

# 1

## PRODUCT OVERVIEW

### OVERVIEW

The KS57C3316 single-chip CMOS microcontroller has been designed for high performance using Samsung's newest 4-bit CPU core, SAM47 (Samsung Arrangeable Microcontrollers).

With features such as LCD direct drive capability, 4-channel A/D converter, 8-bit timer/counter, watch timer and PLL frequency synthesizer, it offers you an excellent design solution for a wide variety of applications that require LCD functions and audio applications.

Up to 56 pins of the 80-pin QFP package, it can be dedicated to I/O. Eight vectored interrupts provide fast response to internal and external events. In addition, the KS57C3316's advanced CMOS technology provides for low power consumption and a wide operating voltage range.

### OTP

The KS57C3316 microcontroller is also available in OTP (One Time Programmable) version, KS57P3316. The KS57P3316 microcontroller has an on-chip 16-Kbyte one-time-programmable EEPROM instead of masked ROM. The KS57P3316 is comparable to KS57C3316, both in function and in pin configuration.

## FEATURES

### Memory

- 512-nibble RAM
- 16K-byte ROM

### I/O Pins

- Input only: 4 pins
- Output only: 28 pins
- I/O: 24 pins

### LCD Controller/Driver

- Maximum 14-digit LCD direct drive capability
- 28 segment x 4 common signals
- Display modes: Static, 1/2 duty (1/2 bias)  
1/3 duty (1/2 or 1/3 bias), 1/4 duty (1/3 bias)

### 8-Bit Basic Timer

- Programmable interval timer functions
- Watch-dog timer function

### 8-Bit Timer/Counter

- Programmable 8-bit timer
- External event counter
- Arbitrary clock frequency output
- External clock signal divider
- Serial I/O interface clock generator

### Watch Timer

- Time interval generation  
: 0.5 s, 3.9 ms at 32.768 kHz
- Frequency outputs to BUZ pin
- Clock source generation for LCD

### 8-Bit Serial I/O Interface

- 8-bit transmit/receive mode
- 8-bit receive mode
- Data direction selectable (LSB-first or MSB-first)
- Internal or external clock source

### A/D Converter

- 4-channels with 8-bit resolution

### Bit Sequential Carrier Buffer

- Support 16-bit serial data transfer in arbitrary format

### PLL Frequency Synthesizer

- Level = 300 mVp-p (min)
- AMVCO range = 0.5 MHz to 30 MHz
- FMVCO range = 30 MHz to 150 MHz

### 16-Bit Intermediate Frequency (IF) Counter

- Level = 300 mVp-p (min)
- AMIF range = 100 kHz to 1 MHz
- FMIF range = 5 MHz to 15 MHz

## FEATURES (Continued)

### Interrupts

- Four internal vectored interrupts
- Four external vectored interrupts
- Two quasi-interrupts

### Memory-Mapped I/O Structure

- Data memory bank 15

### Three Power-Down Modes

- Idle: Only CPU clock stops
- Stop1: Main system or subsystem clock stops
- Stop2: Main system and subsystem clock stop
- CE low: PLL and IFC stop

### Oscillation Sources

- Crystal or ceramic oscillator for main system clock
- Crystal for subsystem clock
- Main system clock frequency: 4.5 MHz (Typ)
- Subsystem clock frequency: 32.768 kHz (Typ)
- CPU clock divider circuit (by 4, 8, or 64)

### Instruction Execution Times

- 0.9, 1.8, 14.2  $\mu$ s at 4.5 MHz
- 122  $\mu$ s at 32.768 kHz (subsystem)

### Operating Temperature

- -40 °C to 85 °C

### Operating Voltage Range

- 1.8 V to 5.5 V at 3MHz
- PLL/IFC operation: 2.5V to 3.5V or 4.0V to 5.5V

### Package Type

- 80-pin QFP

## BLOCK DIAGRAM

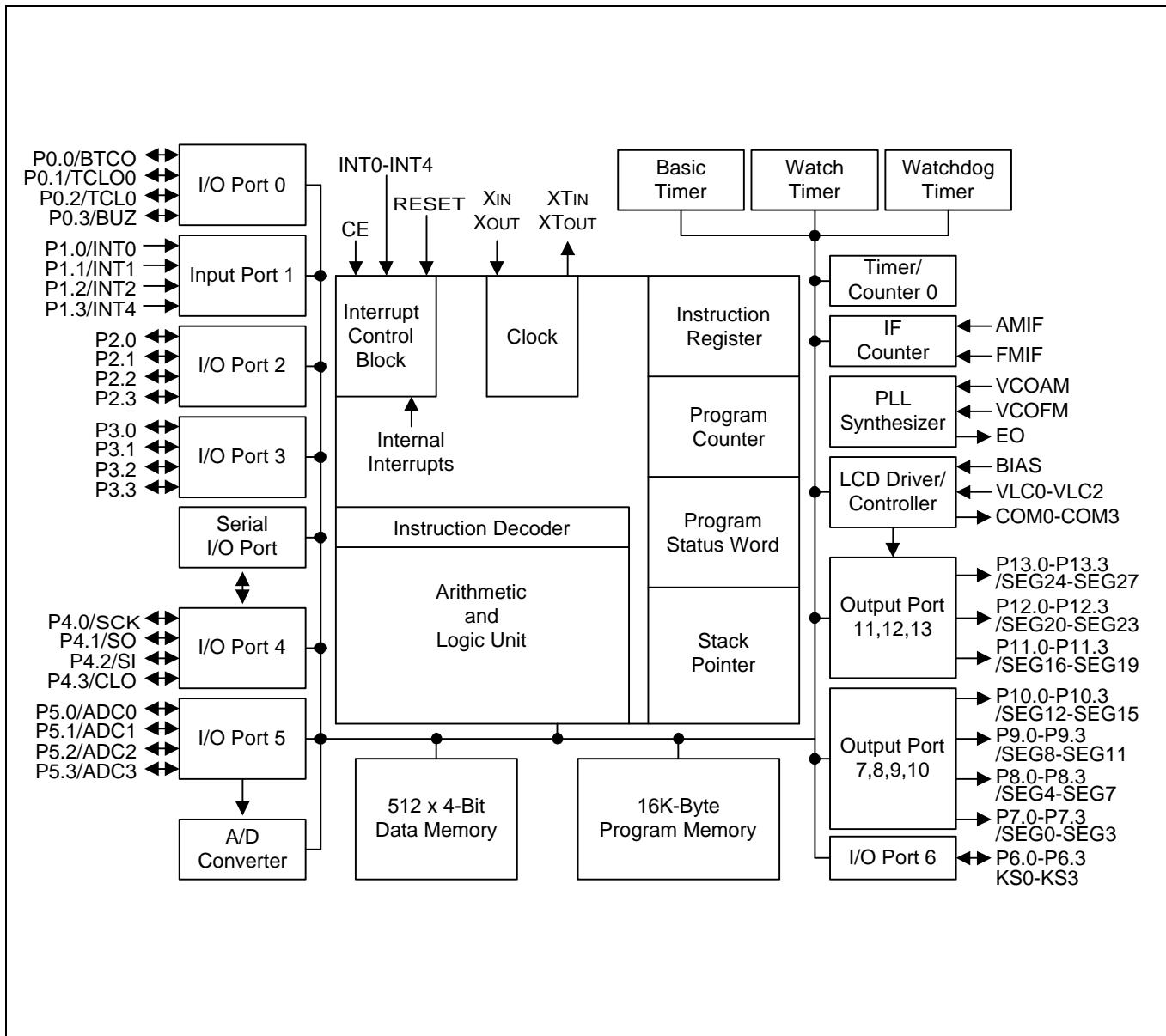



Figure 1-1. KS57C3316 Simplified Block Diagram

## PIN ASSIGNMENTS

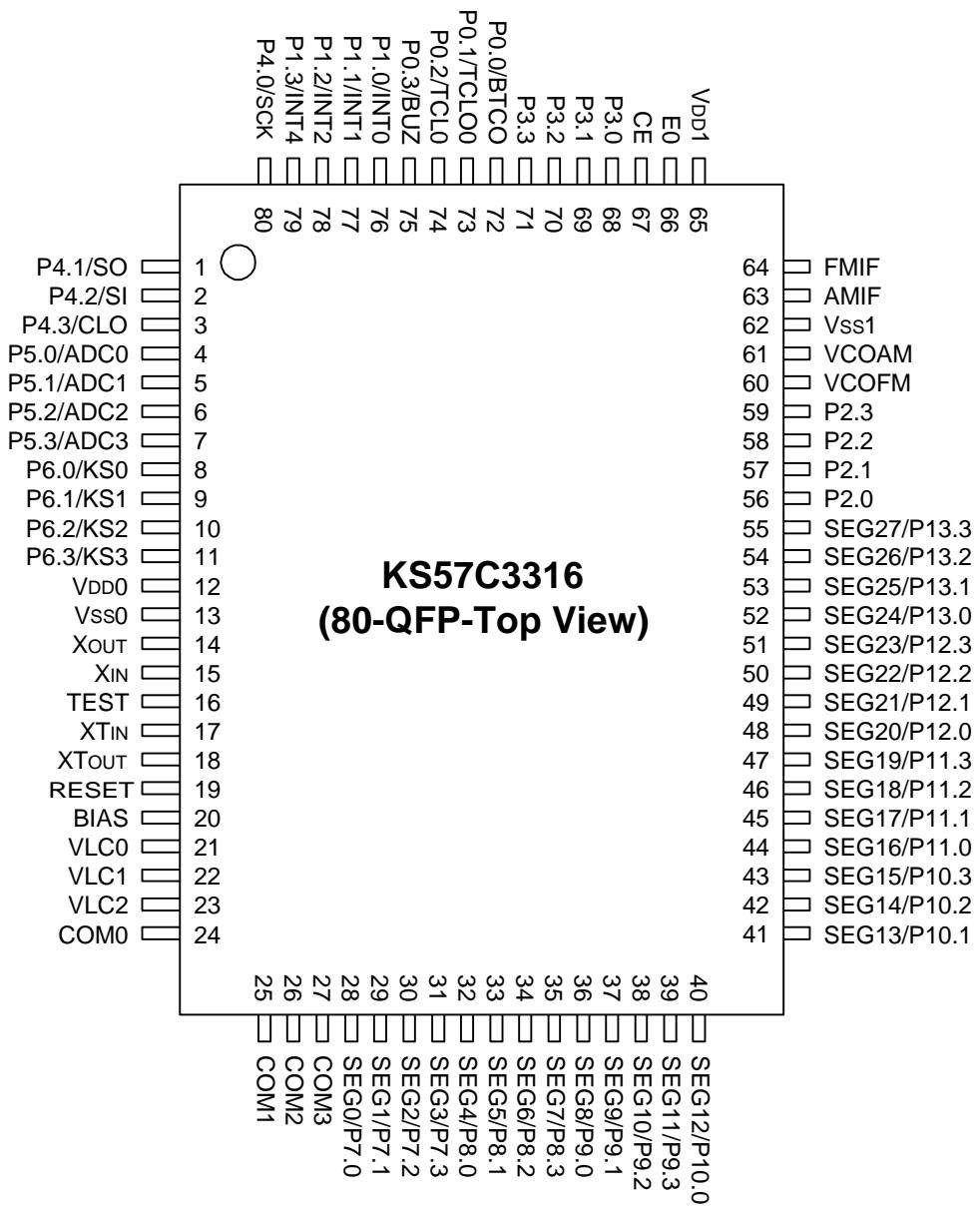



Figure 1-2. KS57C3316 80-QFP Pin Assignment

## PIN DESCRIPTIONS

Table 1-1. KS57C3316 Pin Descriptions

| Pin Name  | Pin Type | Description                                                 | Number | Share Pin | Reset Value | Circuit Type |
|-----------|----------|-------------------------------------------------------------|--------|-----------|-------------|--------------|
| P0.0      | I/O      | 4-bit I/O port.                                             | 72     | BTC0      | Input       | D-2          |
| P0.1      |          | 1-bit or 4-bit read, write, and test are possible.          | 73     | TCLO0     |             | D-2          |
| P0.2      |          | Pull-up resistors can be configured by software.            | 74     | TCL0      |             | D-4          |
| P0.3      |          |                                                             | 75     | BUZ       |             | D-2          |
| P1.0      | I        | 4-bit input port.                                           | 76     | INT0      | Input       | A-4          |
| P1.1      |          | 1-bit or 4-bit read and test are possible.                  | 77     | INT1      |             |              |
| P1.2      |          | Pull-up resistors can be configured by software.            | 78     | INT2      |             |              |
| P1.3      |          |                                                             | 79     | INT4      |             |              |
| P2.0-P2.3 | I/O      | 4-bit I/O ports.                                            | 56-59  | –         | Input       | D-2          |
| P3.0-P3.3 |          | 1-bit, 4-bit or 8-bit read, write and test are possible.    | 68-71  |           |             |              |
|           |          | Pull-up resistors can be configured by software.            |        |           |             |              |
|           |          | Ports 2 and 3 can be paired to support 8-bit data transfer. |        |           |             |              |
| P4.0      | I/O      | 4-bit I/O ports.                                            | 80     | SCK       | Input       | D-4          |
| P4.1      |          | 1-bit, 4-bit or 8-bit read, write and test are possible.    | 1      | SO        |             | D-2          |
| P4.2      |          | Pull-up resistors can be configured by software.            | 2      | SI        |             | D-4          |
| P4.3      |          |                                                             | 3      | CLO       |             | D-2          |
| P5.0      | I/O      | Ports 4 and 5 can be paired to support 8-bit data transfer. | 4      | ADC0      | Input       | F-10         |
| P5.1      |          |                                                             | 5      | ADC1      |             |              |
| P5.2      |          |                                                             | 6      | ADC2      |             |              |
| P5.3      |          |                                                             | 7      | ADC3      |             |              |
| P6.0      | I/O      | 4-bit I/O port.                                             | 8      | KS0       | Input       | D-7          |
| P6.1      |          | 1-bit, 4-bit or 8-bit read, write and test are possible.    | 9      | KS1       |             |              |
| P6.2      |          | Pull-up resistors can be configured by software.            | 10     | KS2       |             |              |
| P6.3      |          |                                                             | 11     | KS3       |             |              |
| P7.0      | O        | 1-bit or 4-bit output port.                                 | 28     | SEG0      | Output      | H-28         |
| P7.1      |          | Alternatively used for LCD segment output.                  | 29     | SEG1      |             |              |
| P7.2      |          |                                                             | 30     | SEG2      |             |              |
| P7.3      |          |                                                             | 31     | SEG3      |             |              |
| P8.0      | O        | 1-bit or 4-bit output port.                                 | 32     | SEG4      | Output      | H-28         |
| P8.1      |          | Alternatively used for LCD segment output.                  | 33     | SEG5      |             |              |
| P8.2      |          |                                                             | 34     | SEG6      |             |              |
| P8.3      |          |                                                             | 35     | SEG7      |             |              |
| P9.0      | O        | 1-bit or 4-bit output port.                                 | 36     | SEG8      | Output      | H-28         |
| P9.1      |          | Alternatively used for LCD segment output.                  | 37     | SEG9      |             |              |
| P9.2      |          |                                                             | 38     | SEG10     |             |              |
| P9.3      |          |                                                             | 39     | SEG11     |             |              |
| P10.0     | O        | 1-bit or 4-bit output port.                                 | 40     | SEG12     | Output      | H-28         |
| P10.1     |          | Alternatively used for LCD segment output.                  | 41     | SEG13     |             |              |
| P10.2     |          |                                                             | 42     | SEG14     |             |              |
| P10.3     |          |                                                             | 43     | SEG15     |             |              |

Table 1-1. KS57C3316 Pin Descriptions (Continued)

| Pin Name   | Pin Type | Description                                                                                                                                          | Number | Share Pin | Reset Value | Circuit Type |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-------------|--------------|
| P11.0      | O        | 1-bit or 4-bit output port.<br>Alternatively used for LCD segment output.                                                                            | 44     | SEG16     | Output      | H-28         |
| P11.1      |          |                                                                                                                                                      | 45     | SEG17     |             |              |
| P11.2      |          |                                                                                                                                                      | 46     | SEG18     |             |              |
| P11.3      |          |                                                                                                                                                      | 47     | SEG19     |             |              |
| P12.0      | O        | 1-bit or 4-bit output port.<br>Alternatively used for LCD segment output.                                                                            | 48     | SEG20     | Output      | H-28         |
| P12.1      |          |                                                                                                                                                      | 49     | SEG21     |             |              |
| P12.2      |          |                                                                                                                                                      | 50     | SEG22     |             |              |
| P12.3      |          |                                                                                                                                                      | 51     | SEG23     |             |              |
| P13.0      | O        | 1-bit or 4-bit output port.<br>Alternatively used for LCD segment output.                                                                            | 52     | SEG24     | Output      | H-28         |
| P13.1      |          |                                                                                                                                                      | 53     | SEG25     |             |              |
| P13.2      |          |                                                                                                                                                      | 54     | SEG26     |             |              |
| P13.3      |          |                                                                                                                                                      | 55     | SEG27     |             |              |
| COM0-COM3  | O        | Common signal output for LCD display                                                                                                                 | 24-27  | —         | Output      | H            |
| BIAS       | I        | LCD power control                                                                                                                                    | 20     | —         | Input       | —            |
| $V_{LC0}$  | I        | LCD power supply.<br>Voltage dividing resistors are assignable by software                                                                           | 21     | —         | Input       | —            |
| $V_{LC1}$  |          |                                                                                                                                                      | 22     |           |             |              |
| $V_{LC2}$  |          |                                                                                                                                                      | 23     |           |             |              |
| $V_{DD0}$  | —        | Main power supply                                                                                                                                    | 12     | —         | —           | —            |
| $V_{SS0}$  | —        | Main Ground                                                                                                                                          | 13     | —         | —           | —            |
| RESET      | I        | System reset pin                                                                                                                                     | 19     | —         | Input       | B            |
| $X_{OUT}$  | —        | Crystal, or ceramic oscillator pin for main system clock. (For external clock input, use $X_{IN}$ and input $X_{IN}$ 's reverse phase to $X_{OUT}$ ) | 14     | —         | —           | —            |
| $X_{IN}$   |          |                                                                                                                                                      | 15     |           |             |              |
| $XT_{OUT}$ | —        | Crystal oscillator pin for subsystem clock. (For external clock input, use $XT_{IN}$ and input $XT_{IN}$ 's reverse phase to $XT_{OUT}$ )            | 18     | —         | —           | —            |
| $XT_{IN}$  |          |                                                                                                                                                      | 17     |           |             |              |
| TEST       | I        | Test signal input (must be connected to $V_{SS}$ for normal operation)                                                                               | 16     | —         | —           | —            |
| CE         | I        | Input pin for checking device power.<br>Normal operation is high level and PLL/IFC operation is stopped at low level.                                | 67     | —         | Input       | B-5          |
| VCOFM      | I        | External VCOFM/AM signal inputs.                                                                                                                     | 60     | —         | Input       | B-4          |
| VCOAM      |          |                                                                                                                                                      | 61     |           |             |              |
| EO         | O        | PLL's phase error output                                                                                                                             | 66     | —         | Output      | A-2          |
| FMIF       | I        | FM/AM intermediate frequency signal inputs.                                                                                                          | 64     | Input     | —           | B-4          |
| AMIF       |          |                                                                                                                                                      | 63     |           |             |              |
| $V_{DD1}$  | —        | PLL/IFC power supply                                                                                                                                 | 65     | —         | —           | —            |
| $V_{SS1}$  | —        | PLL/IFC ground                                                                                                                                       | 62     | —         | —           | —            |

Table 1-1. KS57C3316 Pin Descriptions (Concluded)

| Pin Name       | Pin Type | Description                                                                                                            | Number   | Share Pin     | Reset Value | Circuit Type |  |
|----------------|----------|------------------------------------------------------------------------------------------------------------------------|----------|---------------|-------------|--------------|--|
| BTC0           | I/O      | Basic timer overflow output signal                                                                                     | 72       | P0.0          | Input       | D-2          |  |
| TCLO0          | I/O      | Timer/counter 0 clock output signal                                                                                    | 73       | P0.1          | Input       | D-2          |  |
| TCL0           | I/O      | External clock input for timer/counter 0                                                                               | 74       | P0.2          | Input       | D-4          |  |
| BUZ            | I/O      | 2,4,8 or 16 kHz frequency output for buzzer sound for 4.19 MHz main system clock or 32.768 kHz subsystem clock         | 75       | P0.3          | Input       | D-2          |  |
| INT0<br>INT1   | I        | External interrupt. The triggering edges (rising/falling) are selectable. Only INT0 is synchronized with system clock. | 76<br>77 | P1.0<br>P1.1  | Input       | A-4          |  |
| INT2           | I        | Quasi-interrupt with detection of rising edge signal.                                                                  | 78       | P1.2          |             |              |  |
| INT4           | I        | External interrupt input with detection of rising or falling edges.                                                    | 79       | P1.3          |             |              |  |
| SCK            | I/O      | SIO interface clock signal                                                                                             | 80       | P4.0          | Input       | D-4          |  |
| SI             | I/O      | SIO interface data input signal                                                                                        | 1        | P4.2          |             |              |  |
| SO             | I/O      | SIO interface data output signal                                                                                       | 2        | P4.1          |             |              |  |
| CLO            | I/O      | CPU clock output                                                                                                       | 3        | P4.3          |             |              |  |
| KS0-KS3        | I/O      | Quasi-interrupt input with falling edge detection                                                                      | 8-11     | P6.0-<br>P6.3 | Input       | D-7          |  |
| ADC0-<br>ADC3  | I/O      | ADC input ports.                                                                                                       | 4-7      | P5.0-<br>P5.3 | Input       | F-10         |  |
| SEG0-<br>SEG3  | O        | LCD segment signal output.                                                                                             | 28-31    | P7.0-<br>P7.3 | Output      | H-28         |  |
| SEG4-<br>SEG27 | O        | LCD segment signal output.                                                                                             | 32-55    | P8-P13        | Output      | H-28         |  |

## PIN CIRCUIT DIAGRAMS

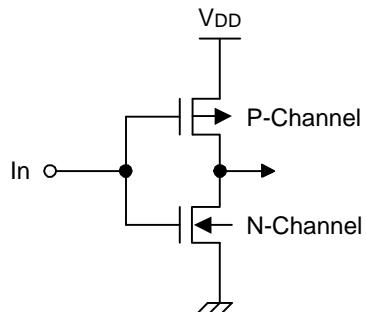



Figure 1-3. Pin Circuit Type A

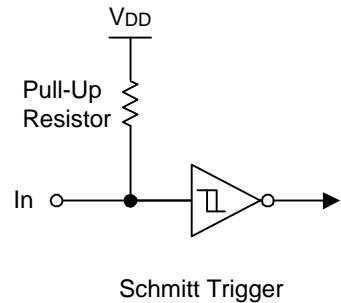



Figure 1-6. Pin Circuit Type B (RESET)

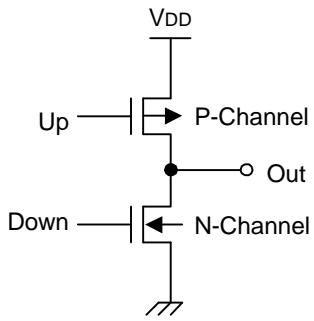



Figure 1-4. Pin Circuit Type A-2(EO)

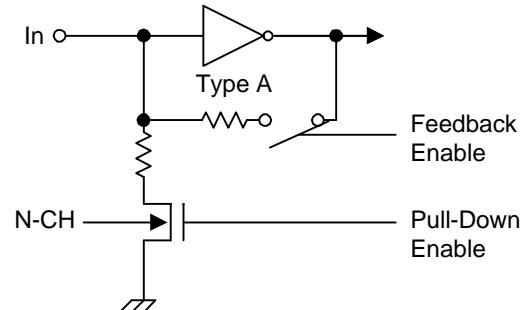



Figure 1-7. Pin Circuit Type B-4

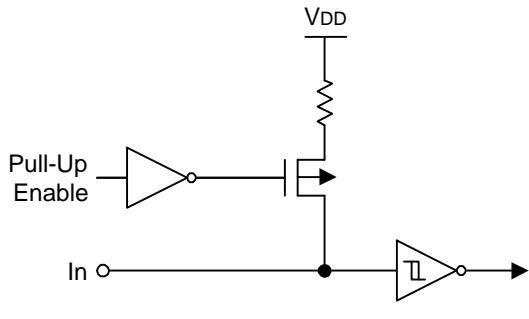



Figure 1-5. Pin Circuit Type A-4 (P1)

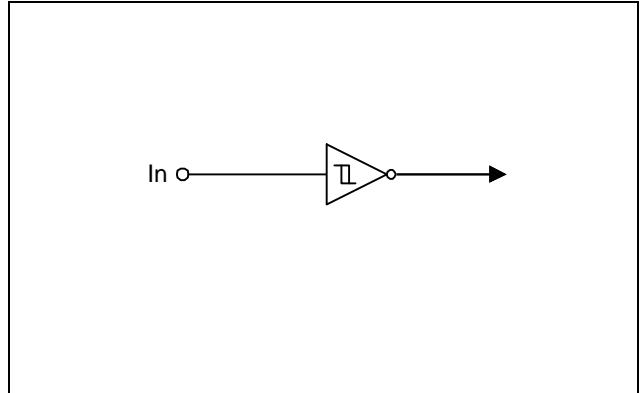
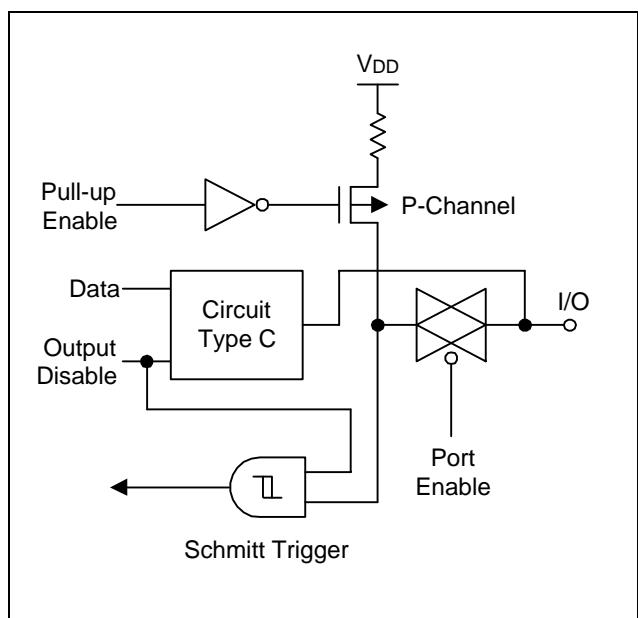
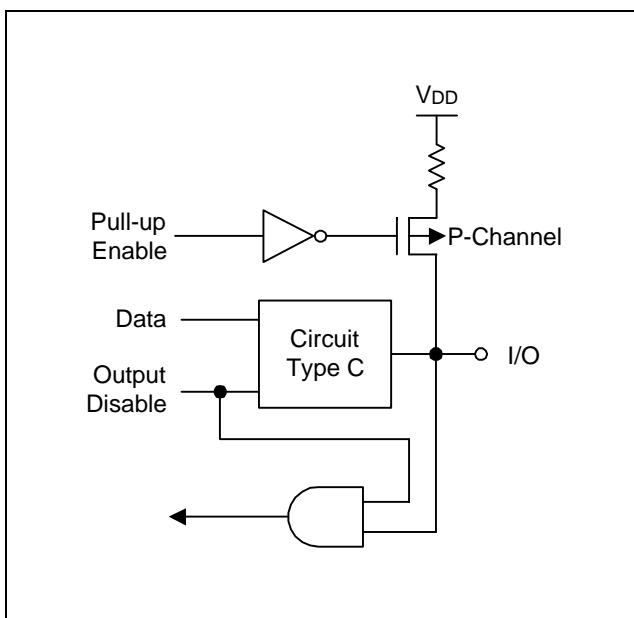
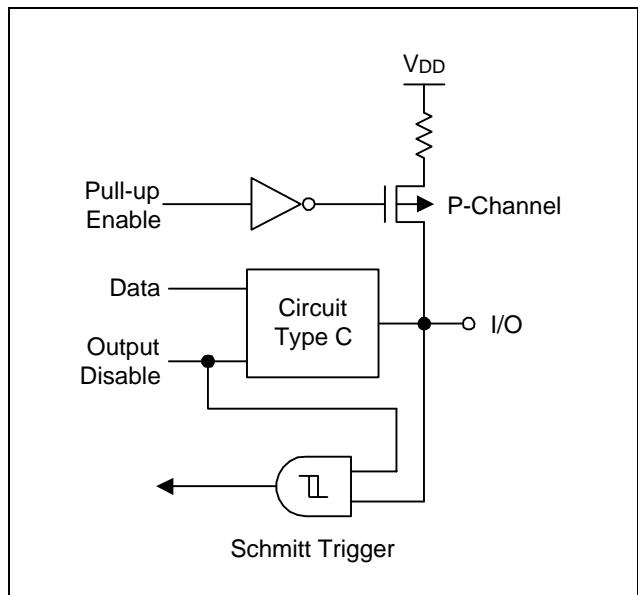
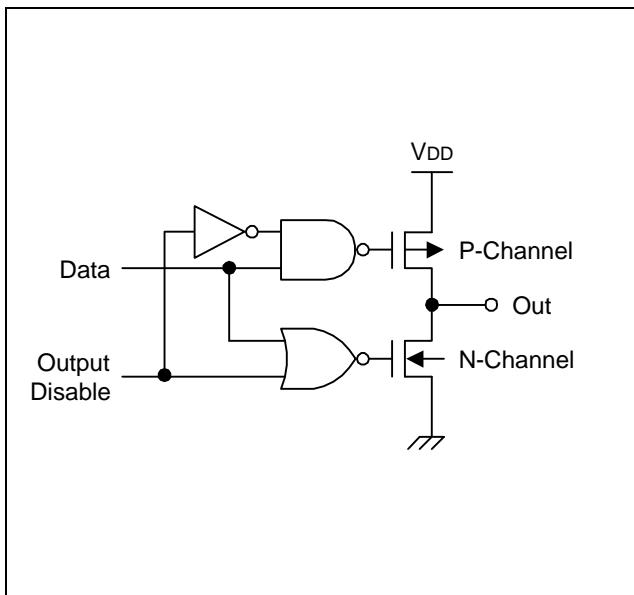
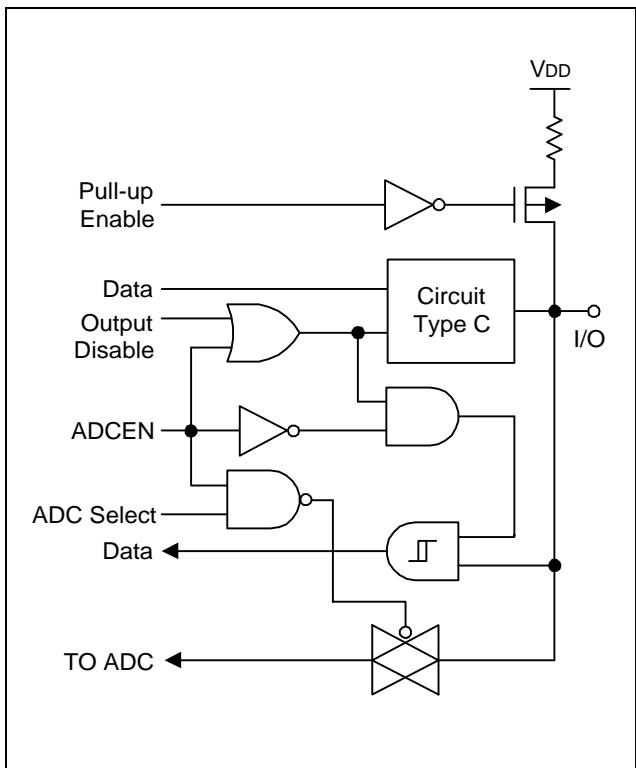
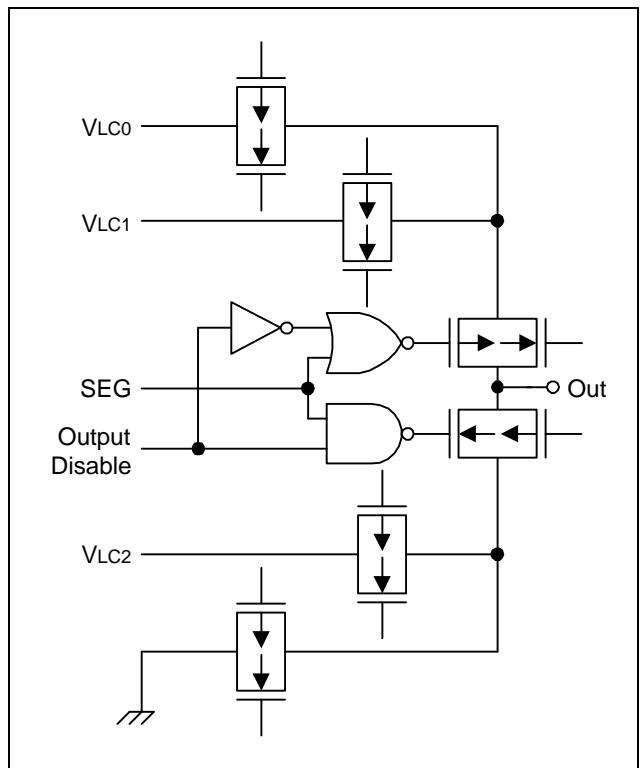
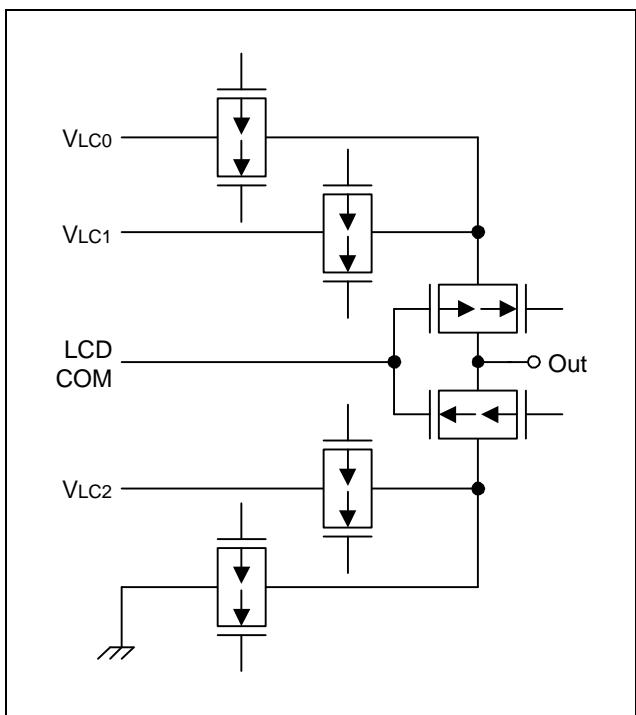
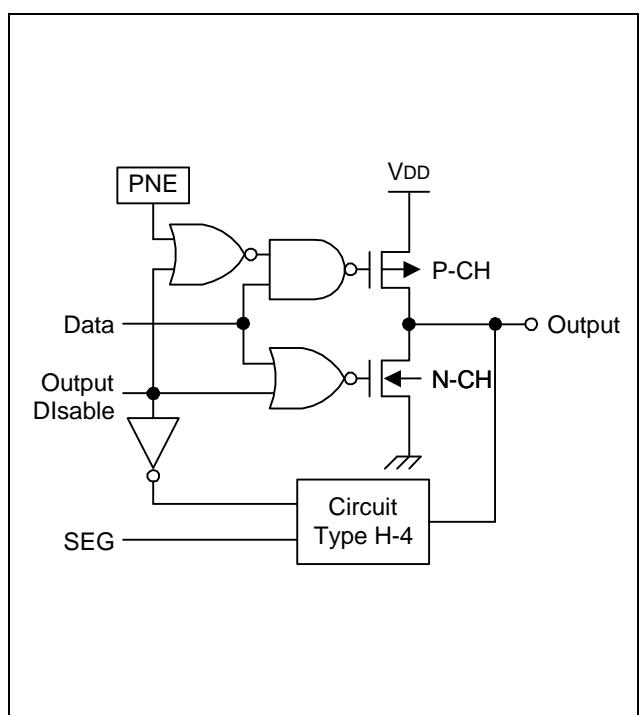









Figure 1-8. Pin Circuit Type B-5(CE)







**Figure1-13. Pin Circuit Type F-10 (P5)**



**Figure 1-15. Pin Circuit Type H-4**



**Figure 1-14. Pin Circuit Type H (COM0-COM3)**



**Figure 1-16. Pin Circuit Type H-28 (P7-P13)**

# 2 ADDRESS SPACES

## PROGRAM MEMORY (ROM)

### OVERVIEW

ROM maps for KS57C3316 devices are mask programmable at the factory. KS57C3316 has  $16K \times 8$ -bit program memory. In its standard configuration, the device's  $16K \times 8$ -bit program memory has four areas that are directly addressable by the program counter (PC):

- 16-byte area for vector addresses
- 16-byte general-purpose area
- 96-byte instruction reference area
- 16,256-byte general-purpose area

### General-Purpose Program Memory

Two program memory areas are allocated for general-purpose use: One area is 16 bytes in size and the other is 16,256 bytes.

### Vector Addresses

A 16-byte vector address area is used to store the vector addresses required to execute system resets and interrupts. Start addresses for interrupt service routines are stored in this area, along with the values of the enable memory bank (EMB) and enable register bank (ERB) flags that are used to set their initial value for the corresponding service routines. The 16-byte area can be used alternately as general-purpose ROM.

### REF Instructions

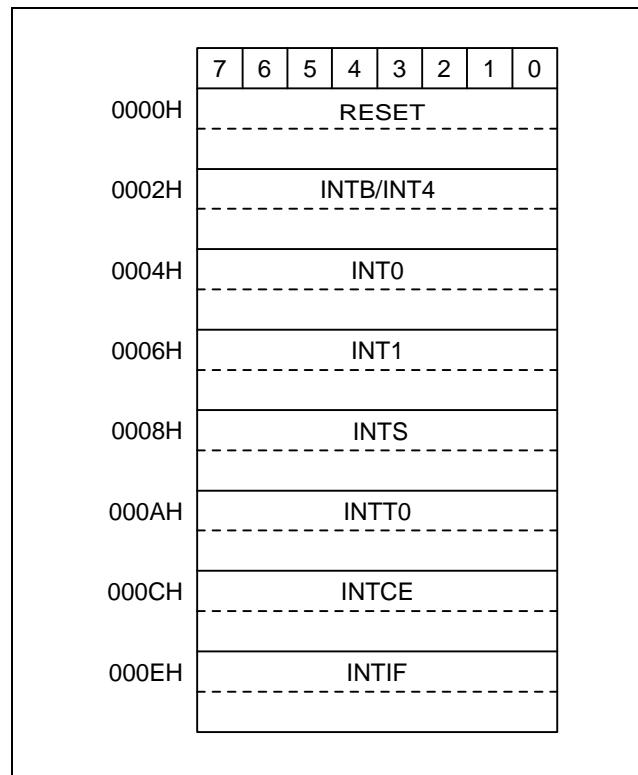
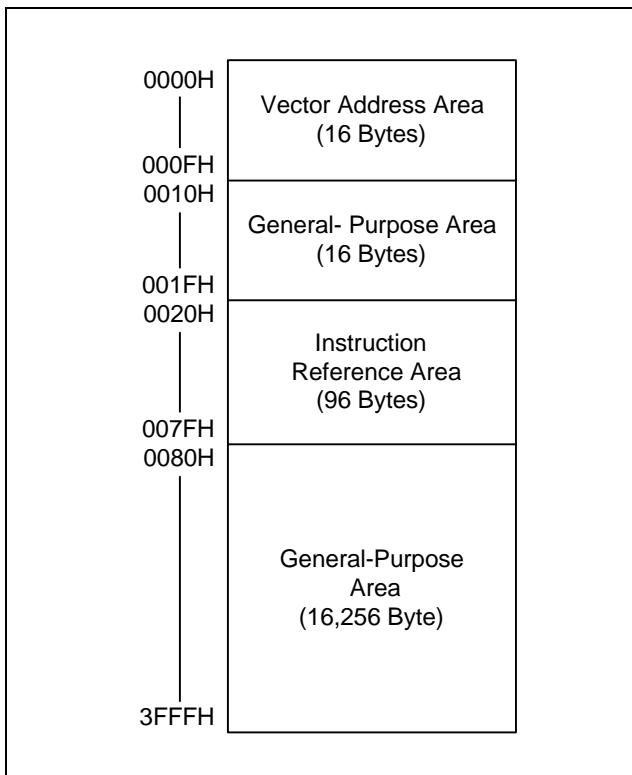
Locations 0020H-007FH are used as a reference area (look-up table) for 1-byte REF instructions. The REF instruction reduces the byte size of instruction operands. REF can reference one 2-byte instruction, two 1-byte instructions, and 3-byte instructions which are stored in the look-up table. Unused look-up table addresses can be used as general-purpose ROM.

**Table 2-1. Program Memory Address Ranges**

| ROM Area Function                  | Address Ranges | Area Size (in Bytes) |
|------------------------------------|----------------|----------------------|
| Vector address area                | 0000H-000FH    | 16                   |
| General-purpose program memory     | 0010H-001FH    | 16                   |
| REF instruction look-up table area | 0020H-007FH    | 96                   |
| General-purpose program memory     | 0080H-3FFFH    | 16,256               |

### GENERAL-PURPOSE MEMORY AREAS

The 16-byte area at ROM locations 0010H-001FH and the 16,256-byte area at ROM locations 0080H-3FFFH are



used as general-purpose program memory. Unused locations in the vector address area and REF instruction look-up table areas can be used as general-purpose program memory. However, care must be taken not to overwrite live data when writing programs that use special-purpose areas of the ROM.

### VECTOR ADDRESS AREA

The 16-byte vector address area of the ROM is used to store the vector addresses for executing system resets and interrupts. The starting addresses of interrupt service routines are stored in this area, along with the enable memory bank (EMB) and enable register bank (ERB) flag values that are needed to initialize the service routines. 16-byte vector addresses are organized as follows:

|     |     |      |      |      |      |     |     |
|-----|-----|------|------|------|------|-----|-----|
| EMB | ERB | PC13 | PC12 | PC11 | PC10 | PC9 | PC8 |
| PC7 | PC6 | PC5  | PC4  | PC3  | PC2  | PC1 | PC0 |

To set up the vector address area for specific programs, use the instruction VENTn. The programming tips on the next page explain how to do this.



