programmable timer Generates interrupts at specific time intervals based on the selected clock
frequency.

External event counter Counts various system "events" based on edge detection of external clock
signals at the TC1 input pin, TCL1.

Arbitrary frequency output Outputs selectable clock frequencies to the TC1 output pin, TCLO1.

External signal divider Divides the frequency of an incoming external clock signal according to the
modifiable reference value (TREF1), and outputs the modified frequency to
the TCLO1 pin.

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–23

TIMER/COUNTER 1 COMPONENT SUMMARY

Mode register (TMOD1) Activates the timer/counter and selects the internal clock frequency or the
external clock source at the TCL1 pin.

Reference register (TREF1) Stores the reference value for the desired number of clock pulses between in-
terrupt requests.

Counter register (TCNT1) Counts internal clock pulses that are generated based on bit settings in the
mode register and reference register.

Clock selector circuit Together with the mode register (TMOD1), lets you select one of four internal
clock frequencies, or the external system clock source.

16-bit comparator Determines when to generate an interrupt by comparing the current value of
the counter (TCNT1) with the reference value previously programmed into the
reference register (TREF1).

Output latch (TOL1) Where a TC1 clock pulse is stored pending output to the TC1 output pin,
TCLO1. When the contents of the TCNT1 and TREF1 registers coincide, the
timer/counter interrupt request flag (IRQT1) is set to "1", the status of TOL1 is
inverted, and an interrupt is generated.

Output enable flag (TOE1) Must be set to logic one before the contents of the TOL1 latch can be output to
TCLO1.

Interrupt request flag (IRQT1) Cleared when TC1 operation starts and set to logic one whenever the counter
value and reference value match.

Interrupt enable flag (IET1) Must be set to logic one before the interrupt requests generated by
timer/counter 1 can be processed.

Table 11–8. TC1 Register Overview

Register
Name

Type Description Size RAM
Address

Addressing
Mode

Reset
Value

TMOD1 Control Controls TC1 enable/disable
(bit 2); clears and resumes
counting operation (bit 3); sets
input clock and the clock
frequency (bits 6–4)

8-bit FA0H–FA1H 8-bit write-
only;

(TMOD1.3 is
also 1-bit
writeable)

"0"

TCNT1 Counter Counts clock pulses matching
the TMOD1 frequency setting

16-bit FA4H–FA5H,
FA6H–FA7H

8-bit
read-only

"0"

TREF1 Reference Stores reference value for TC1
interval setting

16-bit FA8H–FA9H,
FAAH–FABH

8-bit
write-only

FFFFH

TOE1 Flag Controls TC1 output to the
TCLO1 pin

1-bit F92H.3 1/4-bit
read/write

"0"

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–24

CLOCK
SELECTOR

TCNT1
16-BIT

COMPARATOR

TOL1IRQT1

TMOD1.7

TMOD1.6

TMOD1.5

TMOD1.4

TMOD1.3

TMOD1.2

TMOD1.1

TMOD1.0

TREF1

CLEAR

INVERTED

CLEAR

SETCLEAR

16 16

8

TCLO1

P3.1 LATCHPM3.1 TOE1

TCL1

CLOCKS

(fxx/2 , fxx/2 , fxx/2 , fxx)10 8 6 4

Figure 11–4. TC1 Circuit Diagram

TC1 ENABLE/DISABLE PROCEDURE

Enable Timer/Counter 1

— Set the TC1 interrupt enable flag IET1 to logic one.

— Set TMOD1.3 to logic one.

TCNT1, IRQT1, and TOL1 are cleared to logic zero, and timer/counter operation starts.

Disable Timer/Counter 1

— Set TMOD1.2 to logic zero.

Clock signal input to the counter register TCNT1 is halted. The current TCNT1 value is retained and can be read
if necessary.

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–25

TC1 PROGRAMMABLE TIMER/COUNTER FUNCTION

Timer/counter 1 can be programmed to generate interrupt requests at variable intervals, based on the system
clock frequency you select. The 8-bit TC1 mode register, TMOD1, is used to activate the timer/counter and to
select the clock frequency; the 16-bit reference register, TREF1, is used to store the value for the desired
number of clock pulses between interrupt requests. The 16-bit counter register, TCNT1, counts the incoming
clock pulses, which are compared to the TREF1 value. When there is a match, an interrupt request is generated.

To program timer/counter 1 to generate interrupt requests at specific intervals, select one of the four internal
clock frequencies (divisions of the system clock, fxx) and load a counter reference value into the TREF1 register.
TCNT1 is incremented each time an internal counter pulse is detected with the reference clock frequency
specified by TMOD1.4–TMOD1.6 settings. To generate an interrupt request, the TC1 interrupt request flag
(IRQT1) is set to logic one, the status of TOL1 is inverted, and the interrupt is output. The content of TCNT1 is
then cleared to 0000H, and TC1 continues counting. The interrupt request mechanism for TC1 includes an
interrupt enable flag (IET1) and an interrupt request flag (IRQT1).

TC1 TIMER/COUNTER OPERATION SEQUENCE

The general sequence of operations for using TC1 can be summarized as follows:

1. Set TMOD1.2 to "1" to enable TC1.

2. Set TMOD1.6 to "1" to enable the system clock (fxx) input.

3. Set TMOD1.5 and TMOD1.4 bits to desired internal frequency (fxx/2n).

4. Load a value to TREF1 to specify the interval between interrupt requests.

5. Set the TC1 interrupt enable flag (IET1) to "1".

6. Set TMOD1.3 bit to "1" to clear TCNT1, IRQT1, and TOL1, and start counting.

7. TCNT1 increments with each internal clock pulse.

8. When the comparator shows TCNT1 = TREF1, the IRQT1 flag is set to "1" and an interrupt request is
generated.

9. Output latch (TOL1) logic toggles high or low.

10. TCNT1 is cleared to 0000H and counting resumes.

11. Programmable timer/counter operation continues until TMOD1.2 is cleared to "0".

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–26

TC1 EVENT COUNTER FUNCTION

Timer/counter 1 can monitor system 'events' by using the external clock input at the TCL1 pin as the counter
source. The TC1 mode register selects rising or falling edge detection for incoming clock signals. The counter
register TCNT1 is incremented each time the selected state transition of the external clock signal occurs.

With the exception of the different TMOD1.4–TMOD1.6 settings, the operation sequence for TC1's event counter
function is identical to its programmable timer/counter function. To activate the TC1 event counter function,

— Set TMOD1.2 to "1" to enable TC1.

— Clear TMOD1.6 to "0" to select the external clock source at the TCL1 pin.

— Select TCL1 edge detection for rising or falling signal edges by loading the appropriate values to TMOD1.5
and TMOD1.4.

— Pin P3.3 must be set to input mode.

Table 11–9. TMOD1 Settings for TCL1 Edge Detection

TMOD1.5 TMOD1.4 TCL1 Edge Detection

0 0 Rising edges

0 1 Falling edges

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–27

TC1 CLOCK FREQUENCY OUTPUT

Using timer/counter 1, a modifiable clock frequency can be output to the TC1 clock output pin, TCLO1. To select
the clock frequency, load the appropriate values to the TC1 mode register, TMOD1. The clock interval is
selected by loading the desired reference value into the 16-bit reference register TREF1. To enable the output to
the TCLO1 pin at I/O port 3.1, the following conditions must be met:

— TC1 output enable flag TOE1 must be set to "1".

— I/O mode flag for P3.1 (PM3.1) must be set to output mode ("1").

— P3.1 output latch must be cleared to "0".

In summary, the operational sequence required to output a TC1-generated clock signal to the TCLO1 pin is as
follows:

1. Load your reference value to TREF1.

2. Set the internal clock frequency in TMOD1.

3. Initiate TC1 clock output to TCLO1 (TMOD1.2 = "1").

4. Set port 3.1 mode flag (PM3.1) to "1".

5. Clear the P3.1 output latch.

6. Set TOE1 flag to "1".

Each time TCNT1 overflows and an interrupt request is generated, the state of the output latch TOL1 is inverted
and the TC1-generated clock signal is output to the TCLO1 pin.

++ PROGRAMMING TIP — TC1 Signal Output to the TCLO1 Pin

Output a 30 ms pulse width signal to the TCLO1 pin:

BITS EMB
SMB 15
LD EA,#79H
LD TREF1A,EA
LD EA,#00H
LD TREF1B,EA
LD EA,#4CH
LD TMOD1,EA
LD EA,#02H
LD PMG2,EA ; P3.1 ← output mode
BITR P3.1 ; P3.1 clear
BITS TOE1

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–28

TC1 EXTERNAL INPUT SIGNAL DIVIDER

By selecting an external clock source and loading a reference value into the TC1 reference register, TREF1, you
can divide the incoming clock signal by the TREF1 value and then output this modified clock frequency to the
TCLO1 pin. The sequence of operations used to divide external clock input and output the signals to the TCLO1
pin can be summarized as follows:

1. Load a signal divider value to the TREF1 register.

2. Clear TMOD1.6 to "0" to enable external clock input at the TCLO1 pin.

3. Set TMOD1.5 and TMOD1.4 to desired TCL signal edge detection.

4. Set P3.1 mode flag (PM3.1) to output ("1").

5. Clear the P3.1 output latch.

6. Set TOE1 flag to "1" to enable output of the divided frequency.

++ PROGRAMMING TIP — External TCL1 Clock Output to the TCLO1 Pin

Output the external TCL1 clock source to the TCLO1 pin (divide by four):

EXTERNAL (TCL1)
CLOCK PULSE

TCLO1
OUTPUT

PULSE

BITS EMB
SMB 15
LD EA,#01H
LD TREF1A,EA
LD EA,#00H
LD TREF1B,EA
LD EA,#0CH
LD TMOD1,EA
LD EA,#02H
LD PMG2,EA ; P3.1 ← output mode
BITR P3.1 ; P3.1 clear
BITS TOE1

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–29

TC1 MODE REGISTER (TMOD1)

TMOD1 is the 8-bit mode register for timer/counter 1. It is addressable by 8-bit write instructions. The TMOD1.3
bit is also 1-bit write addressable. RESET clears all TMOD1 bits to logic zero. Following a RESET, timer/counter 1
is disabled.

FA0H TMOD1.3 TMOD1.2 "0" "0"

FA1H "0" TMOD1.6 TMOD1.5 TMOD1.4

TMOD1.2 is the enable/disable bit for timer/counter 1. When TMOD1.3 is set to "1", the contents of TCNT1,
IRQT1, and TOL1 are cleared, counting starts from 0000H, and TMOD1.3 is automatically reset to "0" for normal
TC1 operation. When TC1 operation stops (TMOD1.2 = "0"), the contents of the TC1 counter register, TCNT1,
are retained until TC1 is re-enabled.

The TMOD1.6, TMOD1.5, and TMOD1.4 bit settings are used together to select the TC1 clock source. This
selection involves two variables:

— Synchronization of timer/counter operations with either the rising edge or the falling edge of the clock signal
input at the TCL1 pin, and

— Selection of one of four frequencies, based on division of the incoming system clock frequency, for use in
internal TC1 operations.

Table 11–10. TC1 Mode Register (TMOD1) Organization

Bit Name Setting Resulting TC1 Function Address

TMOD1.7 0 Always logic zero

TMOD1.6 0,1 Specify input clock edge and internal frequency FA1H

TMOD1.5

TMOD1.4

TMOD1.3 1 Clear TCNT1, IRQT1, and TOL1 and resume counting
immediately (This bit is automatically cleared to logic zero
immediately after counting resumes).

FA0H

TMOD1.2 0 Disable timer/counter 1; retain TCNT1 contents

1 Enable timer/counter 1

TMOD1.1 0 Always logic zero

TMOD1.0 0 Always logic zero

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–30

Table 11–11. TMOD1.6, TMOD1.5, and TMOD1.4 Bit Settings

TMOD1.6 TMOD1.5 TMOD1.4 Resulting Counter Source and Clock Frequency

0 0 0 External clock input (TCL1) on rising edges

0 0 1 External clock input (TCL1) on falling edges

1 0 0 fxx/210 (4.09 kHz)

1 0 1 fxx/28 (16.4 kHz)

1 1 0 fxx/26 (65.5 kHz)

1 1 1 fxx/24 (262 kHz)

NOTE: 'fxx' = selected system clock of 4.19 MHz.

++ PROGRAMMING TIP — Restarting TC1 Counting Operation

1. Set TC1 timer interval to 4.09 kHz:

BITS EMB
SMB 15
LD EA,#4CH
LD TMOD1,EA
EI
BITS IET1

2. Clear TCNT1, IRQT1, and TOL1 and restart TC1 counting operation:

SBITS EMB
SMB 15
BITS TMOD1.3

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–31

TC1 COUNTER REGISTER (TCNT1)

The 16-bit counter register for timer/counter 1, TCNT1, is mapped to RAM addresses FA5H–FA4H (TCNT1A)
and FA7H–FA6H (TCNT1B). The two 8-bit registers are read-only and can be addressed by 8-bit RAM control in-
structions. RESET sets all TCNT1 register values to logic zero (00H).

Whenever TMOD1.2 and TMOD1.3 are enabled, TCNT1 is cleared to logic zero and counting begins. The
TCNT1 register value is incremented each time an incoming clock signal is detected that matches the signal
edge and frequency setting of the TMOD1 register (specifically, TMOD1.6, TMOD1.5, and TMOD1.4).

Each time TCNT1 is incremented, the new value is compared to the reference value stored in the TC1 reference
register, TREF1. When TCNT1 = TREF1, an overflow occurs in the TCNT1 register, the interrupt request flag,
IRQT1, is set to logic one, and an interrupt request is generated to indicate that the specified timer/counter
interval has elapsed.

COUNT
CLOCK

TCNT1

TOL1

TIMER START INSTRUCTION
(TMOD1.3 IS SET)

TREF1 REFERENCE VALUE = n

0 1 2 n-1 n 0 1 2 n-1 0 1 2n

INTERVAL TIME

IRQT1 SET IRQT1 SET

MATCH MATCH

3

~ ~
~ ~

~ ~ ~ ~

~ ~

~ ~
~ ~

~ ~

Figure 11–5. TC1 Timing Diagram

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–32

TC1 REFERENCE REGISTER (TREF1)

The TC1 reference register TREF1 is a 16-bit write-only register that is mapped to RAM locations FA9H–FA8H
(TREF1A) and FABH–FAAH (TREF1B). It is addressable by 8-bit RAM control instructions. RESET clears the
TREF1 value to 'FFFFH'.

TREF1 is used to store a reference value to be compared to the incrementing TCNT1 register in order to identify
an elapsed time interval. Reference values will differ depending upon the specific function that TC1 is being used
to perform — as a programmable timer/counter, event counter, clock signal divider, or arbitrary frequency output
source.

During timer/counter operation, the value loaded into the reference register compared to the TCNT1 value.
When TCNT1 = TREF1, the TC1 output latch (TOL1) is inverted and an interrupt request is generated to signal
the interval or event. The TREF1 value, together with the TMOD1 clock frequency selection, determines the
specific TC1 timer interval. Use the following formula to calculate the correct value to load to the TREF1
reference register:

TC1 timer interval = (TREF1 value + 1) ×
1

TMOD1 frequency setting

(TREF1 value ≠ 0)

TC1 OUTPUT ENABLE FLAG (TOE1)

The 1-bit timer/counter 1 output enable flag TOE1 flag controls output from timer/counter 1 to the TCLO1 pin.
TOE1 is addressable by 1-bit read and write instructions.

Bit 3 Bit 2 Bit 1 Bit 0

F92H TOE1 TOE0 "U" "0"

NOTE: The “U” means that the bit is undefined.

When you set the TOE1 flag to "1", the contents of TOL1 can be output to the TCLO1 pin. Whenever a RESET
occurs, TOE1 is automatically set to logic zero, disabling all TC1 output.

TC1 OUTPUT LATCH (TOL1)

TOL1 is the output latch for timer/counter 1. When the 16-bit comparator detects a correspondence between the
value of the counter register TCNT1 and the reference value stored in the TREF1 register, the TOL1 logic
toggles high-to-low or low-to-high. Whenever the state of TOL1 is switched, the TC1 signal exits the latch for
output. TC1 output is directed (if TOE1 = "1") to the TCLO1 pin at I/O port 3.1.

When timer/counter 1 is started, (TMOD1.3 = "0"), the contents of the output latch are cleared automatically.
However, when TC1 is disabled (TMOD1.2 = "0"), the contents of the TOL1 latch are retained and can be read, if
necessary.

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–33

++ PROGRAMMING TIP — Setting a TC1 Timer Interval

To set a 30 ms timer interval for TC1, given fxx = 4.19 MHz, follow these steps:

1. Select the timer/counter 1 mode register with a maximum setup time of 16 seconds;
 assume the TC1 counter clock = fxx/210 and TREF1 is set to FFFFH.

2. Calculate the TREF1 value:

30 ms =
TREF1 value + 1

4.09 kHz

TREF1 + 1 =
30 ms
244 µs = 122.9 = 7AH

TREF1 value = 7AH – 1 = 79H

3. Load the value 79H to the TREF1 register:

BITS EMB
SMB 15
LD EA,#79H
LD TREF1A,EA
LD EA,#00H
LD TREF1B,EA
LD EA,#4CH
LD TMOD1,EA

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–34

WATCH TIMER

OVERVIEW

The watch timer is a multi-purpose timer which consists of three basic components:

— 8-bit watch timer mode register (WMOD)

— Clock selector

— Frequency divider circuit

Watch timer functions include real-time and watch-time measurement and interval timing for the main and sub-
system clock. It is also used as a clock source for the LCD controller and for generating buzzer (BUZ) output.

Real-Time and Watch-Time Measurement

To start watch timer operation, set bit 2 of the watch timer mode register (WMOD.2) to logic one. The watch
timer starts, the interrupt request flag IRQW is automatically set to logic one, and interrupt requests commence
in 0.5-second intervals.

Since the watch timer functions as a quasi-interrupt instead of a vectored interrupt, the IRQW flag should be
cleared to logic zero by program software as soon as a requested interrupt service routine has been executed.

 Using a Main System or Subsystem Clock Source

The watch timer can generate interrupts based on the main system clock frequency or on the subsystem clock.
When the zero bit of the WMOD register is set to "1", the watch timer uses the subsystem clock signal (fxt) as its
source; if WMOD.0 = "0", the main system clock (fx) is used as the signal source, according to the following
formula:

Watch timer clock (fw) =
Main system clock (fx)

128 = 32.768 kHz (fx = 4.19 MHz)

This feature is useful for controlling timer-related operations during stop mode. When stop mode is engaged, the
main system clock (fx) is halted, but the subsystem clock continues to oscillate. By using the subsystem clock as
the oscillation source during stop mode, the watch timer can set the interrupt request flag IRQW to "1", thereby
releasing stop mode.

Clock Source Generation for LCD Controller

The watch timer supplies the clock frequency for the LCD controller (fLCD). Therefore, if the watch timer is dis-
abled, the LCD controller does not operate.

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–35

Buzzer Output Frequency Generator

The watch timer can generate a steady 2 kHz, 4 kHz, 8 kHz, or 16 kHz signal to the BUZ pin. To select the
desired BUZ frequency , load the appropriate value to the WMOD register. This output can then be used to
actuate an external buzzer sound. To generate a BUZ signal, three conditions must be met:

— The WMOD.7 register bit is set to "1"

— The output latch for I/O port 0.3 is cleared to "0"

— The port 0.3 output mode flag (PM0.3) set to 'output' mode

Timing Tests in High-Speed Mode

By setting WMOD.1 to "1", the watch timer will function in high-speed mode, generating an interrupt every 3.91
ms. At its normal speed (WMOD.1 = '0'), the watch timer generates an interrupt request every 0.5 seconds. High-
speed mode is useful for timing events for program debugging sequences.

Check Subsystem Clock Level Feature

The watch timer can also check the input level of the subsystem clock by testing WMOD.3. If WMOD.3 is "1", the
input level at the XTin pin is high; if WMOD.3 is "0", the input level at the XTin pin is low.

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–36

8

SELECTOR
CIRCUIT

IRQW

fxt fx/128

fw
(32.768 kHz)

MUX

fw/2
7

fw/2 (2Hz)
14

ENABLE /

CLOCK
SELECTOR

fx = Main system clock
fxt = Subsystem clock
fw = Watch timer frequency

BUZ

WMOD.7

WMOD.6

WMOD.5

WMOD.4

WMOD.3

WMOD.2

WMOD.1

WMOD.0

P0.3 LATCH PM0.3

DISABLE

fw/8
(4 kHz)

fw/4
(8 kHz)

fw/2
(16 kHz)

fw/16
(2 kHz)

FREQUENCY
DIVIDING
CIRCUIT

fw/2 (4096 Hz)
3

fLCD

Figure 11–6. Watch Timer Circuit Diagram

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–37

WATCH TIMER MODE REGISTER (WMOD)

The watch timer mode register WMOD is used to select specific watch timer operations. It is 8-bit write-only
addressable. An exception is WMOD bit 3 (the XTin input level control bit) which is 1-bit read-only addressable.
A RESET automatically sets WMOD.3 to the current input level of the subsystem clock, XTin (high, if logic one;
low, if logic zero), and all other WMOD bits to logic zero.