### PROGRAMMING TIP — Defining Vectored Interrupts

The following examples show you several ways you can define the vectored interrupt and instruction reference areas in program memory:

1. When all vector interrupts are used:

```
ORG      0000H
VENT0    1,0,RESET      ; EMB ← 1, ERB ← 0; Jump to RESET address
VENT1    0,0,INTB        ; EMB ← 0, ERB ← 0; Jump to INTB address
VENT2    0,0,INT0        ; EMB ← 0, ERB ← 0; Jump to INT0 address
VENT3    0,0,INT1        ; EMB ← 0, ERB ← 0; Jump to INT1 address
VENT4    0,0,INTS        ; EMB ← 0, ERB ← 0; Jump to INTS address
VENT5    0,0,INTT0       ; EMB ← 0, ERB ← 0; Jump to INTT0 address
VENT6    0,0,INTCE       ; EMB ← 0, ERB ← 0; Jump to INTCE address
VENT7    0,0,INTIF       ; EMB ← 0, ERB ← 0; Jump to INTIF address
```

2. When a specific vectored interrupt such as INT0, and INTT0 is not used, the unused vector interrupt locations must be skipped with the assembly instruction ORG so that jumps will address the correct locations:

```
ORG      0000H
VENT0    1,0,RESET      ; EMB ← 1, ERB ← 0; Jump to RESET address
VENT1    0,0,INTB        ; EMB ← 0, ERB ← 0; Jump to INTB address

ORG      0006H          ; INT0 interrupt not used
VENT3    0,0,INT1        ; EMB ← 0, ERB ← 0; Jump to INT1 address
VENT4    0,0,INTS        ; EMB ← 0, ERB ← 0; Jump to INTS address

ORG      000CH          ; INTT0 interrupt not used
VENT6    0,0,INTCE       ; EMB ← 0, ERB ← 0; Jump to INTCE address
VENT7    0,0,INTIF       ; EMB ← 0, ERB ← 0; Jump to INTIF address

ORG      0010H
```

3. If an INT0 interrupt is not used and if its corresponding vector interrupt area is not fully utilized, or if it is not written by a ORG instruction as in Example 2, a CPU malfunction will occur:

```
ORG      0000H
VENT0    1,0,RESET      ; EMB ← 1, ERB ← 0; Jump to RESET address
VENT1    0,0,INTB        ; EMB ← 0, ERB ← 0; Jump to INTB address
VENT3    0,0,INT1        ; EMB ← 0, ERB ← 0; Jump to INT0 address
VENT4    0,0,INTS        ; EMB ← 0, ERB ← 0; Jump to INT1 address
VENT5    0,0,INTT0       ; EMB ← 0, ERB ← 0; Jump to INTCE address
VENT6    0,0,INTCE       ; EMB ← 0, ERB ← 0; Jump to INTT0 address
VENT7    0,0,INTIF       ; EMB ← 0, ERB ← 0; Jump to INTS address

ORG      0010H
General-purpose ROM area
```

In this example, when an INT1 interrupt is generated, the corresponding vector area is not VENT3 INT1, but VENT4 INTS. This causes an INT1 interrupt to jump incorrectly to the INTS address and causes a CPU malfunction to occur.

## INSTRUCTION REFERENCE AREA

Using 1-byte REF instructions, you can easily reference instructions with larger byte sizes that are stored in addresses 0020H–007FH of program memory. This 96-byte area is called the REF instruction reference area, or look-up table. Locations in the REF look-up table may contain two 1-byte instructions, one 2-byte instruction, or one 3-byte instruction such as a JP (jump) or CALL. The starting address of the instruction you are referencing must always be an even number. To reference a JP or CALL instruction, it must be written to the reference area in a two-byte format: for JP, this format is TJP; for CALL, it is TCALL.

By using REF instructions you can execute instructions larger than one byte, you can save program code size. In summary, there are three ways you can use the REF instruction:

- Using the 1-byte REF instruction to execute one 2-byte or two 1-byte instructions,
- Branching to any location by referencing a branch instruction stored in the look-up table,
- Calling subroutines at any location by referencing a call instruction stored in the look-up table.

### PROGRAMMING TIP — Using the REF Look-Up Table

Here is one example of how to use the REF instruction look-up table:

```

        ORG      0020H
JMAIN   TJP      MAIN          ; 0, MAIN
KEYCK   BTSF     KEYFG        ; 1, KEYFG CHECK
WATCH   TCALL    CLOCK        ; 2, CALL CLOCK
INCHL   LD       @HL,A       ; 3, (HL) ← A
        INCS     HL

        .
        .
        .

ABC     LD       EA,#00H      ; 47, EA ← #00H
        ORG     0080H

MAIN   NOP
        NOP
        .
        .
        .

        REF     KEYCK        ; BTSF KEYFG (1-byte instruction)
        REF     JMAIN        ; KEYFG = 1, jump to MAIN (1-byte instruction)
        REF     WATCH        ; KEYFG = 0, CALL CLOCK (1-byte instruction)
        REF     INCHL        ; LD @HL,A
        REF     ABC          ; INCS HL
        REF     ABC          ; LD EA,#00H (1-byte instruction)
        .
        .
        .

```

## DATA MEMORY (RAM)

### OVERVIEW

In its standard configuration, the data memory has five areas:

- $32 \times 4$ -bit working register area
- $224 \times 4$ -bit general-purpose area in bank 0 (also used as the stack area)
- $228 \times 4$ -bit general-purpose area in bank 1
- $28 \times 4$ -bit area for LCD data in bank 1
- $128 \times 4$ -bit area in bank 15 for memory-mapped I/O address

To make it easier to reference, the data memory area has three memory banks — bank 0, bank 1, and bank 15. The select memory bank instruction (SMB) is used to select the bank you want to select as working data memory. Data stored in RAM locations are 1-, 4-, and 8-bit addressable. One exception is the LCD data register area, which is 1-bit and 4-bit addressable only.

Initialization values for the data memory area are not defined by hardware and must therefore be initialized by program software following power reset. However, when a system reset signal is generated in power-down mode, the data memory contents are held.

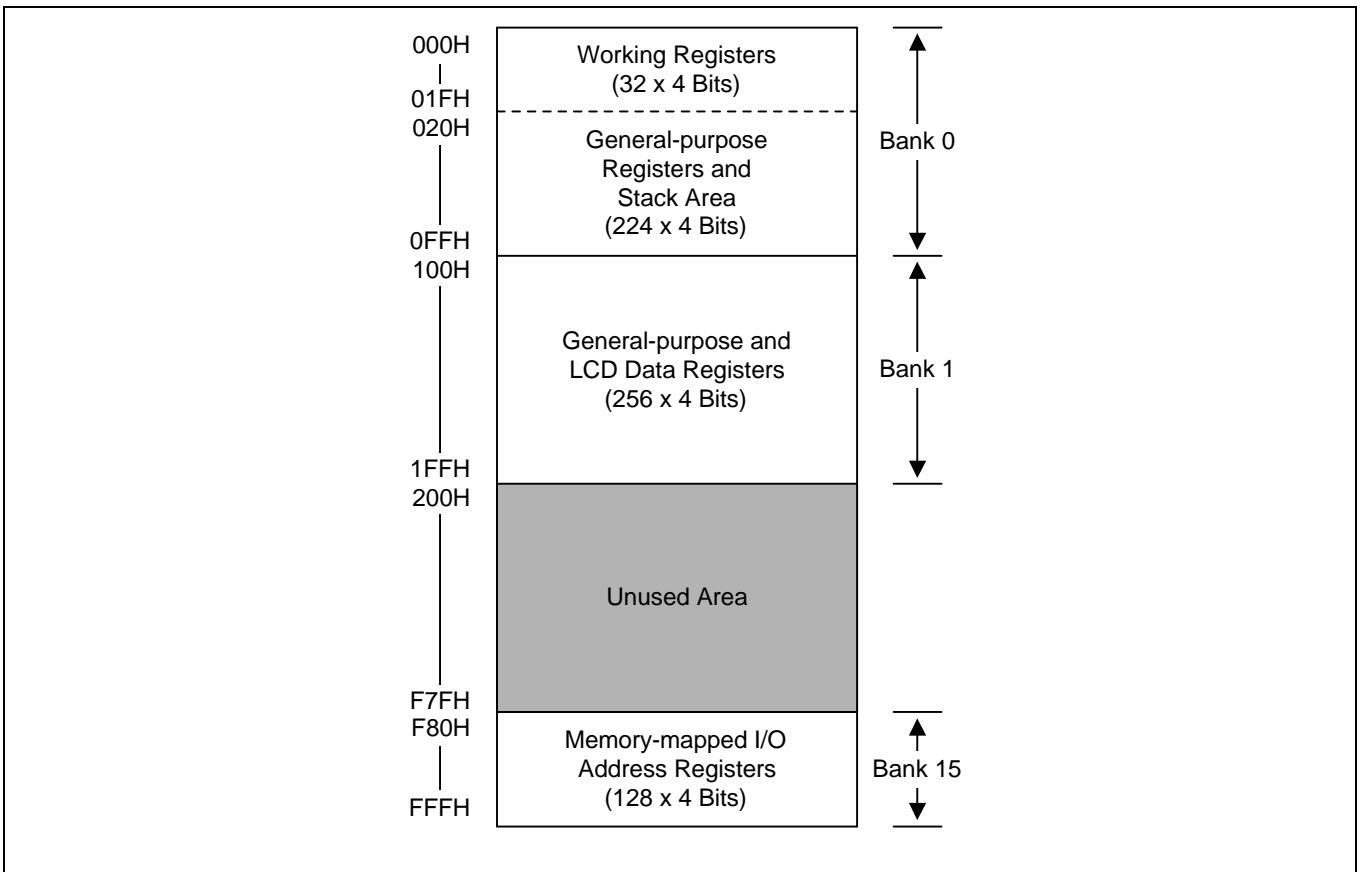



Figure 2-3. Data Memory (RAM) Map

## Memory Banks 0 and 15

|         |             |                                                                                                                                                                                                                                                                                |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bank 0  | (000H-0FFH) | The lowest 32 nibbles of bank 0 (000H-01FH) are used as working registers; the next 224 nibbles (020H-0FFH) can be used both as stack area and as general-purpose data memory. Use the stack area for implementing subroutine calls and returns, and for interrupt processing. |
| Bank 1  | (100H-1FFH) | The lowest 228 nibbles of bank 1 (100H-1E3H) are for general-purpose use; use the remaining 28 nibbles (1E4H-1FFH) as display registers or as general-purpose memory.                                                                                                          |
| Bank 15 | (F80H-FFFH) | The microcontroller uses bank 15 for memory-mapped peripheral I/O. Fixed RAM locations for each peripheral hardware address are mapped into this area.                                                                                                                         |

## Data Memory Addressing Modes

The enable memory bank (EMB) flag controls the addressing mode for data memory banks 0, 1, or 15. When the EMB flag is logic zero, the addressable area is restricted to specific locations, depending on whether direct or indirect addressing is used. With direct addressing, you can access locations 000H-07FH of bank 0 and bank 15. With indirect addressing, only bank 0 (000H-0FFH) can be accessed. When the EMB flag is set to logic one, all three data memory banks can be accessed according to the current SMB value.

For 8-bit addressing, two 4-bit registers are addressed as a register pair. Also, when using 8-bit instructions to address RAM locations, remember to use the even-numbered register address as the instruction operand.

## Working Registers

The RAM working register area in data memory bank 0 is further divided into four *register banks* (bank 0, 1, 2, and 3). Each register bank has eight 4-bit registers and paired 4-bit registers are 8-bit addressable.

Register A is used as a 4-bit accumulator and register pair EA as an 8-bit extended accumulator. The carry flag bit can also be used as a 1-bit accumulator. Register pairs WX, WL, and HL are used as address pointers for indirect addressing. To limit the possibility of data corruption due to incorrect register addressing, it is advisable to use register bank 0 for the main program and banks 1, 2, and 3 for interrupt service routines.

## LCD Data Register Area

Bit values for LCD segment data are stored in data memory bank 1. Register locations in this area that are not used to store LCD data can be assigned to general-purpose use.

**Table 2-2. Data Memory Organization and Addressing**

| Addresses | Register Areas                      | Bank | EMB Value | SMB Value |
|-----------|-------------------------------------|------|-----------|-----------|
| 000H-01FH | Working registers                   | 0    | 0, 1      | 0         |
| 020H-0FFH | Stack and general-purpose registers |      |           |           |
| 100H-1E3H | General-purpose registers           | 1    | 1         | 1         |
| 1E4H-1FFH | Display registers                   |      |           |           |
| F80H-FFFH | I/O-mapped hardware registers       | 15   | 0, 1      | 15        |

 **PROGRAMMING TIP — Clearing Data Memory Banks 0 and 1**

Clear banks 0 and 1 of the data memory area:

```

RAMCLR  SMB      1          ;  RAM (100H-1FFH) clear
        LD       HL,#00H
        LD       A,#0H
RMCL1   LD       @HL,A
        INCS    HL
        JR      RMCL1
;
        SMB      0          ;  RAM (010H-0FFH) clear
        LD       HL,#10H
        LD       @HL, A
        INCS    HL
        JR      RMCL0

```

## WORKING REGISTERS

Working registers, mapped to RAM address 000H-01FH in data memory bank 0, are used to temporarily store intermediate results during program execution, as well as pointer values used for indirect addressing. Unused registers may be used as general-purpose memory. Working register data can be manipulated as 1-bit units, 4-bit units or, using paired registers, as 8-bit units.

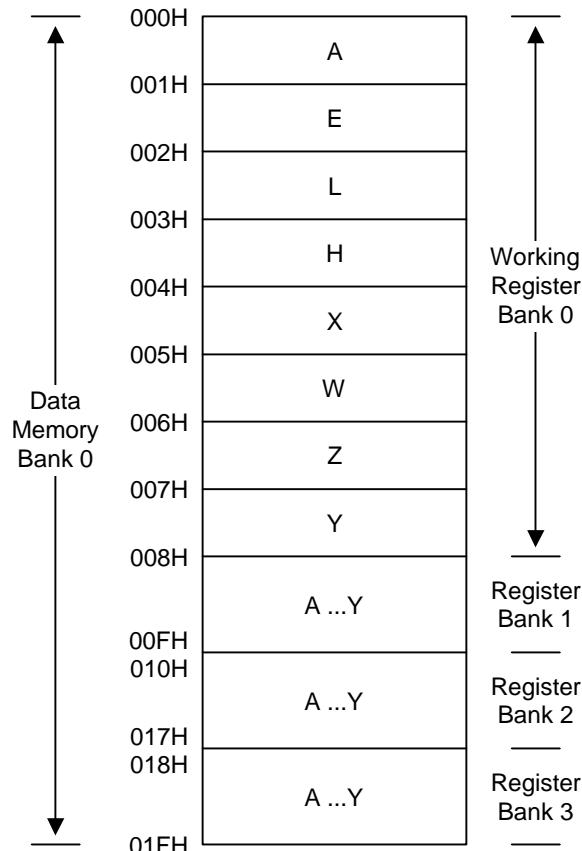
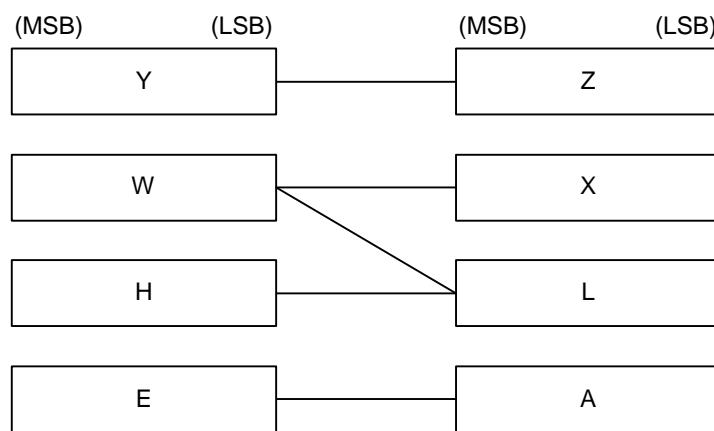



Figure 2-4. Working Register Map

## Working Register Banks

For addressing purposes, the working register area is divided into four register banks — bank 0, bank 1, bank 2, and bank 3. Any one of these banks can be selected as the working register bank by the register bank selection instruction (SRB n) and by setting the status of the register bank enable flag (ERB).

Generally, working register bank 0 is used for the main program, and banks 1, 2, and 3 for interrupt service routines. Following this convention helps to prevent possible data corruption during program execution due to contention in register bank addressing.

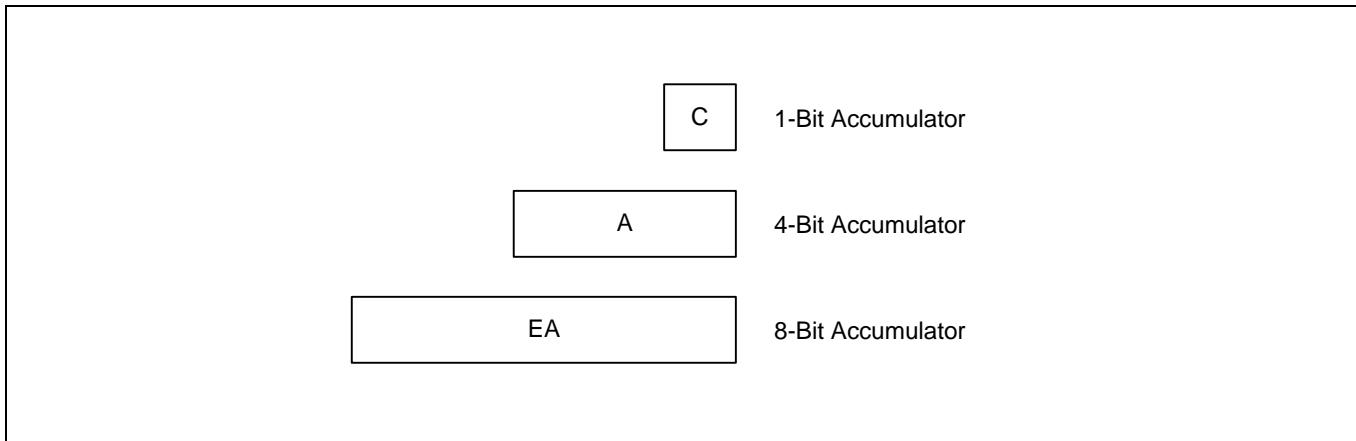

**Table 2-3. Working Register Organization and Addressing**

| ERB Setting | SRB Settings |   |   |   | Selected Register Bank |
|-------------|--------------|---|---|---|------------------------|
|             | 3            | 2 | 1 | 0 |                        |
| 0           | 0            | 0 | — | — | Always set to bank 0   |
| 1           | 0            | 0 | 0 | 0 | Bank 0                 |
|             |              |   | 0 | 1 | Bank 1                 |
|             |              |   | 1 | 0 | Bank 2                 |
|             |              |   | 1 | 1 | Bank 3                 |

## Paired Working Registers

Each of the register banks is subdivided into eight 4-bit registers. These registers, named Y, Z, W, X, H, L, E, and A, can either be manipulated individually using 4-bit instructions, or together as register pairs for 8-bit data manipulation.

The names of the 8-bit register pairs in each register bank are EA, HL, WX, YZ, and WL. Registers A, L, X, and Z always become the lower nibble when registers are addressed as 8-bit pairs. This makes a total of eight 4-bit registers or four 8-bit double registers in each of the four working register banks.




**Figure 2-5. Register Pair Configuration**

### Special-Purpose Working Registers

Register A is used as a 4-bit accumulator and double register EA as an 8-bit accumulator. The carry flag can also be used as a 1-bit accumulator.

8-bit double registers WX, WL, and HL are used as data pointers for indirect addressing. When the HL register serves as a data pointer, the instructions LDI, LDD, XCHI, and XCHD can make very efficient use of working registers as program loop counters by letting you transfer a value to the L register and increment or decrement it using a single instruction.



**Figure 2-6. 1-Bit, 4-Bit, and 8-Bit Accumulator**

### Recommendation for Multiple Interrupt Processing

If more than four interrupts are being processed at one time, you can avoid possible loss of working register data by using the PUSH RR instruction to save register contents to the stack before the service routines are executed in the same register bank. When the routines have executed successfully, you can restore the register contents from the stack to working memory using the POP instruction.

### PROGRAMMING TIP — Selecting the Working Register Area

The following examples show the correct programming method for selecting working register area:

1. When ERB = "0":

```

VENT2  1,0,INT0      ; EMB ← 1, ERB ← 0, Jump to INT0 address
INT0   PUSH   SB      ; PUSH current SMB, SRB
      SRB    2      ; Instruction does not execute because ERB = "0"
      PUSH   HL      ; PUSH HL register contents to stack
      PUSH   WX      ; PUSH WX register contents to stack
      PUSH   YZ      ; PUSH YZ register contents to stack
      PUSH   EA      ; PUSH EA register contents to stack
      SMB    0
      LD     EA,#00H
      LD     80H,EA
      LD     HL,#40H
      INCS   HL
      LD     WX,EA
      LD     YZ,EA
      POP    EA      ; POP EA register contents from stack
      POP    YZ      ; POP YZ register contents from stack
      POP    WX      ; POP WX register contents from stack
      POP    HL      ; POP HL register contents from stack
      POP    SB      ; POP current SMB, SRB
      IRET

```

The POP instructions execute alternately with the PUSH instructions. If an SMB n instruction is used in an interrupt service routine, a PUSH and POP SB instruction must be used to store and restore the current SMB and SRB values, as shown in Example 2 below.

2. When ERB = "1":

```

VENT2  1,1,INT0      ; EMB ← 1, ERB ← 1, Jump to INT0 address
INT0   PUSH   SB      ; Store current SMB, SRB
      SRB    2      ; Select register bank 2 because of ERB = "1"
      SMB    0
      LD     EA,#00H
      LD     80H,EA
      LD     HL,#40H
      INCS   HL
      LD     WX,EA
      LD     YZ,EA
      POP    SB      ; Restore SMB, SRB
      IRET

```

## STACK OPERATIONS

### STACK POINTER (SP)

The stack pointer (SP) is an 8-bit register that stores the address used to access the stack, an area of data memory set aside for temporary storage of data and addresses. The SP can be read or written by 8-bit control instructions. When addressing the SP, bit 0 must always remain cleared to logic zero.

|      |     |     |     |     |
|------|-----|-----|-----|-----|
| F80H | SP3 | SP2 | SP1 | "0" |
| F81H | SP7 | SP6 | SP5 | SP4 |

There are two basic stack operations: writing to the top of the stack (push), and reading from the top of the stack (pop). A push decrements the SP and a pop increments it so that the SP always points to the top address of the last data to be written to the stack.

The program counter contents and program status word (PSW) are stored in the stack area prior to the execution of a CALL or a PUSH instruction, or during interrupt service routines. Stack operation is a LIFO (Last In-First Out) type. The stack area is located in general-purpose data memory bank 0.

During an interrupt or a subroutine, the PC value and the PSW are saved to the stack area. When the routine has completed, the stack pointer is referenced to restore the PC and PSW, and the next instruction is executed.

The SP can address stack registers in bank 0 (addresses 000H–0FFH) regardless of the current value of the enable memory bank (EMB) flag and the select memory bank (SMB) flag. Although general-purpose register areas can be used for stack operations, be careful to avoid data loss due to simultaneous use of the same register(s).

Since the reset value of the stack pointer is not defined in firmware, we recommend that you initialize the stack pointer by program code to location 00H. This sets the first register of the stack area to 0FFH.

#### NOTE

A subroutine call occupies six nibbles in the stack; an interrupt requires six. When subroutine nesting or interrupt routines are used continuously, the stack area should be set in accordance with the maximum number of subroutine levels. To do this, estimate the number of nibbles that will be used for the subroutines or interrupts and set the stack area correspondingly.

#### PROGRAMMING TIP — Initializing the Stack Pointer

To initialize the stack pointer (SP):

1. When EMB = "1":

|     |         |                                               |
|-----|---------|-----------------------------------------------|
| SMB | 15      | ; Select memory bank 15                       |
| LD  | EA,#00H | ; Bit 0 of SP is always cleared to "0"        |
| LD  | SP,EA   | ; Stack area initial address (00H) ← (SP) – 1 |

2. When EMB = "0":

|    |         |                                               |
|----|---------|-----------------------------------------------|
| LD | EA,#00H |                                               |
| LD | SP,EA   | ; Memory addressing area (00H-7FH, F80H-FFFH) |

## PUSH OPERATIONS

Three kinds of push operations reference the stack pointer (SP) to write data from the source register to the stack: PUSH instructions, CALL instructions, and interrupts. In each case, the SP is *decreased* by a number determined by the type of push operation and then points to the next available stack location.

### PUSH Instructions

A PUSH instruction references the SP to write two 4-bit data nibbles to the stack. Two 4-bit stack addresses are referenced by the stack pointer: one for the upper register value and another for the lower register. After the PUSH has executed, the SP is decreased *by two* and points to the next available stack location.

### CALL Instructions

When a subroutine call is issued, the CALL instruction references the SP to write the PC's contents to six 4-bit stack locations. Current values for the enable memory bank (EMB) flag and the enable register bank (ERB) flag are also pushed to the stack. Since six 4-bit stack locations are used per CALL, you may nest subroutine calls up to the number of levels permitted in the stack.

### Interrupt Routines

An interrupt routine references the SP to push the contents of the PC and the program status word (PSW) to the stack. Six 4-bit stack locations are used to store this data. After the interrupt has executed, the SP is decreased *by six* and points to the next available stack location. During an interrupt sequence, subroutines may be nested up to the number of levels which are permitted in the stack area.

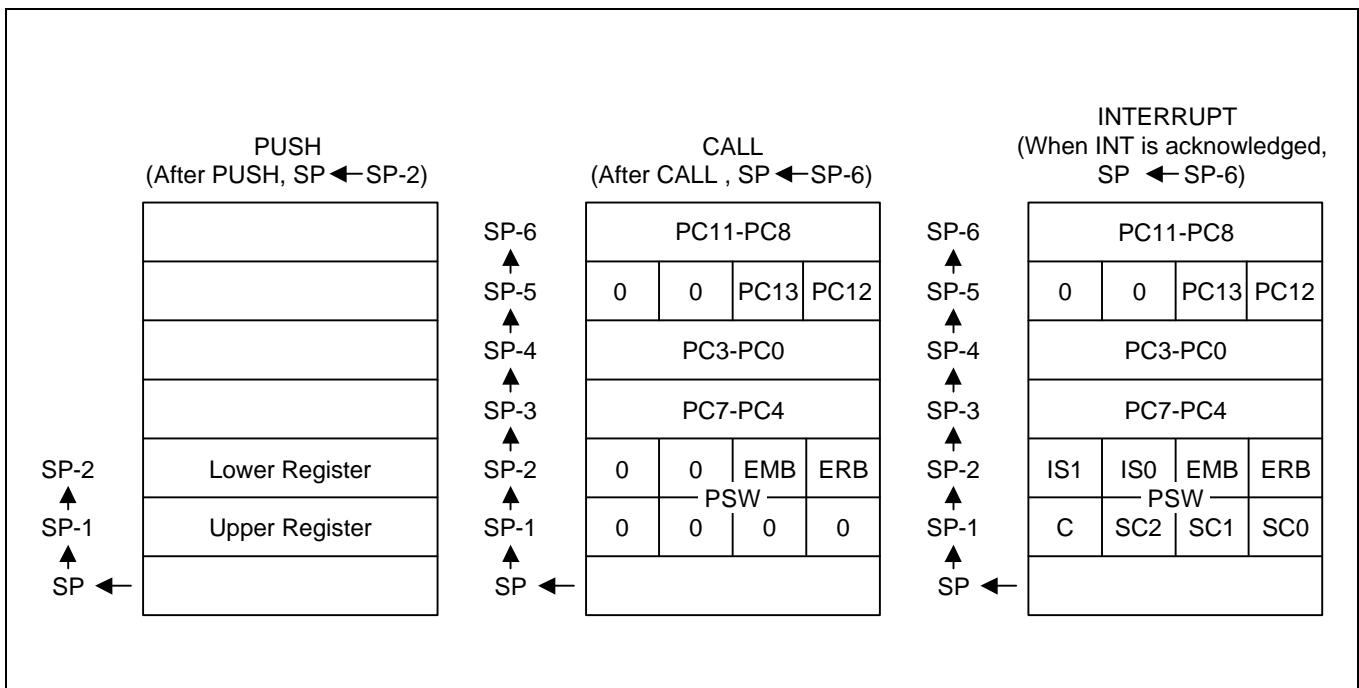



Figure 2-7. Push-Type Stack Operations

## POP OPERATIONS

For each push operation there is a corresponding pop operation to write data from the stack back to the source register or registers: for the PUSH instruction it is the POP instruction; for CALL, the instruction RET or SRET; for interrupts, the instruction IRET. When a pop operation occurs, the SP is *incremented* by a number determined by the type of operation and points to the next free stack location.

### POP Instructions

A POP instruction references the SP to write data stored in two 4-bit stack locations back to the register pairs and SB register. The value of the lower 4-bit register is popped first, followed by the value of the upper 4-bit register. After the POP has executed, the SP is incremented *by two* and points to the next free stack location.

### RET and SRET Instructions

The end of a subroutine call is signaled by the return instruction, RET or SRET. The RET or SRET uses the SP to reference the six 4-bit stack locations used for the CALL and to write this data back to the PC, the EMB, and the ERB. After the RET or SRET has executed, the SP is incremented *by six* and points to the next free stack location.

### IRET Instructions

The end of an interrupt sequence is signaled by the instruction IRET. IRET references the SP to locate the six 4-bit stack addresses used for the interrupt and to write this data back to the PC and the PSW. After the IRET has executed, the SP is incremented *by six* and points to the next free stack location.

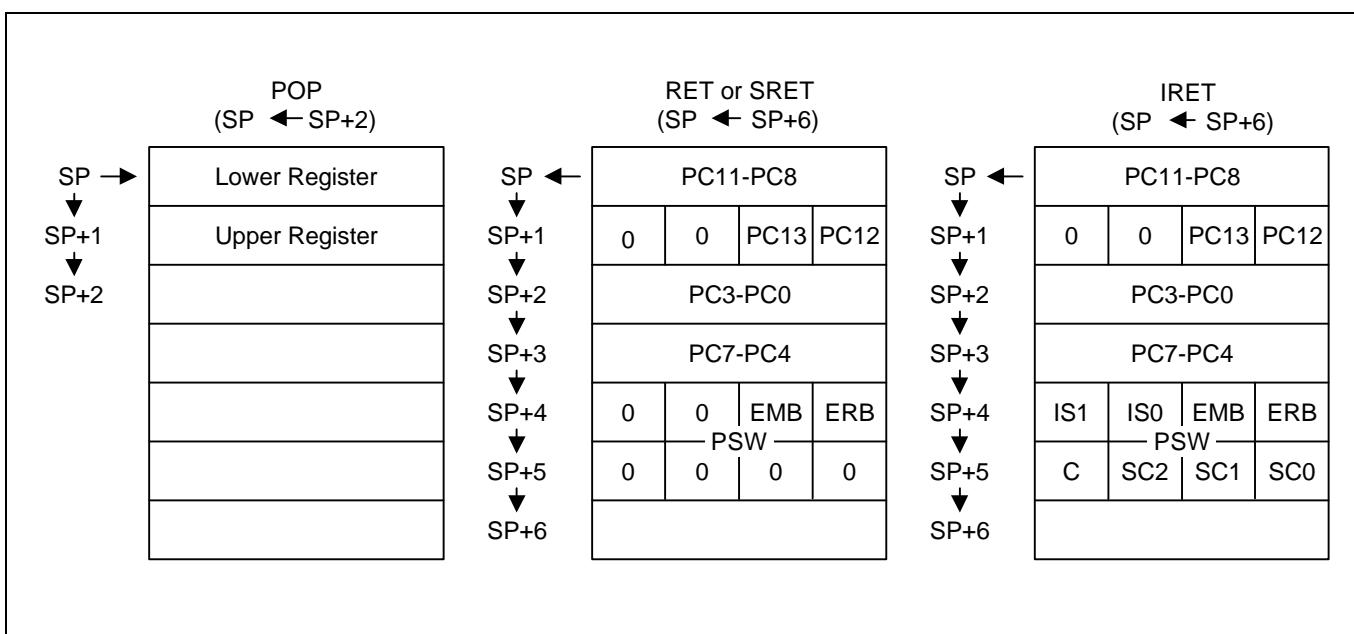



Figure 2-8. Pop-Type Stack Operations

## BIT SEQUENTIAL CARRIER (BSC) BUFFER

The bit sequential carrier (BSC) is a 16-bit general register that can be manipulated using 1-, 4-, and 8-bit RAM control instructions. A system reset clears all BSC bit values to logic zero.

Using the BSC, you can specify sequential addresses and bit locations using 1-bit indirect addressing (memb.@L). (Bit addressing is independent of the current EMB value.) In this way, programs can process 16-bit data by moving the bit location sequentially and then incrementing or decreasing the value of the L register.

BSC data can also be manipulated using direct addressing. For 8-bit manipulations, the 4-bit register names BSC0 and BSC2 must be specified and the upper and lower 8 bits manipulated separately.

If the values of the L register are 0H at BSC0.@L, the address and bit location assignment is FC0H.0. If the L register content is FH at BSC0.@L, the address and bit location assignment is FC3H.3.

**Table 2-4. BSC Register Organization**

| Name | Address | Bit 3  | Bit 2  | Bit 1  | Bit 0  |
|------|---------|--------|--------|--------|--------|
| BSC0 | FC0H    | BSC0.3 | BSC0.2 | BSC0.1 | BSC0.0 |
| BSC1 | FC1H    | BSC1.3 | BSC1.2 | BSC1.1 | BSC1.0 |
| BSC2 | FC2H    | BSC2.3 | BSC2.2 | BSC2.1 | BSC2.0 |
| BSC3 | FC3H    | BSC3.3 | BSC3.2 | BSC3.1 | BSC3.0 |

### PROGRAMMING TIP — Using the BSC Register to Output 16-Bit Data

To use the bit sequential carrier (BSC) register to output 16-bit data (5937H) to the P1.0 pin:

|      |         |           |                    |          |  |
|------|---------|-----------|--------------------|----------|--|
| BITS | EMB     |           |                    |          |  |
| SMB  | 15      |           |                    |          |  |
| LD   | EA,#37H | ;         |                    |          |  |
| LD   | BSC0,EA | ;         | BSC0 ← A, BSC1 ← E |          |  |
| LD   | EA,#59H | ;         |                    |          |  |
| LD   | BSC2,EA | ;         | BSC2 ← A, BSC3 ← E |          |  |
| SMB  | 0       |           |                    |          |  |
| LD   | L,#0H   | ;         |                    |          |  |
| AGN  | LDB     | C,BSC0.@L | ;                  |          |  |
|      | LDB     | P1.0,C    | ;                  | P1.0 ← C |  |
|      | INCS    | L         |                    |          |  |
|      | JR      | AGN       |                    |          |  |
|      | RET     |           |                    |          |  |

## PROGRAM COUNTER (PC)

A 14-bit program counter (PC) stores addresses for instruction fetches during program execution. Whenever a reset operation or an interrupt occurs, bits PC13 through PC0 are set to the vector address.

Usually, the PC is incremented by the number of bytes of the instruction being fetched. One exception is the 1-byte REF instruction which is used to reference instructions stored in the ROM.

## PROGRAM STATUS WORD (PSW)

The program status word (PSW) is an 8-bit word that defines system status and program execution status and which permits an interrupted process to resume operation after an interrupt request has been serviced. PSW values are mapped as follows:

|      | (MSB) |     | (LSB) |     |
|------|-------|-----|-------|-----|
| FB0H | IS1   | IS0 | EMB   | ERB |
| FB1H | C     | SC2 | SC1   | SC0 |

The PSW can be manipulated by 1-bit or 4-bit read/write and by 8-bit read instructions, depending on the specific bit or bits being addressed. The PSW can be addressed during program execution regardless of the current value of the enable memory bank (EMB) flag.

Part or all of the PSW is saved to stack prior to execution of a subroutine call or hardware interrupt. After the interrupt has been processed, the PSW values are popped from the stack back to the PSW address.

When a system reset is generated, the EMB and ERB values are set according to the reset vector address, and the carry flag is left undefined (or the current value is retained). PSW bits IS0, IS1, SC0, SC1, and SC2 are all cleared to logical zero.

**Table 2-5. Program Status Word Bit Descriptions**

| PSW Bit Identifier | Description               | Bit Addressing | Read/Write |
|--------------------|---------------------------|----------------|------------|
| IS1, IS0           | Interrupt status flags    | 1, 4           | R/W        |
| EMB                | Enable memory bank flag   | 1              | R/W        |
| ERB                | Enable register bank flag | 1              | R/W        |
| C                  | Carry flag                | 1              | R/W        |
| SC2, SC1, SC0      | Program skip flags        | 8              | R          |

## INTERRUPT STATUS FLAGS (IS0, IS1)

PSW bits IS0 and IS1 contain the current interrupt execution status values. You can manipulate IS0 and IS1 flags directly using 1-bit RAM control instructions

By manipulating interrupt status flags in conjunction with the interrupt priority register (IPR), you can process multiple interrupts by anticipating the next interrupt in an execution sequence. The interrupt priority control circuit determines the IS0 and IS1 settings in order to control multiple interrupt processing. When both interrupt status flags are set to "0", all interrupts are allowed. The priority with which interrupts are processed is then determined by the IPR.

When an interrupt occurs, IS0 and IS1 are pushed to the stack as part of the PSW and are automatically incremented to the next higher priority level. Then, when the interrupt service routine ends with an IRET instruction, IS0 and IS1 values are restored to the PSW. Table 2-6 shows the effects of IS0 and IS1 flag settings.

**Table 2-6. Interrupt Status Flag Bit Settings**

| IS1 Value | IS0 Value | Status of Currently Executing Process | Effect of IS0 and IS1 Settings on Interrupt Request Control                                         |
|-----------|-----------|---------------------------------------|-----------------------------------------------------------------------------------------------------|
| 0         | 0         | 0                                     | All interrupt requests are serviced                                                                 |
| 0         | 1         | 1                                     | Only high-priority interrupt(s) as determined in the interrupt priority register (IPR) are serviced |
| 1         | 0         | 2                                     | No more interrupt requests are serviced                                                             |
| 1         | 1         | –                                     | Not applicable; these bit settings are undefined                                                    |

Since interrupt status flags can be addressed by write instructions, programs can exert direct control over interrupt processing status. Before interrupt status flags can be addressed, however, you must first execute a DI instruction to inhibit additional interrupt routines. When the bit manipulation has been completed, execute an EI instruction to re-enable interrupt processing.

### PROGRAMMING TIP — Setting ISx Flags for Interrupt Processing

The following instruction sequence shows how to use the IS0 and IS1 flags to control interrupt processing:

|      |      |     |                   |                                                  |
|------|------|-----|-------------------|--------------------------------------------------|
| INTB | DI   | ;   | Disable interrupt |                                                  |
|      | BITR | IS1 | ;                 | IS1 ← 0                                          |
|      | BITS | IS0 | ;                 | Allow interrupts according to IPR priority level |
|      | EI   |     | ;                 | Enable interrupt                                 |

**EMB FLAG (EMB)**

The EMB flag is used to allocate specific address locations in the RAM by modifying the upper 4 bits of 12-bit data memory addresses. In this way, it controls the addressing mode for data memory banks 0, 1, or 15.

When the EMB flag is "0", the data memory address space is restricted to and addresses 000H-07FH of memory bank 0 and addresses F80H-FFFH of memory bank 15, regardless of the SMB register contents. When the EMB flag is set to "1", the general-purpose areas of bank 0, 1, and 15 can be accessed by using the appropriate SMB value.

 **PROGRAMMING TIP — Using the EMB Flag to Select Memory Banks**

EMB flag settings for memory bank selection:

1. When EMB = "0":

|     |       |                                              |
|-----|-------|----------------------------------------------|
| SMB | 1     | ; Non-essential instruction since EMB = "0"  |
| LD  | A,#9H | ;                                            |
| LD  | 90H,A | ; (F90H) ← A, bank 15 is selected            |
| LD  | 34H,A | ; (F34H) ← A, bank 0 is selected             |
| SMB | 0     | ; Non-essential instruction since EMB = "0"  |
| LD  | 90H,A | ; (F90H) ← A, bank 15 is selected            |
| LD  | 34H,A | ; (034H) ← A, bank 0 is selected             |
| SMB | 15    | ; Non-essential instruction, since EMB = "0" |
| LD  | 20H,A | ; (020H) ← A, bank 0 is selected             |
| LD  | 90H,A | ; (F90H) ← A, bank 15 is selected            |

2. When EMB = "1":

|     |       |                                                   |
|-----|-------|---------------------------------------------------|
| SMB | 1     | ; Select memory bank 1                            |
| LD  | A,#9H | ;                                                 |
| LD  | 90H,A | ; (190H) ← A, bank 1 is selected                  |
| LD  | 34H,A | ; (134H) ← A, bank 1 is selected                  |
| SMB | 0     | ; Select memory bank 0                            |
| LD  | 90H,A | ; (090H) ← A, bank 0 is selected                  |
| LD  | 34H,A | ; (034H) ← A, bank 0 is selected                  |
| SMB | 15    | ; Select memory bank 15                           |
| LD  | 20H,A | ; Program error, but assembler does not detect it |
| LD  | 90H,A | ; (F90H) ← A, bank 15 is selected                 |

## ERB FLAG (ERB)

The 1-bit register bank enable flag (ERB) determines the range of addressable working register area. When the ERB flag is "1", the working register area from register banks 0 to 3 is selected according to the register bank selection register (SRB). When the ERB flag is "0", register bank 0 is the selected working register area, regardless of the current value of the register bank selection register (SRB).

When an internal reset is generated, bit 6 of program memory address 0000H is written to the ERB flag. This automatically initializes the flag. When a vectored interrupt is generated, bit 6 of the respective address table in program memory is written to the ERB flag, setting the correct flag status before the interrupt service routine is executed.

During the interrupt routine, the ERB value is automatically pushed to the stack area along with the other PSW bits. Afterwards, it is popped back to the FB0H.0 bit location. The initial ERB flag settings for each vectored interrupt are defined using VENTn instructions.