F88H WMOD.3 WMOD.2 WMOD.1 WMOD.0

F89H WMOD.7 "0" WMOD.5 WMOD.4

In summary, WMOD settings control the following watch timer functions:

— Watch timer clock selection (WMOD.0)

— Watch timer speed control (WMOD.1)

— Enable/disable watch timer (WMOD.2)

— XTin input level control (WMOD.3)

— Buzzer frequency selection (WMOD.4 and WMOD.5)

— Enable/disable buzzer output (WMOD.7)

Table 11–12. Watch Timer Mode Register (WMOD) Organization

Bit Name Values Function Address

WMOD.7 0 Disable buzzer (BUZ) signal output at the BUZ pin F89H

1 Enable buzzer (BUZ) signal output at the BUZ pin

WMOD.6 0 Always logic zero

WMOD.5 – .4 0 0 2 kHz buzzer (BUZ) signal output

0 1 4 kHz buzzer (BUZ) signal output

1 0 8 kHz buzzer (BUZ) signal output

1 1 16 kHz buzzer (BUZ) signal output

WMOD.3 0 Input level to XTin pin is low F88H

1 Input level to XTin pin is high

WMOD.2 0 Disable watch timer; clear frequency dividing circuits

1 Enable watch timer

WMOD.1 0 Normal mode; sets IRQW to 0.5 seconds

1 High-speed mode; sets IRQW to 3.91 ms

WMOD.0 0 Select (fx/128) as the watch timer clock (fw)

1 Select subsystem clock as watch timer clock (fw)

NOTE: Main system clock frequency (fx) is assumed to be 4.19 MHz; subsystem clock (fxt) is assumed to be 32.768 kHz.

TIMERS and TIMER/COUNTERS KS57C21516/P21516 MICROCONTROLLER

11–38

++ PROGRAMMING TIP — Using the Watch Timer

1. Select a subsystem clock as the LCD display clock, a 0.5 second interrupt, and 2 kHz buzzer enable:

BITS EMB
SMB 15
LD EA,#8H
LD PMG1,EA ; P0.3 ← output mode
BITR P0.3
LD EA,#85H
LD WMOD,EA
BITS IEW

2. Sample real-time clock processing method:

CLOCK BTSTZ IRQW ; 0.5 second check
RET ; No, return
• ; Yes, 0.5 second interrupt generation
•
• ; Increment HOUR, MINUTE, SECOND

KS57C21516/P21516 MICROCONTROLLER TIMERS and TIMER/COUNTERS

11–39

KS57C21516/P21516 MICROCONTROLLER LCD CONTROLLER/DRIVER

12–1

12 LCD CONTROLLER/DRIVER

OVERVIEW

The KS57C21516 microcontroller can directly drive an up-to-896-dot (56 segments x 16 commons) LCD panel.
Its LCD block has the following components:

— LCD controller/driver

— Display RAM for storing display data

— 56 segment output pins (SEG0–SEG55)

— 16 common output pins (COM0–COM15)

— Five LCD operating power supply pins (VLC1–VLC5)

— VLC5 pin for controlling the driver and bias voltage

To use the LCD controller, bit 2 in the watch mode register WMOD must be set to 1, because LCDCK is supplied
by the watch timer.

The frame frequency, duty and bias, and the segment pins used for display output, are determined by bit settings
in the LCD mode register, LMOD.

The LCD control register, LCON, is used to turn the LCD display on and off, to switch current to the dividing
resistors for the LCD display, and to output LCD clock (LCDCK) and synchronizing signal (LCDSY) for LCD
display expansion. Data written to the LCD display RAM can be transferred to the segment signal pins
automatically without program control.

When a subsystem clock is selected as the LCD clock source, the LCD display is enabled even during main
clock stop and idle modes.

COM8-COM15/
P4.0-P5.38

COM0–COM7
8

VLC1–VLC5
5

SEG0–SEG39
40

8

D
A

T
A

 B
U

S

LCD
CONTROLLER /

DRIVER

SEG40–SEG55/
P9.3–P6.016

Figure 12–1. LCD Function Diagram

LCD CONTROLLER/DRIVER KS57C21516/P21516 MICROCONTROLLER

12–2

8

COM15/P5.3

DISPLAY
RAM

(BANK 2)
SELECTOR224

D
A

T
A

 B
U

S

TIMING
CONTROLLER

COM
CONTROL

COM0

LMOD

SEG55/P6.0

SEG0

P2.2 LATCH PM2.2

LCDSY

LCDCK

LCON

LCD
VOLTAGE
CONTROL

PORT
LATCH

MUX 56

16

fLCD

PORT
LATCH

PM2.1P2.1 LATCH

VCL5

VCL1

COM14/P5.2

SEG54/P6.1

SEG40/P9.3

Figure 12–2. LCD Circuit Diagram

KS57C21516/P21516 MICROCONTROLLER LCD CONTROLLER/DRIVER

12–3

LCD RAM ADDRESS AREA

RAM addresses of bank 2 are used as LCD data memory. These locations can be addressed by 1-bit, 4-bit, or 8-
bit instructions. When the bit value of a display segment is "1", the LCD display is turned on; when the bit value
is "0", the display is turned off.

Display RAM data are sent out through segment pins SEG0–SEG55 using a direct memory access (DMA)
method that is synchronized with the fLCD signal. RAM addresses in this location that are not used for LCD
display can be allocated to general-purpose use.

200H

210H

220H

230H

b0 b1 b2 b3b2b1b0b3

S
E
G
0

S
E
G
1

S
E
G
2

S
E
G
3

S
E
G
7

S
E
G
4

S
E
G
5

S
E
G
6

COM0

COM1

COM2

COM3

2C0H

2D0H

2E0H

2F0H

COM12

COM13

COM14

COM15

20DH

21DH

22DH

23DH

b0 b1 b2 b3

S
E
G
52

S
E
G
53

S
E
G
54

S
E
G
55

2CD H

2DDH

2EDH

2FDH

b3b2b1b0

S
E
G
11

S
E
G
8

S
E
G
9

S
E
G
10

2C1H

2D1H

2E1H

2F1H

2C2H

2D2H

2E2H

2F2H

201H

211H

221H

231H

202H

212H

222H

232H

Figure 12–3. LCD Display Data RAM Organization

Table 12–1. Common and Segment Pins per Duty Cycle

Duty Common Pins Segment Pins Dot Number

1/16 COM0–COM15 40 pins–56 pins 640 dots–896 dots

1/8 COM0–COM7 320 dots–448 dots

NOTE: When 1/8 duty is selected, COM8–COM15 (P4.0–P5.3) can be used for normal I/O pins.

LCD CONTROLLER/DRIVER KS57C21516/P21516 MICROCONTROLLER

12–4

LCD CONTROL REGISTER (LCON)

The LCD control register (LCON) is used to turn the LCD display on and off, to output LCD clock (LCDCK) and
synchronizing signal (LCDSY) for LCD display expansion, and to control the flow of current to dividing resistors in
the LCD circuit. Following a RESET, all LCON values are cleared to "0". This turns the LCD display off and stops
the flow of current to the dividing resistors.

F8EH “0” LCON.2 LCON.1 LCON.0

The effect of the LCON.0 setting is dependent upon the current setting of bits LMOD.0 and LMOD.1. Bit 1 in the
LCON is used for contrast control application.

Table 12–2. LCD Control Register (LCON) Organization

LCON Bit Setting Description

LCON.3 0 Always logic zero.

LCON.2 0 Disable LCDCK and LCDSY signal outputs.

1 Enable LCDCK and LCDSY signal outputs.

LCON.1 0 0 LCD display off; cut off current to dividing resistor

LCON.0 0 1 LCD display on; application without contrast control

1 0 LCD display on; application with contrast control

1 1 LCD display on; application without contrast control

NOTE: The function of LCON.0 is applied in case of using the internal GND for LCD power; the function of LCON1 is used
for contrast control application.

Table 12–3. LMOD.1–0 Bits Settings

LMOD.1–0 COM0–COM15 SEG0–SEG55 SEG40/P9.3–SEG55/P6.0 Power Supply to the
Dividing Resistor

0, 0 All of the LCD dots off Normal I/O port function On

0, 1 All of the LCD dots on

1, 1 Common and segment signal output
corresponds to display data (normal
display mode)

NOTE: 'x' means 'don't care.'

KS57C21516/P21516 MICROCONTROLLER LCD CONTROLLER/DRIVER

12–5

LCD MODE REGISTER (LMOD)

The LCD mode control register LMOD is used to control display mode; LCD clock, segment or port output, and
display on/off. LMOD can be manipulated using 8-bit write instructions.

F8CH LMOD.3 LMOD.2 LMOD.1 LMOD.0

F8DH LMOD.7 LMOD.6 LMOD.5 LMOD.4

The LCD clock signal, LCDCK, determines the frequency of COM signal scanning of each segment output. This
is also referred to as the 'frame frequency. Since LCDCK is generated by dividing the watch timer clock (fw), the
watch timer must be enabled when the LCD display is turned on. RESET clears the LMOD register values to logic
zero.

The LCD display can continue to operate during idle and stop modes if a subsystem clock is used as the watch
timer source. The LCD mode register LMOD controls the output mode of the 16 pins used for normal outputs
(P9.3–P6.0). Bits LMOD.7–5 define the segment output and normal bit output configuration.

Table 12–4. LCD Clock Signal (LCDCK) Frame Frequency

LCDCK 256 Hz 512 Hz 1024 Hz 2048 Hz 4096 Hz

Display Duty Cycle

1/8 32 64 128 256 –

1/16 – 32 64 128 256

NOTE:

1 FRAME

COM0

LCD CONTROLLER/DRIVER KS57C21516/P21516 MICROCONTROLLER

12–6

Table 12–5. LCD Mode Register (LMOD) Organization

Segment/Port Output Selection Bits

LMOD.7 LMOD.6 LMOD.5 SEG40–43 SEG44–47 SEG48–51 SEG52–55 Total Number
of Segment

0 0 0 SEG port SEG port SEG port SEG port 56

0 0 1 SEG port SEG port SEG port Normal port 52

0 1 0 SEG port SEG port Normal port Normal port 48

0 1 1 SEG port Normal port Normal port Normal port 44

1 0 0 Normal port Normal port Normal port Normal port 40

NOTE: Segment pins that also can used for normal I/O should be configured to output mode when the SEG function is
used.

LCD Clock Selection Bits

LMOD.4 LMOD.3 LCD Clock (LCDCK)

1/8 duty (COM0–COM7) 1/16 duty (COM0–COM15)

0 0 fxx / 27 (256 Hz) fxx / 26 (512 Hz)

0 1 fxx/ 26 (512 Hz) fxx / 25 (1024 Hz)

1 0 fxx / 25 (1024 Hz) fxx / 24 (2048 Hz)

1 1 fxx / 24 (2048 Hz) fxx / 23 (4096 Hz)

NOTE: LCDCK is supplied only when the watch timer is operating. To use the LCD controller, you must set bit 2 in the
watch mode register WMOD to “1”.

Duty Selection Bits

LMOD.2 Duty

0 1/8 duty (COM0–COM7 select)

1 1/16 duty (COM0–COM15 select)

NOTE: When 1/16 duty is selected, ports 4 and 5 should be configured as output mode; when 1/8 duty is selected, ports 4
and 5 can be used as normal I/O ports.

Display Mode Selection Bits

LMOD.1 LMOD.0 Function

0 0 All LCD dots off

0 1 All LCD dots on

1 1 Normal display

KS57C21516/P21516 MICROCONTROLLER LCD CONTROLLER/DRIVER

12–7

LCD VOLTAGE DIVIDING RESISTORS

On-chip voltage dividing resistors for the LCD drive power supply are fixed to the VLC1–VLC5 pins. Power can be
supplied without an external dividing resistor. Figure 12–4 shows the bias connections for the KS57C21516 LCD
drive power supply. To cut off the flow of current through the dividing resistor, clear bits 0 and 1 of the LCON
register.

1/5 Bias1/4 Bias

VLC1
KS57C21516 KS57C21516

VLC2

VLC3

VLC4

VLC5

VLC1

VLC2

VLC3

VLC4

VLC5

Figure 12–4. LCD Bias Circuit Connection

LCD CONTROLLER/DRIVER KS57C21516/P21516 MICROCONTROLLER

12–8

Application Without Contrast Control

KS57C21516

VLC1

VLC2

VLC3

VLC4

VLC5

VSS

LCON.0 (ON)

VDD

Application With Contrast Control

KS57C21516

VSS

VDD

VLC1

VLC2

VLC3

VLC4

VLC5

LCON.1
(DON’T CARE)

LCON.0 (OFF)

LCON.1 (ON)

VSS

NOTES:

1. When the LCD module is turned off, clear LCON.0 and LCON.1 to “0” to reduce power consumption.
2. If an external variable resistor is used to connect V to ground, you can control LCD contrast using
 the variable resistor.

LC5

Fixed Fixed

Figure 12–5. Internal Voltage Dividing Resistor Connection (1/5 Bias, Display On)

KS57C21516/P21516 MICROCONTROLLER LCD CONTROLLER/DRIVER

12–9

COMMON (COM) SIGNALS

The common signal output pin selection (COM pin selection) varies according to the selected duty cycle.

— In 1/8 duty mode, COM0–COM7 pins are selected.

— In 1/16 duty mode, COM0–COM15 pins are selected.

When 1/8 duty is selected by clearing LMOD.2 to zero, COM8–COM15 (P4.0–P5.3) can be used for normal I/O
port.

SEGMENT (SEG) SIGNALS

The 56 LCD segment signal pins are connected to corresponding display RAM locations at bank 2. Bits of the
display RAM are synchronized with the common signal output pins.

When the bit value of a display RAM location is "1", a select signal is sent to the corresponding segment pin.
When the display bit is "0", a 'no-select' signal is sent to the corresponding segment pin.

LCD CONTROLLER/DRIVER KS57C21516/P21516 MICROCONTROLLER

12–10

COM10

COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7

COM8
COM9

COM11
COM12
COM13
COM14
COM15

S
E
G
0

S
E
G
1

S
E
G
2

S
E
G
3

S
E
G
4

FR

VDD
0 1 2 3 15

1 FRAME

VSS

COM0

VDD

VLC1

VLC2

VLC3

VLC4

0 1 2 3 15

COM1

COM2

SEG0

VLC5

VDD

VLC1

VLC2

VLC3

VLC4

VLC5

VDD

VLC1

VLC2

VLC3

VLC4

VLC5

VDD

VLC1

VLC2

VLC3

VLC4

VLC5

Figure 12–6. LCD Signal Waveforms (1/16 Duty, 1/5 Bias)

KS57C21516/P21516 MICROCONTROLLER LCD CONTROLLER/DRIVER

12–11

FR

VDD
0 1 2 3 15

1 FRAME

VSS

0 1 2 3 15

SEG1

VLC1

VLC2

VLC3

VLC4

VLC5

VDD

SEG0−COM0

SEG1−COM0

−VLC4

−VLC3

−VLC2

−VLC1

VLC1

VLC2

VLC3

VLC4

VLC5

VDD

−VDD

−VLC4

−VLC3

−VLC2

−VLC1

VLC1

VLC2

VLC3

VLC4

VLC5

VDD

−VDD

Figure 12–6. LCD Signal Waveforms (1/16 Duty, 1/5 Bias) (Continued)

LCD CONTROLLER/DRIVER KS57C21516/P21516 MICROCONTROLLER

12–12

COM0

VDD

VLC1

VLC2 (VLC3)

VLC4

VLC5

FR

1 FRAME

COM1

VDD

VLC1

VLC2 (VLC3)

VLC4

VLC5

COM2

VDD

VLC1

VLC2 (VLC3)

VLC4

VLC5

SEG0

VDD

VLC1

VLC2 (VLC3)

VLC4

VLC5

SEG0−COM0

VLC2 (VLC3)

−VLC2 (−VLC3)

0 1 2 3 7

VSS

4 5 60 7 0 1 2 3 74 5 60 7COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7

S
E
G
0

S
E
G
1

S
E
G
2

S
E
G
3

S
E
G
4

VDD

−VLC4

−VLC1

VLC1

VLC4

VLC5

VDD

−VDD

Figure 12–7. LCD Signal Waveforms (1/8 Duty, 1/4 Bias)

KS57C21516/P21516 MICROCONTROLLER LCD CONTROLLER/DRIVER

12–13

SEG1

VDD

VLC1

VLC2 (VLC3)

VLC4

VLC5

SEG0−COM0

FR

1 FRAME

VDD
0 1 2 3 7

VSS

4 5 60 7 0 1 2 3 74 5 60 7

−VLC2 (VLC3)

VLC2 (VLC3)

−VLC4

−VLC1

VLC1

VLC4

VLC5

VDD

−VDD

Figure 12–7. LCD Signal Waveforms (1/8 Duty, 1/4 Bias) (Continued)

LCD CONTROLLER/DRIVER KS57C21516/P21516 MICROCONTROLLER

12–14

NOTES

KS57C21516/P21516 MICROCONTROLLER SERIAL I/O INTERFACE

13–1

13 SERIAL I/O INTERFACE

OVERVIEW

The serial I/O interface (SIO) has the following functional components:

— 8-bit mode register (SMOD)

— Clock selector circuit

— 8-bit buffer register (SBUF)

— 3-bit serial clock counter

Using the serial I/O interface, 8-bit data can be exchanged with an external device. The transmission frequency
is controlled by making the appropriate bit settings to the SMOD register.

The serial interface can run off an internal or an external clock source, or the TOL0 signal that is generated by
the 8-bit timer/counter, TC0. If the TOL0 clock signal is used, you can modify its frequency to adjust the serial
data transmission rate.

SERIAL I/O OPERATION SEQUENCE

The general operation sequence of the serial I/O interface can be summarized as follows:

1. Set SIO mode to transmit-and-receive or to receive-only.

2. Select MSB-first or LSB-first transmission mode.

3. Set the SCK clock signal in the mode register, SMOD.

4. Set SIO interrupt enable flag (IES) to "1".

5. Initiate SIO transmission by setting bit 3 of the SMOD to "1".

6. When the SIO operation is complete, IRQS flag is set and an interrupt is generated.

SERIAL I/O INTERFACE KS57C21516/P21516 MICROCONTROLLER

13–2

LSB / MSB

NOTE: Instruction Execution

INTERNAL BUS

SBUF (8-BIT)SI

CLOCK

SELECTOR

R
Q D

TOL0

CPU CLK

fxx/2

fxx/2

R

S
Q

SO

SMOD.7 SMOD.6 SMOD.5 SMOD.3 SMOD.2 SMOD.1 SMOD.0

Q0 Q1 Q2

3-BIT COUNTER

CLEAR

OVERFLOW

P0.0/

IRQS
CK

8

INTERNAL BUS

BITS (note)

-

4

10

SCK

8
8

Figure 13–1. Serial I/O Interface Circuit Diagram

KS57C21516/P21516 MICROCONTROLLER SERIAL I/O INTERFACE

13–3

SERIAL I/O MODE REGISTER (SMOD)

The serial I/O mode register, SMOD, is an 8-bit register that specifies the operation mode of the serial interface.
Its reset value is logical zero. SMOD is organized in two 4-bit registers, as follows:

FE0H SMOD.3 SMOD.2 SMOD.1 SMOD.0

FE1H SMOD.7 SMOD.6 SMOD.5 0

SMOD register settings enable you to select either MSB-first or LSB-first serial transmission, and to operate in
transmit-and-receive mode or receive-only mode. SMOD is a write-only register and can be addressed only by 8-
bit RAM control instructions. One exception to this is SMOD.3, which can be written by a 1-bit RAM control
instruction. When SMOD.3 is set to 1, the contents of the serial interface interrupt request flag, IRQS, and the 3-
bit serial clock counter are cleared, and SIO operations are initiated. When the SIO transmission starts, SMOD.3
is cleared to logical zero.

Table 13–1. SIO Mode Register (SMOD) Organization

SMOD.0 0 Most significant bit (MSB) is transmitted first

1 Least significant bit (LSB) is transmitted first

SMOD.1 0 Receive-only mode

1 Transmit-and-receive mode

SMOD.2 0 Disable the data shifter and clock counter; retain contents of IRQS flag when serial
transmission is halted

1 Enable the data shifter and clock counter; set IRQS flag to "1" when serial
transmission is halted

SMOD.3 1 Clear IRQS flag and 3-bit clock counter to "0"; initiate transmission and then reset
this bit to logic zero

SMOD.4 0 Bit not used; value is always "0"

SMOD.7 SMOD.6 SMOD.5 Clock Selection R/W Status of SBUF

0 0 0 External clock at SCK pin SBUF is enabled when SIO
operation is halted or when SCK
goes high.