### PROGRAMMING TIP — Using the ERB Flag to Select Register Banks

ERB flag settings for register bank selection:

1. When ERB = "0":

|     |         |                                                                                  |
|-----|---------|----------------------------------------------------------------------------------|
| SRB | 1       | ; Register bank 0 is selected (since ERB = "0", the SRB is configured to bank 0) |
| LD  | EA,#34H | ; Bank 0 EA ← #34H                                                               |
| LD  | HL,EA   | ; Bank 0 HL ← EA                                                                 |
| SRB | 2       | ; Register bank 0 is selected                                                    |
| LD  | YZ,EA   | ; Bank 0 YZ ← EA                                                                 |
| SRB | 3       | ; Register bank 0 is selected                                                    |
| LD  | WX,EA   | ; Bank 0 WX ← EA                                                                 |

2. When ERB = "1":

|     |         |                               |
|-----|---------|-------------------------------|
| SRB | 1       | ; Register bank 1 is selected |
| LD  | EA,#34H | ; Bank 1 EA ← #34H            |
| LD  | HL,EA   | ; Bank 1 HL ← Bank 1 EA       |
| SRB | 2       | ; Register bank 2 is selected |
| LD  | YZ,EA   | ; Bank 2 YZ ← BANK2 EA        |
| SRB | 3       | ; Register bank 3 is selected |
| LD  | WX,EA   | ; Bank 3 WX ← Bank 3 EA       |

## SKIP CONDITION FLAGS (SC2, SC1, SC0)

The skip condition flags SC2, SC1, and SC0 in the PSW indicate the current program skip conditions and are set and reset automatically during program execution. Skip condition flags can only be addressed by 8-bit read instructions. Direct manipulation of the SC2, SC1, and SC0 bits is not allowed.

## CARRY FLAG (C)

The carry flag is used to save the result of an overflow or borrow when executing arithmetic instructions involving a carry (ADC, SBC). The carry flag can also be used as a 1-bit accumulator for performing Boolean operations involving bit-addressed data memory.

If an overflow or borrow condition occurs when executing arithmetic instructions with carry (ADC, SBC), the carry flag is set to "1". Otherwise, its value is "0". When a system reset occurs, the current value of the carry flag is retained during power-down mode, but when normal operating mode resumes, its value is undefined.

The carry flag can be directly manipulated by predefined set of 1-bit read/write instructions, independent of other bits in the PSW. Only the ADC and SBC instructions, and the instructions listed in Table 2-7, affect the carry flag.

**Table 2-7. Valid Carry Flag Manipulation Instructions**

| Operation Type        | Instructions                    | Carry Flag Manipulation                                                                 |
|-----------------------|---------------------------------|-----------------------------------------------------------------------------------------|
| Direct manipulation   | SCF                             | Set carry flag to "1"                                                                   |
|                       | RCF                             | Clear carry flag to "0" (reset carry flag)                                              |
|                       | CCF                             | Invert carry flag value (complement carry flag)                                         |
|                       | BTST C                          | Test carry and skip if C = "1"                                                          |
| Bit transfer          | LDB (operand) <sup>(1)</sup> ,C | Load carry flag value to the specified bit                                              |
|                       | LDB C,(operand) <sup>(1)</sup>  | Load contents of the specified bit to carry flag                                        |
| Boolean manipulation  | BAND C,(operand) <sup>(1)</sup> | AND the specified bit with contents of carry flag and save the result to the carry flag |
|                       | BOR C,(operand) <sup>(1)</sup>  | OR the specified bit with contents of carry flag and save the result to the carry flag  |
|                       | BXOR C,(operand) <sup>(1)</sup> | XOR the specified bit with contents of carry flag and save the result to the carry flag |
| Interrupt routine     | INTn <sup>(2)</sup>             | Save carry flag to stack with other PSW bits                                            |
| Return from interrupt | IRET                            | Restore carry flag from stack with other PSW bits                                       |

### NOTES:

1. The operand has three bit addressing formats: mema.a, memb.@L, and @H + DA.b.
2. 'INTn' refers to the specific interrupt being executed and is not an instruction.

 **PROGRAMMING TIP — Using the Carry Flag as a 1-Bit Accumulator**

1. Set the carry flag to logic one:

```
SCF          ; C ← 1
LD EA,#0C3H   ; EA ← #0C3H
LD HL,#0AAH   ; HL ← #0AAH
ADC EA,HL    ; EA ← #0C3H + #0AAH + #1H, C ← 1
```

2. Logical-AND bit 3 of address 3FH with P3.3 and output the result to P2.0:

```
LD H,#3H      ; Set the upper four bits of the address to the H register
               ; value
LDB C,@H+0FH.3 ; C ← bit 3 of 3FH
BAND C,P3.3    ; C ← C AND P3.3
LDB P2.0,C     ; Output result from carry flag to P2.0
```

# 3 ADDRESSING MODES

## OVERVIEW

The enable memory bank flag, EMB, controls the two addressing modes for data memory. When the EMB flag is set to logic one, you can address the entire RAM area; when the EMB flag is cleared to logic zero, the addressable area in the RAM is restricted to specific locations.

The EMB flag works in connection with the select memory bank instruction, SMB n. You will recall that the SMB n instruction is used to select RAM bank 0, 1 or 15. The SMB setting is always contained in the upper four bits of a 12-bit RAM address. For this reason, both addressing modes (EMB = "0" and EMB = "1") apply specifically to the memory bank indicated by the SMB instruction, and any restrictions to the addressable area within banks 0, 1 or 15. Direct and indirect 1-bit, 4-bit, and 8-bit addressing methods can be used. Several RAM locations are addressable at all times, regardless of the current EMB flag setting.

Here are a few guidelines to keep in mind regarding data memory addressing:

- When you address peripheral hardware locations in bank 15, the mnemonic for the memory-mapped hardware component can be used as the operand in place of the actual address location.
- Always use an even-numbered RAM address as the operand in 8-bit direct and indirect addressing.
- With direct addressing, use the RAM address as the instruction operand; with indirect addressing, the instruction specifies a register which contains the operand's address.

| RAM Areas | Addressing Mode                         | DA DA.b |          | @HL @H+DA.b |          | @WX @WL              | mem.a.b | memb.@L |
|-----------|-----------------------------------------|---------|----------|-------------|----------|----------------------|---------|---------|
|           |                                         | EMB = 0 | EMB = 1  | EMB = 0     | EMB = 1  | X                    | X       | X       |
| 000H      | Working Registers                       |         |          |             |          |                      |         |         |
| 01FH      |                                         |         |          |             |          |                      |         |         |
| 020H      |                                         |         |          |             |          |                      |         |         |
| 07FH      |                                         |         |          |             |          |                      |         |         |
| 080H      | Bank 0 (General Registers and Stack)    |         | SMB = 0  |             | SMB = 0  |                      |         |         |
| 0FFH      |                                         |         |          |             |          |                      |         |         |
| 100H      | Bank 1 (General Registers)              |         | SMB = 1  |             | SMB = 1  |                      |         |         |
| 1E3H      |                                         |         |          |             |          |                      |         |         |
| 1E4H      | Bank 1 (Display Registers)              |         | SMB = 1  |             | SMB = 1  |                      |         |         |
| 1FFH      |                                         |         |          |             |          |                      |         |         |
| F80H      | Bank 15 (Peripheral Hardware Registers) |         | SMB = 15 |             | SMB = 15 | FB0H<br>FBFH<br>FC0H |         |         |
| FFFH      |                                         |         |          |             |          | FF0H                 |         |         |

**NOTES:**

1. 'X' means don't care.
2. Blank columns indicate RAM areas that are not addressable, given the addressing method and enable memory bank (EMB) flag setting shown in the column headers.

**Figure 3-1. RAM Address Structure**

## EMB AND ERB INITIALIZATION VALUES

The EMB and ERB flag bits are system reset set automatically by the values of the reset vector address and the interrupt vector address. When a system reset is generated internally, bit 7 of program memory address 0000H is written to the EMB flag, initializing it automatically. When a vectored interrupt is generated, bit 7 of the respective vector address table is written to the EMB. This automatically sets the EMB flag status for the interrupt service routine. When the interrupt is serviced, the EMB value is automatically saved to stack and then restored when the interrupt routine has completed.

At the beginning of a program, the initial EMB and ERB flag values for each vectored interrupt must be set by using VENTn instruction. The EMB and ERB can be set or reset by bit manipulation instructions (BITS, BITR) despite the current SMB setting.

### PROGRAMMING TIP — Initializing the EMB and ERB Flags

The following assembly instructions show how to initialize the EMB and ERB flag settings:

```

ORG      0000H          ; ROM address assignment
VENT0    1,0,RESET      ; EMB ← 1, ERB ← 0, branch RESET
VENT1    0,1,INTB       ; EMB ← 0, ERB ← 1, branch INTB
VENT2    0,1,INT0       ; EMB ← 0, ERB ← 1, branch INT0
VENT3    0,1,INT1       ; EMB ← 0, ERB ← 1, branch INT1
VENT4    0,1,INTS       ; EMB ← 0, ERB ← 1, branch INTS
VENT5    0,1,INTT0      ; EMB ← 0, ERB ← 1, branch INTT0
VENT6    0,1,INTCE      ; EMB ← 0, ERB ← 1, branch INTCE
VENT7    0,1,INTIF      ; EMB ← 0, ERB ← 1, branch INTIF
.
.
.
RESET   BITR      EMB

```

## ENABLE MEMORY BANK SETTINGS

### EMB = "1"

When the enable memory bank flag EMB is set to logic one, you can address the data memory bank specified by the select memory bank (SMB) value (0, 1 or 15) using 1-, 4-, or 8-bit instructions. You can use both direct and indirect addressing modes. The addressable RAM areas when EMB = "1" are as follows:

If SMB = 0, 000H-0FFH  
 If SMB = 1, 100H-1FFH  
 If SMB = 15, F80H-FFFH

### EMB = "0"

When the enable memory bank flag EMB is set to logic zero, the addressable area is defined independently of the SMB value, and is restricted to specific locations depending on whether a direct or indirect address mode is used.

If EMB = "0", the addressable area is restricted to locations 000H-07FH in bank 0 and to locations F80H-FFFH in bank 15 for direct addressing. For indirect addressing, only locations 000H-0FFH in bank 0 are addressable, regardless of SMB value.

To address the peripheral hardware register (bank 15) using indirect addressing, the EMB flag must first be set to "1" and the SMB value to "15". When a system reset occurs, the EMB flag is set to the value contained in bit 7 of ROM address 0000H.

### EMB-Independent Addressing

At any time, several areas of the data memory can be addressed independent of the current status of the EMB flag. These exceptions are described in Table 3-1.

**Table 3-1. RAM Addressing Not Affected by the EMB Value**

| Address                | Addressing Method                                                                               | Affected Hardware             | Program Examples                  |
|------------------------|-------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|
| 000H-0FFH              | 4-bit indirect addressing using WX and WL register pairs;<br>8-bit indirect addressing using SP | Not applicable                | LD A,@WX<br><br>PUSH EA<br>POP EA |
| FB0H-FBFH<br>FF0H-FFFH | 1-bit direct addressing                                                                         | PSW, SCMOD,<br>IEx, IRQx, I/O | BITS EMB<br>BITR IE4              |
| FC0H-FFFH              | 1-bit indirect addressing using the L register                                                  | BSC, I/O                      | BTST 0FC3H.@L<br>BAND C,P3.@L     |

## SELECT BANK REGISTER (SB)

The select bank register (SB) is used to assign the memory bank and register bank. The 8-bit SB register consists of the 4-bit select register bank register (SRB) and the 4-bit select memory bank register (SMB), as shown in Figure 3-2.

During interrupts and subroutine calls, SB register contents can be saved to stack in 8-bit units by the PUSH SB instruction. You later restore the value to the SB using the POP SB instruction.

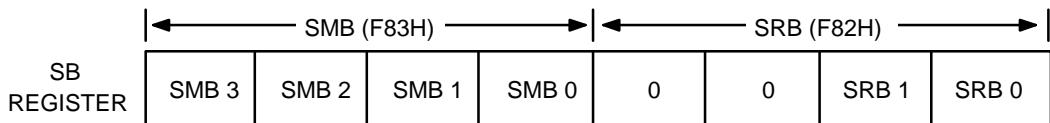



Figure 3-2. SMB and SRB Values in the SB Register

### Select Register Bank (SRB) Instruction

The select register bank (SRB) value specifies which register bank is to be used as a working register bank. The SRB value is set by the 'SRB n' instruction, where  $n = 0, 1, 2$ , and  $3$ .

One of the four register banks is selected by the combination of ERB flag status and the SRB value that is set using the 'SRB n' instruction. The current SRB value is retained until another register is requested by program software. PUSH SB and POP SB instructions are used to save and restore the contents of SRB during interrupts and subroutine calls. A system reset clears the 4-bit SRB value to logic zero.

### Select Memory Bank (SMB) Instruction

To select one of the four available data memory banks, you must execute an SMB n instruction specifying the number of the memory bank you want (0, 1 or 15). For example, the instruction 'SMB 1' selects bank 1 and 'SMB 15' selects bank 15. (And remember to enable the selected memory bank by making the appropriate EMB flag setting.)

The upper four bits of the 12-bit data memory address are stored in the SMB register. If the SMB value is not specified by software (or if a system reset does not occur) the current value is retained. A system reset clears the 4-bit SMB value to logic zero.

The PUSH SB and POP SB instructions save and restore the contents of the SMB register to and from the stack area during interrupts and subroutine calls.

## DIRECT AND INDIRECT ADDRESSING

1-bit, 4-bit, and 8-bit data stored in data memory locations can be addressed directly using a specific register or bit address as the instruction operand.

Indirect addressing specifies a memory location that contains the required direct address. The KS57 instruction set supports 1-bit, 4-bit, and 8-bit indirect addressing. For 8-bit indirect addressing, an even-numbered RAM address must always be used as the instruction operand.

### 1-BIT ADDRESSING

Table 3-2. 1-Bit Direct and Indirect RAM Addressing

| Operand Notation | Addressing Mode Description                                                                                                      | EMB Flag Setting | Addressable Area       | Memory Bank    | Hardware I/O Mapping                         |
|------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|----------------|----------------------------------------------|
| DA.b             | Direct: bit is indicated by the RAM address (DA), memory bank selection, and specified bit number (b).                           | 0                | 000H-07FH              | Bank 0         | —                                            |
|                  |                                                                                                                                  |                  | F80H-FFFH              | Bank 15        | All 1-bit addressable peripherals (SMB = 15) |
|                  |                                                                                                                                  | 1                | 000H-FFFH              | SMB = 0, 1, 15 |                                              |
| mema.b           | Direct: bit is indicated by addressable area (mema) and bit number (b).                                                          | x                | FB0H-FBFH<br>FF0H-FFFH | Bank 15        | IS0, IS1, EMB,<br>ERB, IEx,<br>IRQx, Pn.n    |
| memb.@L          | Indirect: lower two bits of register L as indicated by the upper 6 bits of RAM area (memb) and the upper two bits of register L. | x                | FC0H-FFFH              | Bank 15        | BSCn.x<br>Pn.n                               |
| @H + DA.b        | Indirect: bit indicated by the lower four bits of the address (DA), memory bank selection, and the H register identifier.        | 0                | 000H-0FFH              | Bank 0         | —                                            |
|                  |                                                                                                                                  | 1                | 000H-FFFH              | SMB = 0, 1, 15 | All 1-bit addressable peripherals (SMB = 15) |

NOTE: 'x' means don't care.

## PROGRAMMING TIP — 1-Bit Addressing Modes

### 1-Bit Direct Addressing

1. If EMB = "0":

|       |       |        |                                   |
|-------|-------|--------|-----------------------------------|
| AFLAG | EQU   | 34H.3  |                                   |
| BFLAG | EQU   | 85H.3  |                                   |
| CFLAG | EQU   | 0BAH.0 |                                   |
| SMB   |       | 0      |                                   |
| BITS  | AFLAG |        | ; 34H.3 ← 1                       |
| BITS  | BFLAG |        | ; 85H.3 ← 1                       |
| BTST  | CFLAG |        | ; If FBAH.0 = 1, skip             |
| BITS  | BFLAG |        | ; Else if, FBAH.0 = 0, F85H.3 ← 1 |
| BITS  | P3.0  |        | ; FF3H.0 (P3.0) ← 1               |

2. If EMB = "1":

|       |       |        |                                  |
|-------|-------|--------|----------------------------------|
| AFLAG | EQU   | 34H.3  |                                  |
| BFLAG | EQU   | 85H.3  |                                  |
| CFLAG | EQU   | 0BAH.0 |                                  |
| SMB   |       | 0      |                                  |
| BITS  | AFLAG |        | ; 34H.3 ← 1                      |
| BITS  | BFLAG |        | ; 85H.3 ← 1                      |
| BTST  | CFLAG |        | ; If 0BAH.0 = 1, skip            |
| BITS  | BFLAG |        | ; Else if 0BAH.0 = 0, 085H.3 ← 1 |
| BITS  | P3.0  |        | ; FF3H.0 (P3.0) ← 1              |

### 1-Bit Indirect Addressing

1. If EMB = "0":

|       |          |        |                                      |
|-------|----------|--------|--------------------------------------|
| AFLAG | EQU      | 34H.3  |                                      |
| BFLAG | EQU      | 85H.3  |                                      |
| CFLAG | EQU      | 0BAH.0 |                                      |
| SMB   |          | 0      |                                      |
| LD    | H,#0BH   |        | ; H ← #0BH                           |
| BTSTZ | @H+CFLAG |        | ; If 0BAH.0 = 1, 0BAH.0 ← 0 and skip |
| BITS  | CFLAG    |        | ; Else if 0BAH.0 = 0, FBAH.0 ← 1     |

2. If EMB = "1":

|       |          |        |                                      |
|-------|----------|--------|--------------------------------------|
| AFLAG | EQU      | 34H.3  |                                      |
| BFLAG | EQU      | 85H.3  |                                      |
| CFLAG | EQU      | 0BAH.0 |                                      |
| SMB   |          | 0      |                                      |
| LD    | H,#0BH   |        | ; H ← #0BH                           |
| BTSTZ | @H+CFLAG |        | ; If 0BAH.0 = 1, 0BAH.0 ← 0 and skip |
| BITS  | CFLAG    |        | ; Else if 0BAH.0 = 0, 0BAH.0 ← 1     |

## 4-BIT ADDRESSING

Table 3-3. 4-Bit Direct and Indirect RAM Addressing

| Operand Notation | Addressing Mode Description                                                           | EMB Flag Setting | Addressable Area | Memory Bank    | Hardware I/O Mapping                         |
|------------------|---------------------------------------------------------------------------------------|------------------|------------------|----------------|----------------------------------------------|
| DA               | Direct: 4-bit address indicated by the RAM address (DA) and the memory bank selection | 0                | 000H-07FH        | Bank 0         | —                                            |
|                  |                                                                                       |                  | F80H-FFFH        | Bank 15        | All 4-bit addressable peripherals (SMB = 15) |
|                  |                                                                                       | 1                | 000H-FFFH        | SMB = 0, 1, 15 |                                              |
| @HL              | Indirect: 4-bit address indicated by the memory bank selection and register HL        | 0                | 000H-0FFH        | Bank 0         | —                                            |
|                  |                                                                                       | 1                | 000H-FFFH        | SMB = 0, 1, 15 | All 4-bit addressable peripherals (SMB = 15) |
| @WX              | Indirect: 4-bit address indicated by register WX                                      | x                | 000H-0FFH        | Bank 0         | —                                            |
| @WL              | Indirect: 4-bit address indicated by register WL                                      | x                | 000H-0FFH        | Bank 0         |                                              |

NOTE: 'x' means don't care.

### PROGRAMMING TIP — 4-Bit Addressing Modes

#### 4-Bit Direct Addressing

1. If EMB = "0":

|       |         |     |                                              |
|-------|---------|-----|----------------------------------------------|
| ADATA | EQU     | 46H |                                              |
| BDATA | EQU     | 8EH |                                              |
| SMB   | 15      |     | ; Non-essential instruction, since EMB = "0" |
| LD    | A,P3    |     | ; A ← (P3)                                   |
| SMB   | 0       |     | ; Non-essential instruction, since EMB = "0" |
| LD    | ADATA,A |     | ; (046H) ← A                                 |
| LD    | BDATA,A |     | ; (F8EH (LCON)) ← A                          |

2. If EMB = "1":

|       |         |     |              |
|-------|---------|-----|--------------|
| ADATA | EQU     | 46H |              |
| BDATA | EQU     | 8EH |              |
| SMB   | 15      |     |              |
| LD    | A,P3    |     | ; A ← (P3)   |
| SMB   | 0       |     |              |
| LD    | ADATA,A |     | ; (046H) ← A |
| LD    | BDATA,A |     | ; (08EH) ← A |

 **PROGRAMMING TIP — 4-Bit Addressing Modes (Continued)**
**4-Bit Indirect Addressing (Example 1)**

1. If EMB = "0", compare bank 0 locations 040H-046H with bank 0 locations 060H-066H:

```

ADATA EQU 46H
BDATA EQU 66H
SMB 1 ; Non-essential instruction, since EMB = "0"
LD  HL,#BDATA
LD  WX,#ADATA
COMP LD  A,@WL ; A ← bank 0 (040H-046H)
CPSE A,@HL ; If bank 0 (060H-066H) = A, skip
SRET
DECS L
JR  COMP
RET

```

2. If EMB = "1", compare bank 0 locations 040H-046H to bank 1 locations 160H-166H:

```

ADATA EQU 46H
BDATA EQU 66H
SMB 1
LD  HL,#BDATA
LD  WX,#ADATA
COMP LD  A,@WL ; A ← bank 0 (040H-046H)
CPSE A,@HL ; If bank 1 (160H-166H) = A, skip
SRET
DECS L
JR  COMP
RET

```

**4-Bit Indirect Addressing (Example 2)**

1. If EMB = "0", compare bank 0 locations 040H-046H with bank 0 locations 060H-066H:

```

ADATA EQU 46H
BDATA EQU 66H
SMB 1 ; Non-essential instruction, since EMB = "0"
LD  HL,#BDATA
LD  WX,#ADATA
TRANS LD  A,@WL ; A ← bank 0 (040H-046H)
XCHD A,@HL ; Bank 0 (060H-066H) ↔ A
JR  TRANS

```

2. If EMB = "1", exchange bank 0 locations 040H-046H to bank 1 locations 160H-166H:

```

ADATA EQU 46H
BDATA EQU 66H
SMB 1
LD  HL,#BDATA
LD  WX,#ADATA
TRANS LD  A,@WL ; A ← bank 0 (040H-046H)
XCHD A,@HL ; Bank 1 (160H-166H) ↔ A
JR  TRANS

```

## 8-BIT ADDRESSING

Table 3-4. 8-Bit Direct and Indirect RAM Addressing

| Instruction Notation | Addressing Mode Description                                                                                                             | EMB Flag Setting | Addressable Area | Memory Bank      | Hardware I/O Mapping                             |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|--------------------------------------------------|
| DA                   | Direct: 8-bit address indicated by the RAM address ( $DA = \text{even number}$ ) and memory bank selection                              | 0                | 000H-07FH        | Bank 0           | –                                                |
|                      |                                                                                                                                         |                  | F80H-FFFH        | Bank 15          | All 8-bit addressable peripherals ( $SMB = 15$ ) |
|                      |                                                                                                                                         | 1                | 000H-FFFH        | $SMB = 0, 1, 15$ |                                                  |
| @HL                  | Indirect: the 8-bit address 4-bit indicated by the memory bank selection and register HL; (the L register value must be an even number) | 0                | 000H-0FFH        | Bank 0           | –                                                |
|                      |                                                                                                                                         | 1                | 000H-FFFH        | $SMB = 0, 1, 15$ | All 8-bit addressable peripherals ( $SMB = 15$ ) |

 **PROGRAMMING TIP — 8-Bit Addressing Modes**
**8-Bit Direct Addressing**

1. If EMB = "0":

|       |     |          |                                               |
|-------|-----|----------|-----------------------------------------------|
| ADATA | EQU | 46H      |                                               |
| BDATA | EQU | 8EH      |                                               |
|       | SMB | 15       | ; Non-essential instruction because EMB = "0" |
|       | LD  | EA, P4   | ; E ← (P5), A ← (P4)                          |
|       | SMB | 0        |                                               |
|       | LD  | ADATA,EA | ; (046H) ← A, (047H) ← E                      |
|       | LD  | BDATA,EA | ; (F8EH) ← A, (F8FH) ← E                      |

2. If EMB = "1":

|       |     |          |                          |
|-------|-----|----------|--------------------------|
| ADATA | EQU | 46H      |                          |
| BDATA | EQU | 8EH      |                          |
|       | SMB | 15       |                          |
|       | LD  | EA, P4   | ; E ← (P5), A ← (P4)     |
|       | SMB | 0        |                          |
|       | LD  | ADATA,EA | ; (046H) ← A, (047H) ← E |
|       | LD  | BDATA,EA | ; (08EH) ← A, (08FH) ← E |

**8-Bit Indirect Addressing**

1. If EMB = "0":

|       |     |           |                                              |
|-------|-----|-----------|----------------------------------------------|
| ADATA | EQU | 46H       |                                              |
|       | SMB | 1         | ; Non-essential instruction, since EMB = "0" |
|       | LD  | HL,#ADATA |                                              |
|       | LD  | EA,@HL    | ; A ← (046H), E ← (047H)                     |

2. If EMB = "1":

|       |     |           |                          |
|-------|-----|-----------|--------------------------|
| ADATA | EQU | 46H       |                          |
|       | SMB | 1         |                          |
|       | LD  | HL,#ADATA |                          |
|       | LD  | EA,@HL    | ; A ← (146H), E ← (147H) |

# 4 MEMORY MAP

## OVERVIEW

To support program control of peripheral hardware, I/O addresses for peripherals are memory-mapped to bank 15 of the RAM. Memory mapping lets you use a mnemonic as the operand of an instruction in place of the specific memory location.

Access to bank 15 is controlled by the select memory bank (SMB) instruction and by the enable memory bank flag (EMB) setting. If the EMB flag is "0", bank 15 can be addressed using direct addressing, regardless of the current SMB value. 1-bit direct and indirect addressing can be used for specific locations in bank 15, regardless of the current EMB value.

## I/O MAP FOR HARDWARE REGISTERS

Table 4-1 contains detailed information about I/O mapping for peripheral hardware in bank 15 (register locations F80H-FFFH). Use the I/O map as a quick-reference source when writing application programs. The I/O map gives you the following information:

- Register address
- Register name (mnemonic for program addressing)
- Bit values (both addressable and non-addressable)
- Read-only, write-only, or read and write addressability
- 1-bit, 4-bit, or 8-bit data manipulation characteristics

Table 4-1. I/O Map for Memory Bank 15

| Memory Bank 15                          |          |       |       |       |       |       | Addressing Mode |       |       |
|-----------------------------------------|----------|-------|-------|-------|-------|-------|-----------------|-------|-------|
| Address                                 | Register | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R/W   | 1-Bit           | 4-Bit | 8-Bit |
| F80H                                    | SP       | .3    | .2    | .1    | .0    | R/W   | No              | No    | Yes   |
| F81H                                    |          | .7    | .6    | .5    | .4    |       |                 |       |       |
| The address, F82H-F84H are not mapped.  |          |       |       |       |       |       |                 |       |       |
| F85H                                    | BMOD     | .3    | .2    | .1    | "0"   | W     | .3              | Yes   | No    |
| F86H                                    | BCNT     | .3    | .2    | .1    | .0    | R     | No              | No    | Yes   |
| F87H                                    |          | .7    | .6    | .5    | .4    |       |                 |       |       |
| F88H                                    | WMOD     | .3    | .2    | .1    | .0    | W (1) | .3 (R)          | No    | Yes   |
| F89H                                    |          | .7    | "0"   | .5    | .4    |       |                 |       |       |
| F8AH                                    | LPOT     | .3    | .2    | .1    | .0    | R/W   | .3              | Yes   | No    |
| The address, F8BH, is not mapped.       |          |       |       |       |       |       |                 |       |       |
| F8CH                                    | LMOD     | .3    | .2    | .1    | .0    | W     | .3              | No    | Yes   |
| F8DH                                    |          | .7    | "0"   | .5    | .4    |       |                 |       |       |
| F8EH                                    | LCON     | "0"   | "0"   | .1    | .0    | R/W   | Yes             | Yes   | No    |
| The address, F8FH, is not mapped.       |          |       |       |       |       |       |                 |       |       |
| F90H                                    | TMOD0    | .3    | .2    | "0"   | "0"   | W     | .3              | No    | Yes   |
| F91H                                    |          | "0"   | .6    | .5    | .4    |       |                 |       |       |
| F92H                                    | TOE      | "0"   | TOE0  | BOE   | "0"   | R/W   | Yes             | Yes   | No    |
| The address, F93H, is not mapped.       |          |       |       |       |       |       |                 |       |       |
| F94H                                    | TCNT0    | .3    | .2    | .1    | .0    | R     | No              | No    | Yes   |
| F95H                                    |          | .7    | .6    | .5    | .4    |       |                 |       |       |
| F96H                                    | TREF0    | .3    | .2    | .1    | .0    | W     | No              | No    | Yes   |
| F97H                                    |          | .7    | .6    | .5    | .4    |       |                 |       |       |
| F98H                                    | WDMOD    | .3    | .2    | .1    | .0    | W     | No              | No    | Yes   |
| F99H                                    |          | .7    | .6    | .5    | .4    |       |                 |       |       |
| F9AH                                    | WDFLAG   | WDTCF | "0"   | "0"   | "0"   | W     | Yes             | Yes   | No    |
| F9BH                                    | IFMOD    | .3    | .2    | .1    | .0    | R/W   | Yes             | Yes   | No    |
| F9CH                                    | IFCNT0   | .3    | .2    | .1    | .0    | R     | No              | No    | Yes   |
| F9DH                                    |          | .7    | .6    | .5    | .4    |       |                 |       |       |
| F9EH                                    | IFCNT1   | .3    | .2    | .1    | .0    | R     | No              | No    | Yes   |
| F9FH                                    |          | .7    | .6    | .5    | .4    |       |                 |       |       |
| The address, FA0H-FADH, are not mapped. |          |       |       |       |       |       |                 |       |       |
| FAEH                                    | APCON    | .3    | .2    | .1    | .0    | W     | No              | Yes   | No    |
| The address, FAFH, is not mapped.       |          |       |       |       |       |       |                 |       |       |

Table 4-1. I/O Map for Memory Bank 15 (Continued)

| Memory Bank 15                    |          |         |         |         |         |     | Addressing Mode |       |       |
|-----------------------------------|----------|---------|---------|---------|---------|-----|-----------------|-------|-------|
| Address                           | Register | Bit 3   | Bit 2   | Bit 1   | Bit 0   | R/W | 1-Bit           | 4-Bit | 8-Bit |
| FB0H                              | PSW      | IS1     | IS0     | EMB     | ERB     | R/W | Yes             | Yes   | Yes   |
| FB1H                              |          | C (2)   | SC2     | SC1     | SC0     | R   | No              | No    |       |
| FB2H                              | IPR      | IME     | .2      | .1      | .0      | W   | IME             | Yes   | No    |
| FB3H                              | PCON     | .3      | .2      | .1      | .0      | W   | No              | Yes   | No    |
| FB4H                              | IMOD0    | .3      | "0"     | .1      | .0      | W   | No              | Yes   | No    |
| FB5H                              | IMOD1    | "0"     | "0"     | "0"     | .0      | W   | No              | Yes   | No    |
| FB6H                              | IMOD2    | "0"     | "0"     | .1      | .0      | W   | No              | Yes   | No    |
| FB7H                              | SCMOD    | .3      | .2      | "0"     | .1      | W   | Yes             | No    | No    |
| FB8H                              | INT (8)  | IE4     | IRQ4    | IEB     | IRQB    | R/W | Yes             | Yes   | No    |
| The Address, FB9H, is not mapped. |          |         |         |         |         |     |                 |       |       |
| FBAH                              | INT (A)  | "0"     | "0"     | IEW     | IRQW    | R/W | Yes             | Yes   | No    |
| FBBH                              | INT (B)  | IEIF    | IRQIF   | IECE    | IRQCE   |     |                 |       |       |
| FBCH                              | INT (C)  | "0"     | "0"     | IET0    | IRQT0   |     |                 |       |       |
| FBDH                              | INT (D)  | "0"     | "0"     | IES     | IRQS    |     |                 |       |       |
| FBEH                              | INT (E)  | IE1     | IRQ1    | IE0     | IRQ0    |     |                 |       |       |
| FBFH                              | INT (F)  | "0"     | "0"     | IE2     | IRQ2    |     |                 |       |       |
| FC0H                              | BSC0     | .3      | .2      | .1      | .0      | R/W | Yes             | Yes   | Yes   |
| FC1H                              | BSC1     | .7 (.3) | .6 (.2) | .5 (.1) | .4 (.0) |     |                 |       |       |
| FC2H                              | BSC2     | .3      | .2      | .1      | .0      |     |                 |       | Yes   |
| FC3H                              | BSC3     | .7 (.3) | .6 (.2) | .5 (.1) | .4 (.0) |     |                 |       |       |
| FC4H                              | PLLD0    | .3      | .2      | .1      | .0      | W   | No              | Yes   | Yes   |
| FC5H                              | PLLD1    | .7 (.3) | .6 (.2) | .5 (.1) | .4 (.0) |     |                 |       |       |
| FC6H                              | PLLD2    | .3      | .2      | .1      | .0      |     |                 |       |       |
| FC7H                              | PLLD3    | .7 (.3) | .6 (.2) | .5 (.1) | .4 (.0) | W   | No              | Yes   | Yes   |
| FC8H                              | PLMOD    | .3      | .2      | .1      | .0      |     |                 |       |       |
| FC9H                              | PLLREF   | .3      | .2      | .1      | .0      |     |                 |       |       |

Table 4-1. I/O Map for Memory Bank 15 (Continued)

| Memory Bank 15                          |           |        |        |        |        |     | Addressing Mode |       |       |
|-----------------------------------------|-----------|--------|--------|--------|--------|-----|-----------------|-------|-------|
| Address                                 | Register  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | R/W | 1-Bit           | 4-Bit | 8-Bit |
| FCAH                                    | PLLREG    | ULFG   | CEFG   | IFCFG  | "0"    | R   | Yes             | Yes   | No    |
| The Address, FCBH-FCFH, are not mapped. |           |        |        |        |        |     |                 |       |       |
| FD0H                                    | CLMOD     | .3     | "0"    | .1     | .0     | W   | No              | Yes   | No    |
| FD1H                                    | POFR      | "0"    | "0"    | "0"    | POF    | R/W | .0              | Yes   | No    |
| The Address, FD2H-FD5H, are not mapped. |           |        |        |        |        |     |                 |       |       |
| FD6H                                    | PNE       | PNE10  | PNE9   | PNE8   | PNE7   | W   | No              | No    | Yes   |
| FD7H                                    |           | "0"    | PNE13  | PNE12  | PNE11  |     |                 |       |       |
| FD8H                                    | ADATA     | .3     | .2     | .1     | .0     | R   | No              | No    | Yes   |
| FD9H                                    |           | .7     | .6     | .5     | .4     |     |                 |       |       |
| FDAH                                    | ADMOD     | "0"    | "0"    | .1     | .0     | R/W | Yes             | Yes   | No    |
| FDBH                                    | AFLAG (3) | ADSTR  | EOC    | "0"    | ADCLK  | R/W | Yes             | Yes   | No    |
| FDCH                                    | PUMOD     | PUR3   | PUR2   | PUR1   | PUR0   | W   | No              | No    | Yes   |
| FDDH                                    |           | "0"    | PUR6   | PUR5   | PUR4   |     |                 |       |       |
| The Address, FDEH-FDFH, are not mapped. |           |        |        |        |        |     |                 |       |       |
| FE0H                                    | SMOD      | .3     | .2     | .1     | .0     | W   | .3              | No    | Yes   |
| FE1H                                    |           | .7     | .6     | .5     | "0"    |     |                 |       |       |
| The Address, FE2H-FE3H, are not mapped. |           |        |        |        |        |     |                 |       |       |
| FE4H                                    | SBUF      | .3     | .2     | .1     | .0     | R/W | No              | No    | Yes   |
| FE5H                                    |           | .7     | .6     | .5     | .4     |     |                 |       |       |
| FE6H                                    | PMG0      | PUM0.3 | PUM0.2 | PUM0.1 | PUM0.0 | W   | No              | No    | Yes   |
| FE7H                                    |           | "0"    | "0"    | "0"    | "0"    |     |                 |       |       |
| FE8H                                    | PMG1      | PM2.3  | PM2.2  | PM2.1  | PM2.0  |     |                 |       |       |
| FE9H                                    |           | PM3.3  | PM3.2  | PM3.1  | PM3.0  |     |                 |       |       |
| FEAH                                    | PMG2      | PM4.3  | PM4.2  | PM4.1  | PM4.0  |     |                 |       |       |
| FEBH                                    |           | PM5.3  | PM5.2  | PM5.1  | PM5.0  |     |                 |       |       |
| FECH                                    | PMG3      | PM6.3  | PM6.2  | PM6.1  | PM6.0  |     |                 |       |       |
| FEDH                                    |           | "0"    | "0"    | "0"    | "0"    |     |                 |       |       |
| The Address, FEEH-FEFH, are not mapped. |           |        |        |        |        |     |                 |       |       |

Table 4-1. I/O Map for Memory Bank 15 (Continued)

| Memory Bank 15                          |          |       |       |       |       |     | Addressing Mode |       |       |
|-----------------------------------------|----------|-------|-------|-------|-------|-----|-----------------|-------|-------|
| Address                                 | Register | Bit 3 | Bit 2 | Bit 1 | Bit 0 | R/W | 1-Bit           | 4-Bit | 8-Bit |
| FF0H                                    | Port 0   | .3    | .2    | .1    | .0    | R/W | Yes             | Yes   | No    |
| FF1H                                    | Port 1   | .3    | .2    | .1    | .0    | R   |                 |       |       |
| FF2H                                    | Port 2   | .3    | .2    | .1    | .0    | R/W | Yes             | Yes   | Yes   |
| FF3H                                    | Port 3   | .3    | .2    | .1    | .0    | R/W |                 |       |       |
| FF4H                                    | Port 4   | .3    | .2    | .1    | .0    | R/W | Yes             | Yes   | Yes   |
| FF5H                                    | Port 5   | .3    | .2    | .1    | .0    | R/W |                 |       |       |
| FF6H                                    | Port 6   | .3    | .2    | .1    | .0    | R/W | Yes             | Yes   | No    |
| FF7H                                    | Port 7   | .3    | .2    | .1    | .0    | W   |                 |       |       |
| FF8H                                    | Port 8   | .3    | .2    | .1    | .0    | W   |                 |       |       |
| FF9H                                    | Port 9   | .3    | .2    | .1    | .0    | W   |                 |       |       |
| FFAH                                    | Port 10  | .3    | .2    | .1    | .0    | W   |                 |       |       |
| FFBH                                    | Port 11  | .3    | .2    | .1    | .0    | W   | Yes             | Yes   | No    |
| FFCH                                    | Port 12  | .3    | .2    | .1    | .0    | W   |                 |       |       |
| FFDH                                    | Port 13  | .3    | .2    | .1    | .0    | W   |                 |       |       |
| The Address, FFEH-FFFH, are not mapped. |          |       |       |       |       |     |                 |       |       |

**NOTES:**

1. Bit 3 in the WMOD register is read only.
2. The carry flag can be read or written by specific bit manipulation instructions only.
3. The ADSTR bit of the AFLAG register is 1-or 4-bit write only, but the EOC bit is 1-or 4-bit read only.

## REGISTER DESCRIPTIONS

In this section, register descriptions are presented in a consistent format to familiarize you with the memory-mapped I/O locations in bank 15 of the RAM. Figure 4-1 describes features of the register description format. Register descriptions are arranged in alphabetical order. Programmers can use this section as a quick-reference source when writing application programs.