0 0 1 Use TOL0 clock from TC0

0 1 x CPU clock: fxx/4, fxx/8, fxx/64 Enable SBUF read/write

1 0 0 4.09 kHz clock: fxx/210 SBUF is enabled when SIO
operation is halted or when SCK
goes high.

1 1 1 262 kHz clock: fxx/24

NOTES:
1. 'fxx' = system clock; 'x' means 'don't care.'
2. kHz frequency ratings assume a system clock (fxx) running at 4.19 MHz.
3. The SIO clock selector circuit cannot select a fxx/24 clock if the CPU clock is fxx/64.
4. It must be selected MSB-first or LSB-first transmission mode before loading the data to SBUF.

SERIAL I/O INTERFACE KS57C21516/P21516 MICROCONTROLLER

13–4

SERIAL I/O TIMING DIAGRAMS

SCK

SI

SO

IRQS

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

TRANSMIT
COMPLETE

SET SMOD.3

Figure 13–2. SIO Timing in Transmit/Receive Mode

HIGH IMPEDANCE

SCK

SI

IRQS TRANSMIT
COMPLETE

SET SMOD.3

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

SO

Figure 13–3. SIO Timing in Receive-Only Mode

KS57C21516/P21516 MICROCONTROLLER SERIAL I/O INTERFACE

13–5

SERIAL I/O BUFFER REGISTER (SBUF)

The serial I/O buffer register ,SBUF, can be read or written using 8-bit RAM control instructions. Following a
RESET, the value of SBUF is undetermined.

When the serial interface operates in transmit-and-receive mode (SMOD.1 = "1"), transmit data in the SIO buffer
register are output to the SO pin (P0.1) at the rate of one bit for each falling edge of the SIO clock. Receive data
are simultaneously input from the SI pin (P0.2) to SBUF at the rate of one bit for each rising edge of the SIO
clock. When receive-only mode is used, incoming data are input to the SIO buffer at the rate of one bit for each
rising edge of the SIO clock.

++ PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O

1. Transmit the data value 48H through the serial I/O interface using an internal clock frequency of fxx/2 and in
 MSB-first mode:

BITS EMB
SMB 15
LD EA,#03H
LD PMG1,EA
LD EA,#0E6H
LD SMOD,EA ; P0.0 / SCK and P0.1 / SO ← Output
LD EA,#48H ;
LD SBUF,EA ;
BITS SMOD.3 ; SIO data transfer

EXTERNAL

DEVICE

SCK / P0.0

SO / P0.1

[KS57C21516]

 2. Use CPU clock to transfer and receive serial data at high speed:

BITS EMB
SMB 15
LD EA,#03H
LD PMG1,EA ; P0.0 / SCK and P0.1 / SO ← Output, P0.2 / SI
LD EA,#47H
LD SMOD,EA ; ← Input
LD EA,TDATA
LD SBUF,EA
BITS SMOD.3 ; SIO start
BITR IES

STEST BTSTZ IRQS
JR STEST
LD EA,SBUF
SMB 0
LD RDATA,EA

SERIAL I/O INTERFACE KS57C21516/P21516 MICROCONTROLLER

13–6

++ PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O (Continued)

3. Transmit and receive an internal clock frequency of 4.09 kHz (at 4.19 MHz) in LSB-first mode:

BITS EMB
SMB 15
LD EA,#03H
LD PMG1,EA
LD EA,#87H
LD SMOD,EA ; P0.0 / SCK and P0.1 / SO ← Output, P0.2/SI ← Input
LD EA,TDATA
LD SBUF,EA
BITS SMOD.3 ; SIO start
EI
BITS IES
.
.

INTS PUSH SB ; Store SMB, SRB
PUSH EA ; Store EA
LD EA,TDATA ; EA ← Transmit data
SMB 15
XCH EA,SBUF ; EA ← Receive data
SMB 0
LD RDATA,EA ; RDATA ← Receive data
BITS SMOD.3 ; SIO start
POP EA
POP SB
IRET

EXTERNAL

DEVICE

SCK / P0.0

SO / P0.1

SI / P0.2

[KS57C21516]

KS57C21516/P21516 MICROCONTROLLER SERIAL I/O INTERFACE

13–7

++ PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O (Continued)

4. Transmit and receive an external clock in LSB-first mode:

BITS EMB
SMB 15
LD EA,#02H
LD PMG1,EA
LD EA,#07H
LD SMOD,EA ; P0.1 / SO ← Output, P0.0 / SCK and P0.2 / SI ←

Input
LD EA,TDATA
LD SBUF,EA
BITS SMOD.3 ; SIO start
EI
BITS IES
.
.

INTS PUSH SB ; Store SMB, SRB
PUSH EA ; Store EA
LD EA,TDATA ; EA ← Transmit data
SMB 15
XCH EA,SBUF ; EA ← Receive data
SMB 0
LD RDATA,EA ; RDATA ← Receive data
BITS SMOD.3 ; SIO start
POP EA
POP SB
IRET

EXTERNAL

DEVICE

SCK / P0.0

SO / P0.1

SI / P0.2

High Speed SIO Transmission

[KS57C21516]

SERIAL I/O INTERFACE KS57C21516/P21516 MICROCONTROLLER

13–8

++ PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O (Concluded)

Use CPU clock to transfer and receive serial data at high speed:

BITS EMB
SMB 15
LD EA,#03H
LD PMG1,EA
LD EA,#47H
LD SMOD, EA ; P0.0 / SCK and P0.1 / SO ¨ Output, P0.2 / SI ¨ Input
LD EA,TDATA
LD SBUF,EA
BITS SCMOD.3 ; SIO start
BITR IES

STEST BTSTZ IRQS
JR STEST
LD EA,SBUF
SMB 0
LD RDATA,EA

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–1

14 ELECTRICAL DATA

OVERVIEW

In this section, information on KS57C21516 electrical characteristics is presented as tables and graphics. The
information is arranged in the following order:

Standard Electrical Characteristics

— Absolute maximum ratings

— D.C. electrical characteristics

— Main system clock oscillator characteristics

— Subsystem clock oscillator characteristics

— I/O capacitance

— A.C. electrical characteristics

— Operating voltage range

Miscellaneous Timing Waveforms

— A.C timing measurement point

— Clock timing measurement at Xin

— Clock timing measurement at XTin

— TCL timing

— Input timing for RESET

— Input timing for external interrupts

— Serial data transfer timing

Stop Mode Characteristics and Timing Waveforms

— RAM data retention supply voltage in stop mode

— Stop mode release timing when initiated by RESET

— Stop mode release timing when initiated by an interrupt request

ELECTRICAL DATA KS57C21516/P21516 MICROCONTROLLER

14–2

Table 14–1. Absolute Maximum Ratings

(TA = 25 °C)

Parameter Symbol Conditions Rating Units

Supply Voltage VDD – – 0.3 to + 6.5 V

Input Voltage VI Ports 0–9 – 0.3 to VDD + 0.3 V

Output Voltage VO – – 0.3 to VDD + 0.3 V

Output Current High IOH One I/O pin active – 15 mA

All I/O pins active – 35

Output Current Low IOL One I/O pin active + 30 (Peak value) mA

+ 15 (note)

Total for ports 0, 2–9 + 100 (Peak value)

+ 60 (note)

Operating Temperature TA – – 40 to + 85 °C

Storage Temperature Tstg – – 65 to + 150 °C

NOTE: The values for Output Current Low (IOL) are calculated as Peak Value × Duty .

Table 14–2. D.C. Electrical Characteristics

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Input High
Voltage

VIH1 All input pins except those
specified below for VIH2–VIH3

0.7VDD – VDD V

VIH2 Ports 0, 1, 6, P3.2, P3.3, and
RESET

0.8VDD VDD

VIH3 Xin, Xout, and XTin VDD – 0.1 VDD

Input Low
Voltage

VIL1 All input pins except those
specified below for VIL2–VIL3

– – 0.3VDD V

VIL2 Ports 0, 1, 6, P3.2, P3.3, and
RESET

0.2VDD

VIL3 Xin, Xout, and XTin 0.1

Output High
Voltage

VOH VDD = 4.5 V to 5.5 V
IOH = – 1 mA
Ports 0, 2–9

VDD – 1.0 – – V

Output Low
Voltage

VOL VDD = 4.5 V to 5.5 V
IOL = 15 mA

Ports 0, 2–9

– – 2.0 V

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–3

Table 14–2. D.C. Electrical Characteristics (Continued)

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Input High
Leakage
Current

ILIH1 VI = VDD
All input pins except those
specified below for ILIH2

– – 3 µA

ILIH2 VI = VDD
Xin, Xout, XTin, and RESET

20

Input Low
Leakage

ILIL1 VI = 0 V
Xin, Xout, and XTin

– – – 3 µA

Current ILIL2 VI = 0 V
Xin, Xout, and XTin

– 20

Output High
Leakage
Current

ILOH VO = VDD
All output pins

– – 3 µA

Output Low
Leakage
Current

ILOL VO = 0 V
All output pins

– – – 3 µA

Pull-Up
Resistor

RLI VI = 0 V; VDD = 5 V
Port 0–9

25 47 100 kΩ

VDD = 3 V 50 95 200

RL2 VI = 0 V; VDD = 5 V, RESET 100 220 400

VDD = 3 V 200 450 800

LCD Voltage
Dividing
Resistor

RLCD Ta = 25 °C 25 55 80 kΩ

|VDD-COMi|
Voltage Drop
(i = 0–15)

VDC – 15 µA per common pin – – 120 mV

|VDD-SEGx|
Voltage Drop
(x = 0–55)

VDS – 15 µA per segment pin – – 120

VLC1 Output
Voltage

VLC1 LCD clock = 0 Hz, VLC5 = 0 V 0.8VDD-0.2 0.8VDD 0.8VDD+0.2 V

VLC2 Output
Voltage

VLC2 0.6VDD-0.2 0.6VDD 0.6VDD+0.2

VLC3 Output
Voltage

VLC3 0.4VDD-0.2 0.4VDD 0.4VDD+0.2

VLC4 Output
Voltage

VLC4 0.2VDD-0.2 0.2VDD 0.2VDD+0.2

ELECTRICAL DATA KS57C21516/P21516 MICROCONTROLLER

14–4

Table 14–2. D.C. Electrical Characteristics (Concluded)