Counter registers and reference registers, as well as the stack pointer and port I/O latches, are not included in these descriptions. More detailed information about how these registers are used is included in Part II of this manual, "Hardware Descriptions," in the context of the corresponding peripheral hardware module descriptions.

| Register and bit IDs used for bit addressing                                     | Name of individual bit or related bit                    | Associated hardware module             | Register location in RAM bank 15 |
|----------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|----------------------------------|
| Register ID                                                                      | Register name                                            | Associated hardware module             | Register location in RAM bank 15 |
|                                                                                  | <b>CLMOD - Clock Output Control Register</b>             | CPU                                    | FD0H                             |
| <b>Bit Identifier</b>                                                            | 3 .3 2 .2 1 .1 0 .0                                      |                                        |                                  |
| <b>RESET Value</b>                                                               | 0 0 0 0                                                  |                                        |                                  |
| <b>Read/Write</b>                                                                | W W W W                                                  |                                        |                                  |
| <b>Bit Addressing</b>                                                            | 4 4 4 4                                                  |                                        |                                  |
| <b>CLMOD.3</b>                                                                   | <b>Enable/Disable Clock Output Control Bit</b>           |                                        |                                  |
|                                                                                  | 0 Disable clock output                                   |                                        |                                  |
|                                                                                  | 1 Enable clock output                                    |                                        |                                  |
| <b>CLMOD.2</b>                                                                   | <b>Bit 2</b>                                             |                                        |                                  |
|                                                                                  | 0 Always logic zero                                      |                                        |                                  |
| <b>CLMOD.1-0</b>                                                                 | <b>Clock Source and Frequency Selection Control Bits</b> |                                        |                                  |
|                                                                                  | 0 0 Select CPU clock source                              |                                        |                                  |
|                                                                                  | 0 1 Select system clock fxx/8 (524kHz at 4.19 MHz)       |                                        |                                  |
|                                                                                  | 1 0 Select system clock fxx/16 (262kHz at 4.19 MHz)      |                                        |                                  |
|                                                                                  | 1 1 Select system clock fxx/64 (65.5kHz at 4.19 MHz)     |                                        |                                  |
| <b>R</b> = Read-only<br><b>W</b> = Write-only<br><b>R/W</b> = Read/write         | Description of the effect of specific bit settings       | Bit identifier used for bit addressing |                                  |
| Type of addressing that must be used to address the bit (1-bit, 4-bit, or 8-bit) | Bit value immediately following a RESET                  | Bit number in MSB to LSB order         |                                  |

Figure 4-1. Register Description Format

**ADMOD—ADC Mode Register**

FDAH

| Bit                   | 3         | 2         | 1         | 0         |
|-----------------------|-----------|-----------|-----------|-----------|
| <b>Identifier</b>     | <b>.3</b> | <b>.2</b> | <b>.1</b> | <b>.0</b> |
| <b>RESET Value</b>    | 0         | 0         | 0         | 0         |
| <b>Read/Write</b>     | —         | —         | R/W       | R/W       |
| <b>Bit Addressing</b> | —         | —         | 1/4       | 1/4       |

.3-2

**Bits 3-2**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

.1-0

**ADC Analog Input Pin Selection Bits**

|   |   |                                     |
|---|---|-------------------------------------|
| 0 | 0 | Select ADC0 (P5.0) as input channel |
| 0 | 1 | Select ADC1 (P5.1) as input channel |
| 1 | 0 | Select ADC2 (P5.2) as input channel |
| 1 | 1 | Select ADC3 (P5.3) as input channel |

**AFLAG—ADC Flag Register**

FDBH

| Bit            | 3     | 2   | 1  | 0     |
|----------------|-------|-----|----|-------|
| Identifier     | ADSTR | EOC | .1 | ADCLK |
| RESET Value    | 0     | 0   | 0  | 0     |
| Read/Write     | W     | R   | —  | W     |
| Bit Addressing | 1/4   | 1/4 | —  | 1/4   |

ADSTR

**ADC Conversion Start Control Flag**

|   |                                                                                                                    |
|---|--------------------------------------------------------------------------------------------------------------------|
| 1 | Enable ADC (when the ADSTR bit is set to “1”, the ADC starts operating and the ADSTR bit is cleared automatically) |
|---|--------------------------------------------------------------------------------------------------------------------|

EOC

**End-of-Conversion Bit (Read-only)**

|   |                                         |
|---|-----------------------------------------|
| 0 | A/D conversion operation is in progress |
| 1 | A/D conversion operation is complete    |

.1

**Bit 1**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

ADCLK

**ADC Clock Source Selection**

|   |                          |
|---|--------------------------|
| 0 | Conversion clock = fxx/2 |
| 1 | Conversion clock = fxx/4 |

**NOTE:** 'fxx' stands for the system clock .

**APCON — ADC and Port Control Register**

FAEH

| Bit            | 3  | 2  | 1  | 0  |
|----------------|----|----|----|----|
| Identifier     | .3 | .2 | .1 | .0 |
| RESET Value    | 0  | 0  | 0  | 0  |
| Read/Write     | W  | W  | W  | W  |
| Bit Addressing | 4  | 4  | 4  | 4  |

**.3 Pin (P5.3) input Selection Bit (ADC input or Normal Port Input)**

|   |                                                        |
|---|--------------------------------------------------------|
| 0 | Connect to a normal input block (digital signal input) |
| 1 | Connect to a ADC block (analog signal input)           |

**.2 Pin (P5.2) input Selection Bit (ADC input or Normal Port Input)**

|   |                                                        |
|---|--------------------------------------------------------|
| 0 | Connect to a normal input block (digital signal input) |
| 1 | Connect to a ADC block (analog signal input)           |

**.1 Pin (P5.1) input Selection Bit (ADC input or Normal Port Input)**

|   |                                                        |
|---|--------------------------------------------------------|
| 0 | Connect to a normal input block (digital signal input) |
| 1 | Connect to a ADC block (analog signal input)           |

**.0 Pin (P5.0) input Selection Bit (ADC input or Normal Port Input)**

|   |                                                        |
|---|--------------------------------------------------------|
| 0 | Connect to a normal input block (digital signal input) |
| 1 | Connect to a ADC block (analog signal input)           |

**NOTE:** If the specific ports were set as a normal input mode, don't connect an analog signals.

**BMOD**—Basic Timer Mode Register

F85H

| Bit                   | 3         | 2         | 1         | 0         |
|-----------------------|-----------|-----------|-----------|-----------|
| <b>Identifier</b>     | <b>.3</b> | <b>.2</b> | <b>.1</b> | <b>.0</b> |
| <b>RESET Value</b>    | 0         | 0         | 0         | 0         |
| <b>Read/Write</b>     | W         | W         | W         | —         |
| <b>Bit Addressing</b> | 1/4       | 4         | 4         | —         |

**.3****Basic Timer Restart Bit**

|   |                                                                          |
|---|--------------------------------------------------------------------------|
| 1 | Restart basic timer, then clear IRQB flag, BCNT and BMOD.3 to logic zero |
|---|--------------------------------------------------------------------------|

**.2-1****Input Clock Frequency and Signal Stabilization Interval Control Bits**

|   |   |                                                          |                                                             |
|---|---|----------------------------------------------------------|-------------------------------------------------------------|
| 0 | 0 | Input clock frequency:<br>Signal stabilization interval: | $f_{xx} / 2^{12}$ (1.098 kHz)<br>$2^{20} / f_{xx}$ (233 ms) |
| 0 | 1 | Input clock frequency:<br>Signal stabilization interval: | $f_{xx} / 2^9$ (8.789 kHz)<br>$2^{17} / f_{xx}$ (29.1 ms)   |
| 1 | 0 | Input clock frequency:<br>Signal stabilization interval: | $f_{xx} / 2^7$ (35.16 kHz)<br>$2^{15} / f_{xx}$ (7.28 ms)   |
| 1 | 1 | Input clock frequency:<br>Signal stabilization interval: | $f_{xx} / 2^5$ (140.6 kHz)<br>$2^{13} / f_{xx}$ (1.82 ms)   |

**.0**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**NOTES:**

1. Signal stabilization interval is the time required to stabilize clock signal oscillation after stop mode is terminated by an interrupt. The stabilization interval can also be interpreted as "Interrupt Interval Time".
2. When a system reset occurs, the oscillation stabilization time is 29.1 ms ( $2^{17}/f_{xx}$ ) at 4.5 MHz.
3. 'f<sub>xx</sub>' is the system clock rate given a clock frequency of 4.5 MHz.

**CLMOD— Clock Output Mode Register****FD0H**

| Bit            | 3  | 2  | 1  | 0  |
|----------------|----|----|----|----|
| Identifier     | .3 | .2 | .1 | .0 |
| RESET Value    | 0  | 0  | 0  | 0  |
| Read/Write     | W  | —  | W  | W  |
| Bit Addressing | 4  | —  | 4  | 4  |

**.3 Clock Output Enable Bit**

|   |                      |
|---|----------------------|
| 0 | Disable clock output |
| 1 | Enable clock output  |

**.2 Bit 2**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**.1 and .0 Clock Source and Frequency Selection Bits**

|   |   |                                                                                |
|---|---|--------------------------------------------------------------------------------|
| 0 | 0 | CPU clock source fxx/4, fxx/8, or fxx/64 (1.125 MHz, 562.5 kHz, or 70.312 kHz) |
| 0 | 1 | System clock fxx/8 (562.5 kHz)                                                 |
| 1 | 0 | System clock fxx/16 (281.25 kHz)                                               |
| 1 | 1 | System clock fxx/64 (70.312 kHz)                                               |

**NOTE:** 'fxx' is the system clock at an oscillator frequency of 4.5 MHz.

**IE0, 1, IRQ0, 1 — INT0, 1 Interrupt Enable/Request Flags**

FBEH

| Bit                   | 3          | 2           | 1          | 0           |
|-----------------------|------------|-------------|------------|-------------|
| <b>Identifier</b>     | <b>IE1</b> | <b>IRQ1</b> | <b>IE0</b> | <b>IRQ0</b> |
| <b>RESET Value</b>    | 0          | 0           | 0          | 0           |
| <b>Read/Write</b>     | R/W        | R/W         | R/W        | R/W         |
| <b>Bit Addressing</b> | 1/4        | 1/4         | 1/4        | 1/4         |

**IE1 INT1 Interrupt Enable Flag**

|   |                                            |
|---|--------------------------------------------|
| 0 | Disable interrupt requests at the INT1 pin |
| 1 | Enable interrupt requests at the INT1 pin  |

**IRQ1 INT1 Interrupt Request Flag**

|   |                                                                                                                     |
|---|---------------------------------------------------------------------------------------------------------------------|
| — | Generate INT1 interrupt (This bit is set and cleared by hardware when rising or falling edge detected at INT1 pin.) |
|---|---------------------------------------------------------------------------------------------------------------------|

**IE0 INT0 Interrupt Enable Flag**

|   |                                            |
|---|--------------------------------------------|
| 0 | Disable interrupt requests at the INT0 pin |
| 1 | Enable interrupt requests at the INT0 pin  |

**IRQ0 INT0 Interrupt Request Flag**

|   |                                                                                                                                   |
|---|-----------------------------------------------------------------------------------------------------------------------------------|
| — | Generate INT0 interrupt (This bit is set and cleared automatically by hardware when rising or falling edge detected at INT0 pin.) |
|---|-----------------------------------------------------------------------------------------------------------------------------------|

**IE2, IRQ2 — INT2 Interrupt Enable/Request Flags**

FBFH

| Bit            | 3  | 2  | 1   | 0    |
|----------------|----|----|-----|------|
| Identifier     | .3 | .2 | IE2 | IRQ2 |
| RESET Value    | 0  | 0  | 0   | 0    |
| Read/Write     | —  | —  | R/W | R/W  |
| Bit Addressing | —  | —  | 1/4 | 1/4  |

.3-2

**Bits 3-2**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**IE2****INT2 Interrupt Enable Flag**

|   |                                                                  |
|---|------------------------------------------------------------------|
| 0 | Disable INT2 interrupt requests at the INT2 pin or KS0-KS3 pins. |
| 1 | Enable INT2 interrupt requests at the INT2 pin or KS0-KS3 pins   |

**IRQ2****INT2 Interrupt Request Flag**

|   |                                                                                                                                                                                       |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| — | Generate INT2 quasi-interrupt (This bit is set and is not cleared automatically by hardware when a rising edge is detected at INT2 or when a rising edge is detected at KS0-KS3 pins. |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

**IE4, IRQ4 — INT4 Interrupt Enable/Request Flags**

FB8H

**IEB, IRQB — INTB Interrupt Enable/Request Flags**

FB8H

| Bit                   | 3          | 2           | 1          | 0           |
|-----------------------|------------|-------------|------------|-------------|
| <b>Identifier</b>     | <b>IE4</b> | <b>IRQ4</b> | <b>IEB</b> | <b>IRQB</b> |
| <b>RESET Value</b>    | 0          | 0           | 0          | 0           |
| <b>Read/Write</b>     | R/W        | R/W         | R/W        | R/W         |
| <b>Bit Addressing</b> | 1/4        | 1/4         | 1/4        | 1/4         |

**IE4****Bit 3**

|   |                                 |
|---|---------------------------------|
| 0 | Disable INT4 interrupt requests |
| 1 | Enable INT4 interrupt requests  |

**IRQ4****Bits 2**

|   |                                                                                                                                                |
|---|------------------------------------------------------------------------------------------------------------------------------------------------|
| — | Generate INT4 interrupt (This bit is set and cleared automatically by hardware when the rising and falling edge detected at external INT4 pin) |
|---|------------------------------------------------------------------------------------------------------------------------------------------------|

**IEB****INTB Interrupt Enable Flag**

|   |                                 |
|---|---------------------------------|
| 0 | Disable INTB interrupt requests |
| 1 | Enable INTB interrupt requests  |

**IRQB****INTB Interrupt Request Flag**

|   |                                                                                                                                           |
|---|-------------------------------------------------------------------------------------------------------------------------------------------|
| — | Generate INTB interrupt (This bit is set and cleared automatically by hardware when reference interval signal received from basic timer.) |
|---|-------------------------------------------------------------------------------------------------------------------------------------------|

**IECE, IRQCE — INTCE Interrupt Enable/Request Flags**

FBBH

**IEIF, IRQIF — INTIF Interrupt Enable/Request Flags**

FBBH

| Bit            | 3    | 2     | 1    | 0     |
|----------------|------|-------|------|-------|
| Identifier     | IEIF | IRQIF | IECE | IRQCE |
| RESET Value    | 0    | 0     | 0    | 0     |
| Read/Write     | R/W  | R/W   | R/W  | R/W   |
| Bit Addressing | 1/4  | 1/4   | 1/4  | 1/4   |

**IEIF — IEIF Interrupt Enable Flag**

|   |                         |
|---|-------------------------|
| 0 | Disable INTIF interrupt |
| 1 | Enable INTIF interrupt  |

**IRQIF — IRQIF interrupt Request Flag**

|   |                                                                                                                  |
|---|------------------------------------------------------------------------------------------------------------------|
| — | Generate INTIF interrupt (This bit is set and cleared by hardware whenever the specified gate time has elapsed.) |
|---|------------------------------------------------------------------------------------------------------------------|

**IECE — INTCE Interrupt Enable Flag**

|   |                                                |
|---|------------------------------------------------|
| 0 | Disable INTCE interrupt requests at the CE pin |
| 1 | Enable INTCE interrupt requests at the CE pin  |

**IRQCE — INTCE Interrupt Request Flag**

|   |                                                                                                                    |
|---|--------------------------------------------------------------------------------------------------------------------|
| — | Generate INTCE interrupt (This bit is set and cleared by hardware where a falling edge is detected at the CE pin.) |
|---|--------------------------------------------------------------------------------------------------------------------|

**IES, IRQS— INTS Interrupt Enable/Request Flags**

FBDH

| Bit            | 3  | 2  | 1          | 0           |
|----------------|----|----|------------|-------------|
| Identifier     | .3 | .2 | <b>IES</b> | <b>IRQS</b> |
| RESET Value    | 0  | 0  | 0          | 0           |
| Read/Write     | —  | —  | R/W        | R/W         |
| Bit Addressing | —  | —  | 1/4        | 1/4         |

**.3 and .2****Not used**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**IES****INTS Interrupt Enable Flag**

|   |                                 |
|---|---------------------------------|
| 0 | Disable INTS interrupt requests |
| 1 | Enable INTS interrupt requests  |

**IRQS****INTS Interrupt Request Flag**

|   |                                                                                                                                                                |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| — | Generate INTS interrupt (This bit is set and cleared by hardware whenever a serial data transfer completion signal is received from the serial I/O interface.) |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------|

**IET0, IRQT0— INTT0 Interrupt Enable/Request Flags**

FBCH

| Bit            | 3  | 2  | 1           | 0            |
|----------------|----|----|-------------|--------------|
| Identifier     | .3 | .2 | <b>IET0</b> | <b>IRQT0</b> |
| RESET Value    | 0  | 0  | 0           | 0            |
| Read/Write     | —  | —  | R/W         | R/W          |
| Bit Addressing | —  | —  | 1/4         | 1/4          |

.3-2

**Bits 3-2**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**IET0****INTT0 Interrupt Enable Flag**

|   |                                  |
|---|----------------------------------|
| 0 | Disable INTT0 interrupt requests |
| 1 | Enable INTT0 interrupt requests  |

**IRQT0****INTT0 Interrupt Request Flag**

|   |                                                                                                                                    |
|---|------------------------------------------------------------------------------------------------------------------------------------|
| — | Generate INTT0 interrupt (This bit is set and cleared automatically by hardware when contents of TCNT0 and TREF0 registers match.) |
|---|------------------------------------------------------------------------------------------------------------------------------------|

**IEW, IRQW — INTW Interrupt Enable/Request Flags**

FBAH

| Bit                   | 3         | 2         | 1          | 0           |
|-----------------------|-----------|-----------|------------|-------------|
| <b>Identifier</b>     | <b>.3</b> | <b>.2</b> | <b>IEW</b> | <b>IRQW</b> |
| <b>RESET Value</b>    | 0         | 0         | 0          | 0           |
| <b>Read/Write</b>     | —         | —         | R/W        | R/W         |
| <b>Bit Addressing</b> | —         | —         | 1/4        | 1/4         |

**.3-2****Bits 3-2**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**IEW****INTW Interrupt Enable Flag**

|   |                                 |
|---|---------------------------------|
| 0 | Disable INTW interrupt requests |
| 1 | Enable INTW interrupt requests  |

**IRQW****INTW Interrupt Request Flag**

|   |                                                                                                               |
|---|---------------------------------------------------------------------------------------------------------------|
| — | Generate INTW interrupt (This bit is set when the timer interval is set to 0.5 seconds or 3.91 milliseconds.) |
|---|---------------------------------------------------------------------------------------------------------------|

**NOTE:** Since INTW is a quasi-interrupt, the IRQW flag must be cleared by software.

**IFMOD — IF Counter Mode Register****F9BH**

| Bit            | 3   | 2   | 1   | 0   |
|----------------|-----|-----|-----|-----|
| Identifier     | .3  | .2  | .1  | .0  |
| RESET Value    | 0   | 0   | 0   | 0   |
| Read/Write     | R/W | R/W | R/W | R/W |
| Bit Addressing | 1/4 | 1/4 | 1/4 | 1/4 |

**.3 and .2****Interrupt Sampling Clock Selection Bits**

|   |   |                                                                                                       |
|---|---|-------------------------------------------------------------------------------------------------------|
| 0 | 0 | IFC is disabled; FMIF/AMIF are pulled down and FMIF/AMIF's feed-back resistor are off.                |
| 0 | 1 | Enable IFC operation; AMIF pin is selected; FMIF is pulled down and AMIF's feed-back resistor is off. |
| 1 | 0 | Enable IFC operation; FMIF pin is selected; AMIF is pulled down and AMIF's feed-back resistor is off. |
| 1 | 1 | Enable IFC operation; Both AMIF and FMIF are selected.                                                |

**.1 and .0****Gate Time Selection Bits**

|   |   |                                       |
|---|---|---------------------------------------|
| 0 | 0 | Gate opens in 1-millisecond intervals |
| 0 | 1 | Gate opens in 4-millisecond intervals |
| 1 | 0 | Gate opens in 8-millisecond intervals |
| 1 | 1 | Gate remains open continuously        |

## **IMOD0 — External Interrupt 0 (INT0) Mode Register**

FB4H

| Bit            | 3  | 2  | 1  | 0  |
|----------------|----|----|----|----|
| Identifier     | .3 | .2 | .1 | .0 |
| RESET Value    | 0  | 0  | 0  | 0  |
| Read/Write     | W  | –  | W  | W  |
| Bit Addressing | 4  | –  | 4  | 4  |

### .3 Interrupt Sampling Clock Selection Bit

|   |                                                                       |
|---|-----------------------------------------------------------------------|
| 0 | Select CPU clock as a sampling clock                                  |
| 1 | Select sampling clock frequency of the selected system clock (fxx/64) |

## .2 Bit 2

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

.1-.0

## External Interrupt Mode Control Bits

|   |   |                                                                          |
|---|---|--------------------------------------------------------------------------|
| 0 | 0 | Interrupt requests are triggered by a rising signal edge                 |
| 0 | 1 | Interrupt requests are triggered by a falling signal edge                |
| 1 | 0 | Interrupt requests are triggered by both rising and falling signal edges |
| 1 | 1 | Interrupt request flag (IRQ0) cannot be set to logic one                 |

**IMOD1 — External Interrupt 1 (INT1) Mode Register**

FB5H

| Bit            | 3  | 2  | 1  | 0  |
|----------------|----|----|----|----|
| Identifier     | .3 | .2 | .1 | .0 |
| RESET Value    | 0  | 0  | 0  | 0  |
| Read/Write     | —  | —  | —  | W  |
| Bit Addressing | —  | —  | —  | 4  |

.3-.1

**Bits 3-1**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

.0

**External Interrupt 1 Edge Detection Control Bit**

|   |                        |
|---|------------------------|
| 0 | Rising edge detection  |
| 1 | Falling edge detection |

**IMOD2— External Interrupt 2 (INT2) Mode Register**

FB6H

| Bit                   | 3         | 2         | 1         | 0         |
|-----------------------|-----------|-----------|-----------|-----------|
| <b>Identifier</b>     | <b>.3</b> | <b>.2</b> | <b>.1</b> | <b>.0</b> |
| <b>RESET Value</b>    | 0         | 0         | 0         | 0         |
| <b>Read/Write</b>     | —         | —         | W         | W         |
| <b>Bit Addressing</b> | —         | —         | 4         | 4         |

**.3 and .2****Bit 3-2**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**.1 and .0****External Interrupt Mode Control Bits**

|   |   |                                                          |
|---|---|----------------------------------------------------------|
| 0 | 0 | Interrupt requests at INT2 pin triggered by rising edge  |
| 1 | 0 | Interrupt requests at KS2-KS3 triggered by falling edge  |
| 1 | 1 | Interrupt requests at KS0-KS3 triggered by falling edges |

**IPR – Interrupt Priority Register****FB2H**

| Bit                   | 3          | 2         | 1         | 0         |
|-----------------------|------------|-----------|-----------|-----------|
| <b>Identifier</b>     | <b>IME</b> | <b>.2</b> | <b>.1</b> | <b>.0</b> |
| <b>RESET Value</b>    | 0          | 0         | 0         | 0         |
| <b>Read/Write</b>     | W          | W         | W         | W         |
| <b>Bit Addressing</b> | 1/4        | 4         | 4         | 4         |

**IME** **Interrupt Master Enable Bit**

|   |                                                      |
|---|------------------------------------------------------|
| 0 | Disable all interrupt processing                     |
| 1 | Enable processing for all interrupt service requests |

**.2-0****External Interrupt Mode Control Bits**

|   |   |   |                                                                  |
|---|---|---|------------------------------------------------------------------|
| 0 | 0 | 0 | Normal interrupt handling according to default priority settings |
| 0 | 0 | 1 | Process INTB and INT4 interrupt at highest priority              |
| 0 | 1 | 0 | Process INT0 interrupt at highest priority                       |
| 0 | 1 | 1 | Process INT1 interrupt at highest priority                       |
| 1 | 0 | 0 | Process INTS interrupt at highest priority                       |
| 1 | 0 | 1 | Process INTT0 interrupt at highest priority                      |
| 1 | 1 | 0 | Process INTCE interrupt at highest priority                      |
| 1 | 1 | 1 | Process INTIF interrupt at highest priority                      |

**LCON— LCD Output Control Register****F8EH**

| Bit                   | 3         | 2         | 1          | 0           |
|-----------------------|-----------|-----------|------------|-------------|
| <b>Identifier</b>     | <b>.3</b> | <b>.2</b> | <b>IEW</b> | <b>IRQW</b> |
| <b>RESET Value</b>    | 0         | 0         | 0          | 0           |
| <b>Read/Write</b>     | —         | —         | R/W        | R/W         |
| <b>Bit Addressing</b> | —         | —         | 1/4        | 1/4         |

**.3 LCD Output Control Test Bit**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**.2 Not used**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**.1 Port 6 Control Bit**

|   |                      |
|---|----------------------|
| 0 | Port 6 input enable  |
| 1 | Port 6 input disable |

**.0 LCD Output Control Bit**

|   |                                                                                                                            |
|---|----------------------------------------------------------------------------------------------------------------------------|
| 0 | LCD output is low and current to dividing registers is cut off                                                             |
| 1 | If LMOD.3 = “0”, LCD output Low and display is turned off.<br>If LMOD.3 = “1”, output COM and SEG signals in display mode. |

**LMOD— LCD Mode Control Register****F8DH, F8CH**

| Bit            | 3  | 2  | 1  | 0  | 3   | 2  | 1  | 0  |
|----------------|----|----|----|----|-----|----|----|----|
| Identifier     | .7 | .6 | .5 | .4 | .3  | .2 | .1 | .0 |
| RESET Value    | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  |
| Read/Write     | W  | —  | W  | W  | W   | W  | W  | W  |
| Bit Addressing | 8  | —  | 8  | 8  | 1/8 | 8  | 8  | 8  |

**.7****LCD Voltage Dividing Resistor Selection Bit**

|   |                            |
|---|----------------------------|
| 0 | Internal dividing resistor |
| 1 | External dividing resistor |

**.6****Not used**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**.5 and .4****LCD Clock (LCDCK) Frequency Selection Bits**

|   |   |                                                       |
|---|---|-------------------------------------------------------|
| 0 | 0 | 32.768 kHz watch timer clock (fw)/2 <sup>9</sup> = 64 |
| 0 | 1 | fw/2 <sup>8</sup> = 128 Hz                            |
| 1 | 0 | fw/2 <sup>7</sup> = 256 Hz                            |
| 1 | 1 | fw/2 <sup>6</sup> = 512 Hz                            |

**.3-.0****LCD Disable, LCD Duty and Bias Selection Bits**

|   |   |   |   |                    |
|---|---|---|---|--------------------|
| 0 | x | x | x | LCD display off    |
| 1 | 0 | 0 | 0 | 1/4 duty, 1/3 bias |
| 1 | 0 | 0 | 1 | 1/3 duty, 1/3 bias |
| 1 | 0 | 1 | 0 | 1/2 duty, 1/2 bias |
| 1 | 0 | 1 | 1 | 1/3 duty, 1/2 bias |
| 1 | 1 | 0 | 0 | Static             |

**NOTE:** 'x' mean 'don't care'

**LPOT – LCD Port Control Register****F8AH**

| Bit                   | 3         | 2         | 1         | 0         |
|-----------------------|-----------|-----------|-----------|-----------|
| <b>Identifier</b>     | <b>.3</b> | <b>.2</b> | <b>.1</b> | <b>.0</b> |
| <b>RESET Value</b>    | 0         | 0         | 0         | 0         |
| <b>Read/Write</b>     | W         | W         | W         | W         |
| <b>Bit Addressing</b> | 1/4       | 4         | 4         | 4         |

**.3 COM Signal Enable/Disable Bit**

|   |                    |
|---|--------------------|
| 0 | Enable COM signal  |
| 1 | Disable COM signal |

**.2-0 LCD Port Selection Bits**

|   |   |   |                                                         |
|---|---|---|---------------------------------------------------------|
| 0 | 0 | 0 | Select LCD P7-P13/SEG0-SEG27                            |
| 0 | 0 | 1 | Select LCD P8-P13/P7 as output port                     |
| 0 | 1 | 0 | Select LCD P9-P13/P7, P8 as output port                 |
| 0 | 1 | 1 | Select LCD P10-P13/P7, P8, P9 as output port            |
| 1 | 0 | 0 | Select LCD P11-P13/P7, P8, P9, P10 as output port       |
| 1 | 0 | 1 | Select LCD P12-P13/P7, P8, P9, P10, P11 as output port  |
| 1 | 1 | 0 | Select LCD P13/P7, P8, P9, P10, P11, P12 as output port |
| 1 | 1 | 1 | All output port (P7-P13)                                |

**PCON — Power Control Register****FB3H**

| Bit            | 3  | 2  | 1  | 0  |
|----------------|----|----|----|----|
| Identifier     | .3 | .2 | .1 | .0 |
| RESET Value    | 0  | 0  | 0  | 0  |
| Read/Write     | W  | W  | W  | W  |
| Bit Addressing | 4  | 4  | 4  | 4  |

**.3-2****CPU Operating Mode Control Bits**

|   |   |                                  |
|---|---|----------------------------------|
| 0 | 0 | Enable normal CPU operating mode |
| 0 | 1 | Initiate idle power-down mode    |
| 1 | 0 | Initiate stop power-down mode    |

**.1-0****CPU Clock Frequency Selection Bits**

|   |   |                                             |
|---|---|---------------------------------------------|
| 0 | 0 | If SCMOD.0 = fx/64; if SCMOD.0 = "1", fxt/4 |
| 1 | 0 | If SCMOD.0 = fx/8; if SCMOD.0 = "1", fxt/4  |
| 1 | 1 | If SCMOD.0 = fx/4; if SCMOD.0 = "1", fxt/4  |

**NOTE:** 'fx' is the main system clock; 'fxt' is the subsystem clock.

**PLLREF – PLL Reference Frequency Selection Register**

FC9H

| Bit            | 3      | 2      | 1      | 0      |
|----------------|--------|--------|--------|--------|
| Identifier     | .3     | .2     | .1     | .0     |
| RESET Value    | (note) | (note) | (note) | (note) |
| Read/Write     | W      | W      | W      | W      |
| Bit Addressing | 4      | 4      | 4      | 4      |

**.3-0****Reference Frequency Selection Bits**

|   |   |   |   |                 |
|---|---|---|---|-----------------|
| 0 | 0 | 0 | 0 | 1-kHz signal    |
| 0 | 0 | 0 | 1 | 3-kHz signal    |
| 0 | 0 | 1 | 0 | 5-kHz signal    |
| 0 | 0 | 1 | 1 | 6.25-kHz signal |
| 0 | 1 | 0 | 0 | 9-kHz signal    |
| 0 | 1 | 0 | 1 | 10-kHz signal   |
| 0 | 1 | 1 | 0 | 12.5-kHz signal |
| 0 | 1 | 1 | 1 | 25-kHz signal   |
| 1 | 0 | 0 | 0 | 50-kHz signal   |
| 1 | 0 | 0 | 1 | 100-kHz signal  |

**NOTE:** If a system reset occurs during operation mode, the current value contained is retained. If a system reset occurs after power-on, the value is undefined.

**PLLREG** — PLL Status Register

FCAH

| Bit            | 3           | 2           | 1            | 0         |
|----------------|-------------|-------------|--------------|-----------|
| Identifier     | <b>ULFG</b> | <b>CEFG</b> | <b>IFCFG</b> | <b>.0</b> |
| RESET Value    | (note)      | (note)      | (note)       | (note)    |
| Read/Write     | R           | R           | R            | —         |
| Bit Addressing | 1/4         | 1/4         | 1/4          | —         |

**ULFG****PLL Frequency Synthesizer Locked/Unlocked Status Flag**

|   |                                    |
|---|------------------------------------|
| 0 | PLL is currently in locked state   |
| 1 | PLL is currently in unlocked state |

**CEFG****CE Pin Level Status Flag**

|   |                                |
|---|--------------------------------|
| 0 | CE pin is currently Low level  |
| 1 | CE pin is currently High level |

**IFCFG****IF Counter Gate Open/Close Status Flag**

|   |                         |
|---|-------------------------|
| 0 | Gate is currently open  |
| 1 | Gate is currently close |

**.0****Not used**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**NOTE:** When a system reset occurs during operation mode, the value of ULFG is undefined, CEFG is current state of CE is the current state of the CE pin, and IFCFG is “0”. When a system reset occurs after power-on, the value of ULFG is undefined, CEFG is the current state of the CE pin, and IFCFG is undefined.

**PLMOD — PLL Mode Register****FC8H**

| Bit                   | 3         | 2         | 1         | 0         |
|-----------------------|-----------|-----------|-----------|-----------|
| <b>Identifier</b>     | <b>.3</b> | <b>.2</b> | <b>NF</b> | <b>.0</b> |
| <b>RESET Value</b>    | (note)    | (note)    | (note)    | (note)    |
| <b>Read/Write</b>     | W         | W         | W         | W         |
| <b>Bit Addressing</b> | 4         | 4         | 4         | 4         |

**.3 Frequency Division Method Selection Flag**

|   |                             |
|---|-----------------------------|
| 0 | Direct method for AM        |
| 1 | Pulse swallow method for FM |

**.2 PLL Enable/Disable Bit**

|   |             |
|---|-------------|
| 0 | Disable PLL |
| 1 | Enable PLL  |

**.1 Bit Value To Be Loaded into PLLD0 Register**

|                                                  |
|--------------------------------------------------|
| NF bit is loaded into the LSB of swallow counter |
|--------------------------------------------------|

**.0 Select the PLL Operation Voltage**

|   |                                                    |
|---|----------------------------------------------------|
| 0 | Select the PLL operation voltage as 4.0 V to 5.5 V |
| 1 | Select the PLL operation voltage as 2.5 V to 3.5 V |

**NOTE:** If a system reset occurs during operation mode, the current value contained is retained. If a system reset occurs after power-on, the value is undefined.

**PMG0 — Port I/O Mode Control Register (Port 0)**

FE7H, FE6H

| Bit            | 7  | 6  | 5  | 4  | 3            | 2            | 1            | 0            |
|----------------|----|----|----|----|--------------|--------------|--------------|--------------|
| Identifier     | .7 | .6 | .5 | .4 | <b>PM0.3</b> | <b>PM0.2</b> | <b>PM0.1</b> | <b>PM0.0</b> |
| RESET Value    | 0  | 0  | 0  | 0  | 0            | 0            | 0            | 0            |
| Read/Write     | —  | —  | —  | —  | W            | W            | W            | W            |
| Bit Addressing | —  | —  | —  | —  | 8            | 8            | 8            | 8            |

**.7-.4****Not used**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**PM0.3****P0.3 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P0.3 to input mode  |
| 1 | Set P0.3 to output mode |

**PM0.2****P0.2 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P0.2 to input mode  |
| 1 | Set P0.2 to output mode |

**PM0.1****P0.1 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P0.1 to input mode  |
| 1 | Set P0.1 to output mode |

**PM0.0****P0.0 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P0.0 to input mode  |
| 1 | Set P0.0 to output mode |

**PMG1 — Port I/O Mode Control Register (Port 2 and Port 3)****FE9H, FE8H**

| Bit                   | 7            | 6            | 5            | 4            | 3            | 2            | 1            | 0            |
|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| <b>Identifier</b>     | <b>PM3.3</b> | <b>PM3.2</b> | <b>PM3.1</b> | <b>PM3.0</b> | <b>PM2.3</b> | <b>PM2.2</b> | <b>PM2.1</b> | <b>PM2.0</b> |
| <b>RESET Value</b>    | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| <b>Read/Write</b>     | W            | W            | W            | W            | W            | W            | W            | W            |
| <b>Bit Addressing</b> | 8            | 8            | 8            | 8            | 8            | 8            | 8            | 8            |

**PM3.3****P3.3 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P3.3 to input mode  |
| 1 | Set P3.3 to output mode |

**PM3.2****P3.2 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P3.2 to input mode  |
| 1 | Set P3.2 to output mode |

**PM3.1****P3.1 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P3.1 to input mode  |
| 1 | Set P3.1 to output mode |

**PM3.0****P3.0 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P3.0 to input mode  |
| 1 | Set P3.0 to output mode |

**PM2.3****P2.3 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P2.3 to input mode  |
| 1 | Set P2.3 to output mode |

**PM2.2****P2.2 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P2.2 to input mode  |
| 1 | Set P2.2 to output mode |

**PM2.1****P2.1 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P2.1 to input mode  |
| 1 | Set P2.1 to output mode |

**PM2.0****P0.0 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P2.0 to input mode  |
| 1 | Set P2.0 to output mode |

**PMG2 — Port I/O Mode Selection Register (Port 4 and Port 5)** FEBH, FEAH

| Bit                   | 7            | 6            | 5            | 4            | 3            | 2            | 1            | 0            |
|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| <b>Identifier</b>     | <b>PM5.3</b> | <b>PM5.2</b> | <b>PM5.1</b> | <b>PM5.0</b> | <b>PM4.3</b> | <b>PM4.2</b> | <b>PM4.1</b> | <b>PM4.0</b> |
| <b>RESET Value</b>    | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| <b>Read/Write</b>     | W            | W            | W            | W            | W            | W            | W            | W            |
| <b>Bit Addressing</b> | 8            | 8            | 8            | 8            | 8            | 8            | 8            | 8            |

**PM5.3** **P5.3 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P5.3 to input mode  |
| 1 | Set P5.3 to output mode |

**PM5.2** **P5.2 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P5.2 to input mode  |
| 1 | Set P5.2 to output mode |

**PM5.1** **P5.1 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P5.1 to input mode  |
| 1 | Set P5.1 to output mode |

**PM5.0** **P5.0 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P5.0 to input mode  |
| 1 | Set P5.0 to output mode |

**PM4.3** **P4.3 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P4.3 to input mode  |
| 1 | Set P4.3 to output mode |

**PM4.2** **P4.2 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P4.2 to input mode  |
| 1 | Set P4.2 to output mode |

**PM4.1** **P4.1 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P4.1 to input mode  |
| 1 | Set P4.1 to output mode |

**PM4.0** **P0.0 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P4.0 to input mode  |
| 1 | Set P4.0 to output mode |

**PMG3 — Port I/O Mode Selection Register (Port 6)****FEDH, FECH**

| Bit                   | 7         | 6         | 5         | 4         | 3            | 2            | 1            | 0            |
|-----------------------|-----------|-----------|-----------|-----------|--------------|--------------|--------------|--------------|
| <b>Identifier</b>     | <b>.7</b> | <b>.6</b> | <b>.5</b> | <b>.4</b> | <b>PM6.3</b> | <b>PM6.2</b> | <b>PM6.1</b> | <b>PM6.0</b> |
| <b>RESET Value</b>    | 0         | 0         | 0         | 0         | 0            | 0            | 0            | 0            |
| <b>Read/Write</b>     | —         | —         | —         | —         | W            | W            | W            | W            |
| <b>Bit Addressing</b> | —         | —         | —         | —         | 8            | 8            | 8            | 8            |

**.7-4****Not used**

|   |                    |
|---|--------------------|
| 0 | Always logic zero. |
|---|--------------------|

**PM6.3****P6.3 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P6.3 to input mode  |
| 1 | Set P6.3 to output mode |

**PM6.2****P6.2 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P6.2 to input mode  |
| 1 | Set P6.2 to output mode |

**PM6.1****P6.1 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P6.1 to input mode  |
| 1 | Set P6.1 to output mode |

**PM6.0****P6.0 Mode Selection Bit**

|   |                         |
|---|-------------------------|
| 0 | Set P6.0 to input mode  |
| 1 | Set P6.0 to output mode |

**PNE** — Port Open-Drain Enable Register

FD7H, FD6H

| Bit            | 7                                                    | 6                           | 5     | 4     | 3     | 2    | 1    | 0    |  |
|----------------|------------------------------------------------------|-----------------------------|-------|-------|-------|------|------|------|--|
| Identifier     | .7                                                   | PNE13                       | PNE12 | PNE11 | PNE10 | PNE9 | PNE8 | PNE7 |  |
| RESET Value    | 0                                                    | 0                           | 0     | 0     | 0     | 0    | 0    | 0    |  |
| Read/Write     | —                                                    | W                           | W     | W     | W     | W    | W    | W    |  |
| Bit Addressing | —                                                    | 8                           | 8     | 8     | 8     | 8    | 8    | 8    |  |
| .7             | <b>Not used</b>                                      |                             |       |       |       |      |      |      |  |
|                | 0                                                    | Always logic zero           |       |       |       |      |      |      |  |
| PNE13          | <b>Port 13 N-Channel Open-Drain Configurable Bit</b> |                             |       |       |       |      |      |      |  |
|                | 0                                                    | Push-pull output            |       |       |       |      |      |      |  |
|                | 1                                                    | N-channel open-drain output |       |       |       |      |      |      |  |
| PNE12          | <b>Port 12 N-Channel Open-Drain Configurable Bit</b> |                             |       |       |       |      |      |      |  |
|                | 0                                                    | Push-pull output            |       |       |       |      |      |      |  |
|                | 1                                                    | N-channel open-drain output |       |       |       |      |      |      |  |
| PNE11          | <b>Port 11 N-Channel Open-Drain Configurable Bit</b> |                             |       |       |       |      |      |      |  |
|                | 0                                                    | Push-pull output            |       |       |       |      |      |      |  |
|                | 1                                                    | N-channel open-drain output |       |       |       |      |      |      |  |
| PNE10          | <b>Port 10 N-Channel Open-Drain Configurable Bit</b> |                             |       |       |       |      |      |      |  |
|                | 0                                                    | Push-pull output            |       |       |       |      |      |      |  |
|                | 1                                                    | N-channel open-drain output |       |       |       |      |      |      |  |
| PNE9           | <b>Port 9 N-Channel Open-Drain Configurable Bit</b>  |                             |       |       |       |      |      |      |  |
|                | 0                                                    | Push-pull output            |       |       |       |      |      |      |  |
|                | 1                                                    | N-channel open-drain output |       |       |       |      |      |      |  |
| PNE8           | <b>Port 8 N-Channel Open-Drain Configurable Bit</b>  |                             |       |       |       |      |      |      |  |
|                | 0                                                    | Push-pull output            |       |       |       |      |      |      |  |
|                | 1                                                    | N-channel open-drain output |       |       |       |      |      |      |  |
| PNE7           | <b>Port 7 N-Channel Open-Drain Configurable Bit</b>  |                             |       |       |       |      |      |      |  |
|                | 0                                                    | Push-pull output            |       |       |       |      |      |      |  |
|                | 1                                                    | N-channel open-drain output |       |       |       |      |      |      |  |

**POFR — Power On Flag Register****FD1H**

| Bit                   | 3         | 2         | 1         | 0          |
|-----------------------|-----------|-----------|-----------|------------|
| <b>Identifier</b>     | <b>.3</b> | <b>.2</b> | <b>.1</b> | <b>POF</b> |
| <b>RESET Value</b>    | 0         | 0         | 0         | (1)        |
| <b>Read/Write</b>     | —         | —         | —         | R/W        |
| <b>Bit Addressing</b> | —         | —         | —         | 1/4        |

**.3-1****Bit 3-1**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**POF****Power-On Flag**

|   |                                          |
|---|------------------------------------------|
| 1 | Set automatically when a power-on occurs |
|---|------------------------------------------|

**NOTES:**

1. If a system reset occurs during operation mode, the current value contained is retained. If a system reset occurs after power-on the value is "1".
2. The POF bit is read initially to check whether or not power has been turned on. It can be cleared by using BITR instruction.

**PSW — Program Status Word****FB1H, FB0H**

| Bit                   | 7        | 6          | 5          | 4          | 3          | 2          | 1          | 0          |
|-----------------------|----------|------------|------------|------------|------------|------------|------------|------------|
| <b>Identifier</b>     | <b>C</b> | <b>SC2</b> | <b>SC1</b> | <b>SC0</b> | <b>IS1</b> | <b>IS0</b> | <b>EMB</b> | <b>ERB</b> |
| <b>RESET Value</b>    | (1)      | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| <b>Read/Write</b>     | R/W      | R          | R          | R          | R/W        | R/W        | R/W        | R/W        |
| <b>Bit Addressing</b> | (2)      | 8          | 8          | 8          | 1/4        | 1/4        | 1          | 1          |

**C****Carry Flag**

|   |                                        |
|---|----------------------------------------|
| 0 | No overflow or borrow condition exists |
| 1 | An overflow or borrow condition exists |

**SC2-SC0****Skip Condition Flags**

|   |                                                                           |
|---|---------------------------------------------------------------------------|
| 0 | No skip condition exists; no direct manipulation of these bits is allowed |
| 1 | A skip condition exists; no direct manipulation of these bits is allowed  |

**IS1, IS0****Interrupt Status Flags**

|   |   |                                                                                                       |
|---|---|-------------------------------------------------------------------------------------------------------|
| 0 | 0 | Service all interrupt requests                                                                        |
| 0 | 1 | Service only the highest priority interrupt(s) as determined in the interrupt priority register (IPR) |
| 1 | 0 | Do not service any more interrupt requests                                                            |
| 1 | 1 | Undefined                                                                                             |

**EMB****Enable Data Memory Bank Flag**

|   |                                                                                                                 |
|---|-----------------------------------------------------------------------------------------------------------------|
| 0 | Restrict program access to data memory to bank 15 (F80H-FFFH) and to the locations 000H-07FH in the bank 0 only |
| 1 | Enable full access to data memory banks 0, 1 and 15                                                             |

**ERB****Enable Register Bank Flag**

|   |                                                                                                                                    |
|---|------------------------------------------------------------------------------------------------------------------------------------|
| 0 | Select register bank 0 as working register area                                                                                    |
| 1 | Select register banks 0, 1, 2, or 3 as working register area in accordance with the select register bank (SRB) instruction operand |

**NOTES:**

1. The value of the carry flag after a system reset occurs during normal operation is undefined. If a system reset occurs during power-down mode (IDLE or STOP), the current value of the carry flag is retained.
2. The carry flag can only be addressed by a specific set of 1-bit manipulation instructions. See Section 2 for detailed information.

**PUMOD — Pull-Up Resistor Mode Register****FDDH, FDCH**

| Bit                   | 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <b>Identifier</b>     | <b>.7</b> | <b>.6</b> | <b>.5</b> | <b>.4</b> | <b>.3</b> | <b>.2</b> | <b>.1</b> | <b>.0</b> |
| <b>RESET Value</b>    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| <b>Read/Write</b>     | —         | W         | W         | W         | W         | W         | W         | W         |
| <b>Bit Addressing</b> | —         | 8         | 8         | 8         | 8         | 8         | 8         | 8         |

|    |                                                               |                                    |
|----|---------------------------------------------------------------|------------------------------------|
| .7 | <b>Bit 7</b>                                                  |                                    |
|    | 0                                                             | Always logic zero                  |
| .6 | <b>Connect/Disconnect Port 6 Pull-up Resistor Control Bit</b> |                                    |
|    | 0                                                             | Disconnect port 6 pull-up resistor |
|    | 1                                                             | Connect port 6 pull-up resistor    |
| .5 | <b>Connect/Disconnect Port 5 Pull-up Resistor Control Bit</b> |                                    |
|    | 0                                                             | Disconnect port 5 pull-up resistor |
|    | 1                                                             | Connect port 5 pull-up resistor    |
| .4 | <b>Connect/Disconnect Port 4 Pull-up Resistor Control Bit</b> |                                    |
|    | 0                                                             | Disconnect port 4 pull-up resistor |
|    | 1                                                             | Connect port 4 pull-up resistor    |
| .3 | <b>Connect/Disconnect Port 3 Pull-up Resistor Control Bit</b> |                                    |
|    | 0                                                             | Disconnect port 3 pull-up resistor |
|    | 1                                                             | Connect port 3 pull-up resistor    |
| .2 | <b>Connect/Disconnect Port 2 Pull-up Resistor Control Bit</b> |                                    |
|    | 0                                                             | Disconnect port 2 pull-up resistor |
|    | 1                                                             | Connect port 2 pull-up resistor    |
| .1 | <b>Connect/Disconnect Port 1 Pull-up Resistor Control Bit</b> |                                    |
|    | 0                                                             | Disconnect port 1 pull-up resistor |
|    | 1                                                             | Connect port 1 pull-up resistor    |
| .0 | <b>Connect/Disconnect Port 0 Pull-up Resistor Control Bit</b> |                                    |
|    | 0                                                             | Disconnect port 0 pull-up resistor |
|    | 1                                                             | Connect port 0 pull-up resistor    |

**NOTE:** Pull-up resistors for all I/O ports are automatically disabled when they are configured to output mode.

**SCMOD — System Clock Mode Control Register**

FB7H

| Bit            | 3  | 2  | 1  | 0  |
|----------------|----|----|----|----|
| Identifier     | .3 | .2 | .1 | .0 |
| RESET Value    | 0  | 0  | 0  | 0  |
| Read/Write     | W  | W  | —  | W  |
| Bit Addressing | 1  | 1  | —  | 1  |

**.3, .2 and .0****CPU Clock Selection and Main System Clock Oscillation Control Bits**

|   |   |   |                                                          |
|---|---|---|----------------------------------------------------------|
| 0 | 0 | 0 | Select main system clock (fx); enable main system clock  |
| 0 | 1 | 0 | Select main system clock (fx); disable sub system clock  |
| 0 | 0 | 1 | Select sub system clock (fxt); enable main system clock  |
| 1 | 0 | 1 | Select sub system clock (fxt); disable main system clock |

**.1****Bit 1**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**NOTE:** SCMOD bits 3 and 0 cannot be modified simultaneously by a 4-bit instruction; they can only be modified by separate 1-bit instructions.

**SMOD — Serial I/O Mode Register****FE1H, FE0H**

| Bit                   | 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <b>Identifier</b>     | <b>.7</b> | <b>.6</b> | <b>.5</b> | <b>.4</b> | <b>.3</b> | <b>.2</b> | <b>.1</b> | <b>.0</b> |
| <b>RESET Value</b>    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| <b>Read/Write</b>     | W         | W         | W         | —         | W         | W         | W         | W         |
| <b>Bit Addressing</b> | 8         | 8         | 8         | —         | 1/8       | 8         | 8         | 8         |

**.7-5****CPU Clock Selection and Main System Clock Oscillation Control Bits**

|   |   |   |                                                                                                                                                 |
|---|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 0 | 0 | Use an external clock at the SCK pin;<br>Enable SBUF when SIO operation is halted or when SCK goes High                                         |
| 0 | 0 | 1 | Use the TOL0 clock from timer/counter 0;<br>Enable SBUF when SIO operation is halted or when SCK goes High                                      |
| 0 | 1 | x | Use the selected CPU clock (fxx.4,8, or 64; 'fxx' is the system clock)<br>then, enable SBUF read/write operation. 'x' means 'don't care'.       |
| 1 | 0 | 0 | 4.39-kHz clock (fxx/2 <sup>10</sup> )                                                                                                           |
| 1 | 1 | 1 | 281-kHz clock (fxx/2 <sup>4</sup> ); NOTE: You cannot select a fxx/2 <sup>4</sup> clock<br>frequency if you have selected a CPU clock of fxx/64 |

**.4****Not used**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**.3****Serial I/O Start Bit**

|   |                                                                                                                                                                              |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Clear IRQS flag and 3-bit clock counter to logic zero; then initiate serial<br>transmission. When SIO transmission starts, this bit is cleared by hardware to<br>logic zero. |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

**.2****SIO Data Shifter and Clock Counter Enable/Disable Bit**

|   |                                                                                                                                    |
|---|------------------------------------------------------------------------------------------------------------------------------------|
| 0 | Disable the data shifter and clock counter; the contents of IRQS flag is retained<br>when serial transmission is completed.        |
| 1 | Enable the data shifter and clock counter; the contents of IRQS flag is set to<br>logic one when serial transmission is completed. |

**.1****Serial I/O Transmission Mode Selection Bit**

|   |                           |
|---|---------------------------|
| 0 | Receive-only mode         |
| 1 | Transmit-and-receive mode |

**.0****LSB/MSB Transmission Mode Selection Bit**

|   |                                               |
|---|-----------------------------------------------|
| 0 | Transmit the most significant bit (MSB) first |
| 1 | Transmit the most significant bit (LSB) first |

**NOTE:** All frequency given in kHz assume a system clock of 4.5 MHz.

**TMOD0 — Timer/Counter 0 Mode Register****F91H, F90H**

| Bit                   | 3         | 2         | 1         | 0         | 3         | 2         | 1         | 0         |
|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <b>Identifier</b>     | <b>.7</b> | <b>.6</b> | <b>.5</b> | <b>.4</b> | <b>.3</b> | <b>.2</b> | <b>.1</b> | <b>.0</b> |
| <b>RESET Value</b>    | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| <b>Read/Write</b>     | —         | W         | W         | W         | W         | W         | —         | —         |
| <b>Bit Addressing</b> | —         | 8         | 8         | 8         | 1/8       | 8         | —         | —         |

|           |                     |
|-----------|---------------------|
| <b>.7</b> | <b>Not used</b>     |
|           | 0 Always logic zero |

|             |                                                                         |
|-------------|-------------------------------------------------------------------------|
| <b>.6-4</b> | <b>Timer 0 Input Clock Selection Bits</b>                               |
|             | 0 0 0 External clock input at TCL0 pin on rising edge                   |
|             | 0 0 1 External clock input at TCL0 pin on falling edge                  |
|             | 1 0 0 Internal system clock (fxx) of 4.5 MHz/2 <sup>10</sup> (4.39 kHz) |
|             | 1 0 1 Select clock: fxx/2 <sup>6</sup> (70.3 kHz at 4.5 MHz)            |
|             | 1 1 0 Select clock: fxx/2 <sup>4</sup> (281 kHz at 4.5 MHz)             |
|             | 1 1 1 Select clock: fxx/ (4.5 MHz)                                      |

|           |                                                                                                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------|
| <b>.3</b> | <b>Clear Counter and Resume Counting Control Bit</b>                                                                    |
|           | 1 Clear TCNT0, IRQT0, and TOL0 resume counting immediately<br>(This bit is cleared automatically when counting starts.) |

|           |                                                  |
|-----------|--------------------------------------------------|
| <b>.2</b> | <b>Timer/Counter 0 Enable/Disable Bit</b>        |
|           | 0 Disable timer/counter 0; retain TCNT0 contents |
|           | 1 Enable timer/counter 0                         |

|             |                     |
|-------------|---------------------|
| <b>.1-0</b> | <b>Not used</b>     |
|             | 0 Always logic zero |

**TOE — Timer Output Enable Flag Register**

F92H

| Bit                   | 3         | 2           | 1          | 0         |
|-----------------------|-----------|-------------|------------|-----------|
| <b>Identifier</b>     | <b>.3</b> | <b>TOE0</b> | <b>BOE</b> | <b>.0</b> |
| <b>RESET Value</b>    | 0         | 0           | 0          | 0         |
| <b>Read/Write</b>     | —         | R/W         | R/W        | —         |
| <b>Bit Addressing</b> | —         | 1/4         | 1/4        | —         |

**.3** **Not used**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**TOE0****Timer/Counter 0 Output Enable Flag**

|   |                                                 |
|---|-------------------------------------------------|
| 0 | Disable timer/counter 0 output at the TCLO0 pin |
| 1 | Enable timer/counter 0 output at the TCLO0 pin  |

**BOE****Basic Timer Output Enable Flag**

|   |                                            |
|---|--------------------------------------------|
| 0 | Disable basic timer output at the BTCO pin |
| 1 | Enable basic timer output at the BTCO pin  |

**.0****Not used**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**WDFLAG — Watchdog Timer Counter Clear Flag Register**

F9AH

| Bit            | 3     | 2  | 1  | 0  |
|----------------|-------|----|----|----|
| Identifier     | WDTCF | .2 | .1 | .0 |
| RESET Value    | 0     | 0  | 0  | 0  |
| Read/Write     | W     | —  | —  | —  |
| Bit Addressing | 1/4   | —  | —  | —  |

**WDTCF**      **Watchdog Timer Counter Clear Flag**

|   |                                   |
|---|-----------------------------------|
| 1 | Clears the watchdog timer counter |
|---|-----------------------------------|

**.2-0****Bits 2-0**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**NOTE:** After watchdog timer is cleared by writing "1", this bit is cleared to "0" automatically. Instruction that clear the watchdog timer ("BITS WDTCF") should be executed at proper points in a program within a given period. If not executed within a given period and watchdog timer overflows, A system reset is generated internally and system is restarted with reset status.

**WDMOD — Watchdog Timer Mode Register****F99H, F98H**

| Bit            | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|----------------|----|----|----|----|----|----|----|----|
| Identifier     | .7 | .6 | .5 | .4 | .3 | .2 | .1 | .0 |
| RESET Value    | 1  | 0  | 1  | 0  | 0  | 1  | 0  | 1  |
| Read/Write     | W  | W  | W  | W  | W  | W  | W  | W  |
| Bit Addressing | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  |

**WDMOD****Watchdog Timer Enable/Disable Control**

|                 |                                 |
|-----------------|---------------------------------|
| 5AH             | Disable watchdog timer function |
| Any other value | Enable watchdog timer function  |

**WMOD — Watch Timer Mode Register****F89H, F88H**

| Bit                   | 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <b>Identifier</b>     | <b>.7</b> | <b>.6</b> | <b>.5</b> | <b>.4</b> | <b>.3</b> | <b>.2</b> | <b>.1</b> | <b>.0</b> |
| <b>RESET Value</b>    | 0         | 0         | 0         | 0         | (note)    | 0         | 0         | 0         |
| <b>Read/Write</b>     | W         | —         | W         | W         | R         | W         | W         | W         |
| <b>Bit Addressing</b> | 8         | —         | 8         | 8         | 1         | 8         | 8         | 8         |

**.7 Enable/Disable Buzzer Output Bit**

|   |                                    |
|---|------------------------------------|
| 0 | Disable buzzer (BUZ) signal output |
| 1 | Enable buzzer (BUZ) signal output  |

**.6 Bit 6**

|   |                   |
|---|-------------------|
| 0 | Always logic zero |
|---|-------------------|

**.5-.4 Output Buzzer Frequency Selection Bits**

|   |   |                                   |
|---|---|-----------------------------------|
| 0 | 0 | 2 kHz buzzer (BUZ) signal output  |
| 0 | 1 | 4 kHz buzzer (BUZ) signal output  |
| 1 | 0 | 8 kHz buzzer (BUZ) signal output  |
| 1 | 1 | 16 kHz buzzer (BUZ) signal output |

**.3 XT<sub>IN</sub> Input Level Control Bit**

|   |                                                                                    |
|---|------------------------------------------------------------------------------------|
| 0 | Input level to XT <sub>IN</sub> pin is low; 1-bit read-only addressable for tests  |
| 1 | Input level to XT <sub>IN</sub> pin is high; 1-bit read-only addressable for tests |

**.2 Enable/Disable Watch Timer Bit**

|   |                                                           |
|---|-----------------------------------------------------------|
| 0 | Disable watch timer and clear frequency dividing circuits |
| 1 | Enable watch timer                                        |

**.1 Watch Timer Speed Control Bit**

|   |                                           |
|---|-------------------------------------------|
| 0 | Normal speed; set IRQW to 0.5 seconds     |
| 1 | High-speed operation; set IRQW to 3.91 ms |

**.0 Watch Timer Clock Selection Bit**

|   |                                                        |
|---|--------------------------------------------------------|
| 0 | Select system clock (fxx)/128 as the watch timer clock |
| 1 | Select a subsystem clock as the watch timer clock      |

**NOTE:** A system reset sets WMOD.3 to the current input level of the subsystem clock, XT<sub>IN</sub>. If the input level is high, WMOD.3 is set to logic one; if low, WMOD.3 is cleared to zero along with all the other bits in the WMOD register.

# 6 OSCILLATOR CIRCUITS

## OVERVIEW

The KS57C3316 microcontroller has two oscillator circuits: a main system clock circuit, and a subsystem clock circuit. The CPU and peripheral hardware operate on the system clock frequency supplied through these circuits. Specifically, a clock pulse is required by the following peripheral modules:

- LCD controller
- Basic timer
- Timer/counter 0
- Watch timer
- A/D converter
- Clock output circuit
- Serial I/O interface
- PLL frequency synthesizer
- IF counter

### CPU Clock Notation

In this document, the following notation is used for descriptions of the CPU clock:

fx Main system clock  
fxt Subsystem clock  
fxx Selected system clock

### Clock Control Registers

When the system clock mode control register, SCMOD, and the power control register, PCON, are both cleared to zero after a system reset, the normal CPU operating mode is enabled, a main system clock of  $f_x/64$  is selected, and main system clock oscillation is initiated.

PCON is used to select normal CPU operating mode or one of two power-down modes — stop or idle. Bits 3 and 2 of the PCON register can be manipulated by a STOP or IDLE instruction to engage stop or idle power-down mode.

The system clock mode control register, SCMOD, lets you select the *main system clock* ( $f_x$ ) or a *subsystem clock* ( $f_{xt}$ ) as the CPU clock and to start (or stop) main or sub system clock oscillation. The resulting clock source, either main system clock or subsystem clock, is referred to as the *CPU clock*.

The main system clock is selected and oscillation started when all SCMOD bits are cleared to logic zero. By setting SCMOD.3–.2 and SCMOD.0 to different values, CPU can operate in a subsystem clock source and start or stop main or sub system clock oscillation. To stop main system clock oscillation, you must use the STOP instruction (assuming the main system clock is selected) or manipulate SCMOD.3 to “1” (assuming the sub system clock is selected).

The main system clock frequencies can be divided by 4, 8, or 64 and a subsystem clock frequencies can only be divided by 4. By manipulating PCON bits 1 and 0, you select one of the following frequencies as CPU clock.

$f_x/4$ ,  $f_{xt}/4$ ,  $f_x/8$ ,  $f_x/64$

### Using a Subsystem Clock

If a subsystem clock is being used as the selected system clock, the idle power-down mode can be initiated by executing an IDLE instruction. The subsystem clock can be stopped by setting SCMOD.2 to “1”.

The watch timer, buzzer and LCD display operate normally with a subsystem clock source, since they operate at very slow speeds (122  $\mu$ s at 32.768 kHz) and with very low power consumption.

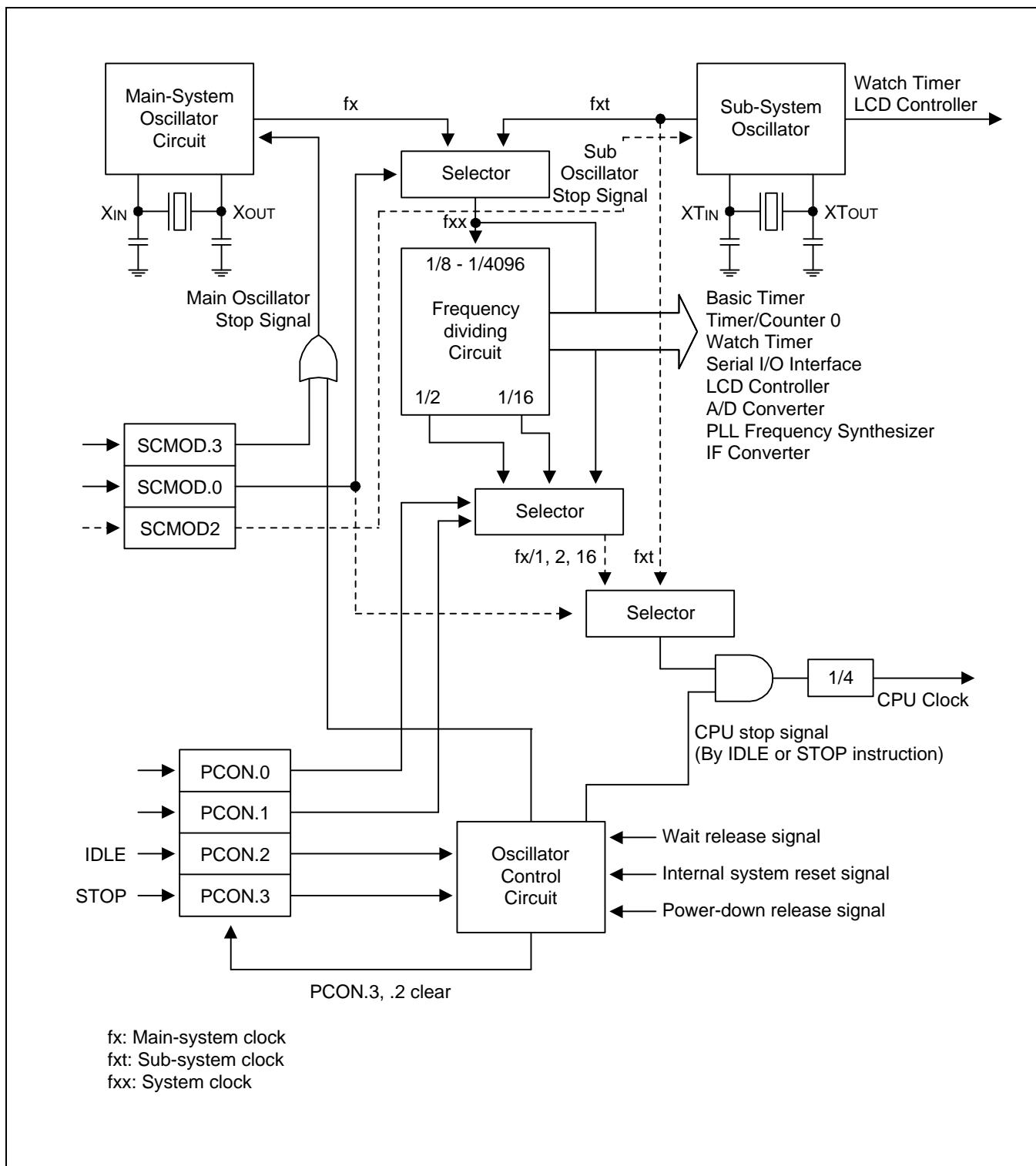



Figure 6-1. Clock Circuit Diagram

## MAIN SYSTEM OSCILLATOR CIRCUITS

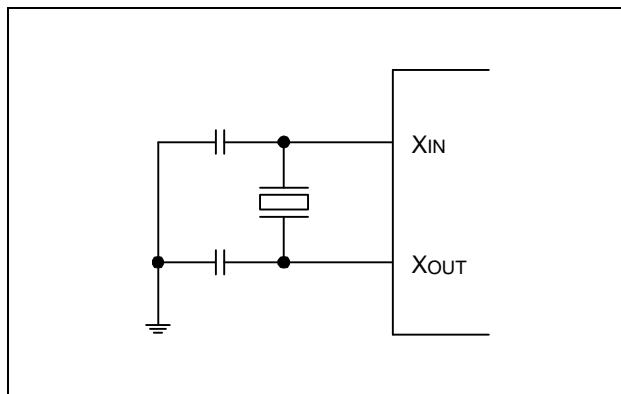



Figure 6-2. Crystal/Ceramic Oscillator

## SUBSYSTEM OSCILLATOR CIRCUITS

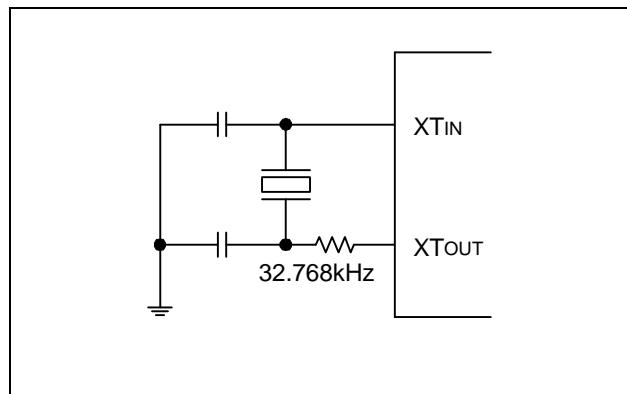



Figure 6-4. Crystal/Ceramic Oscillator

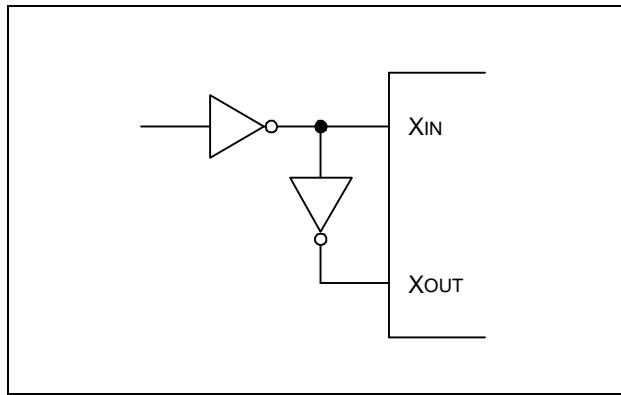



Figure 6-3. External Oscillator

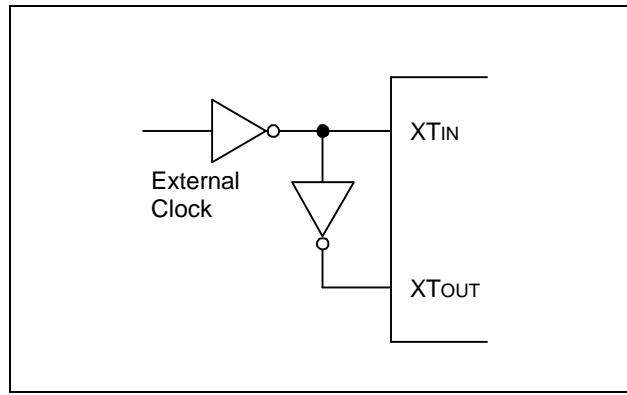
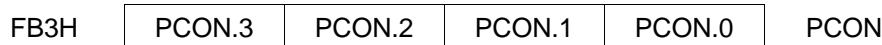




Figure 6-5. External Oscillator

## POWER CONTROL REGISTER (PCON)

The power control register (PCON) is a 4-bit register that is used to select the CPU clock frequency and to control CPU operating and power-down modes. The PCON can be addressed directly by 4-bit write instructions or indirectly by the instructions IDLE and STOP.



PCON.3 and PCON.2 can be addressed only by the STOP and IDLE instructions, respectively, to engage the idle and stop power-down modes. Idle and stop modes can be initiated by these instruction despite the current value of the enable memory bank flag (EMB). PCON bits 1 and 0 can be written only by 4-bit RAM control instruction.

PCON is a write-only register. There are three basic choices:

- Main system clock (fx) or subsystem clock (fxt);
- Divided fx clock frequency of 4, 8, or 64
- Divided fxt clock frequency of 4.

PCON.1 and PCON.0 settings are also connected with the system clock mode control register, SCMOD. If SCMOD.0 = "0", the main system clock is always selected by the PCON.1 and PCON.0 setting; if SCMOD.0 = "1" the subsystem clock is selected.

A system reset sets PCON register values (and SCMOD) to logic zero.

**Table 6-1. Power Control Register (PCON) Organization**

| PCON Bit Settings |        | Resulting CPU Clock Frequency |             |
|-------------------|--------|-------------------------------|-------------|
| PCON.1            | PCON.0 | SCMOD.0 = 0                   | SCMOD.0 = 1 |
| 0                 | 0      | fx/64                         | fxt/4       |
| 1                 | 0      | fx/8                          |             |
| 1                 | 1      | fx/4                          |             |

| PCON Bit Settings |        | Resulting CPU Operating Mode |
|-------------------|--------|------------------------------|
| PCON.3            | PCON.2 |                              |
| 0                 | 0      | Normal CPU operating mode    |
| 0                 | 1      | IDLE                         |
| 1                 | 0      | STOP mode                    |

### PROGRAMMING TIP — Setting the CPU Clock

To set the CPU clock to 0.89  $\mu$ s at 4.5 MHz:

|      |        |
|------|--------|
| BITS | EMB    |
| SMB  | 15     |
| LD   | A,#3H  |
| LD   | PCON,A |

## INSTRUCTION CYCLE TIMES

The unit of time that equals one machine cycle varies depending on whether the main system clock ( $f_x$ ) or a subsystem clock ( $f_{xt}$ ) is used, and on how the oscillator clock signal is divided (by 4, 8, or 64). Table 6-2 shows corresponding cycle times in microseconds.

**Table 6-2. Instruction Cycle Times for CPU Clock Rates**

| Oscillation Source    | Selected CPU Clock | Resulting Frequency | Cycle Time ( $\mu$ sec) |
|-----------------------|--------------------|---------------------|-------------------------|
| $f_x = 4.5$ MHz       | $f_x/64$           | 70.3 kHz            | 14.2                    |
|                       | $f_x/8$            | 562.5 kHz           | 1.78                    |
|                       | $f_x/4$            | 1.125 MHz           | 0.89                    |
| $f_{xt} = 32.768$ kHz | $f_{xt}/4$         | 8.19 kHz            | 122.0                   |

## SYSTEM CLOCK MODE REGISTER (SCMOD)

The system clock mode register, SCMOD, is a 4-bit register that is used to select the CPU clock and to control main and sub-system clock oscillation. SCMOD is mapped to the RAM address FB7H.

When main system clock is used as clock source, main system clock oscillation can be stopped by STOP instruction or setting SCMOD.3 (not recommended).

When the clock source is subsystem clock, main system clock oscillation is stopped by setting SCMOD.3. SCMOD.0, SCMOD.2 and SCMOD.3 cannot be simultaneously modified. Sub-oscillation goes into stop mode only by SCMOD.2. PCON which revokes stop mode cannot stop the sub-oscillation. The stop of sub-oscillation is released only by a system reset.

A system reset clears all SCMOD values to logic zero, selecting the main system clock (fx) as the CPU clock and starting clock oscillation. The reset value of the SCMOD is 0.

SCMOD.3, SCMOD.2, SCMOD.0 bits can be manipulated by 1-bit write instructions (In other words, SCMOD.0, SCMOD.2 and SCMOD.3 cannot be modified simultaneously by a 4-bit write). Bit 1 is always logic zero.

|      |         |         |     |         |       |
|------|---------|---------|-----|---------|-------|
| FB7H | SCMOD.3 | SCMOD.2 | "0" | SCMOD.0 | SCMOD |
|------|---------|---------|-----|---------|-------|

A subsystem clock (fxt) can be selected as the system clock by manipulating the SCMOD.3 and SCMOD.0 bit settings. If SCMOD.3 = "0" and SCMOD.0 = "1", the subsystem clock is selected and main system clock oscillation continues. If SCMOD.3 = "1" and SCMOD.0 = "1", fxt is selected, but main system clock oscillation stops.

If you have selected fx as the CPU clock, setting SCMOD.3 to "1" will stop main system clock oscillation. But this mode must not be used. To stop main system clock oscillation safely, main oscillation clock should be stopped only by a STOP instruction in main system clock mode.

Table 6-3. System Clock Mode Register (SCMOD) Organization

| SCMOD Register Bit Settings |         |         | Resulting Clock Selection |                 |                             |
|-----------------------------|---------|---------|---------------------------|-----------------|-----------------------------|
| SCMOD.3                     | SCMOD.2 | SCMOD.0 | fx Oscillation            | fxt Oscillation | CPU Clock <sup>(note)</sup> |
| 0                           | 0       | 0       | On                        | On              | fx                          |
| 0                           | 1       | 0       | On                        | Off             | fx                          |
| 0                           | 0       | 1       | On                        | On              | fxt                         |
| 1                           | 0       | 1       | Off                       | On              | fxt                         |

NOTE: CPU clock is selected by PCON register settings.

Table 6-4. Main or Sub Oscillation Stop Mode

| Mode                       | Condition                                                                                            | Method to issue Osc Stop                                                                                            | Oscillator's Stop Release Source (2)                                                                                                                                                                                                            |
|----------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main Oscillation STOP Mode | Main oscillator runs.<br>Sub oscillator runs (or stops).<br>System is operating with the main clock. | STOP instruction:<br>Only main oscillator stops, CPU is in idle mode.<br>Sub oscillator still runs (or stops).      | Interrupts, CE or RESET signal:<br>After stop mode released, main oscillation starts and oscillation stabilization time is elapsed. And then the CPU operates.<br>Oscillation stabilization time is $1/ \{256 \times BT \text{ clock (fx)}\}$ . |
|                            |                                                                                                      | Set SCMOD.3 to "1" (1)<br>Only main oscillator stops, CPU is in idle mode.<br>Sub oscillator still runs (or stops). | CE or RESET signal:<br>Interrupts can't start the main oscillation. Therefore, the CPU operation can never be restarted.                                                                                                                        |
|                            | Main oscillator runs.<br>Sub oscillator runs.<br>System is operating with sub clock.                 | STOP instruction: (1)<br>Only main oscillator stops.<br>CPU is in idle mode.<br>Sub oscillator still runs.          | Basic timer overflow, CE or RESET signal:<br>After the overflow of basic timer $[1/ \{256 \times BT \text{ clock (fxt)}\}]$ , CPU operation and main oscillation automatically start.                                                           |
|                            |                                                                                                      | Set SCMOD.3 to "1"<br>Only main oscillator stops.<br>CPU still operates.<br>Sub oscillator still runs.              | Set SCMOD.3 to "0", CE or a system reset.                                                                                                                                                                                                       |
| Sub Oscillation STOP Mode  | Main oscillator runs.<br>Sub oscillator runs.<br>System is operating with the main clock             | Set SCMOD.2 to "1":<br>Main oscillator still runs.<br>CPU operates.<br>Only sub oscillator stops.                   | Set SCMOD.3 to "0", CE or a system reset.                                                                                                                                                                                                       |
|                            | Main oscillator runs (or stops).<br>Sub oscillator runs.<br>System is operating with sub clock.      | Set SCMOD.2 to "1":<br>Main oscillator still runs (or stops).<br>CPU is in idle mode.<br>Only sub oscillator stops. | CE or RESET signal                                                                                                                                                                                                                              |

**NOTES:**

1. This mode must not be used.
2. Oscillation stabilization time by interrupt is  $1/ (256 \times BT \text{ clocks})$ . Oscillation stabilization time by a reset is 29.1 ms at 4.5 MHz, main oscillation clock.

Table 6-5. System Operating Mode Comparison

| Mode                | Condition                                                                                                     | STOP or IDLE Mode Entering Method                                                      | Current Consumption |
|---------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------|
| Main operating mode | Main oscillator runs.<br>Sub oscillator runs (stops).<br>System clock is the main oscillation clock.          | —                                                                                      | A                   |
| Main Idle mode      | Main oscillator runs.<br>Sub oscillator runs (stops).<br>System clock is the main oscillation clock.          | IDLE instruction                                                                       | B                   |
| Main Stop mode      | Main oscillator runs.<br>Sub oscillator runs.<br>System clock is the main oscillation clock.                  | STOP instruction                                                                       | D                   |
| Sub operating mode  | Main oscillator is stopped by SCMOD.3.<br>Sub oscillator runs.<br>System clock is the sub oscillation clock.  | —                                                                                      | C                   |
| Sub Idle Mode       | Main oscillator is stopped by SCMOD.3.<br>Sub oscillator runs.<br>System clock is the sub oscillation clock.  | IDLE instruction                                                                       | D                   |
| Sub Stop mode       | Main oscillator is stopped by SCMOD.3.<br>Sub oscillator runs.<br>System clock is the sub oscillation clock.  | Setting SCMOD.2 to "1":<br>This mode can be released only by an external RESET signal. | E                   |
| Main/Sub Stop mode  | Main oscillator runs.<br>Sub oscillator is stopped by SCMOD.2.<br>System clock is the main oscillation clock. | STOP instruction:<br>This mode can be released by an interrupt and reset.              | E                   |

**NOTE:** The current consumption is: A > B > C > D > E.

## SWITCHING THE CPU CLOCK

Together, bit settings in the power control register, PCON, and the system clock mode register, SCMOD, determine whether a main system or a subsystem clock is selected as the CPU clock, and also how this frequency is to be divided. This makes it possible to switch dynamically between main and subsystem clocks and to modify operating frequencies.

SCMOD.3, SCMOD.2, and SCMOD.0 select the main system clock (fx) or a subsystem clock (fxt) and start or stop main or sub system clock oscillation. PCON.1 and PCON.0 control the frequency divider circuit, and divide the selected fx clock by 4, 8, 64, or fxt clock by 4.

### NOTE

A clock switch operation does not go into effect immediately when you make the SCMOD and PCON register modifications — the previously selected clock continues to run for a certain number of machine cycles.

For example, you are using the default CPU clock (normal operating mode and a main system clock of fx/64) and you want to switch from the fx clock to a subsystem clock and to stop the main system clock. To do this, you first need to set SCMOD.0 to "1". This switches the clock from fx to fxt but allows main system clock oscillation to continue. Before the switch actually goes into effect, a certain number of machine cycles must elapse. After this time interval, you can then disable main system clock oscillation by setting SCMOD.3 to "1".

This same 'stepped' approach must be taken to switch from a subsystem clock to the main system clock: First, clear SCMOD.3 to "0" to enable main system clock oscillation. Until main osc is stabilized, system clock must not be changed. Then, after a certain number of machine cycles has elapsed, select the main system clock by clearing all SCMOD values to logic zero.

Following a system reset, CPU operation starts with the lowest main system clock frequency of 14.2  $\mu$ sec at 4.5 MHz after the standard oscillation stabilization interval of 29.1 ms has elapsed. Table 6-6 details the number of machine cycles that must elapse before a CPU clock switch modification goes into effect.

Table 6-6. Elapsed Machine Cycles During CPU Clock Switch

| BEFORE      |            | SCMOD.0 = 0       |            |                   |            |                  |            | SCMOD.0 = 1                |
|-------------|------------|-------------------|------------|-------------------|------------|------------------|------------|----------------------------|
|             |            | PCON.1 = 0        | PCON.0 = 0 | PCON.1 = 1        | PCON.0 = 0 | PCON.1 = 1       | PCON.0 = 1 |                            |
| SCMOD.0 = 0 | PCON.1 = 0 | N/A               |            | 1 MACHINE CYCLE   |            | 1 MACHINE CYCLE  |            | N/A                        |
|             | PCON.0 = 0 |                   |            |                   |            |                  |            |                            |
|             | PCON.1 = 1 | 8 MACHINE CYCLES  |            | N/A               |            | 8 MACHINE CYCLES |            | N/A                        |
|             | PCON.0 = 0 |                   |            |                   |            |                  |            |                            |
|             | PCON.1 = 1 | 16 MACHINE CYCLES |            | 16 MACHINE CYCLES |            | N/A              |            | fx / 4fxt<br>MACHINE CYCLE |
|             | PCON.0 = 1 |                   |            |                   |            |                  |            |                            |
| SCMOD.0 = 1 |            | N/A               |            | N/A               |            | fx / 4fxt (M/C)  |            | N/A                        |

**NOTES:**

1. Even if oscillation is stopped by setting SCMOD.3 during main system clock operation, the stop mode is not entered.
2. Since the  $X_{IN}$  input is connected internally to  $V_{SS}$  to avoid current leakage due to the crystal oscillator in stop mode, do not set SCMOD.3 to "1" or STOP instruction when an external clock is used as the main system clock.
3. When the system clock is switched to the subsystem clock, it is necessary to disable any interrupts which may occur during the time intervals shown in Table 6-6.
4. 'N/A' means 'not available'.
5. fx: Main-system clock, fxt: Sub-system clock, M/C: Machine Cycle.  
When fx is 4.5 MHz, and fxt is 32.768 kHz.

**☞ PROGRAMMING TIP — Switching Between Main System and Subsystem Clock**

1. Switch from the main system clock to the subsystem clock:

```

MA2SUB    BITS      SCMOD.0          ; Switches to subsystem clock
          CALL      DLY80           ; Delay 80 machine cycles
          BITS      SCMOD.3          ; Stop the main system clock
          RET
DLY80      LD       A,#0FH
DEL1       NOP
          NOP
          DECS      A
          JR       DEL1
          RET

```

2. Switch from the subsystem clock to the main system clock:

```

SUB2MA    BITR      SCMOD.3          ; Start main system clock oscillation
          CALL      DLY80           ; Delay 80 machine cycles
          CALL      DLY80           ; Delay 80 machine cycles
          BITR      SCMOD.0          ; Switch to main system clock
          RET

```

## CLOCK OUTPUT MODE REGISTER (CLMOD)

The clock output mode register, CLMOD, is a 4-bit register that is used to enable or disable clock output to the CLO pin and to select the CPU clock source and frequency. CLMOD is addressable by 4-bit write instruction only.

|      |         |     |         |         |
|------|---------|-----|---------|---------|
| FD0H | CLMOD.3 | "0" | CLMOD.1 | CLMOD.0 |
|------|---------|-----|---------|---------|

RESET clears CLMOD to logic zero, which automatically selects the CPU clock as the clock source (without initiating clock oscillation), and disable clock output.

CLMOD.3 is the enable/disable clock output control bit; CLMOD.1 and CLMOD.0 are used to select one of four possible clock sources and frequencies: normal CPU clock, fx/8, fx/16, or fx/64.

**Table 6-7. Clock Output Mode Register (CLMOD) Organization**

| CLMOD Bit Setting |         | Resulting Clock Output               |                                          |
|-------------------|---------|--------------------------------------|------------------------------------------|
| CLMOD.1           | CLMOD.0 | Clock Source                         | Frequency                                |
| 0                 | 0       | CPU clock (fx/4, fx/8, fx/64, fxt/4) | 1.125 MHz, 562.5 kHz, 70.3 kHz, 8.19 kHz |
| 0                 | 1       | fxx/8                                | 562.5 kHz                                |
| 1                 | 0       | fxx/16                               | 281.25 kHz                               |
| 1                 | 1       | fxx/64                               | 70.3 kHz                                 |

| CLMOD.3 | Result of CLMOD.3 Setting |
|---------|---------------------------|
| 0       | Clock output is disable   |
| 1       | Clock output is enable    |

**NOTE:** Frequencies assume that fxx = 4.5 MHz.

## CLOCK OUTPUT CIRCUIT

The clock output circuit, which is used to output clock pulses to the CLO pin, has the following components (see Figure 6-6):

- 4-bit clock output mode register (CLMOD)
- Clock selector
- output latch
- Port mode flag
- CLO output pin (P4.3)

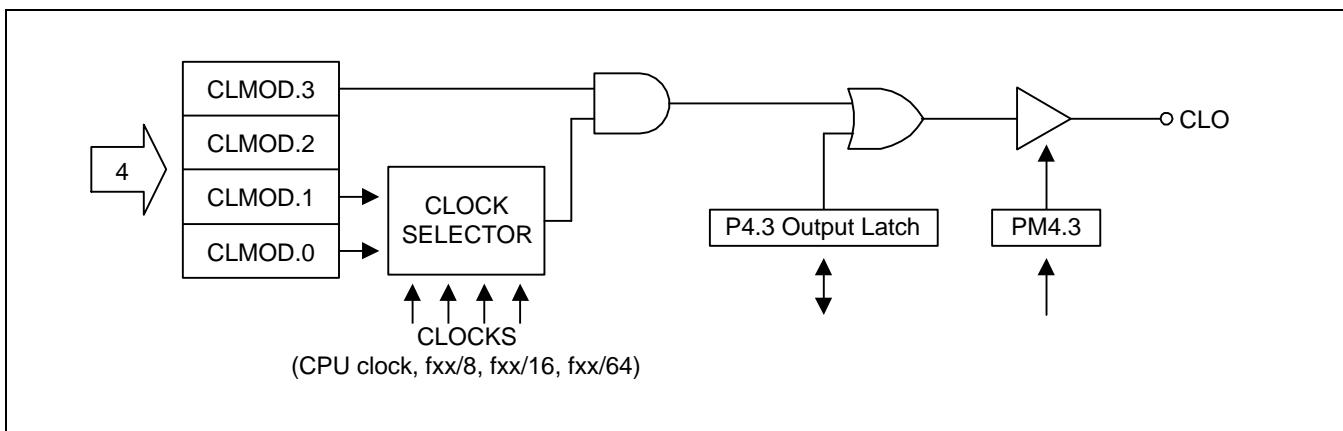



Figure 6-6. CLO Output Pin Circuit Diagram

## CLOCK OUTPUT PROCEDURE

The procedure for outputting clock pulses to the CLO pin may be summarized as follows:

1. Disable clock output by clearing CLMOD.3 to logic zero.
2. Set the clock output frequency (CLMOD.1, CLMOD.0).
3. Load a "0" to the output latch of the CLO pin (P4.3).
4. Set the P4.3 mode flag (PM 4.3) to output mode.
5. Enable clock output by setting CLMOD.3 to logic one.