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Supply
Current

IDD1 (2) VDD = 5 V ± 10%
Crystal oscillator
C1 = C2 = 22 pF

6.0 MHz
4.19 MHz

– 3.9
2.9

8.0
5.5

mA

VDD = 3 V ± 10% 6.0 MHz
4.19 MHz

1.8
1.3

4.0
3.0

IDD2 (2) Idle mode;
VDD = 5 V ± 10%
Crystal oscillator
C1 = C2 = 22 pF

6.0 MHz
4.19 MHz

1.3
1.2

2.5
1.8

VDD = 3 V ± 10% 6.0 MHz
4.19 MHz

0.5
0.44

1.5
1.0

IDD3 (3) VDD = 3 V ± 10%
32 kHz crystal oscillator

– 15.3 30 µA

IDD4 (3) Idle mode; VDD = 3 V ± 10%
32 kHz crystal oscillator

6.4 15

IDD5 Stop mode;
VDD = 5 V ± 10%

SCMOD =
0000B

2.5 5

Stop mode;
VDD = 3 V ± 10%

XT = 0V 0.5 3

Stop mode;
VDD = 5 V ± 10%

SCMOD =
0100B

0.2 3

Stop mode;
VDD = 3 V ± 10%

0.1 2

NOTES:
1. Data includes power consumption for subsystem clock oscillation.
2. When the system clock control register, SCMOD, is set to 1001B, main system clock oscillation stops and the

subsystem clock is used.
3. Currents in the following circuits are not included; on-chip pull-up resistors, internal LCD voltage dividing resistors,

output port drive currents.

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–5

Table 14–3. Main System Clock Oscillator Characteristics

(TA = – 40 °C + 85 °C, VDD = 1.8 V to 5.5 V)

Oscillator Clock
Configuration

Parameter Test Condition Min Typ Max Units

Ceramic
Oscillator

Xin Xout

C1 C2

Oscillation frequency (1) – 0.4 – 6.0 MHz

Stabilization time (2) Stabilization occurs
when VDD is equal
to the minimum
oscillator voltage
range; VDD = 3.0 V.

– – 4 ms

Crystal
Oscillator

Xin Xout

C1 C2

Oscillation frequency (1) – 0.4 – 6.0 MHz

Stabilization time (2) VDD = 3.0 V – – 10 ms

VDD = 2.0 V to 5.5 V – – 30

External
Clock

Xin Xout Xin input frequency (1) – 0.4 – 6.0 MHz

Xin input high and low
level width (tXH, tXL)

– 83.3 – 1250 ns

RC
Oscillator

Xin Xout

R

Frequency R = 20 kΩ,
VDD = 5 V

– 2 – MHz

R = 39 kΩ,
VDD = 3 V

– 1 –

NOTES:
1. Oscillation frequency and Xin input frequency data are for oscillator characteristics only.

2. Stabilization time is the interval required for oscillator stabilization after a power-on occurs, or when stop mode is
terminated.

ELECTRICAL DATA KS57C21516/P21516 MICROCONTROLLER

14–6

Table 14–4. Recommended Oscillator Constants

(TA = – 40 °C + 85 °C, VDD = 1.8 V to 5.5 V)

Manufacturer Series
Number (1)

Frequency Range Load Cap (pF) Oscillator Voltage
Range (V)

Remarks

C1 C2 MIN MAX

TDK FCR�ðÿM5 3.58 MHz–6.0 MHz 33 33 2.0 5.5 Leaded Type

FCR�ðÿMC5 3.58 MHz–6.0 MHz (2) (2) 2.0 5.5 On-chip C
Leaded Type

CCR�ðÿMC3 3.58 MHz–6.0 MHz (3) (3) 2.0 5.5 On-chip C
SMD Type

NOTES:
1. Please specify normal oscillator frequency.
2. On-chip C: 30pF built in.
3. On-chip C: 38pF built in.

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–7

Table 14–5. Subsystem Clock Oscillator Characteristics

(TA = – 40 °C + 85 °C, VDD = 1.8 V to 5.5 V)

Oscillator Clock
Configuration

Parameter Test Condition Min Typ Max Units

Crystal
Oscillator

XTin XTout

C1 C2

Oscillation
frequency (1)

– 32 32.768 35 kHz

Stabilization time (2) VDD = 2.7 V to 5.5 V – 1.0 2 s

VDD = 2.0 V to 5.5 V – – 10

External
Clock

XTin XTout XTin input

frequency (1)
– 32 – 100 kHz

XTin input high and
low level width (tXTL,
tXTH)

– 5 – 15 µs

NOTES:
1. Oscillation frequency and XTin input frequency data are for oscillator characteristics only.

2. Stabilization time is the interval required for oscillating stabilization after a power-on occurs.

Table 14–6. Input/Output Capacitance

(TA = 25 °C, VDD = 0 V)

Parameter Symbol Condition Min Typ Max Units

Input
Capacitance

CIN f = 1 MHz; Unmeasured pins
are returned to VSS

– – 15 pF

Output
Capacitance

COUT – – 15 pF

I/O Capacitance CIO – – 15 pF

ELECTRICAL DATA KS57C21516/P21516 MICROCONTROLLER

14–8

Table 14–7. A.C. Electrical Characteristics

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Instruction Cycle
Time (note)

tCY VDD = 2.7 V to 5.5 V 0.67 – 64 µs

VDD = 2.0 V to 5.5 V 0.95 64

TCL0, TCL1 Input
Frequency

fTI0, fTI1 VDD = 2.7 V to 5.5 V 0 – 1.5 MHz

VDD = 2.0 V to 5.5 V 1

TCL0, TCL1 Input
High, Low Width

tTIH0, tTIL0
tTIH1, tTIL1

VDD = 2.7 V to 5.5 V 0.48 – – µs

VDD = 2.0 V to 5.5 V 1.8

SCK Cycle Time tKCY VDD = 2.7 V to 5.5 V; Input 800 – – ns

Internal SCK source; Output 650

VDD = 2.0 V to 5.5 V; Input 3200

Internal SCK source; Output 3800

SCK High, Low
Width

tKH, tKL VDD = 2.7 V to 5.5 V; Input 325 – – ns

Internal SCK source; Output tKCY/2 –
50

VDD = 2.0 V to 5.5 V; Input 1600

Internal SCK source; Output tKCY/2 –
150

SI Setup Time to
SCK High

tSIK VDD = 2.7 V to 5.5 V; Input 100 – – ns

VDD = 2.7 V to 5.5 V; Output 150

VDD = 2.0 V to 5.5 V; Input 150

VDD = 2.0 V to 5.5 V; Output 500

SI Hold Time to
SCK High

tKSI VDD = 2.7 V to 5.5 V; Input 400 – – ns

VDD = 2.7 V to 5.5 V; Output 400

VDD = 2.0 V to 5.5 V; Input 600

VDD = 2.0 V to 5.5 V; Output 500

NOTE: Unless otherwise specified, Instruction Cycle Time condition values assume a main system clock (fx) source.

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–9

Table 14–7. A.C. Electrical Characteristics (Continued)

(TA = – 40 _C to + 85 _C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Output Delay for
SCK to SO

tKSO VDD = 2.7 V to 5.5 V; Input – – 300 ns

VDD = 2.7 V to 5.5 V; Output 250

VDD = 2.0 V to 5.5 V; Input 1000

VDD = 2.0 V to 5.5 V; Output 1000

Interrupt Input
High, Low Width

tINTH,
tINTL

INT0, INT1, INT2, INT4,
K0–K7

10 – – µs

RESET Input Low
Width

tRSL Input 10 – – µs

NOTE: Minimum value for INT0 is based on a clock of 2tCY or 128 / fx as assigned by the IMOD0 register setting.

CPU CLOCK = 1/n x oscillator frequency (n = 4, 8 or 64)

1 2 3 4 5 6 7

 SUPPLY VOLTAGE (V)

750 kHz

15.6 kHz

CPU CLOCK

1.5 MHz

4.2 MHz

Main Oscillator Frequency
(Divided by 4)

6 MHz

1.8 V

1.05 MHz

3 MHz

Figure 14–1. Standard Operating Voltage Range

ELECTRICAL DATA KS57C21516/P21516 MICROCONTROLLER

14–10

Table 14–8. RAM Data Retention Supply Voltage in Stop Mode

(TA = – 40 °C to + 85 °C)

Parameter Symbol Conditions Min Typ Max Unit

Data retention supply voltage VDDDR – 1.8 – 5.5 V

Data retention supply current IDDDR VDDDR = 1.8 V – 0.1 10 µA

Release signal set time tSREL – 0 – – µs

Oscillator stabilization wait
time (1)

tWAIT Released by RESET – 217 / fx – ms

Released by interrupt – (2) –

NOTES:
1. During oscillator stabilization wait time, all CPU operations must be stopped to avoid instability during oscillator

start-up.
2. Use the basic timer mode register (BMOD) interval timer to delay execution of CPU instructions during the wait time.

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–11

TIMING WAVEFORMS

tWAIT

VDD

RESET

EXECUTION OF
STOP INSTRUCTION

VDDDR

DATA RETENTION MODE

STOP MODE

INTERNAL RESET

OPERATION

IDLE MODE

NORMAL MODE

tSREL

Figure 14–2. Stop Mode Release Timing When Initiated by RESET

VDD

EXECUTION OF
STOP INSTRUCTION

VDDDR

DATA RETENTION MODE

STOP MODE

tWAIT

tSREL

IDLE MODE

NORMAL MODE

POWER-DOWN MODE TERMINATING SIGNAL
(INTERRUPT REQUEST)

Figure 14–3. Stop Mode Release Timing When Initiated by Interrupt Request

ELECTRICAL DATA KS57C21516/P21516 MICROCONTROLLER

14–12

0.8 VDD

0.2 VDD

0.8 VDD

0.2 VDD

MEASUREMENT
POINTS

Figure 14–4. A.C. Timing Measurement Points (Except for Xin and XTin)

Xin

tXL tXH

1 / f

VDD -0.1 V

0.1 V

x

Figure 14–5. Clock Timing Measurement at Xin

XTin

tXTL tXTH

1 / f

VDD - 0.1 V

0.1 V

xt

Figure 14–6. Clock Timing Measurement at XTin

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–13

TCL0

tTIL tTIH

1 / f TI

0.2 VDD

0.8 VDD

Figure 14–7. TCL Timing

RESET

tRSL

0.2 VDD

Figure 14–8. Input Timing for RESET Signal

INT0, 1, 2, 4 K0 to K7

tINTL tINTH

0.8 VDD

0.2 VDD

Figure 14–9. Input Timing for External Interrupts and Quasi-Interrupts

ELECTRICAL DATA KS57C21516/P21516 MICROCONTROLLER

14–14

SCK

tKL tKH

tKCY

0.8 VDD

INPUT DATA

OUTPUT DATA

0.2 VDD

0.8 VDD

0.2 VDD

SI

SO

tKSO

tSIK tKSI

Figure 14–10. Serial Data Transfer Timing

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–15

NOTES

ELECTRICAL DATA KS57C21516/P21516 MICROCONTROLLER

14–16

CHARACTERISTIC CURVES

NOTE

The characteristic values shown in the following graphs are based on actual test measurements.