### PROGRAMMING TIP — CPU Clock Output to the CLO Pin

To output the CPU clock to the CLO pin

|      |         |   |                         |
|------|---------|---|-------------------------|
| BITS | EMB     |   |                         |
| SMB  | 15      |   |                         |
| LD   | EA,#08H |   |                         |
| LD   | PMG2,EA | ; | P4.3 ← Output mode      |
| BITR | P4.3    | ; | Clear P4.3 output latch |
| LD   | A,#9H   |   |                         |
| LD   | CLMOD,A |   |                         |

# 7

## INTERRUPTS

### OVERVIEW

The KS57C3316 interrupt control circuit has five functional components:

- Interrupt enable flags (IEx)
- Interrupt request flags (IRQx)
- Interrupt master enable register (IME)
- Interrupt priority register (IPR)
- Power-down release signal circuit

Three kinds of interrupts are supported:

- Internal interrupts generated by on-chip processes
- External interrupts generated by external peripheral devices
- Quasi-interrupts used for edge detection and as clock sources

**Table 7-1. Interrupt Types and Corresponding Port Pin(s)**

| Interrupt Type      | Interrupt Name           | Corresponding Port Pins   |
|---------------------|--------------------------|---------------------------|
| External interrupts | INT0, INT1, INT4, INTCE  | P1.0, P1.1, P1.3, CE      |
| Internal interrupts | INTB, INTT0, INTIF, INTS | Not applicable            |
| Quasi-interrupts    | INT2, KS0-KS3            | P1.2, KS0-KS3 (P6.0-P6.3) |
|                     | INTW                     | Not applicable            |

## Vectored Interrupts

Interrupt requests may be processed as vectored interrupts in hardware, or they can be generated by program software. A vectored interrupt is generated when the following flags and register settings, corresponding to the specific interrupt (INTn) are set to logic one:

- Interrupt enable flag (IEx)
- Interrupt master enable flag (IME)
- Interrupt request flag (IRQx)
- Interrupt status flags (IS0, IS1)
- Interrupt priority register (IPR)

If all conditions are satisfied for the execution of a requested service routine, the start address of the interrupt is loaded into the program counter and the program starts executing the service routine from this address.

EMB and ERB flags for RAM memory banks and registers are stored in the vector address area of the ROM during interrupt service routines. The flags are stored at the beginning of the program with the VENT instruction. The initial flag values determine the vectors for resets and interrupts. Enable flag values are saved during the main routine, as well as during service routines. Any changes that are made to enable flag values during a service routine are not stored in the vector address.

When an interrupt occurs, the enable flag values before the interrupt is initiated are saved along with the program status word (PSW), and the enable flag values for the interrupt is fetched from the respective vector address. Then, if necessary, you can modify the enable flags during the interrupt service routine. When the interrupt service routine is returned to the main routine by the IRET instruction, the original values saved in the stack are restored and the main program continues program execution with these values.

## Software-Generated Interrupts

To generate an interrupt request from software, the program manipulates the appropriate IRQx flag. When the interrupt request flag value is set, it is retained until all other conditions for the vectored interrupt have been met, and the service routine can be initiated.

## Multiple Interrupts

By manipulating the two interrupt status flags (IS0 and IS1), you can control service routine initialization and thereby process multiple interrupts simultaneously.

If more than four interrupts are being processed at one time, you can avoid possible loss of working register data by using the PUSH RR instruction to save register contents to the stack before the service routines are executed in the same register bank. When the routines have executed successfully, you can restore the register contents from the stack to working memory using the POP instruction.

## Power-Down Mode Release

An interrupt can be used to release power-down mode (stop or idle), but INT0 is possible to release only idle when using fxx/64 clock. Interrupts for power-down mode release are initiated by setting the corresponding interrupt enable flag. Even if the IME flag is cleared to zero, power-down mode will be released by an interrupt request signal when the interrupt enable flag has been set. In such cases, the interrupt routine will not be executed since IME = "0".

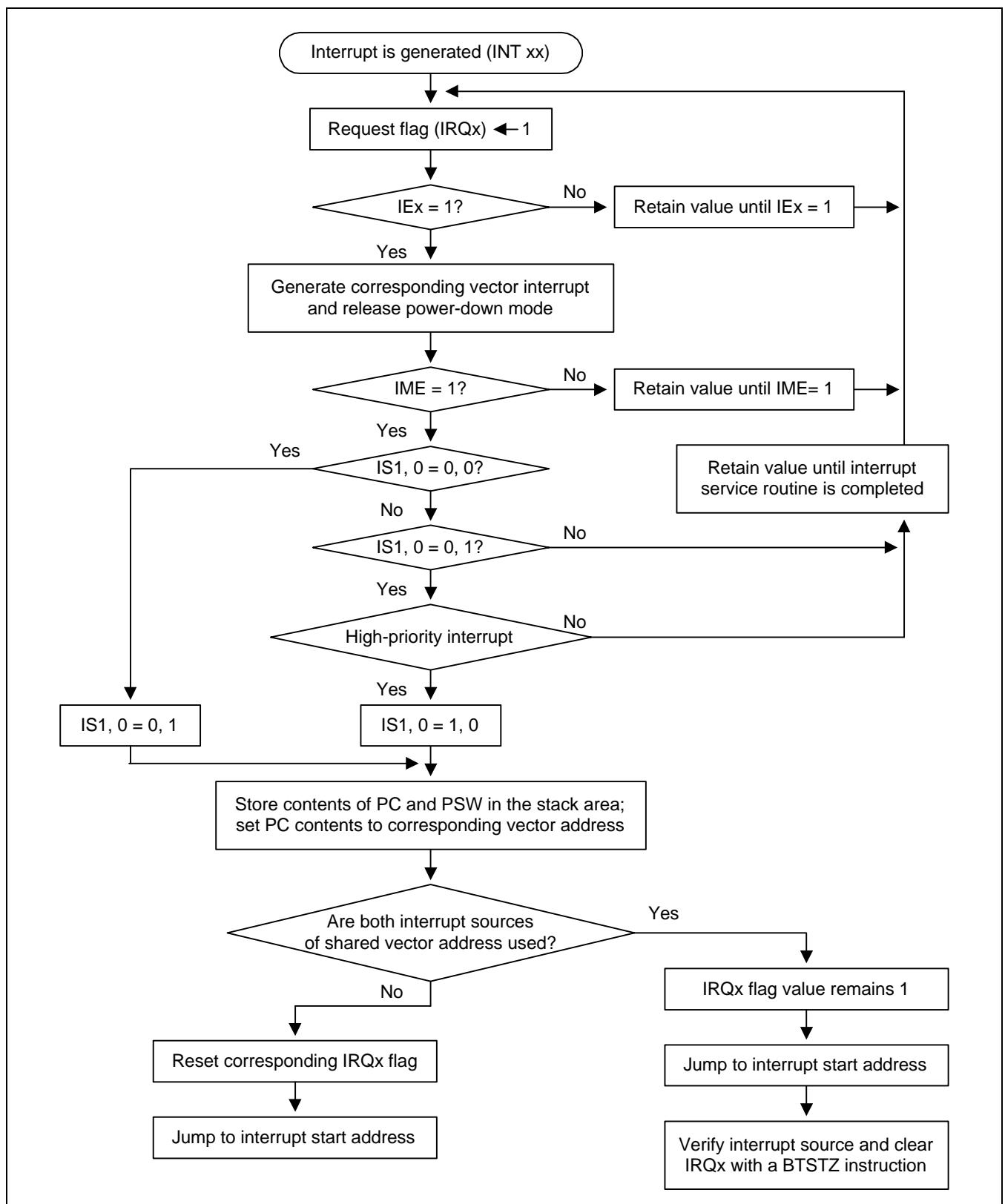



Figure 7-1. Interrupt Execution Flowchart

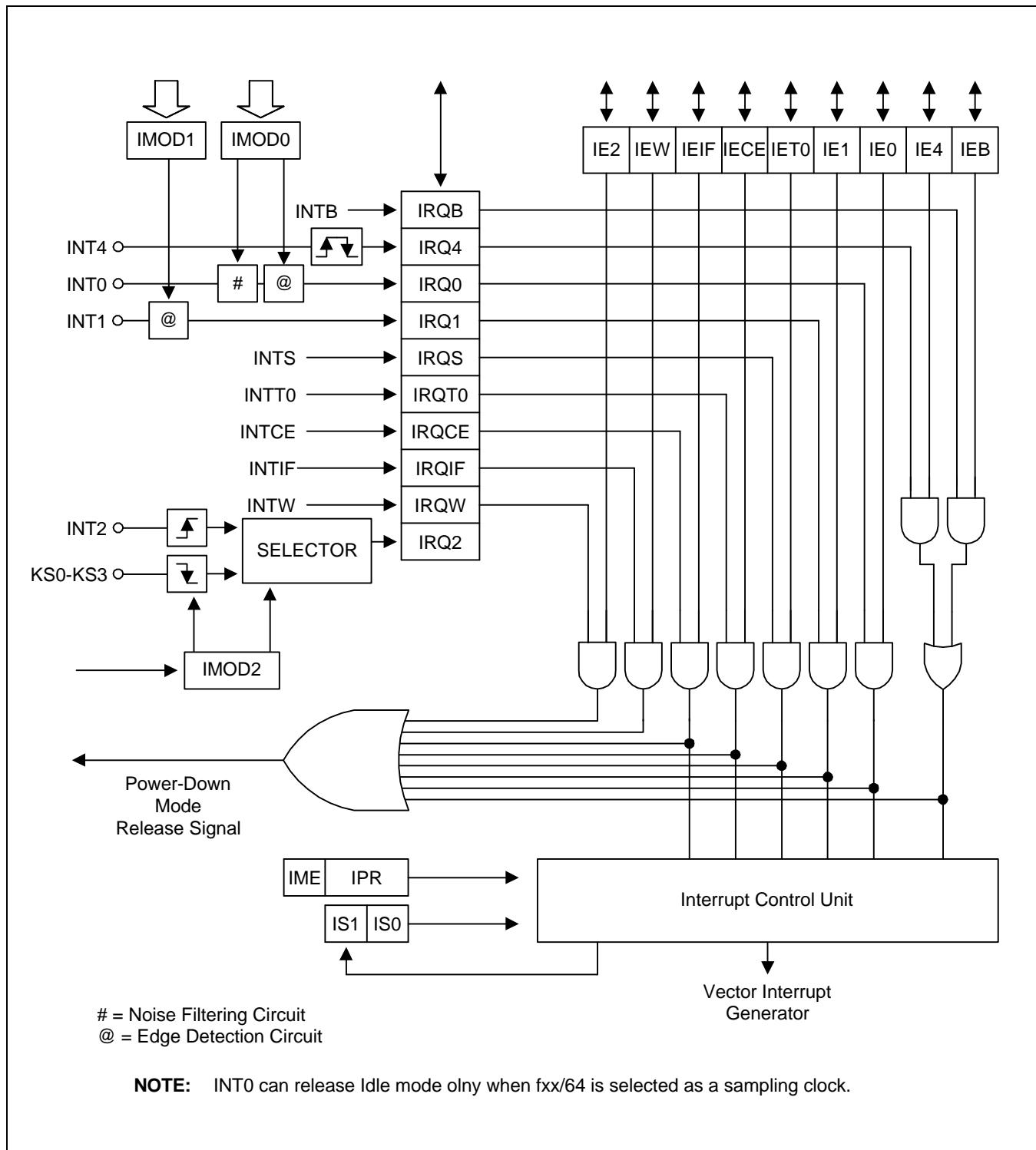



Figure 7-2. Interrupt Control Circuit Diagram

## MULTIPLE INTERRUPTS

The interrupt controller can service multiple interrupts in two ways: as two-level interrupts, where either all interrupt requests or only those of highest priority are serviced, or as multi-level interrupts, when the interrupt service routine for a lower-priority request is accepted during the execution of a higher priority routine.

### Two-Level Interrupt Handling

Two-level interrupt handling is the standard method for processing multiple interrupts. When the IS1 and IS0 bits of the PSW (FB0H.3 and FB0H.2, respectively) are both logic zero, program execution mode is normal and all interrupt requests are serviced (see Figure 7-3).

Whenever an interrupt request is accepted, IS1 and IS0 are incremented by one, and the values are stored in the stack along with the other PSW bits. After the interrupt routine has been serviced, the modified IS1 and IS0 values are automatically restored from the stack by an IRET instruction.

IS0 and IS1 can be manipulated directly by 1-bit write instructions, regardless of the current value of the enable memory bank flag (EMB). Before you modify an interrupt service flag, however, you must first disable interrupt processing with a DI instruction.

When IS1 = "0" and IS0 = "1", all interrupt service routines are inhibited except for the highest priority interrupt currently defined by the interrupt priority register (IPR).

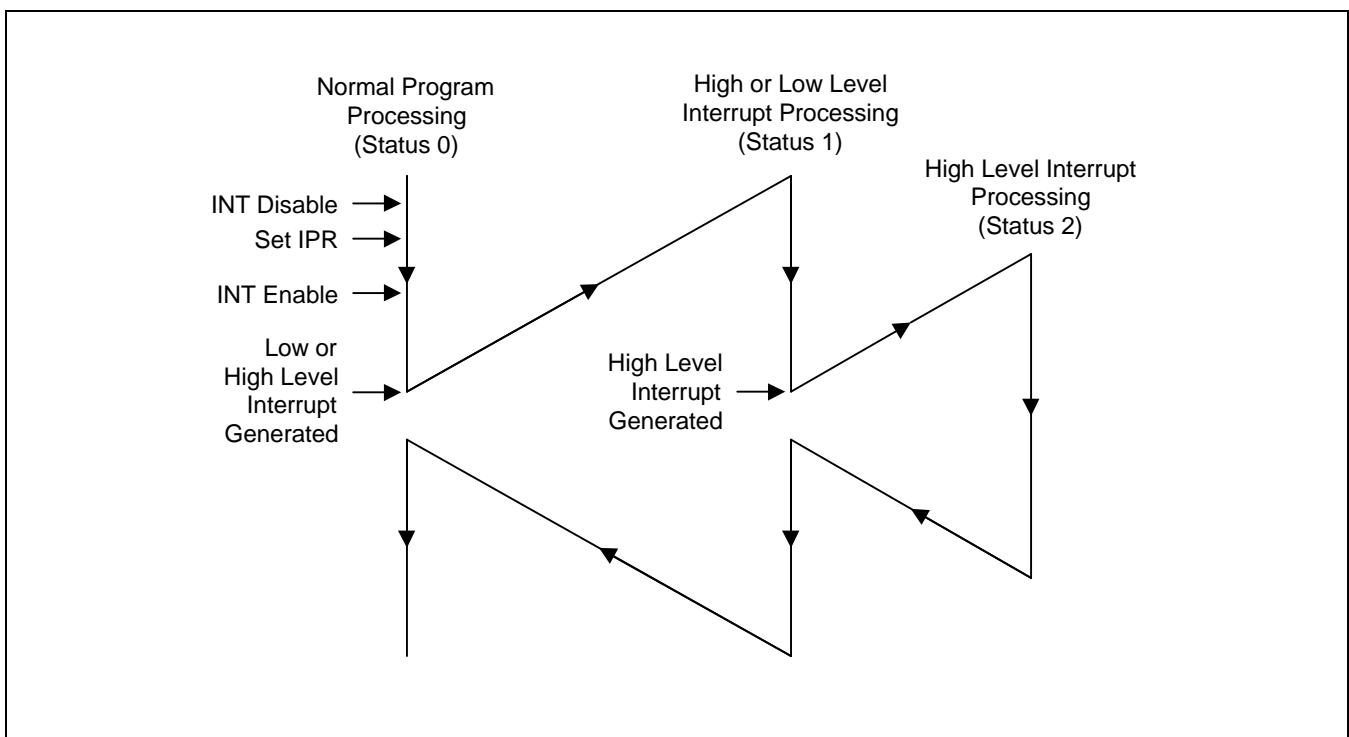



Figure 7-3. Two-Level Interrupt Handling

### Multi-Level Interrupt Handling

With multi-level interrupt handling, a lower-priority interrupt request can be executed by manipulating the interrupt status flags, IS0 and IS1 while a high-priority interrupt is being serviced (see Table 7-2).

When an interrupt is requested during normal program execution, interrupt status flags IS0 and IS1 are set to "1" and "0", respectively. This setting allows only highest-priority interrupts to be serviced. When a high-priority request is accepted, both interrupt status flags are then cleared to "0" by software so that a request of any priority level can be serviced. In this way, the high- and low-priority requests can be serviced in parallel (see Figure 7-4).

Table 7-2. IS1 and IS0 Bit Manipulation for Multi-Level Interrupt Handling

| Process Status | Before INT |     | Effect of ISx Bit Setting                                                                             | After INT ACK |     |
|----------------|------------|-----|-------------------------------------------------------------------------------------------------------|---------------|-----|
|                | IS1        | IS0 |                                                                                                       | IS1           | IS0 |
| 0              | 0          | 0   | All interrupt requests are serviced.                                                                  | 0             | 1   |
| 1              | 0          | 1   | Only high-priority interrupts as determined by the current settings in the IPR register are serviced. | 1             | 0   |
| 2              | 1          | 0   | No additional interrupt requests will be serviced.                                                    | —             | —   |
| —              | 1          | 1   | Value undefined                                                                                       | —             | —   |

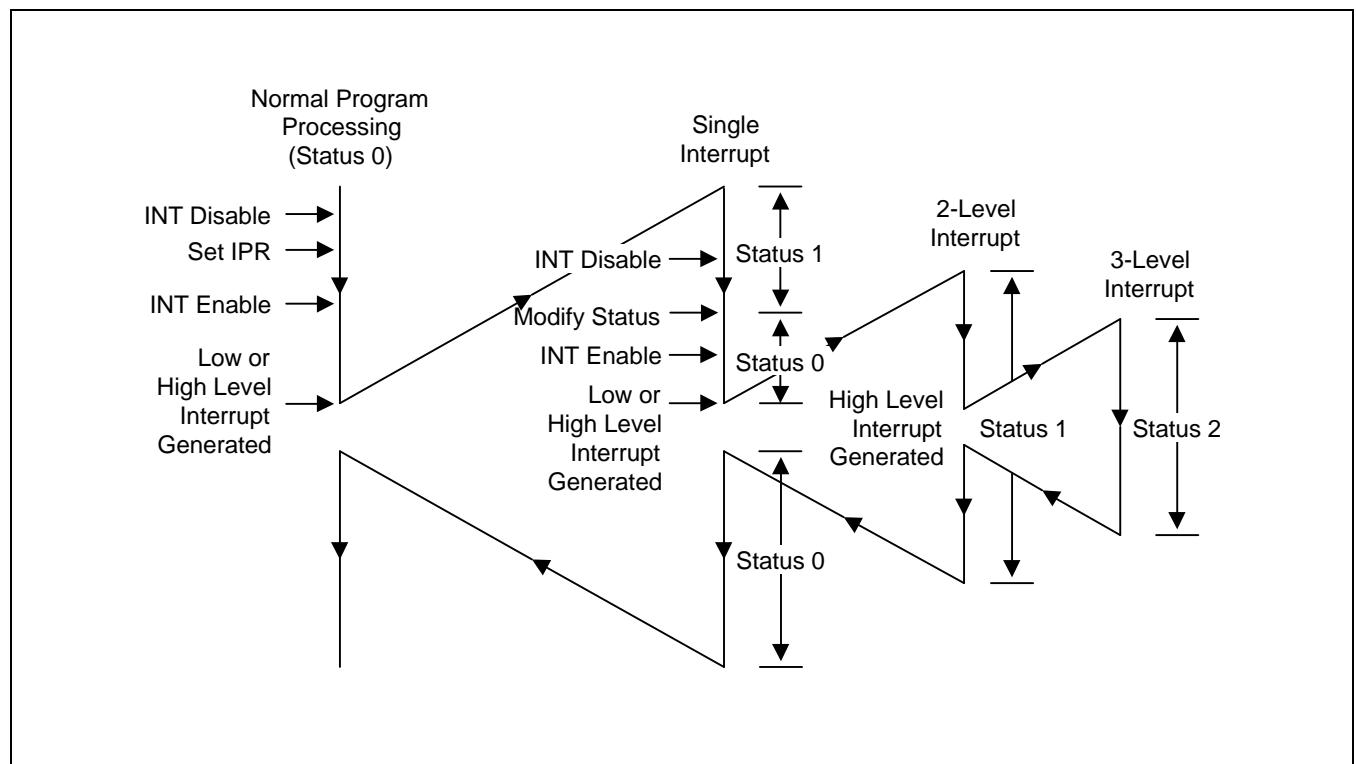



Figure 7-4. Multi-Level Interrupt Handling

## INTERRUPT PRIORITY REGISTER (IPR)

The 4-bit interrupt priority register (IPR) is used to control multi-level interrupt handling. Its reset value is logic zero. Before the IPR can be modified, all interrupts must first be disabled by a DI instruction.

|      |     |       |       |       |
|------|-----|-------|-------|-------|
| FB2H | IME | IPR.2 | IPR.1 | IPR.0 |
|------|-----|-------|-------|-------|

By manipulating the IPR settings, you can choose to process all interrupt requests with the same priority level, or you can select one type of interrupt for high-priority processing. A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low-priority interrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.

**Table 7-3. Standard Interrupt Priorities**

| Interrupt  | Default Priority |
|------------|------------------|
| INTB, INT4 | 1                |
| INT0       | 2                |
| INT1       | 3                |
| INTS       | 4                |
| INTT0      | 5                |
| INTCE      | 6                |
| INTIF      | 7                |

The MSB of the IPR, the interrupt master enable flag (IME), enables and disables all interrupt processing. Even if an interrupt request flag and its corresponding enable flag are set, a service routine cannot be executed until the IME flag is set to logic one. The IME flag (mapped FB2H.3) can be directly manipulated by EI and DI instructions, regardless of the current enable memory bank (EMB) value.

**Table 7-4. Interrupt Priority Register Settings**

| IPR.2 | IPR.1 | IPR.0 | Result of IPR Bit Setting                                        |
|-------|-------|-------|------------------------------------------------------------------|
| 0     | 0     | 0     | Normal interrupt handling according to default priority settings |
| 0     | 0     | 1     | Process INTB and INT4 interrupts at highest priority             |
| 0     | 1     | 0     | Process INT0 interrupts at highest priority                      |
| 0     | 1     | 1     | Process INT1 interrupts at highest priority                      |
| 1     | 0     | 0     | Process INTS interrupts at highest priority                      |
| 1     | 0     | 1     | Process INTT0 interrupts at highest priority                     |
| 1     | 1     | 0     | Process INTCE interrupts at highest priority                     |
| 1     | 1     | 1     | Process INTIF interrupts at highest priority                     |

**NOTE:** During normal interrupt processing, interrupts are processed in the order in which they occur. If two or more interrupt requests are received simultaneously, the priority level is determined according to the standard interrupt priorities in Table 7-3 (the default priority assigned by hardware when the lower three IPR bits = "0"). In this case, the high -priority interrupt request is serviced and the other interrupt is inhibited. Then, when the high-priority interrupt is returned from its service routine by an IRET instruction, the inhibited service routine is started.

### PROGRAMMING TIP — Setting the INT Interrupt Priority

The following instruction sequence sets the INT1 interrupt to high priority:

```

BITS      EMB
SMB      15
DI          ; IPR.3 (IME) ← 0
LD      A,#3H
LD      IPR,A
EI          ; IPR.3 (IME) ← 1

```

## EXTERNAL INTERRUPT 0 AND 1 MODE REGISTERS (IMOD0 and IMOD1)

The following components are used to process external interrupts at the INT0 and INT1 pins:

- Noise filtering circuit for INT0
- Edge detection circuit
- Two mode registers, IMOD0 and IMOD1

The mode registers are used to control the triggering edge of the input signal. IMOD0 and IMOD1 settings let you choose either the rising or falling edge of the incoming signal as the interrupt request trigger. The INT4 interrupt is an exception since its input signal generates an interrupt request on both rising and falling edges.

|      |         |     |         |         |
|------|---------|-----|---------|---------|
| FB4H | IMOD0.3 | "0" | IMOD0.1 | IMOD0.0 |
| FB5H | "0"     | "0" | "0"     | IMOD1.0 |

IMOD0 and IMOD1 are addressable by 4-bit write instructions. A system reset clears all IMOD values to logic zero, selecting rising edges as the trigger for incoming interrupt requests.

**Table 7-5. IMOD0, 1 and 2 Register Organization**

| IMOD0 | IMOD0.3 | 0 | IMOD0.1 | IMOD0.0 | Effect of IMOD0 Settings               |
|-------|---------|---|---------|---------|----------------------------------------|
|       | 0       |   |         |         | Select CPU clock for sampling          |
|       | 1       |   |         |         | Select fxx/64 sampling clock           |
|       |         | 0 | 0       | 0       | Rising edge detection                  |
|       |         | 0 | 1       | 0       | Falling edge detection                 |
|       |         | 1 | 0       | 0       | Both rising and falling edge detection |
|       |         | 1 | 1       | 0       | IRQ0 flag cannot be set to "1"         |
| IMOD1 | 0       | 0 | 0       | IMOD1.0 | Effect of IMOD1 Settings               |
|       |         |   |         | 0       | Rising edge detection                  |
|       |         |   |         | 1       | Falling edge detection                 |

## EXTERNAL INTERRUPT 0 AND 1 MODE REGISTERS (Continued)

When a sampling clock rate of  $fxx/64$  is used for INT0, an interrupt request flag must be cleared before 16 machine cycles have elapsed. Since the INT0 pin has a clock-driven noise filtering circuit built into it, please take the following precautions when you use it:

- To trigger an interrupt, the input signal width at INT0 must be at least two times wider than the pulse width of the clock selected by IMOD0.
- You can use INT0 to release IDLE mode, when  $fxx/64$  is selected as a sampling clock.

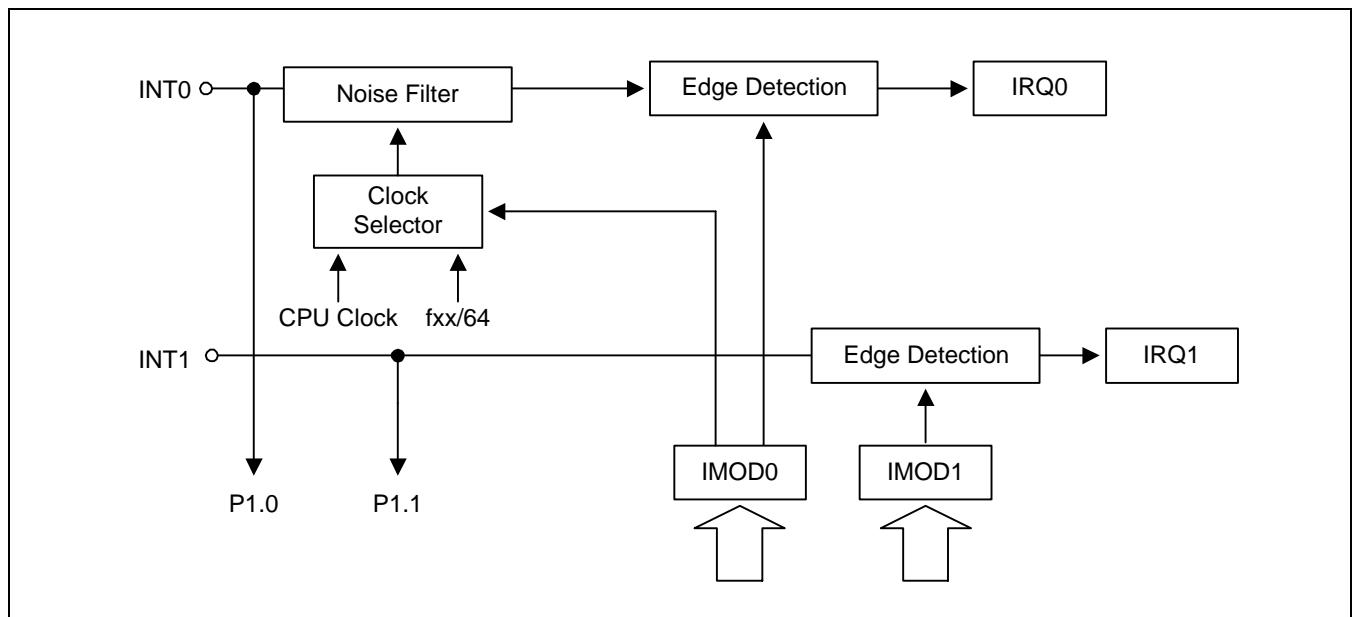



Figure 7-5. Circuit Diagram for INT0 and INT1 Pins

When modifying the IMOD0 and IMOD1 registers, it is possible to accidentally set an interrupt request flag. To avoid unwanted interrupts, take these precautions when writing your programs:

1. Disable all interrupts with a DI instruction.
2. Modify the IMOD0 or IMOD1 register.
3. Clear all relevant interrupt request flags.
4. Enable the interrupt by setting the appropriate IEx flag.
5. Enable all interrupts with an EI instruction.

## EXTERNAL INTERRUPT 2 MODE REGISTER (IMOD2)

The mode register for external interrupts at the KS0-KS3 and INT2, IMOD2, is addressable only by 4-bit write instructions. A system reset clears all IMOD2 bits to logic zero.

|      |     |     |         |         |
|------|-----|-----|---------|---------|
| FB6H | "0" | "0" | IMOD2.1 | IMOD2.0 |
|------|-----|-----|---------|---------|

If a rising edge is detected at the INT2 pin or when a falling edge is detected at any one of the pins, KS0-KS3, the IRQ2 flag is set to logic one and a release signal for power-down mode is generated. Since INT2 is a quasi-interrupt, the interrupt request flag (IRQ2) must be cleared by software.

**Table 7-6. IMOD2 Register Bit Settings**

| IMOD2 | 0 | 0 | IMOD2.1 | IMOD2.0 | Effect of IMOD2 Settings       |
|-------|---|---|---------|---------|--------------------------------|
|       |   |   | 0       | 0       | Select rising edge at INT2 pin |
|       |   |   | 0       | 1       | Not used                       |
|       |   |   | 1       | 0       | Select falling edge at KS2-KS3 |
|       |   |   | 1       | 1       | Select falling edge at KS0-KS3 |

### PROGRAMMING TIP — Using the INT2 as Key Input Interrupt

When you use the INT2 interrupt as a key entry interrupt, the selected key interrupt source pin must be set to input mode:

1. When KS0-KS3 are selected (four pins):

|      |          |   |                                            |  |
|------|----------|---|--------------------------------------------|--|
| BITS | EMB      |   |                                            |  |
| SMB  | 15       |   |                                            |  |
| LD   | A,#3H    |   |                                            |  |
| LD   | IMOD2A   | ; | (IMOD2) ← #3H, KS0-KS3 falling edge select |  |
| LD   | EA,#00H  |   |                                            |  |
| LD   | PMG3,EA  | ; | P6 ← input mode                            |  |
| LD   | EA,#40H  |   |                                            |  |
| LD   | PUMOD,EA | ; | Enable P6 pull-up resistors                |  |

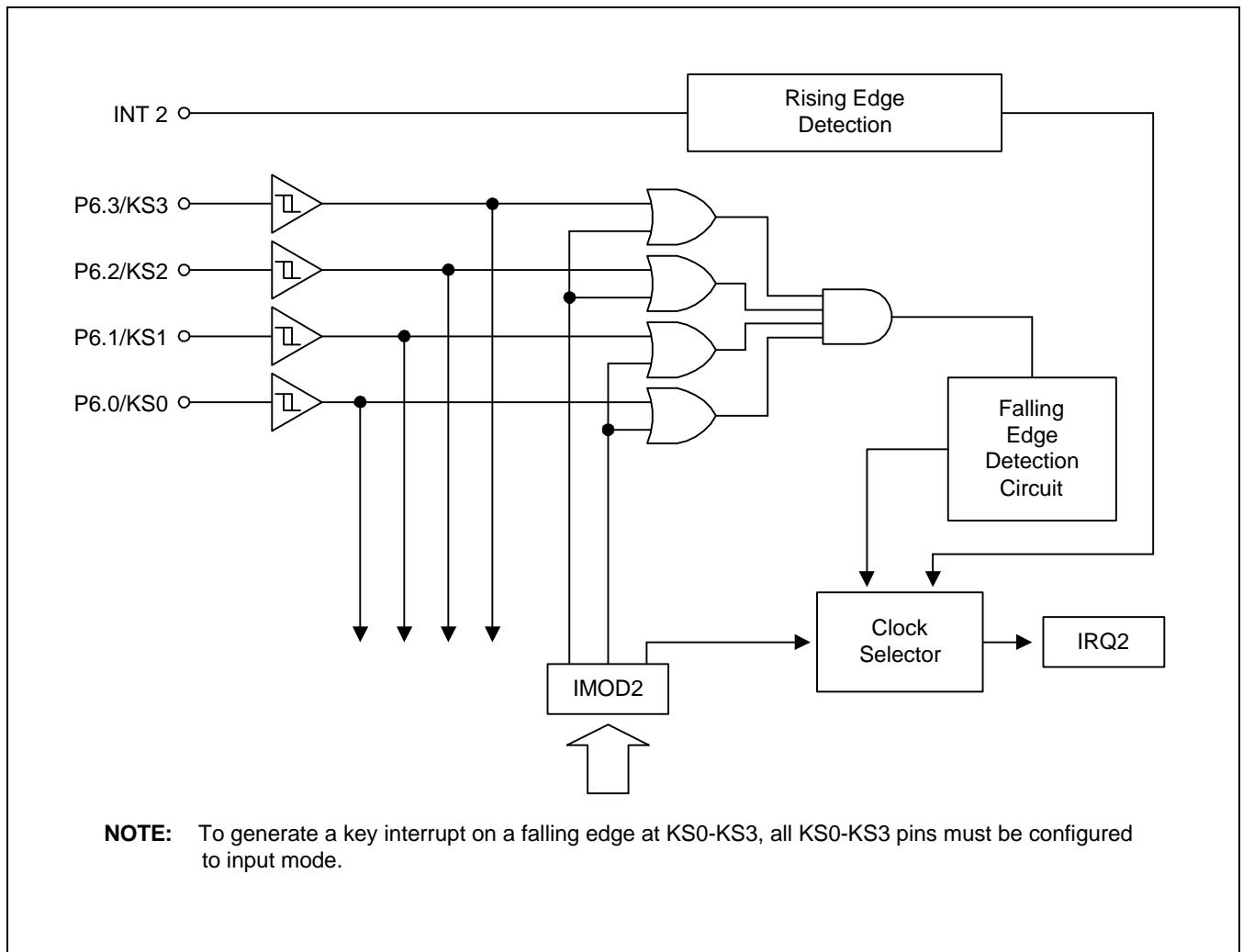



Figure 7-6. Circuit Diagram for INT2

## INTERRUPT FLAGS

There are three types of interrupt flags: interrupt request and interrupt enable flags that correspond to each interrupt, the interrupt master enable flag, which enables or disables all interrupt processing.

### Interrupt Master Enable Flag (IME)

The interrupt master enable flag, IME, enables or disables all interrupt processing. Therefore, even when an IRQx flag is set and its corresponding IEx flag is enabled, the interrupt service routine is not executed until the IME flag is set to logic one.

The IME flag is located in the IPR register (IPR.3). It can be directly be manipulated by EI and DI instructions, regardless of the current value of the enable memory bank flag (EMB).

| IME | IPR.2 | IPR.1 | IPR.0 | Effect of Bit Settings |
|-----|-------|-------|-------|------------------------|
| 0   |       |       |       | Inhibit all interrupts |
| 1   |       |       |       | Enable all interrupts  |

### Interrupt Enable Flags (IEx)

IEx flags, when set to logical one, enable specific interrupt requests to be serviced. When the interrupt request flag is set to logical one, an interrupt will not be serviced until its corresponding IEx flag is also enabled.

Interrupt enable flags can be read, written, or tested directly by 1-bit instructions. IEx flags can be addressed directly at their specific RAM addresses, despite the current value of the enable memory bank (EMB) flag.

Table 7-7. Interrupt Enable and Interrupt Request Flag Addresses

| Address | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------|-------|-------|-------|-------|
| FB8H    | IE4   | IRQ4  | IEB   | IRQB  |
| FBAH    | 0     | 0     | IEW   | IRQW  |
| FBBH    | IEIF  | IRQIF | IECE  | IRQCE |
| FBCH    | 0     | 0     | IETO  | IRQTO |
| FBDH    | 0     | 0     | IES   | IRQS  |
| FBEH    | IE1   | IRQ1  | IE0   | IRQ0  |
| FBFH    | 0     | 0     | IE2   | IRQ2  |

#### NOTES:

1. IEx refers generally to all interrupt enable flags.
2. IRQx refers generally to all interrupt request flags.
3. IEx = 0 is interrupt disable mode.
4. IEx = 1 is interrupt enable mode.

### Interrupt Request Flags (IRQx)

Interrupt request flags are read/write addressable by 1-bit or 4-bit instructions. IRQx flags can be addressed directly at their specific RAM addresses, regardless of the current value of the enable memory bank (EMB) flag.

When a specific IRQx flag is set to logic one, the corresponding interrupt request is generated. The flag is then automatically cleared to logic zero when the interrupt has been serviced.

Exceptions are the watch timer interrupt request flags, IRQW, and the external interrupt 2 flag IRQ2, which must be cleared by software after the interrupt service routine has executed. IRQx flags are also used to execute interrupt requests from software. In summary, follow these guidelines for using IRQx flags:

1. IRQx is set to request an interrupt when an interrupt meets the set condition for interrupt generation.
2. IRQx is set to "1" by hardware and then cleared by hardware when the interrupt has been serviced (with the exception of IRQW and IRQ2).
3. When IRQx is set to "1" by software, an interrupt is generated.

When two interrupts share the same service routine start address, interrupt processing may occur in one of two ways:

- When only one interrupt is enabled, the IRQx flag is cleared automatically when the interrupt has been serviced
- When two interrupts are enabled, request flag is not automatically cleared so that the user may have an opportunity to locate the source of the interrupt request. In this case, the IRQx setting must be manually cleared using a BTSTZ instruction.

**Table 7-8. Interrupt Request Flag Conditions and Priorities**

| Interrupt Source | Internal / External | Pre-condition for IRQx Flag Setting                                                       | Interrupt Priority | IRQ Flag Name |
|------------------|---------------------|-------------------------------------------------------------------------------------------|--------------------|---------------|
| INTB             | I                   | Reference time interval signal from basic timer                                           | 1                  | IRQB          |
| INT4             | E                   | Both rising and falling edges detected at INT4                                            | 1                  | IRQ4          |
| INT0             | E                   | Rising or falling edge detected at INT0 pin                                               | 2                  | IRQ0          |
| INT1             | E                   | Rising or falling edge detected at INT1 pin                                               | 3                  | IRQ1          |
| INTS             | I                   | Completion signal for serial transmit-and-receive or receive-only operation               | 4                  | IRQS          |
| INTT0            | I                   | Signals for TCNT0 and TREF0 registers match                                               | 5                  | IRQT0         |
| INTCE            | E                   | When falling edge is detected at CE pin                                                   | 6                  | IRQCE         |
| INTIF            | I                   | When gate closes                                                                          | 7                  | IRQIF         |
| INT2             | E                   | Rising edge detected at INT2 or elsea falling edge is detected at any of the KS0-KS3 pins | —                  | IRQ2          |
| INTW             | I                   | Time interval of 0.5 s or 3.19 ms                                                         | —                  | IRQW          |

 **PROGRAMMING TIP — Setting the INT Interrupt Priority**

To simultaneously enable INTB and INT4 interrupts:

```
INTB      DI
         BTSTZ    IRQB      ; IRQB = 1?
         JR       INT4      ; If no, INT4 interrupt; if yes, INTB interrupt is processed
         .
         .
         .
         EI
         IRET

;
INT4      BITR     IRQ4      ; INT4 is processed
         .
         .
         .
         EI
         IRET
```

# 8 POWER-DOWN

## OVERVIEW

The KS57C3316 microcontroller has four power-down modes to reduce power consumption: idle, stop1, stop2, and CE low modes. Idle mode is initiated by the IDLE instruction and stop1 mode by the instruction STOP. (Several NOP instructions must always follow an IDLE or STOP instruction in a program.) In idle mode, the CPU clock stops while peripherals and the oscillation source continue to operate normally.

When RESET occurs during normal operation or during a power-down mode, a reset operation is initiated and the CPU enters idle mode. When the standard oscillation stabilization time interval (29.1 ms at 4.5 MHz) has elapsed, normal CPU operation resumes.

In stop1 mode, main system clock oscillation is halted (assuming it is currently operating), and peripheral hardware components are powered-down. Stop2 mode is entered by bit SCMOD.2 setting. In stop2 mode, both main and sub system clock are stopped. Only PLL is disabled in CE low mode while other peripherals operate normally. The effect of power-down mode on specific peripheral hardware components is detailed in Table 8-1.

### NOTE

Do not use stop mode if you are using an external clock source because  $X_{IN}$  input must be restricted internally to  $V_{SS}$  to reduce current leakage.

Idle or main stop modes are terminated either by a RESET, or by an interrupt which is enabled by the corresponding interrupt enable flag, IEx. (Exceptions to this rule is INT0.) Stop2 mode can be terminated by a RESET only. When power-down mode is terminated by RESET, a normal reset operation is executed. Assuming that both the interrupt enable flag and the interrupt request flag are set to "1", power-down mode is released immediately upon entering power-down mode.

When an interrupt is used to release power-down mode, the operation differs depending on the value of the interrupt master enable flag (IME):

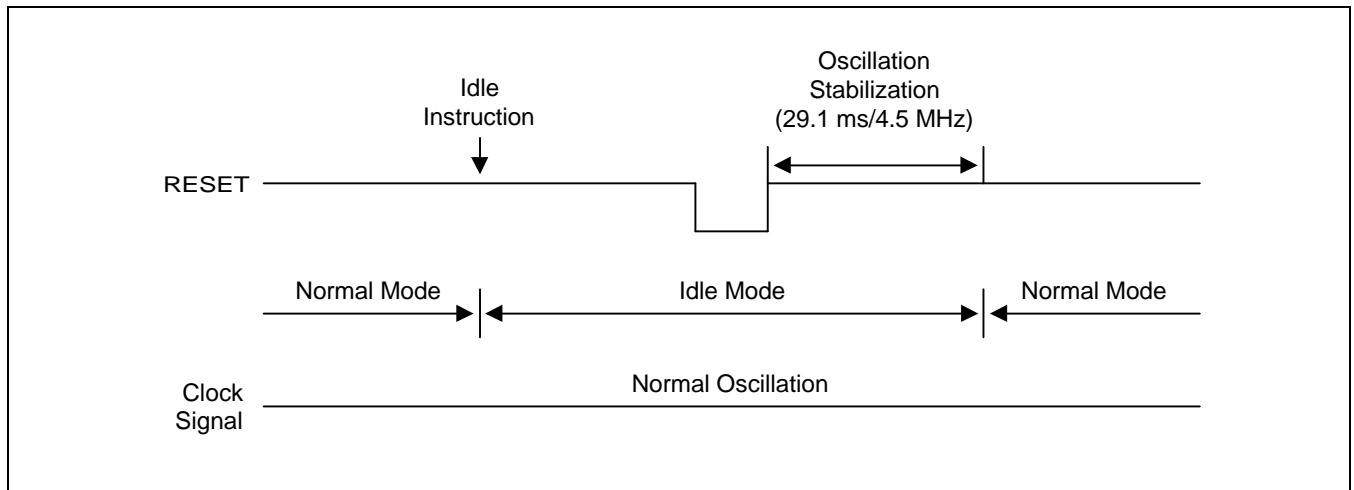
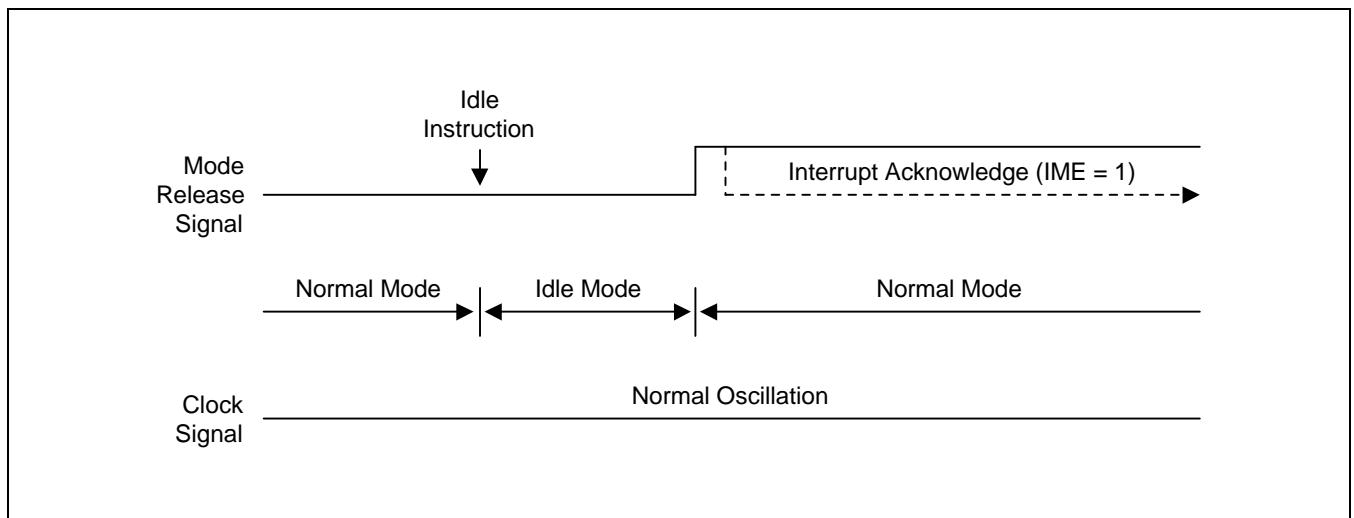

- If the IME flag = "0", program execution starts immediately after the instruction issuing a request to enter power-down mode is executed. The interrupt request flag remains set to logical one.
- If the IME flag = "1", two instructions are executed after the power-down mode release and the vectored interrupt is then initiated. However, when the release signal is caused by INT2 or INTW, the operation is identical to the IME = "0" condition. Assuming that both interrupt enable flag and interrupt request flag are set to "1", the release signal is generated when power-down mode is entered.

Table 8-1. Hardware Operation During Power-Down Modes


| Operation                | Stop1 Mode                                                              | Stop2 Mode                                                              | Idle Mode                                                                         | CE Low Mode (1)                                                 |
|--------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Instruction              | STOP                                                                    | STOP, after setting SCMOD.2 to "1"                                      | IDLE                                                                              | CE pin Low input                                                |
| System is operating with | Main clock (fx)                                                         | Main clock (fx)                                                         | Main clock (fx) or Sub clock (fxt)                                                | Main clock (fx) or Sub clock (fxt)                              |
| Clock oscillator         | Main system clock oscillation stops                                     | Both main system clock and subsystem clock oscillation stop             | Only CPU clock oscillation stops (main and subsystem clock oscillation continues) | Clock oscillation is not stopped                                |
| Basic timer              | Basic timer stops                                                       | Basic timer stops                                                       | Basic timer operates (with IRQB set at each reference interval)                   | Basic timer operates (with IRQB set at each reference interval) |
| Serial I/O interface     | Operates only if external SCK input is selected as the serial I/O clock | Operates only if external SCK input is selected as the serial I/O clock | Operates if a clock other than the CPU clock is selected as the serial I/O clock  | Serial I/O interface operates                                   |
| Timer/counter0           | Operates only if TCL is selected as the counter clock                   | Operation stops                                                         | Timer/counter 0 operates                                                          | Timer/counter 0 operates                                        |
| Watch timer              | Operates only if subsystem clock (fxt) is selected as the counter clock | Operation stops                                                         | Watch timer operates                                                              | Watch timer operates                                            |
| LCD controller           | Operates only if a subsystem clock is selected as LCDCK                 | Operation stops                                                         | LCD controller operates                                                           | LCD controller operates                                         |
| External interrupts      | INT1, INT2, and INT4 are acknowledged; INT0 is not serviced             | INT1, INT2, and INT4 are acknowledged; INT0 is not serviced             | INT1, INT2, and INT4 are acknowledged; INT0 is serviced (2)                       | All external interrupts are acknowledged                        |
| CPU                      | All CPU operations are disabled                                         | All CPU operations are disabled                                         | All CPU operations are disabled                                                   | CPU operates normally                                           |
| PLL                      | PLL stops                                                               | PLL stops                                                               | PLL operates                                                                      | PLL stops                                                       |
| IFC                      | IFC stops                                                               | IFC stops                                                               | IFC operates                                                                      | IFC stops                                                       |
| A/D converter            | A/D converter is disabled                                               | A/D converter is disabled                                               | A/D converter operates                                                            | A/D converter operates                                          |
| Mode release signal      | Interrupt request signals (except INT0)<br>CE or RESET input            | Interrupt request signals (except INT0)<br>CE or RESET input            | Interrupt request signals CE or RESET input                                       | CE pin high                                                     |

## NOTES:

1. CE mode is not controlled by an instruction, but rather by directly modifying the state of the external CE pin.
2. INT0 can release Idle mode only when fxx/64 is selected as a sampling clock.

**IDLE MODE TIMING DIAGRAMS**

**Figure 8-1. Timing When Idle Mode is Released by RESET**



**Figure 8-2. Timing When Idle Mode is Released by an Interrupt**

## STOP MODE TIMING DIAGRAMS

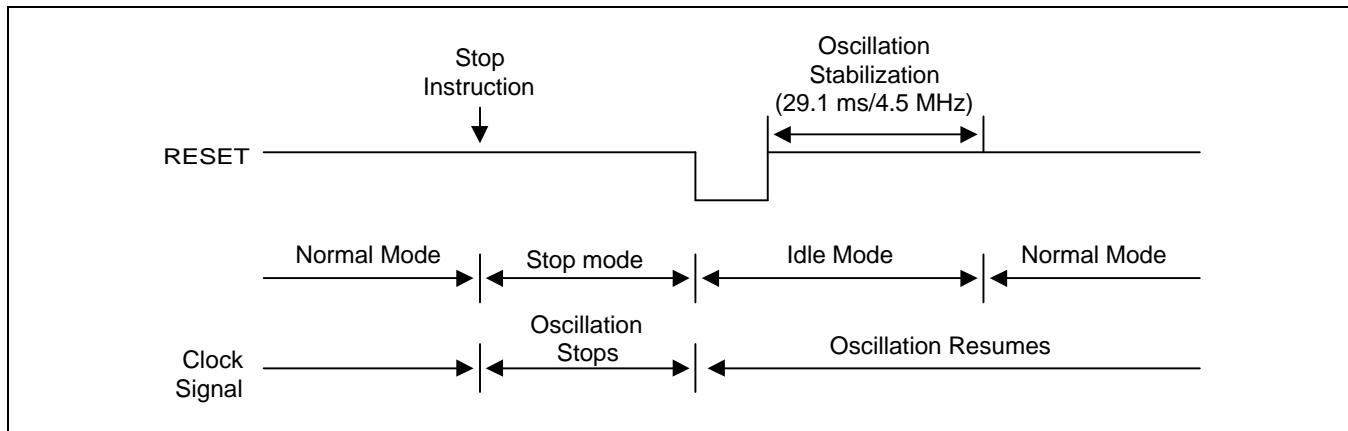



Figure 8-3. Timing When Stop Mode is Released by RESET

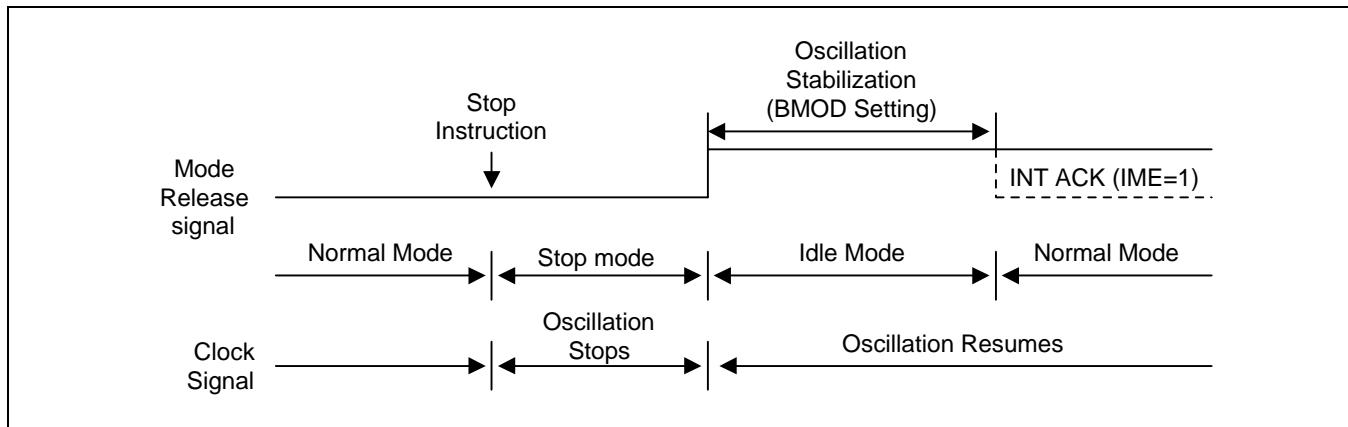



Figure 8-4. Timing When Stop Mode is Release by an Interrupt

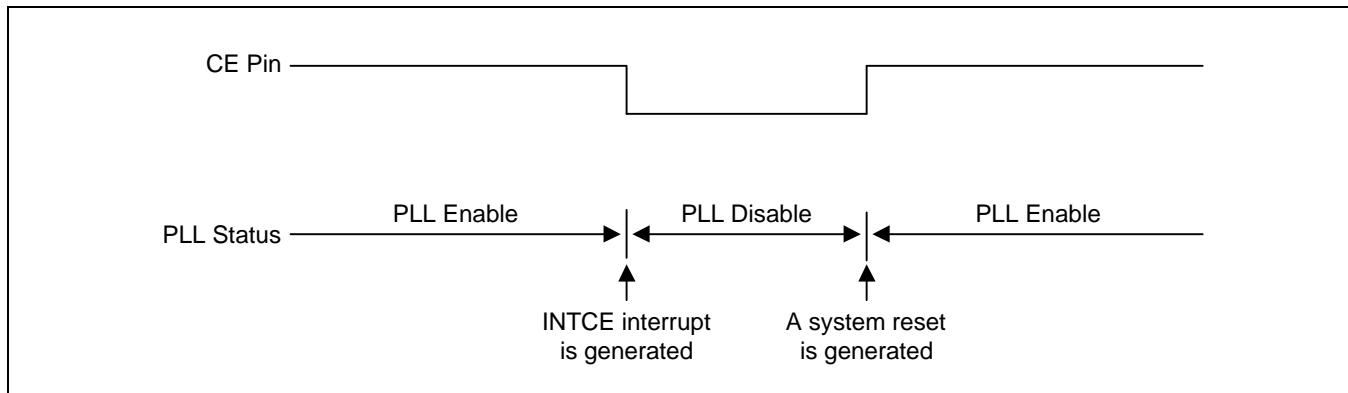



Figure 8-5. Timing When CE Low Mode is Release by CE rising edge

### Programming Tip — Reducing Power Consumption for Key Input Interrupt Processing

The following code shows real-time clock and interrupt processing for key inputs to reduce power consumption. In this example, the system clock source is switched from the main system clock to a subsystem clock and the LCD display is turned on:

```

KEYCLK  DI
        CALL    MA2SUB          ; Main system clock → subsystem clock switch subroutine
        SMB    15
        LD     EA,#00H
        LD     P4,EA           ; All key strobe outputs to low level
        LD     A,#3H
        LD     IMOD2,A          ; Select KS0-KS3 interrupt
        SMB    0
        BITR   IRQW
        BITR   IRQ2
        BITS   IEW
        BITS   IE2
CLKS1   CALL    WATDIS         ; Execute clock and display changing subroutine
        BTSTZ  IRQ2
        JR     CIDLE
        CALL    SUB2MA          ; Subsystem clock → main system clock switch
                                ; subroutine
        EI
        RET
CIDLE   IDLE
        NOP
        NOP
        NOP
        JPS    CLKS1          ; Engage idle mode

```

#### NOTE

You must execute three NOP instructions after IDLE and STOP instructions, to avoid flowing of leakage current due to the floating state in the internal bus.

## POR T PIN CONFIGURATION FOR POWER-DOWN MODE

The following method describes how to configure I/O port pins to reduce power consumption during power-down modes (stop, idle):

**Condition 1:** If the microcontroller is not configured to an external device:

1. Connect unused port pins according to the information in Table 8-2.
2. Disable pull-up resistors for input pins configured to  $V_{DD}$  or  $V_{SS}$  levels in order to check the current input option. Reason: If the input level of a port pin is set to  $V_{SS}$  when a pull-up resistor is enabled, it will draw an unnecessarily large current.

**Condition 2:** If the microcontroller is configured to an external device and the external device's  $V_{DD}$  source is turned off in power-down mode.

1. Connect unused port pins according to the information in Table 8-2.
2. Disable pull-up resistors for input pins configured to  $V_{DD}$  or  $V_{SS}$  levels in order to check the current input option. Reason: If the input level of a port pin is set to  $V_{SS}$  when a pull-up resistor is enabled, it will draw an unnecessarily large current.
3. Disable the pull-up resistors of input pins connected to the external device by making the necessary modifications to the PUMOD register.
4. Configure the output pins that are connected to the external device to low level. Reason: When the external device's  $V_{DD}$  source is turned off, and if the microcontroller's output pins are set to high level,  $V_{DD} - 0.7$  V is supplied to the  $V_{DD}$  of the external device through its input pin. This causes the device to operate at the level  $V_{DD} - 0.7$  V. In this case, total current consumption would not be reduced.
5. Determine the correct output pin state necessary to block current pass in according with the external transistors (PNP, NPN).

## RECOMMENDED CONNECTIONS FOR UNUSED PINS

To reduce overall power consumption, please configure unused pins according to the guidelines described in Table 8-2.

**Table 8-2. Unused Pin Connections for Reducing Power Consumption**

| Pin/Share Pin Names   | Recommended Connection                                                                                         |
|-----------------------|----------------------------------------------------------------------------------------------------------------|
| P0.0/BTC0             | Input mode: Connect to $V_{DD}$                                                                                |
| P0.1/TCLO             | Output mode: Do not connect                                                                                    |
| P0.2/TCL              |                                                                                                                |
| P0.3/BUZ              |                                                                                                                |
| P1.0/INT0             | Connect to $V_{DD}$                                                                                            |
| P1.1/INT1             |                                                                                                                |
| P1.2/INT2             |                                                                                                                |
| P1.3/INT4             |                                                                                                                |
| P2.0-P2.3             | Input mode: Connect to $V_{DD}$                                                                                |
| P3.0-P3.3             | Output mode: Do not connect                                                                                    |
| P4.0/SCK              |                                                                                                                |
| P4.1/SO               |                                                                                                                |
| P4.2/SI               |                                                                                                                |
| P4.3/CLO              |                                                                                                                |
| P5.0/ADC0-P5.3/ADC3   |                                                                                                                |
| P6.0/KS0-P6.3/KS3     |                                                                                                                |
| SEG0-SEG27            |                                                                                                                |
| COM0-COM3             | Do not connect                                                                                                 |
| $V_{LO0}$ - $V_{LC2}$ | Connect to $V_{SS}$                                                                                            |
| BIAS                  | If all of the $V_{LC0}$ - $V_{LC2}$ pins are unused, connect BIAS to $V_{SS}$ and set LCON.0 and LMOD.7 to "0" |
| $XT_{IN}$             | Connect $XT_{IN}$ to $V_{SS}$ and set SCMOD.2 to "1"                                                           |
| $XT_{OUT}$            | Do not connect                                                                                                 |
| AMIF, FMIF            | Connect to $V_{SS}$ and disable IFC by setting IFMOD to "0"                                                    |
| TEST                  | Connect to $V_{SS}$                                                                                            |

# 9

## RESET

### OVERVIEW

A system reset operation can be initiated by RESET or by changing the state of the external CE pin. When a reset operation occurs, the system is initialized and the program is executed starting from the reset vector address. A CE reset occurs when the CE pin is forced from Low to High level. You can use a CE reset for normal system initialization. When a power-on occurs, the power-on flag (POF) is automatically set to "1".

|      |   |   |   |     |      |
|------|---|---|---|-----|------|
| POFR | 0 | 0 | 0 | POF | FD1H |
|------|---|---|---|-----|------|

Please note that the RESET signal is not generated automatically. The POF bit in the power-on flag register (POFR.0) is read initially to check whether or not power has been turned on. You can test or clear this flag using the BITR instruction.

Whenever a RESET signal is input during normal operation or during power-down mode, the CPU enters idle mode. When the standard oscillation stabilization interval of 29.1 ms (at 4.5 MHz) has elapsed, normal system operation resumes.

When reset operation occurs during normal operating or after a power-down mode has been entered, most hardware register values are set to the reset values described in Table 9-1. Some reset values may vary for different types of reset operations. However, during idle or stop mode, the current values contained in the following status register are always retained:

- Carry flag
- Data memory values
- General-purpose registers E, A, L, H, X, W, Z and Y
- General-purpose registers E, A, L, H, X, W, Z, and Y
- PLL mode register (PLMOD)
- PLL data register (PLLD0-PLLD3)
- Serial I/O buffer register (SBUF)

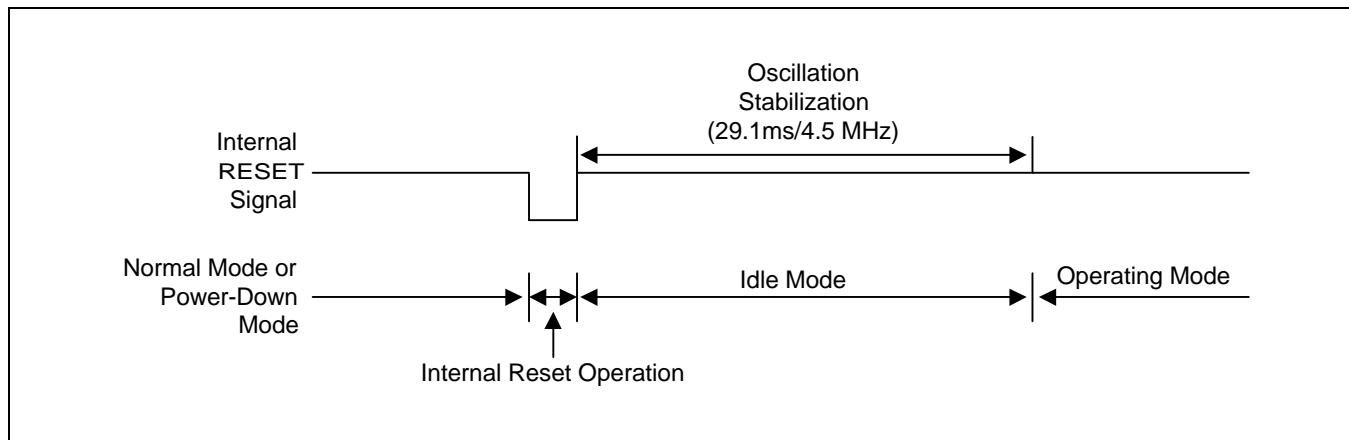



Figure 9-1. Reset Operation by RESET Pin

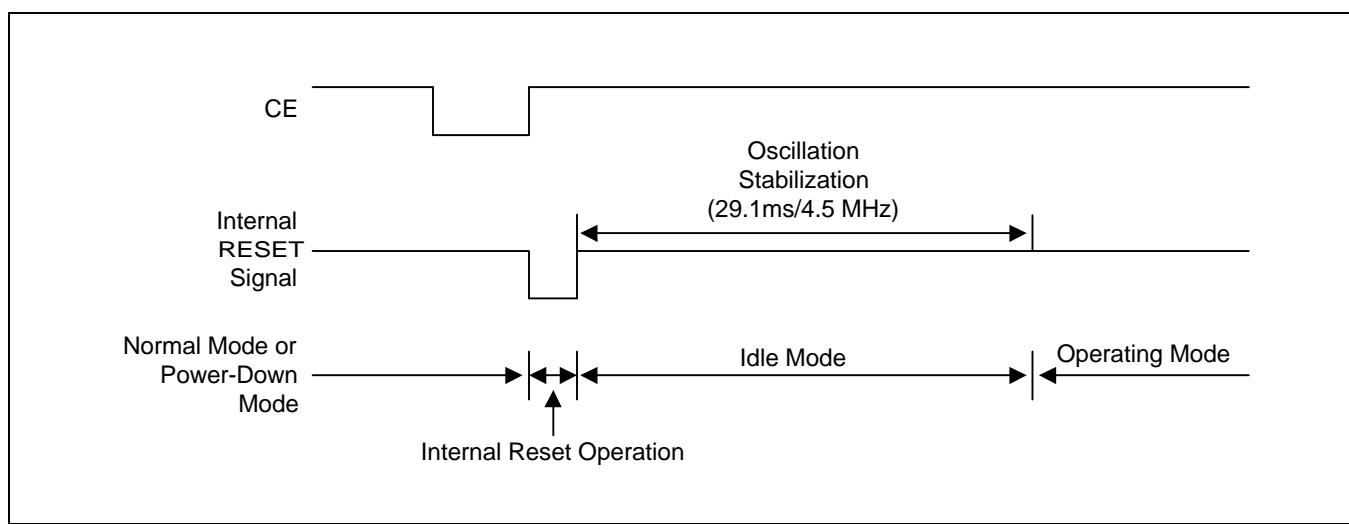



Figure 9-2. Reset Operation by CE Pin

## HARDWARE REGISTER VALUES AFTER A SYSTEM RESET

Table 9-1 gives you detailed information about hardware register values after a system reset occurs during power-down mode or during normal operation.

**Table 9-1. Hardware Register Values After a System Reset**

| Hardware Component or Subcomponent     | If a Reset Occurs During Power-Down Mode                                                                           | If a Reset Occurs During Normal Operation                                                                          |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Program counter (PC)                   | PC13-8 ← ROM ADDR[00H],<br>PC7-0 ← ROM ADDR [01H]                                                                  | PC13-8 ← ROM ADDR [00H],<br>PC7-0 ← ROM ADDR[01H]                                                                  |
| <b>Program Status Word (PSW):</b>      |                                                                                                                    |                                                                                                                    |
| Carry flag (C)                         | Retained                                                                                                           | Undefined                                                                                                          |
| Skip flag (SC0-SC2)                    | 0                                                                                                                  | 0                                                                                                                  |
| Interrupt status flags (IS0, IS1)      | 0                                                                                                                  | 0                                                                                                                  |
| Bank enable flags (EMB, ERB)           | Bit 6 of address 0000H in program memory is transferred to the ERB flag, and bit 7 of the address to the EMB flag. | Bit 6 of address 0000H in program memory is transferred to the ERB flag, and bit 7 of the address to the EMB flag. |
| Stack pointer (SP)                     | Undefined                                                                                                          | Undefined                                                                                                          |
| <b>Data Memory (RAM):</b>              |                                                                                                                    |                                                                                                                    |
| Working registers E,A,L, H, X, W, Z, Y | Values retained                                                                                                    | Undefined                                                                                                          |
| Bank selection registers (SMB, SRB)    | 0                                                                                                                  | 0                                                                                                                  |
| BSC register (BSC0-BSC3)               | 0                                                                                                                  | 0                                                                                                                  |
| <b>Clocks:</b>                         |                                                                                                                    |                                                                                                                    |
| Power control register (PCON)          | 0                                                                                                                  | 0                                                                                                                  |
| Clock output mode register (CLMOD)     | 0                                                                                                                  | 0                                                                                                                  |
| System clock control register (SCMOD)  | 0                                                                                                                  | 0                                                                                                                  |
| <b>Interrupts:</b>                     |                                                                                                                    |                                                                                                                    |
| Interrupt request flags (IRQx)         | 0                                                                                                                  | 0                                                                                                                  |
| Interrupt enable flags (IEx)           | 0                                                                                                                  | 0                                                                                                                  |
| Interrupt priority flag (IPR)          | 0                                                                                                                  | 0                                                                                                                  |
| Interrupt master enable flag (IME)     | 0                                                                                                                  | 0                                                                                                                  |
| INT0 mode register (IMOD0)             | 0                                                                                                                  | 0                                                                                                                  |
| INT1 mode register (IMOD1)             | 0                                                                                                                  | 0                                                                                                                  |
| INT2 mode register (IMOD2)             | 0                                                                                                                  | 0                                                                                                                  |

Table 9-1. Hardware Register Values After a System Reset (Continued)

| Hardware Component or Subcomponent    | If a Reset Occurs During Power-Down Mode | If a Reset Occurs During Normal Operation |
|---------------------------------------|------------------------------------------|-------------------------------------------|
| <b>I/O Ports:</b>                     |                                          |                                           |
| Output buffers                        | Off                                      | Off                                       |
| Output latches                        | 0                                        | 0                                         |
| Port mode flags (PM)                  | 0                                        | 0                                         |
| Pull-up resistor mode register(PUMOD) | 0                                        | 0                                         |
| Port N-ch open drain register (PNE)   | 0                                        | 0                                         |
| <b>Basic Timer:</b>                   |                                          |                                           |
| Count register (BCNT)                 | Undefined                                | Undefined                                 |
| Mode register (BMOD)                  | 0                                        | 0                                         |
| Output enable flag (BOE)              | 0                                        | 0                                         |
| <b>Timer/Counter 0:</b>               |                                          |                                           |
| Count registers (TCNT0)               | 0                                        | 0                                         |
| Reference register (TREF0)            | FFH                                      | FFH                                       |
| Mode register (TMOD0)                 | 0                                        | 0                                         |
| Output enable flag (TOE0)             | 0                                        | 0                                         |
| <b>Watch-Dog Timer:</b>               |                                          |                                           |
| WDT mode register (WDMOD)             | A5H                                      | A5H                                       |
| WDT clear flag (WDTCF)                | 0                                        | 0                                         |
| <b>Watch Timer:</b>                   |                                          |                                           |
| Watch timer mode register (WMOD)      | 0                                        | 0                                         |
| <b>LCD Driver/Controller:</b>         |                                          |                                           |
| LCD mode register (LMOD)              | 0                                        | 0                                         |
| LCD control register (LCON)           | 0                                        | 0                                         |
| Display data memory                   | Values retained                          | Undefined                                 |
| Output buffers                        | Off                                      | Off                                       |

Table 9-1. Hardware Register Values After a System Reset (Continued)

| Hardware Component or Subcomponent | If a Reset Occurs During Power-Down Mode | If a Reset Occurs During Normal Operation |
|------------------------------------|------------------------------------------|-------------------------------------------|
| <b>Serial I/O Interface:</b>       |                                          |                                           |
| SIO mode register (SMOD)           | 0                                        | 0                                         |
| SIO interface buffer (SBUF)        | Value retained                           | Undefined                                 |
| <b>IF Counter:</b>                 |                                          |                                           |
| IF counter mode register (IFMOD)   | 0                                        | 0                                         |
| IF counter (IFCNT0, IFCNT1)        | 0                                        | 0                                         |
| <b>A/D converter:</b>              |                                          |                                           |
| A/D mode register (ADMOD)          | 0                                        | 0                                         |
| A/D control register (AFLAG)       | 0                                        | 0                                         |
| A/D convert data register (ADATA)  | 0                                        | 0                                         |
| A/D port control register (APCON)  | 0                                        | 0                                         |

Table 9-1. Hardware Register Values After a System Reset (Concluded)

| Hardware Component or Subcomponent    | If a Reset Occurs During Operation Mode | If a Reset Occurs After Power-On |
|---------------------------------------|-----------------------------------------|----------------------------------|
| <b>PLL:</b>                           |                                         |                                  |
| PLL mode register (PLMOD)             | Value retained                          | Undefined                        |
| PLL data register (PLLD0-PLLD3)       | Value retained                          | Undefined                        |
| PLL flag register (PLLREG)            | (1)                                     | (2)                              |
| PLL reference freq. Register (PLLREF) | Value retained                          | Undefined                        |
| <b>Power-On:</b>                      |                                         |                                  |
| Power-on flag register (POFR)         | Value retained                          | 1                                |

**NOTES:**

1. The value of ULFG is undefined, CEFG = current state of CE pin, and IFCFG = "0"
2. The value of ULFG is undefined, CEFG = current state of CE pin, and IFCFG is undefined.

# 10 I/O PORTS

## OVERVIEW

The KS57C3316 has 14 ports. There are total of 4 input pins, 28 output pins, 16 configurable I/O pins, and 8 n-channel open-drain I/O pins, for a maximum number of 56 I/O pins.

Pin addresses for all ports except ports 7-13 are mapped in bank 15 of the RAM. Ports 7-13 pin addresses are in bank 1 of the RAM. The contents of I/O port pin latches can be read, written, or tested at the corresponding address using bit manipulation instructions.

### Port Mode Flags

Port mode flags (PM) are used to configure I/O ports to input or output mode by setting or clearing the corresponding I/O buffer. PM flags are stored in five 8-bit registers and are addressable by 8-bit write instructions only.

### Output Ports 7-13

Output ports 7-13 consists of 28 pins that can be used either for LCD segment data output or for normal output. Bit settings in the LPOT, determine the port output mode (LCD or normal output mode) for specific ports 7-13 pins.

### Pull-Up Resistor Mode Register (PUMOD)

The pull-up mode registers (PUMOD) is a 8-bit register used to assign internal pull-up resistors by software to specific I/O ports.

When a configurable I/O port pin is used as an output pin, its assigned pull-up resistor is automatically disabled, even though the pin's pull-up is enabled by a corresponding PUMOD bit setting.

PUMOD are addressable by 8-bit write instructions only. A system reset clears PUMOD register values to logic zero, automatically disconnecting all software-assignable port pull-up resistors.

Table 10-1. I/O Port Overview

| Port | I/O | Pins | Pin Names                                                                                       | Address   | Function Description                                                                                                          |
|------|-----|------|-------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------|
| 0    | I/O | 4    | P0.0-P0.3                                                                                       | FF0H      | 4-bit I/O port.<br>1-bit and 4-bit read/write and test are possible.<br>4-bit pull-up resistors can be configured by program. |
| 1    | I   | 4    | P1.0-P1.3                                                                                       | FFFH      | 4-bit input port.<br>1-bit and 4-bit read/test are possible.<br>4-bit pull-up resistors can be configured by program.         |
| 2-6  | I/O | 20   | P2.0-P2.3<br>P3.0-P3.3<br>P4.0-P4.3<br>P5.0-P5.3<br>P6.0-P6.3                                   | FF2H-FF6H | Same as P0<br>Port 2, 3 and port 4, 5 can be paired to support 8-bit data transfer.                                           |
| 7-13 | O   | 28   | P7.0-P7.3<br>P8.0-P8.3<br>P9.0-P9.3<br>P10.0-P10.3<br>P11.0-P11.3<br>P12.0-P12.3<br>P13.0-P13.3 | FF7H-FFDH | 1-bit or 4-bit output port.<br>N-Channel open-drain output.<br>LCD segment output port.                                       |

Table 10-2. Port Pin Status During Instruction Execution

| Instruction Type | Example    | Input Mode Status                             | Output Mode Status                          |
|------------------|------------|-----------------------------------------------|---------------------------------------------|
| 1-bit test       | BTST P1.1  | Input or test data at each pin                | Input or test data at output latch          |
| 1-bit input      | LDB C,P1.3 |                                               |                                             |
| 4-bit input      | LD A,P1    |                                               |                                             |
| 8-bit input      | LD EA,P4   |                                               |                                             |
| 1-bit output     | BITR P2.3  | Output latch contents undefined               | Output pin status is modified               |
| 4-bit output     | LD P2,A    | Transfer accumulator data to the output latch | Transfer accumulator data to the output pin |
| 8-bit output     | LD P4,EA   |                                               |                                             |

## PORT MODE FLAGS (PM FLAGS)

Port mode flags (PM) are used to configure I/O ports to input or output mode by setting or clearing the corresponding I/O buffer.

For convenient program reference, PM flags are organized into four groups — PMG0, PMG1, PMG2, and PMG3 as shown in Table 10-3. They are addressable by 8-bit write instructions only.

When a PM flag is "0", the port is set to input mode; when it is "1", the port is enabled for output. A system reset clears all port mode flags to logical zero, automatically configuring the corresponding I/O ports to input mode.

**Table 10-3. Port Mode Group Flags**

| PM Group ID | Address | Bit 3/7 | Bit 2/6 | Bit 1/5 | Bit 0/4 |
|-------------|---------|---------|---------|---------|---------|
| PMG0        | FE6H    | PM0.3   | PM0.2   | PM0.1   | PM0.0   |
|             | FE7H    | "0"     | "0"     | "0"     | "0"     |
| PMG1        | FE8H    | PM2.3   | PM2.2   | PM2.1   | PM2.0   |
|             | FE9H    | PM3.3   | PM3.2   | PM3.1   | PM3.0   |
| PMG2        | FEAH    | PM4.3   | PM4.2   | PM4.1   | PM4.0   |
|             | FEBH    | PM5.3   | PM5.2   | PM5.1   | PM5.0   |
| PMG3        | FECH    | PM6.3   | PM6.2   | PM6.1   | PM6.0   |
|             | FEDH    | "0"     | "0"     | "0"     | "0"     |

**NOTE:** If a PMGn bit = "0", the corresponding I/O pin is set to input mode. If the PMGn = "1", the pin is set to output mode. All flags are cleared to "0" following a system reset.

### PROGRAMMING TIP — Configuring I/O Ports to Input or Output

Configure port 0 as an output port:

```

BITS      EMB
SMB      15
LD       EA,#0FH
LD       PMG0,EA      ;  P0 ← Output

```

## PULL-UP RESISTOR MODE REGISTER (PUMOD)

The pull-up resistor mode register (PUMOD) is used to assign internal pull-up resistors by software to specific ports. When a configurable I/O port pin is used as an output pin, its assigned pull-up resistor is automatically disabled, even though the pin's pull-up is enabled by a corresponding PUMOD bit setting.

PUMOD is addressable by 8-bit write instructions only. A system reset clears PUMOD register values to logic zero, automatically disconnecting all software-assignable port pull-up resistors.

**Table 10-4. Pull-Up Resistor Mode Register (PUMOD) Organization**

| PUMOD ID | Address | Bit 3/7 | Bit 2/6 | Bit 1/5 | Bit 0/4 |
|----------|---------|---------|---------|---------|---------|
| PUMOD    | FDCH    | PUR3    | PUR2    | PUR1    | PUR0    |
|          | FDDH    | "0"     | PUR6    | PUR5    | PUR4    |

**NOTE:** When a PURn bit = "1", a pull-up resistor is assigned to the corresponding I/O port: PUR3 is for port 3, PUR2 for port 2, and so on.

### PROGRAMMING TIP — Enabling and Disabling I/O Port Pull-Up Resistors

P6 is enabled to have pull-up resistors.

```

BITS      EMB
SMB      15
LD       EA,#40H
LD       PUMOD,EA      ;  Enable P6 to have pull-up resistors

```

## ADC AND PORT CONTROL REGISTER (APCON)

| FAEH           | APCON.3 | APCON.2 | APCON.1 | APCON.0                                                                                                                                                                                                             |                                    |
|----------------|---------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                | 0       | 0       | 0       | 0                                                                                                                                                                                                                   | Set P5 to connect the normal input |
| Other settings |         |         |         | Each bit corresponds with P5.0, P5.1, P5.2, and P5.3 respectively. If the specific bits are set to logic "1", the corresponding pins are disconnected from the normal port and automatically the pull-up registers. |                                    |

## N-CHANNEL OPEN-DRAIN MODE REGISTER (PNE)

The N-channel, open-drain mode register, PNE, is used to configure port 7 to 13 to N-channel open-drain modes or push-pull modes.

When a bit in the PNE register is set to "1", the corresponding output pin is configured to N-channel open-drain; when set to "0", the output pin is configured to push-pull mode.

The PNE register consists of an 8-bit register, as shown below, PNE can be addressed by 8-bit write instructions only.

Table 10-5. N-Channel Open Drain Mode Register (PNE) Setting

| ID  | Address | Bit 3/7 | Bit 2/6 | Bit 1/5 | Bit 0/4 |
|-----|---------|---------|---------|---------|---------|
| PNE | FD6H    | PNE10   | PNE9    | PNE8    | PNE7    |
|     | FD7H    | "0"     | PNE13   | PNE12   | PNE11   |

## PIN ADDRESSING FOR OUTPUT PORT 7-13

The buffer addresses for the port 7-13 pins are located in both bank1 and bank15. To output the port 7-13 in bank15, use the setting SMB = 15. Otherwise, to output SEG0-27 in bank1, use the setting EMB = 1 and SMB = 1. The LCD port control register, LPOT, is used to control whether the pin outputs are the SEG0-27 or the port 7-13 data.

**Table 10-6. LPOT Setting for Port 7-13 Output Control**

| LPOT.2 | LPOT.1 | LPOT.0 | Effect of LPOT Settings                                                         |
|--------|--------|--------|---------------------------------------------------------------------------------|
| 0      | 0      | 0      | Select to use P7-P13 pins as SEG0-SEG27                                         |
| 0      | 0      | 1      | Select to use P8-P13 pins as SEG4-SEG27 and P7 pin as normal output port        |
| 0      | 1      | 0      | Select to use P9-P13 pins as SEG8-SEG27 and P7-P8 pins as normal output port    |
| 0      | 1      | 1      | Select to use P10-P13 pins as SEG12-SEG27 and P7-P9 pins as normal output port  |
| 1      | 0      | 0      | Select to use P11-P13 pins as SEG16-SEG27 and P7-P10 pins as normal output port |
| 1      | 0      | 1      | Select to use P12-P13 pins as SEG20-SEG27 and P7-P11 pins as normal output port |
| 1      | 1      | 0      | Select to use P13 pin as SEG24-SEG27 and P7-P12 pins as normal output port      |
| 1      | 1      | 1      | Select to use P7-P13 pins as normal output port                                 |

Locations that are unused for LCD or port I/O can be used as normal data memory. After a system reset, the values connected in the port 7-13 data are left undetermined.