They do not, however, represent guaranteed operating values.

5.0

4.5

4.0

3.5

I D
D

1,
 I D

D
2

(m
A

)

(TA = 25 °C, fx = 4.2 MHz)

3.0

2.5

2.0

1.5

1.0

0.5

2.7 4.0 4.5 6.0

VDD (V)

0

IDD1, CPU Clock = fx/4

IDD1, CPU Clock = fx/64

IDD2

Figure 14–11. IDD1, IDD2 VS. VDD

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–17

5

0

 I D
D

3,
 4

, 5
 (

µ
A

)

2.5

VDD (V)

3.0 3.5 4.0

(TA = 25 °C, fx = 32.768 kHz)

10

15

20

25

30

35

40

45

4.5 5.0 5.5 6.0 6.5

IDD3

2.0

50

IDD4

IDD5

Figure 14–12. IDD3, IDD4, IDD5 VS. VDD

ELECTRICAL DATA KS57C21516/P21516 MICROCONTROLLER

14–18

0.5

0

 I
D

D
1

 (
m

A
)

0.5

Main System Clock Frequency (MHz)

1.0 1.5 2.0

(TA = 25 °C, CPU CLOCK = fx/4)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

2.5 3.0 3.5 4.0 4.5

VDD = 6.0 V

VDD = 4.5 V

Figure 14–13. IDD1 VS. Main System Clock Frequency

0.2

0

 I
D

D
2

 (
m

A
)

0.5

Main System Clock Frequency (MHz)

1.0 1.5 2.0

(TA = 25 °C)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2.5 3.0 3.5 4.0 4.5

VDD = 6.0 V

VDD = 4.5 V

Figure 14–14. IDD2 VS. Main System Clock Frequency

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–19

–2.5

0

 I O
H

 (
m

A
)

0.5

VOH (V)

1.0 1.5 2.0

(TA = 25 °C, Ports 0, 2, 3, 4, 5, 6, 7)

–5.0

–7.5

–10.0

–12.5

–15.0

–17.5

–20.0

–22.5

–25.0

2.5 3.0 3.5 4.0 4.5 5.0

VDD = 4.5 V

5.5 6.0

VDD = 6.0 V

Figure 14–15. IOH VS. VOH (P0, 2, 3, 4, 5, 6, 7)

ELECTRICAL DATA KS57C21516/P21516 MICROCONTROLLER

14–20

–2.5

0

 I O
H

 (
m

A
)

0.5

VOH (V)

1.0 1.5 2.0

(TA = 25 °C, Ports 8, 9)

–5.0

–7.5

–10.0

–12.5

–15.0

–17.5

–20.0

–22.5

–25.0

2.5 3.0 3.5 4.0 4.5 5.0

VDD = 4.5 V

5.5 6.0

VDD = 6.0 V

Figure 14–16. IOH VS. VOH (P8, 9)

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–21

5.0

0

 I O
L

 (
m

A
)

0.5

VOL (V)

1.0 1.5 2.0

(TA = 25 °C, Ports 0, 2, 3, 4, 5, 6, 7)

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

2.5 3.0 3.5 4.0 4.5 5.0

55.0

5.5 6.0

VDD = 6.0 V

VDD = 4.5 V

Figure 14–17. IOL VS. VOL (P0, 2, 3, 4, 5, 6, 7)

ELECTRICAL DATA KS57C21516/P21516 MICROCONTROLLER

14–22

5.0

0

 I O
L

 (
m

A
)

0.5

VOL (V)

1.0 1.5 2.0

(TA = 25 °C, Ports 8, 9)

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

2.5 3.0 3.5 4.0 4.5 5.0

55.0

5.5 6.0

VDD = 6.0 V

VDD = 4.5 V

Figure 14–18. IOL VS. VOL (P8, 9)

KS57C21516/P21516 MICROCONTROLLER ELECTRICAL DATA

14–23

NOTES

KS57C21516/P21516 MICROCONTROLLER MECHANICAL DATA

15–1

15 MECHANICAL DATA

OVERVIEW

This section contains the following information about the device package:

— Package dimensions in millimetersD

— Pad diagram

— Pad/pin coordinate data table

MECHANICAL DATA KS57C21516/P21516 MICROCONTROLLER

15-2

100 QFP
(Top View)

C

0.65 TYP 0.30 ± 0.1

A

20.00 TYP

14
.0

0
T

Y
P

B

E

0.15
+ 0.1
– 0.05

D

Item
Package A B C D E

100-QFP-1420A

100-QFP-1420C

25.00 ± 0.3

23.20 ± 0.3

19.00 ± 0.3

17.20 ± 0.3

2.45 MAX

3.00 MAX

1.20 ± 0.2

0.80 ± 0.2

0.15
+ 0.1

– 0.05

0.15 ± 0.1

NOTE: Typical dimensions are in millimeters.

Figure 15–1. 100-QFP Package Dimensions

KS57C21516/P21516 MICROCONTROLLER KS57P21516 OTP

 16–1

16 KS57P21516 OTP

OVERVIEW

The KS57P21516 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the
KS57C21516 microcontroller. It has an on-chip OTP ROM instead of masked ROM. The EPROM is accessed by
serial data format.

The KS57P21516 is fully compatible with the KS57C21516, both in function and in pin configuration. Because of
its simple programming requirements, the KS57P21516 is ideal for use as an evaluation chip for the
KS57C21516.

KS57P21516 OTP KS57C21516/P21516 MICROCONTROLLER

16–2

SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
SEG32
SEG33
SEG34
SEG35
SEG36
SEG37
SEG38
SEG39
P9.3/SEG40
P9.2/SEG41
P9.1/SEG42
P9.0/SEG43
P8.3/SEG44
P8.2/SEG45
P8.1/SEG46
P8.0/SEG47
P7.3/SEG48
P7.2/SEG49
P7.1/SEG50
P7.0/SEG51
P6.3/SEG52/K7
P6.2/SEG53/K6
P6.1/SEG54/K5

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

SEG4
SEG3
SEG2
SEG1
SEG0
VLC5
VLC4
VLC3
VLC2
VLC1

P0.0/ SCK /K0
P0.1/SO/K1

SDAT/P0.2/SI/K2
SCLK /P0.3/BUZ/K3

VDD /VDD
VSS/VSS

Xout
Xin

VPP/TEST
XTin

XTout
RESET /RESET

P1.0/INT0
P1.1/INT1
P1.2/INT2
P1.3/INT4
P2.0/CLO

P2.1/LCDCK
P2.2/LCDSY
P3.0/TCLO0

KS57P21516

(100-QFP-1420C)

S
E

G
5

S
E

G
6

S
E

G
7

S
E

G
8

S
E

G
9

S
E

G
10

S

E
G

11

S
E

G
12

S

E
G

13

S
E

G
14

S

E
G

15

S
E

G
16

S

E
G

17

S
E

G
18

S

E
G

19

S
E

G
20

S

E
G

21

S
E

G
22

S

E
G

23

S
E

G
24

10
0 99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

P
3.

1/
T

C
LO

1
P

3.
2/

T
C

L0

P
3.

3/
T

C
L1

C

O
M

0
C

O
M

1
C

O
M

2
C

O
M

3
C

O
M

4
C

O
M

5
C

O
M

6
C

O
M

7
P

4.
0/

C
O

M
8

P
4.

1/
C

O
M

9
P

4.
2/

C
O

M
10

P

4.
3/

C
O

M
11

P

5.
0/

C
O

M
12

P

5.
1/

C
O

M
13

P

5.
2/

C
O

M
14

P

5.
3/

C
O

M
15

P

6.
0/

S
E

G
55

/K
4

NOTE: The bolds indicate an OTP pin name.

Figure 16–1. KS57P21516 Pin Assignments (100-QFP Package)

KS57C21516/P21516 MICROCONTROLLER KS57P21516 OTP

 16–3

Table 16–1. Descriptions of Pins Used to Read/Write the EPROM

Main Chip During Programming

Pin Name Pin Name Pin No. I/O Function

P0.2 SDAT 13 I/O Serial data pin. Output port when reading and
input port when writing. Can be assigned as a
Input / push-pull output port.

P0.3 SCLK 14 I/O Serial clock pin. Input only pin.

TEST VPP(TEST) 19 I Power supply pin for EPROM cell writing
(indicates that OTP enters into the writing
mode). When 12.5 V is applied, OTP is in
writing mode and when 5 V is applied, OTP is in
reading mode. (Option)

RESET RESET 22 I Chip initialization

VDD / VSS VDD / VSS 15/16 I Logic power supply pin. VDD should be tied to
+5 V during programming.

Table 16–2. Comparison of KS57P21516 and KS57C21516 Features

Characteristic KS57P21516 KS57C21516

Program Memory 16 Kbyte EPROM 16 Kbyte mask ROM

Operating Voltage (VDD) 1.8 V to 5.5 V 1.8 V to 5.5 V

OTP Programming Mode VDD = 5 V, VPP(TEST)=12.5V

Pin Configuration 100 QFP 100 QFP

EPROM Programmability User Program 1 time Programmed at the factory

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the VPP(TEST) pin of the KS57P21516, the EPROM programming mode is entered.

The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in
Table 16–3 below.

Table 16–3. Operating Mode Selection Criteria

VDD Vpp

(TEST)

REG/

MEM

Address

(A15-A0)

R/W Mode

5 V 5 V 0 0000H 1 EPROM read

12.5 V 0 0000H 0 EPROM program

12.5 V 0 0000H 1 EPROM verify

12.5 V 1 0E3FH 0 EPROM read protection

NOTE: "0" means Low level; "1" means High level.

KS57P21516 OTP KS57C21516/P21516 MICROCONTROLLER

16–4

Table 16–4. D.C. Electrical Characteristics

(TA = – 40 °C to + 85 °C, VDD = 1.8 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Supply
Current

IDD1 (2) VDD = 5 V ± 10%
Crystal oscillator
C1 = C2 = 22 pF

6.0 MHz
4.19 MHz

– 3.9
2.9

8.0
5.5

mA

VDD = 3 V ± 10% 6.0 MHz
4.19 MHz

1.8
1.3

4.0
3.0

IDD2 (2) Idle mode;
VDD = 5 V ± 10%
Crystal oscillator
C1 = C2 = 22 pF

6.0 MHz
4.19 MHz

1.3
1.2

2.5
1.8

VDD = 3 V ± 10% 6.0 MHz
4.19 MHz

0.5
0.44

1.5
1.0

IDD3 (3) VDD = 3 V ± 10%
32 kHz crystal oscillator

– 15.3 30 µA

IDD4 (3) Idle mode; VDD = 3 V ± 10%
32 kHz crystal oscillator

6.4 15

IDD5 Stop mode;
VDD = 5 V ± 10%

SCMOD =
0000B

2.5 5

Stop mode;
VDD = 3 V ± 10%

XT = 0V 0.5 3

Stop mode;
VDD = 5 V ± 10%

SCMOD =
0100B

0.2 3

Stop mode;
VDD = 3 V ± 10%

0.1 2

NOTES:
1. Data includes power consumption for subsystem clock oscillation.
2. When the system clock control register, SCMOD, is set to 1001B, main system clock oscillation stops and the

subsystem clock is used.
3. Currents in the following circuits are not included; on-chip pull-up resistors, internal LCD voltage dividing resistors,

output port drive currents.

KS57C21516/P21516 MICROCONTROLLER KS57P21516 OTP

 16–5

CPU CLOCK = 1/n x oscillator frequency (n = 4, 8 or 64)

1 2 3 4 5 6 7

 SUPPLY VOLTAGE (V)

750 kHz

15.6 kHz

CPU CLOCK

1.5 MHz

3 MHz

Main Oscillator Frequency
(Divided by 4)

6 MHz

1.8 V

1.05 MHz 4.2 MHz

Figure 16–2. Standard Operating Voltage Range

KS57P21516 OTP KS57C21516/P21516 MICROCONTROLLER

16–6

NOTES

KS57C21516/P21516 MICROCONTROLLER DEVELOPMENT TOOLS

17-1

17 DEVELOPMENT TOOLS

OVERVIEW
Samsung provides a powerful and easy-to-use development support system in turnkey form. The development
support system is configured with a host system, debugging tools, and support software. For the host system, any
standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool
including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for
KS57, KS86, KS88 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2.
Samsung also offers support software that includes debugger, assembler, and a program for setting options.

SHINE
Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked
help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be
sized, moved, scrolled, highlighted, added, or removed completely.

SAMA ASSEMBLER
The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates
object code in standard hexadecimal format. Assembled program code includes the object code that is used for
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and
an auxiliary definition (DEF) file with device specific information.

SASM57
The SASM57 is an relocatable assembler for Samsung's KS57-series microcontrollers. The SASM57 takes a
source file containing assembly language statements and translates into a corresponding source code, object
code and comments. The SASM57 supports macros and conditional assembly. It runs on the MS-DOS operating
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked
with other object files and loaded into memory.

HEX2ROM
HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by
HEX2ROM, the value 'FF' is filled into the unused ROM area upto the maximum ROM size of the target device
automatically.

TARGET BOARDS
Target boards are available for all KS57-series microcontrollers. All required target system cables and adapters
are included with the device-specific target board.

OTPS

One time programmable microcontroller (OTP) for the KS57C21516 microcontroller and OTP programmer
(Gang) are now available.

DEVELOPMENT TOOLS KS57C21516/P21516 MICROCONTROLLER

17-2

RAM BREAK/ DISPLAY UNIT

TARGET
APPLICATION

SYSTEM

PROBE
ADAPTER

TB5721516A
TARGET
BOARD

PROM/MTP WRITER UNIT

TRACE/TIMER UNIT

SAM4 BASE UNIT

POWER SUPPLY UNIT

POD

RS-232C

IBM-PC AT or Compatible

B
U

S

SMDS2+

EVA
CHIP

Figure 17-1. SMDS Product Configuration (SMDS2+)

KS57C21516/P21516 MICROCONTROLLER DEVELOPMENT TOOLS

17-3

TB5721516A TARGET BOARD

The TB5721516A target board is used for the KS57C21516 microcontroller. It is supported by the SMDS2+
development system.

SM1255A

TB5721516A

1

25

EXTERNAL
TRIGGERS

CH1

CH2

OFF ON

To User_Vcc

RESET

+

STOP

+

IDLE

10
0-

P
IN

 C
O

N
N

E
C

T
O

R

50
-P

IN
 C

O
N

N
E

C
T

O
R

1 2

49 50

J101

160 QFP
KS57E21500
EVA CHIP

U
2 74HC11

50
-P

IN
 C

O
N

N
E

C
T

O
R

1 2

49 50

J102

M
D

S

X
T

A
L

XTI
M

D
S

X
T

A
L

XI

G
N

D
V

C
C

Figure 17-2. TB5721516A Target Board Configuration

DEVELOPMENT TOOLS KS57C21516/P21516 MICROCONTROLLER

17-4

Table 17-1. Power Selection Settings for TB5721516A

'To User_Vcc' Settings Operating Mode Comments

To User_Vcc

ONOFF

VCC

TB5721516A TARGET
SYSTEM

SMDS2/SMDS2+

VSS

VCC

The SMDS2/SMDS2+
supplies VCC to the target
board (evaluation chip) and
the target system.

To User_Vcc

ONOFF
TB5721516A

TARGET
SYSTEM

SMDS2+

VSS

External
VCC

VCC

The SMDS2/SMDS2+
supplies VCC only to the
target board (evaluation chip).
The target system must have
its own power supply.

Table 17-2. Main-Clock Selection Settings for TB5721516A

Main Clock Setting Operating Mode Comments

XI

XTALMDS

XIN

SMDS2/SMDS2+

EVA CHIP
KS57E21500

XOUT

No connection
100 pin connector

Set the XIN switch to “MDS”
when the target board is
connected to the
SMDS2/SMDS2+.

XI

XTALMDS

XIN

TARGET BOARD

EVA CHIP
KS57E21500

XOUT

XTAL

Set the XIN switch to “XTAL”
when the target board is used
as a standalone unit, and is
not connected to the
SMDS2/SMDS2+.

KS57C21516/P21516 MICROCONTROLLER DEVELOPMENT TOOLS

17-5

Table 17-3. Sub-Clock Selection Settings for TB5721516A

Sub Clock Setting Operating Mode Comments

XTI

XTALMDS

XTIN

SMDS2/SMDS2+

EVA CHIP
KS57E21500

XTOUT

No connection
100 pin connector

Set the XTI switch to “MDS”
when the target board is
connected to the
SMDS2/SMDS2+.

XTI

XTALMDS

XTIN

TARGET BOARD

EVA CHIP
KS57E21500

XTOUT

XTAL

Set the XTI switch to “XTAL”
when the target board is used
as a standalone unit, and is
not connected to the
SMDS2/SMDS2+.

 Table 17-4. Using Single Header Pins as the Input Path for External Trigger Sources

Target Board Part Comments

EXTERNAL
TRIGGERS

CH1

CH2

Connector from
external trigger
sources of the
application system

You can connect an external trigger source to one of the two external
trigger channels (CH1 or CH2) for the SMDS2+ breakpoint and trace
functions.

IDLE LED

This LED is ON when the evaluation chip (KS57E21500) is in idle mode.

STOP LED

This LED is ON when the evaluation chip (KS57E21500) is in stop mode.

DEVELOPMENT TOOLS KS57C21516/P21516 MICROCONTROLLER

17-6

J101

50-P
IN

 D
IP

 C
O

N
N

E
C

T
O

R

SEG4
SEG2
SEG0
VLC4
VLC2

P0.0/SCK /K0
P0.2/SI/K2

VDD
Xout

TEST
XTout

P1.0/INT0
P1.2/INT2
P2.0/CLO

P2.2/LCDSY
P3.1/TCLO1

P3.3/TCL1
COM1
COM3
COM5
COM7

P4.1/COM9
P4.3/COM11
P5.1/COM13
P5.3/COM15

SEG3
SEG1
VLC5
VLC3
VLC1
P0.1/SO/K1
P0.3/BUZ/K3
VSS
Xin
XTin
RESET
P1.1/INT1
P1.3/INT4
P2.1/LCDCK
P3.0/TCLO0
P3.2/TCL0
COM0
COM2
COM4
COM6
P4.0/COM8
P4.2/COM10
P5.0/COM12
P5.2/COM14
P6.0/SEG55/K4

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

J102

50-P
IN

 D
IP

 C
O

N
N

E
C

T
O

R

P6.1/SEG54/K5
P6.3/SEG52/K7

P7.1/SEG50
P7.3/SEG48
P8.1/SEG46
P8.3/SEG44
P9.1/SEG42
P9.3/SEG40

SEG38
SEG36
SEG34
SEG32
SEG30
SEG28
SEG26
SEG24
SEG22
SEG20
SEG18
SEG16
SEG14
SEG12
SEG10

SEG8
SEG6

P6.2/SEG53/K6
P7.0/SEG51
P7.2/SEG49
P8.0/SEG47
P8.2/SEG45
P9.0/SEG43
P9.2/SEG41
SEG39
SEG37
SEG35
SEG33
SEG31
SEG29
SEG27
SEG25
SEG23
SEG21
SEG19
SEG17
SEG15
SEG13
SEG11
SEG9
SEG7
SEG5

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

Figure 17-3. 50-Pin Connectors for TB5721516A

50-P
IN

 D
IP

 C
O

N
N

E
C

T
O

R

TARGET BOARD TARGET SYSTEM

Target Cable for 50-Pin Connector
Part Name: AS50D-A
Order Code: SM6305

J102

1 2

49 50

J101 J101J102

1 2

49 50

1 2

49 50

1 2

49 50

50-P
IN

 D
IP

 C
O

N
N

E
C

T
O

R

Figure 17-4. TB5721516A Adapter Cable for 100 QFP Package (KS57C21516)

KS57C21516/P21516 MICROCONTROLLER DEVELOPMENT TOOLS

17-7