## PORT 0 CIRCUIT DIAGRAM

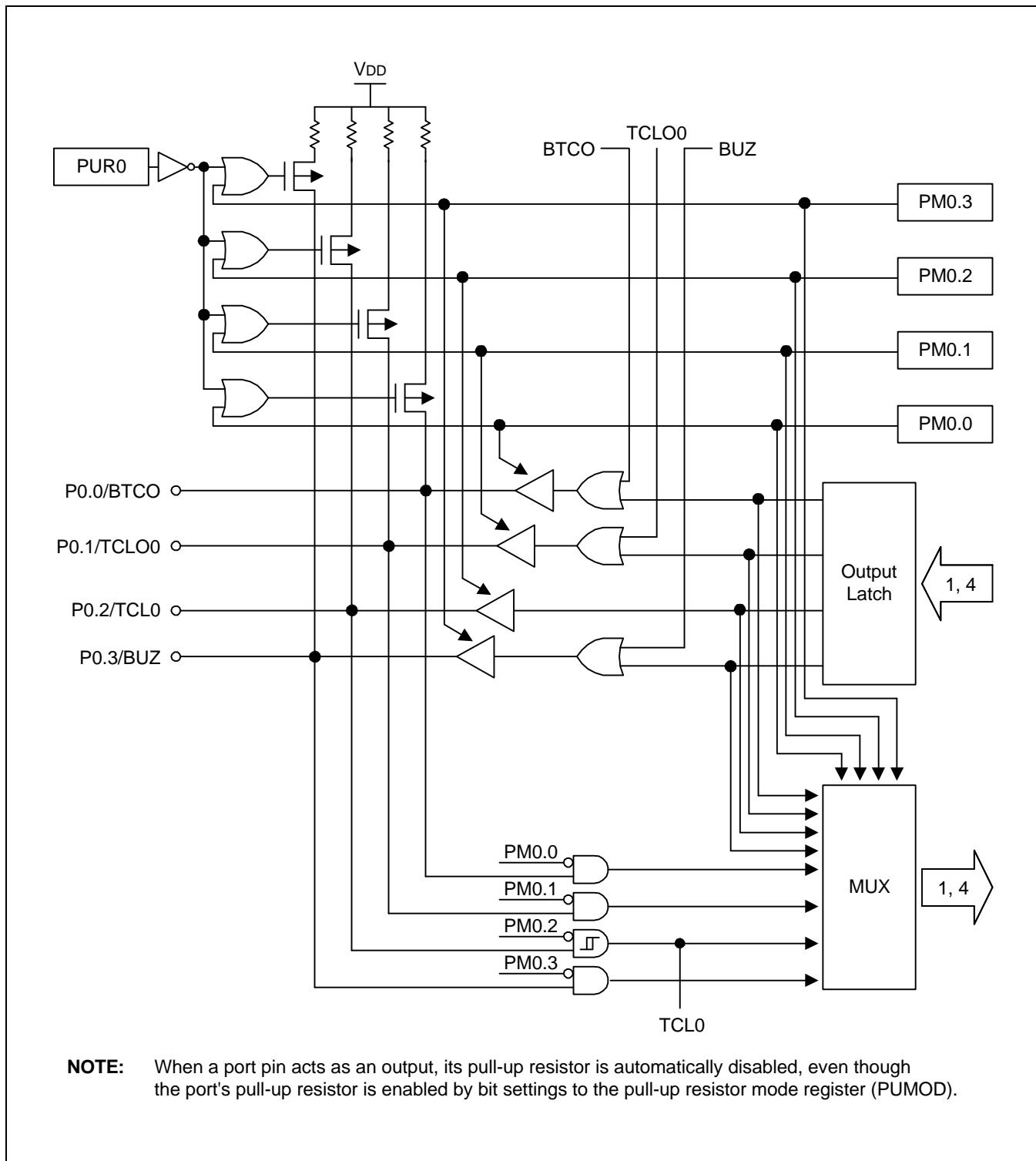



Figure 10-1. Port 0 Circuit Diagram

## PORT 1 CIRCUIT DIAGRAM

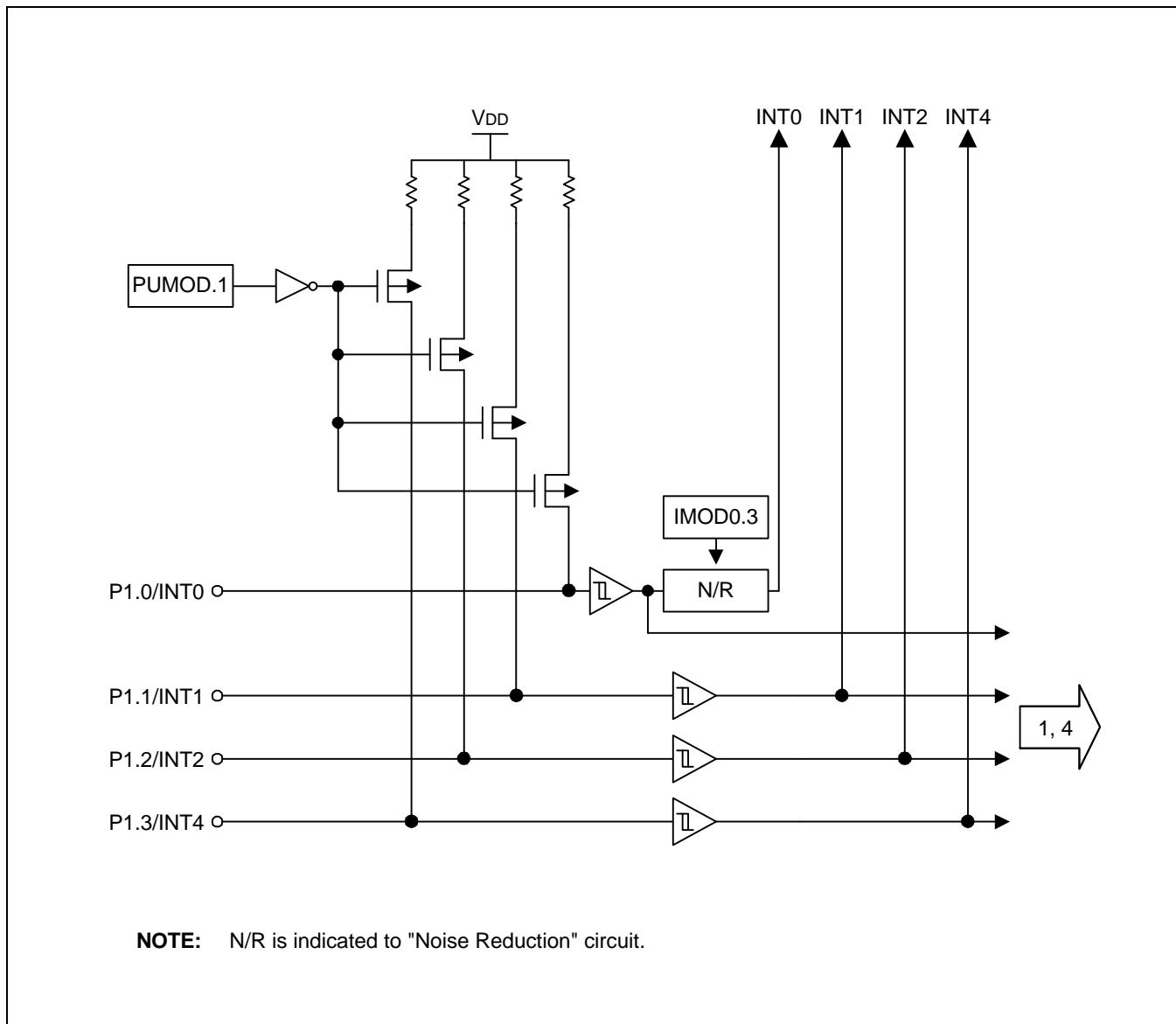



Figure 10-2. Port 1 Circuit Diagram

## PORTS 2, 3 CIRCUIT DIAGRAM

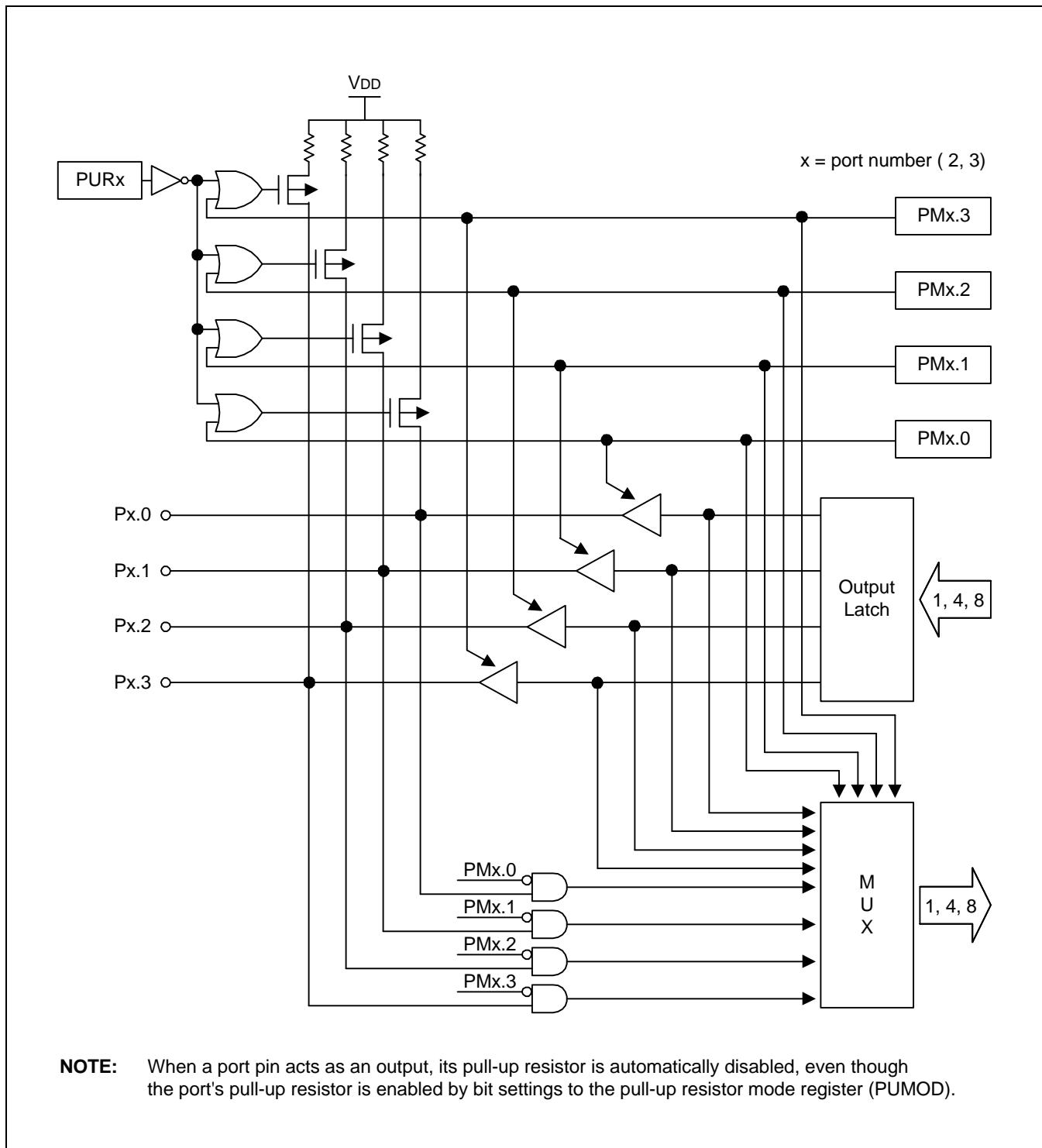
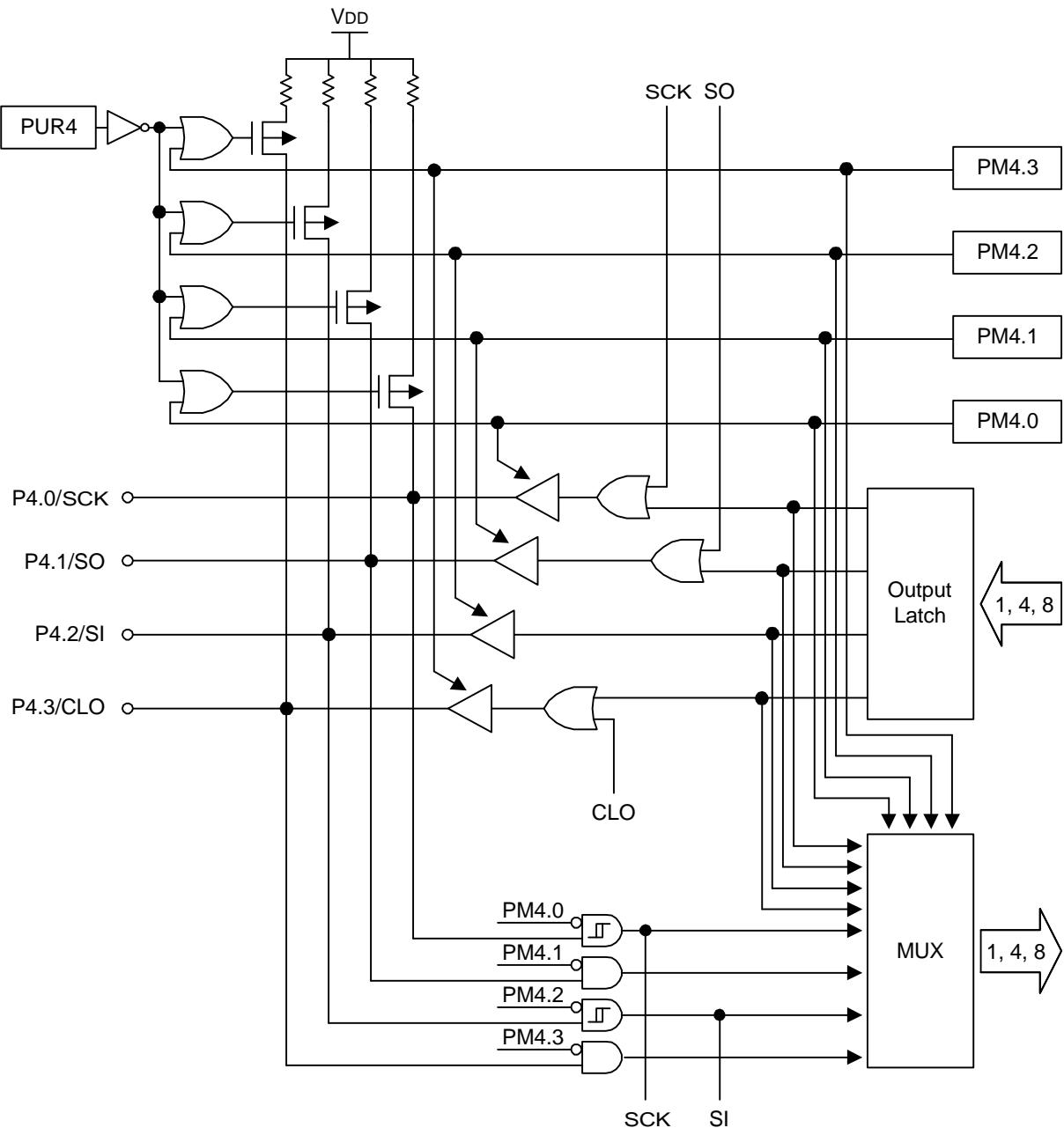




Figure 10-3. Ports 2, 3 Circuit Diagram

## PORT 4 CIRCUIT DIAGRAM



**NOTE:** When a port pin acts as an output, its pull-up resistor is automatically disabled, even though the port's pull-up resistor is enabled by bit settings to the pull-up resistor mode register (PUMOD).

Figure 10-4. Port 4 Circuit Diagram

## PORT 5 CIRCUIT DIAGRAM

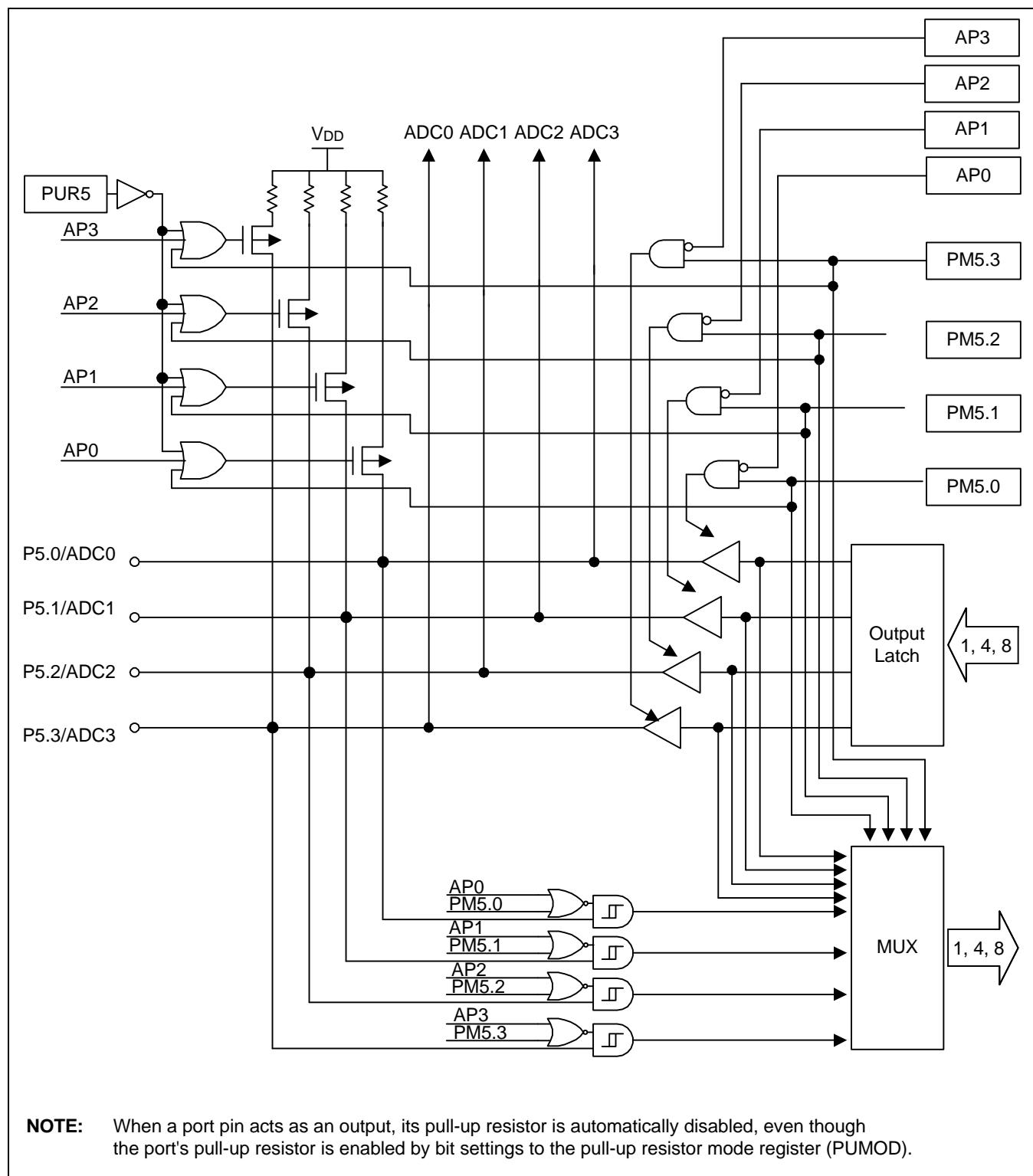



Figure 10-5. Port 5 Circuit Diagram

## PORT 6 CIRCUIT DIAGRAM

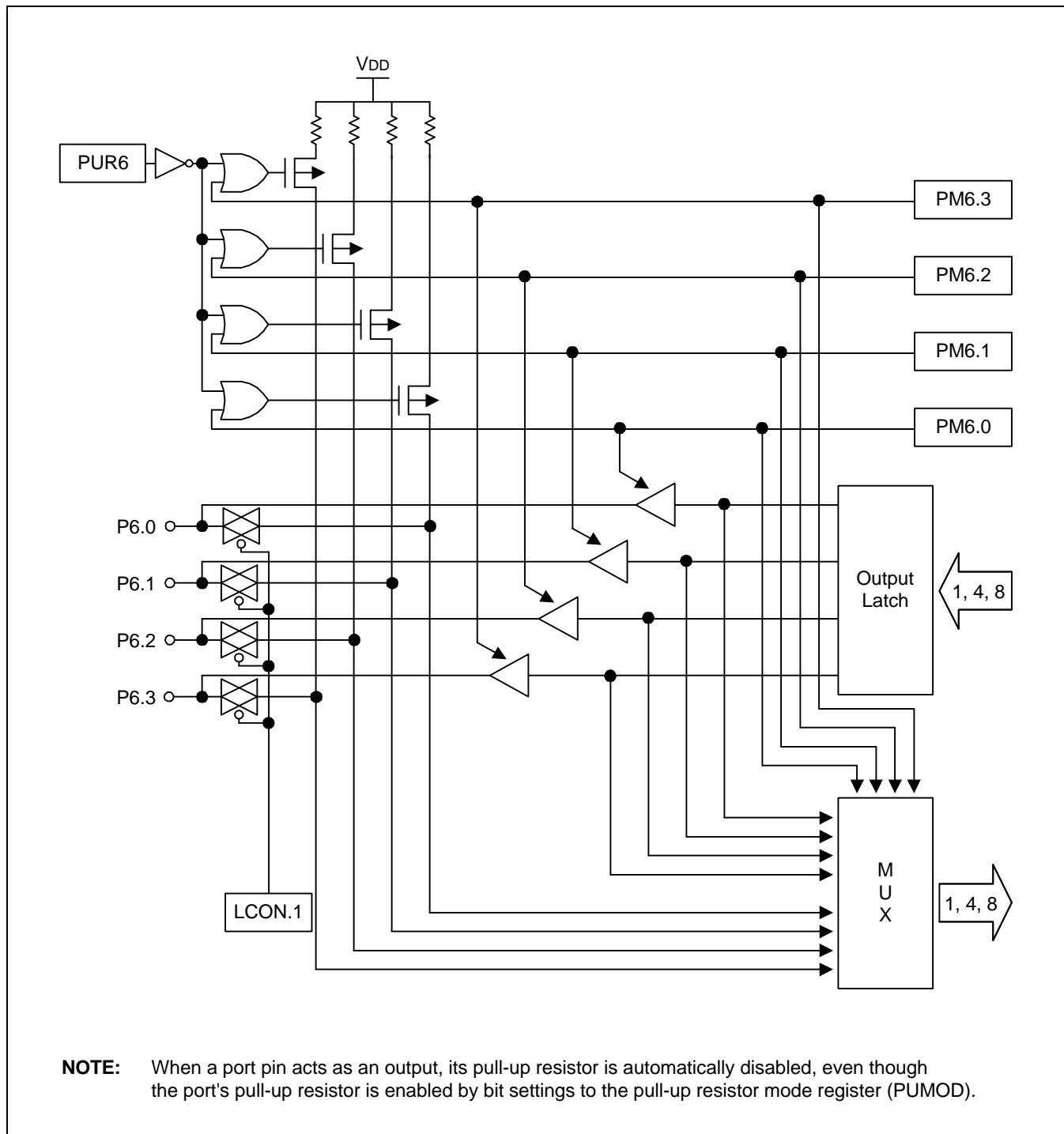



Figure 10-6. Port 6 Circuit Diagram

# 11

## TIMERS and TIMER/COUNTER

### OVERVIEW

The KS57C3316 microcontroller has three timer modules:

- 8-bit basic timer (BT)
- 8-bit timer/counter (TC0)
- Watch timer (WT)

The 8-bit basic timer (BT) is the microcontroller's main interval timer. It generates an interrupt request at a fixed time interval when the appropriate modification is made to its mode register. The basic timer also functions as 'watchdog' timer and is used to determine clock oscillation stabilization time when stop mode is released by an interrupt and after a chip reset.

The 8-bit timer/counter (TC0) is programmable timer that is used primarily for clock frequency modification.

The watch timer (WT) module consists of an 8-bit watch timer mode register, a clock selector, and a frequency divider circuit. Watch timer functions include real-time and watch-time measurement, main and subsystem clock interval timing, buzzer output generation. It also generates a clock signal for the LCD controller.

## BASIC TIMER (BT)

### OVERVIEW

The 8-bit basic timer (BT) has five functional components:

- Clock selector logic
- 4-bit mode register (BMOD)
- 8-bit counter register (BCNT)
- Output enable flag (BOE)
- 8-bit watchdog timer mode register (WDMOD)
- Watchdog timer counter clear flag (WDTCF)

The basic timer generates interrupt requests at precise intervals, based on the frequency of the system clock. Basic timer's counter register, BCNT, outputs timer pulses to the watchdog timer's counter register, WDTCTN when an overflow occurs in BCNT. You can use the basic timer as a "watchdog" timer for monitoring system events or use BT output to stabilize clock oscillation when stop mode is released by an interrupt and following chip reset. Bit settings in the basic timer mode register BMOD turns the BT on and off, selects the input clock frequency, and controls interrupt or stabilization intervals.

### Interval Timer Function

The measurement of elapsed time intervals is the basic timer's primary function. The standard interval is 256 BT clock pulses.

To restart the basic timer, set bit 3 of the mode register BMOD to logic one. The input clock frequency and the interrupt and stabilization interval are selected by loading the appropriate bit values to BMOD.2-BMOD.0.

The 8-bit counter register, BCNT, is incremented each time a clock signal is detected that corresponds to the frequency selected by BMOD. BCNT continues incrementing as it counts BT clocks until an overflow occurs. An overflow causes the BT interrupt request flag (IRQB) to be set to logic one to signal that the designated time interval has elapsed. An interrupt request is then generated, BCNT is cleared to logic zero, and counting continues from 00H.

### Oscillation Stabilization Interval Control

Bits 2–0 of the BMOD register are used to select the input clock frequency for the basic timer. This setting also determines the time interval (also referred to as 'wait time') required to stabilize clock signal oscillation when power-down mode is released by an interrupt. When a chip reset is generated, the standard stabilization interval for system clock oscillation is 29.1 ms at 4.5 MHz.

### Watchdog Timer Function

The basic timer can also be used as a "watchdog" timer to detect an inadvertent program loop, that is, system or program operation error. For this purpose, instruction that clears the watchdog timer (BITS WDTCTF) within a given period should be executed at proper points in a program. If an instruction that clears the watchdog timer is not done within the period and the watchdog timer overflows, a reset signal is generated and system is restarted with reset status. An operation of watchdog timer is as follows:

- Write some value (except #5AH) to Watchdog Timer Mode register, WDMOD.
- Each time BCNT overflows, an overflow signal is sent to the watchdog timer counter, WDCNT.
- If WDCNT overflows, system reset will be generated.

Table 11-1. Basic Timer Register Overview

| Register Name | Type    | Description                                                                                                                                 | Size  | RAM Address | Addressing Mode                                   | Reset Value |
|---------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|---------------------------------------------------|-------------|
| BMOD          | Control | Controls the clock frequency (mode) of the basic timer; also, the oscillation stabilization interval after power-down mode release or RESET | 4-bit | F85H        | 4-bit write-only; BMOD.3 is possible 1-bit write. | "0"         |
| BCNT          | Counter | Counts clock pulses matching the BMOD frequency setting                                                                                     | 8-bit | F86H-F87H   | 8-bit read-only                                   | "u" (note)  |
| BOE           | Control | Control output of basic timer output latch to the BTCO pin                                                                                  | 1-bit | F92H.1      | 1-bit read/write                                  | "0"         |
| WDMOD         | Control | Controls watchdog timer operation.                                                                                                          | 8-bit | F98H-F99H   | 8-bit write-only                                  | A5H         |
| WDTCF         | Control | Clear the watchdog timer's counter.                                                                                                         | 1-bit | F9AH.3      | 1-bit write-only                                  | "0"         |

NOTE: "u" means that the value is undetermined after a chip reset.

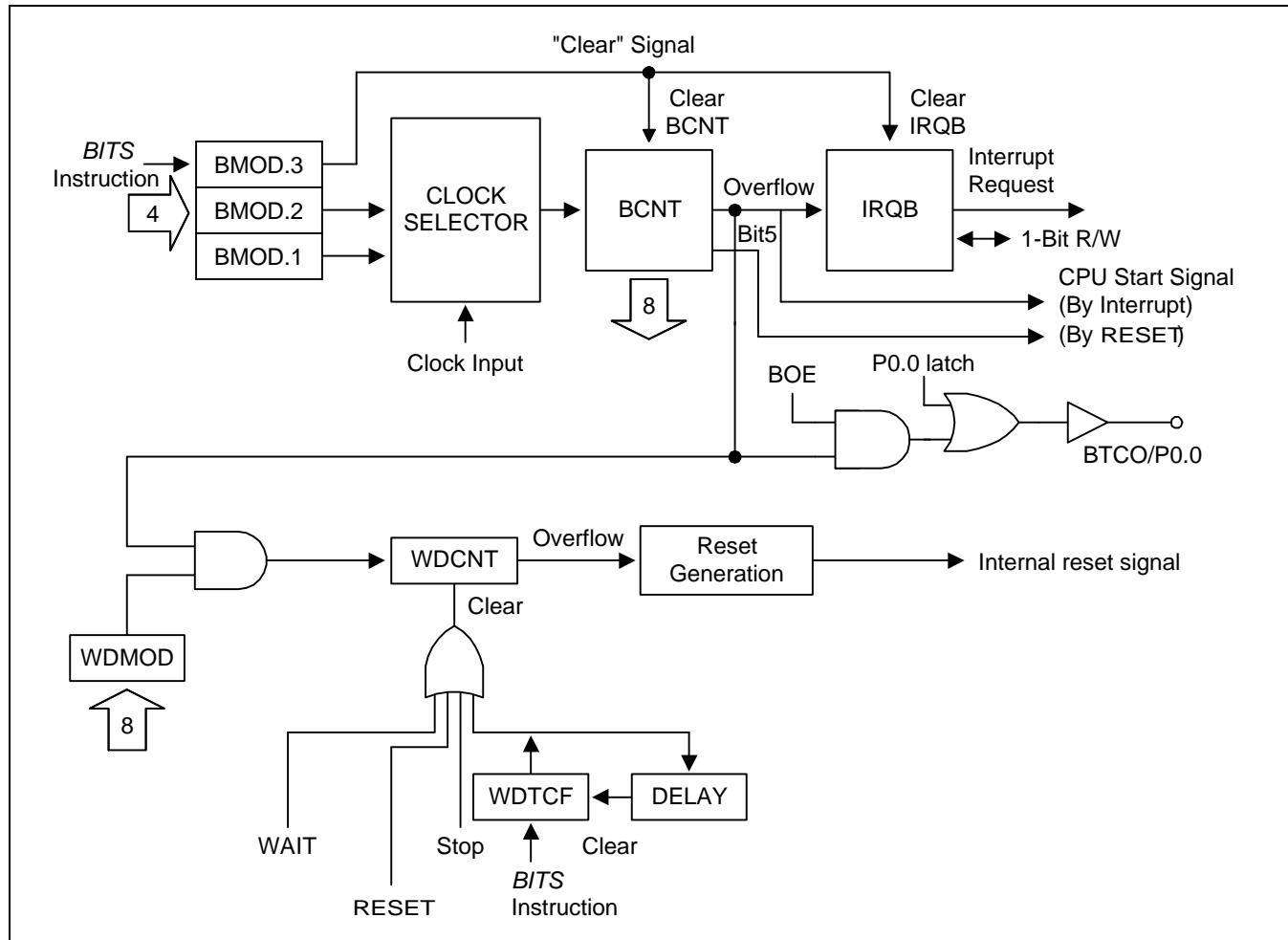



Figure 11-1. Basic Timer Circuit Diagram

## BASIC TIMER MODE REGISTER (BMOD)

The basic timer mode register, BMOD, is a 4-bit write-only register. Bit 3, the basic timer start control bit, is also 1-bit addressable. All BMOD values are set to logic zero following a chip reset and interrupt request signal generation is set to the longest interval. (BT counter operation cannot be stopped.) BMOD settings have the following effects:

- Restart the basic timer;
- Control the frequency of clock signal input to the basic timer;
- Determine time interval required for clock oscillation to stabilize following the release of stop mode by an interrupt.

By loading different values into the BMOD register, you can dynamically modify the basic timer clock frequency during program execution. Four BT frequencies, ranging from  $fxx/2^{12}$  to  $fxx/2^5$ , are selectable. Since BMOD's reset value is logic zero, the default clock frequency setting is  $fxx/2^{12}$ .

The most significant bit of the BMOD register, BMOD.3, is used to restart the basic timer. When BMOD.3 is set to logic one (enabled) by a 1-bit write instruction, the contents of the BT counter register (BCNT) and the BT interrupt request flag (IRQB) are both cleared to logic zero, and timer operation is restarted.

The combination of bit settings in the remaining three registers — BMOD.2 and BMOD.1 — determines the clock input frequency and oscillation stabilization interval.

**Table 11-2. Basic Timer Mode Register (BMOD) Organization**

|               |                                                          |
|---------------|----------------------------------------------------------|
| <b>BMOD.3</b> | Restart basic timer; clear IRQB, BCNT, and BMOD.3 to "0" |
| <b>BMOD.0</b> | Always zero                                              |

| <b>BMOD.2</b> | <b>BMOD.1</b> | <b>Basic Timer Input Clock</b> | <b>Interval Time</b>   |
|---------------|---------------|--------------------------------|------------------------|
| 0             | 0             | $fxx/2^{12}$ (1.098 kHz)       | $2^{20}/fxx$ (233 ms)  |
| 0             | 1             | $fxx/2^9$ (8.789 kHz)          | $2^{17}/fxx$ (29.1 ms) |
| 1             | 0             | $fxx/2^7$ (35.16 kHz)          | $2^{15}/fxx$ (7.28 ms) |
| 1             | 1             | $fxx/2^5$ (140.6 kHz)          | $2^{13}/fxx$ (1.82 ms) |

### NOTES:

1. Assuming that fxx is a selected system clock, 4.5 MHz.
2. Oscillation stabilization time is the time required to stabilize clock signal oscillation after a chip reset or stop mode are released.
3. The standard stabilization time for main clock oscillation following a RESET signal is 29.1 ms at 4.5 MHz.

## BASIC TIMER COUNTER (BCNT)

BCNT is an 8-bit counter for the basic timer. It can be addressed by 8-bit read instructions.

A chip reset leaves the BCNT counter value undetermined. BCNT is automatically cleared to logic zero whenever the BMOD register control bit (BMOD.3) is set to "1" to restart the basic timer. It is incremented each time a clock pulse of the frequency determined by the current BMOD bit settings is detected.

When BCNT has incremented to hexadecimal '0FFH' (255 clock pulses), it is cleared to '00H' and an overflow is generated. The overflow causes the interrupt request flag, IRQB, to be set to logic one. When the interrupt request is generated, BCNT immediately resumes counting with incoming clock signal.

### NOTE

Always execute a BCNT read operation twice to eliminate the possibility of reading unstable data while the counter is incrementing. If, after two consecutive reads, the BCNT values match, you can select the latter value as valid data. Until the results of the consecutive reads match, however, the read operation must be repeated until the validation condition is met.

## TIMER OUTPUT ENABLE REGISTER (TOE)

|      |     |      |     |     |
|------|-----|------|-----|-----|
| F92H | "0" | TOE0 | BOE | "0" |
|------|-----|------|-----|-----|

| 0 | TOE0 | BOE | 0 | Effect of IMOD2 Settings            |
|---|------|-----|---|-------------------------------------|
| 0 | 0    |     |   | Disable timer/counter 0 output      |
|   | 1    |     |   | Enable timer/counter 0 output       |
| 1 | 0    | 0   |   | Disable basic timer overflow output |
|   | 1    |     |   | Enable basic timer overflow output  |

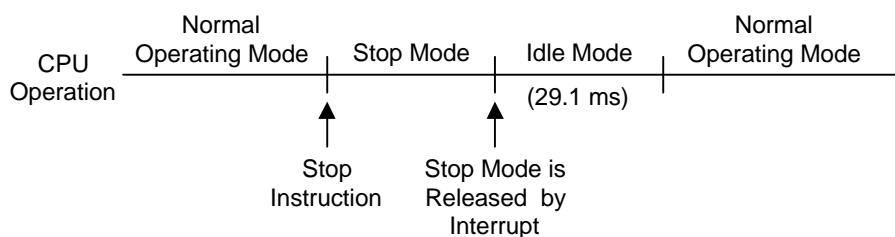
## BASIC TIMER OPERATION SEQUENCE

The basic timer's sequence of operations may be summarized as follows:

1. Set counter buffer bit (BMOD.3) to logic one to restart the basic timer.
2. BCNT is then incremented by one per each clock pulse corresponding to BMOD selection.
3. BCNT overflows if BCNT = 255 (BCNT = 0FFH).
4. When an overflow occurs, the IRQB flag is set by hardware to logic one.
5. The interrupt request is generated.
6. BCNT is then cleared by hardware to logic zero.
7. Basic timer resumes counting clock pulses.

### PROGRAMMING TIP — Using the Basic Timer

1. To read the basic timer count register (BCNT):


```

BITS      EMB
SMB      15
BCNTR LD      EA,BCNT
        LD      YZ,EA
        LD      EA,BCNT
        CPSE    EA,YZ
        JR      BCTR
    
```

2. When stop mode is released by an interrupt, set the oscillation stabilization interval to 29.1 ms:

```

BITS      EMB
SMB      15
LD      A,#0AH
LD      BMOD,A      ; Wait time is 29.1 ms
NOP
STOP
NOP
NOP
NOP
    
```



3. To set the basic timer interrupt interval time to 1.82 ms (at 4.5 MHz):

```

BITS      EMB
SMB      15
LD      A,#0EH
LD      BMOD,A
EI
BITS      IEB      ; Basic timer interrupt enable flag is set to "1"
    
```

4. Clear BCNT and the IRQB flag and restart the basic timer:

```

BITS      EMB
SMB      15
BITS      BMOD.3
    
```

## WATCHDOG TIMER MODE REGISTER (WDMOD)

The watchdog timer mode register, WDMOD, is a 8-bit write-only register located at RAM address F98H-F99H. WDMOD register controls to enable or disable the watchdog function. WDMOD values are set to logic "A5H" following a chip reset and this value enables the watchdog timer, and watchdog timer is set to the longest interval because BT overflow signal is generated with the longest interval.

| WDMOD           | Watchdog Timer Enable/Disable Control |
|-----------------|---------------------------------------|
| 5AH             | Disable watchdog timer function       |
| Any other value | Enable watchdog timer function        |

## WATCHDOG TIMER COUNTER (WDCNT)

The watchdog timer counter, WDCNT, is a 3-bit counter. WDCNT is automatically cleared to logic zero, and restarts whenever the WDTCF register control bit is set to "1". RESET, stop, and wait signal clears the WDCNT to logic zero also.

WDCNT increments each time a clock pulse of the overflow frequency determined by the current BMOD bit setting is generated. When WDCNT has incremented to hexadecimal '07H', it is cleared to '00H' and an overflow is generated. The overflow causes the system reset. When the interrupt request is generated, BCNT immediately resumes counting incoming clock signals.

## WATCHDOG TIMER COUNTER CLEAR FLAG (WDTCF)

The watchdog timer counter clear flag, WDTCF, is a 1-bit write instruction. When WDTCF is set to one, it clears the WDCNT to zero and restarts the WDCNT. WDTCF register bits 2-0 are always logic zero.

Table 11-3. Watchdog Timer Interval Time

| BMOD  | BT Input Clock (frequency) | WDCNT Input Clock (frequency) | WDT Interval Time                  | Main Clock    | Sub Clock   |
|-------|----------------------------|-------------------------------|------------------------------------|---------------|-------------|
| x000b | $fxx/2^{12}$               | $fxx/(2^{12} \times 2^8)$     | $2^{12} \times 2^8 \times 2^3/fxx$ | 1.63-1.86 sec | 224-256 sec |
| x010b | $fxx/2^9$                  | $fxx/(2^9 \times 2^8)$        | $2^9 \times 2^8 \times 2^3/fxx$    | 203.9-233 ms  | 28-32 sec   |
| x100b | $fxx/2^7$                  | $fxx/(2^7 \times 2^8)$        | $2^7 \times 2^8 \times 2^3/fxx$    | 51.0-58.3 ms  | 7-8 sec     |
| x110b | $fxx/2^5$                  | $fxx/(2^5 \times 2^8)$        | $2^5 \times 2^8 \times 2^3/fxx$    | 12.8-14.6 ms  | 1.75-2 sec  |

### NOTES:

- Assuming that fxx is main system clock, 4.5 MHz or subsystem clock, 32.768 KHz.
- If the WDMOD changes such as disable and enable, you must set WDTCF flag to "1" for starting WDCNT from zero state.

 **PROGRAMMING TIP — Using the Watchdog Timer**

|       |      |                                                    |
|-------|------|----------------------------------------------------|
| RESET | DI   |                                                    |
|       | BITS | EMB                                                |
|       | SMB  | 15                                                 |
|       | LD   | EA,#00H                                            |
|       | LD   | SP,EA                                              |
|       |      | •                                                  |
|       |      | •                                                  |
|       |      | •                                                  |
|       | LD   | A,#0CH                                             |
|       | LD   | BMOD,A                                             |
|       |      | •                                                  |
|       |      | •                                                  |
|       |      | •                                                  |
| MAIN  | BITS | WDTCF                                              |
|       |      | ;                                                  |
|       |      | Main routine operation period must be shorter than |
|       |      | ;                                                  |
|       |      | watchdog                                           |
|       |      | ;                                                  |
|       |      | timer's period                                     |
|       | JP   | MAIN                                               |

## 8-BIT TIMER/COUNTER (TC0)

### OVERVIEW

Timer/counter (TC0) is used to count system 'events' by identifying the transition (high-to-low or low-to-high) of incoming square wave signals. To indicate that an event has occurred, or that a specified time interval has elapsed, TC0 generates an interrupt request. By counting signal transitions and comparing the current counter value with the reference register value, TC0 can be used to measure specific time intervals.

TC0 has a reloadable counter that consists of two parts: an 8-bit reference register (TREF0) into which you write the counter reference value, and an 8-bit counter register (TCNT0) whose value is automatically incremented by counter logic.

An 8-bit mode register, TMOD0, is used to activate the timer/counter and to select the basic clock frequency to be used for timer/counter operations. To dynamically modify the basic frequency, you can load new values into the TMOD0 register during program execution.

### TC0 FUNCTION SUMMARY

|                            |                                                                                                                                                                                                        |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8-bit programmable timer   | Generates interrupts at specific time intervals based on the selected clock frequency.                                                                                                                 |
| External event counter     | Counter various system events based on edge detection of external clock signal at the TC0 input pin, TCLO0. To start the event counting operation, TMOD0.2 is set to "1" and TMOD0.6 is cleared to "0" |
| Arbitrary frequency output | Output selectable clock frequencies to the TC0 output pin, TCLO0.                                                                                                                                      |
| External signal divider    | Divides the frequency of an incoming external clock signal according to a modifiable reference value (TREF0), and outputs the modified frequency to the TCLO0 pin.                                     |
| Serial I/O clock source    | Output a modifiable clock signal for use as the SCK clock source.                                                                                                                                      |

**TC0 COMPONENT SUMMARY**

|                                |                                                                                                                                                                                                                                                                                                             |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode register (TMOD0)          | Activates the timer/counter and selects the internal clock frequency or the external clock source at the TCL0 pin.                                                                                                                                                                                          |
| Reference register (TREF0)     | Stores the reference value for the desired number of clock pulses between interrupt requests.                                                                                                                                                                                                               |
| Counter register (TCNT0)       | Counts internal or external clock pulses based on the bit settings in TMOD0 and TREF0.                                                                                                                                                                                                                      |
| Clock selector circuit         | Together with the mode register (TMOD0), lets you select one of four internal clock frequencies or an external clock.                                                                                                                                                                                       |
| 8-bit comparator               | Determines when to generate an interrupt by comparing the current value of the counter register (TCNT0) with the reference value previously programmed into the reference register (TREF0).                                                                                                                 |
| Output latch (TCL0)            | Where a clock pulse is stored pending output to the serial I/O circuit or to the TCL0 output pin, TCLO0.<br><br>When the contents of the TCNT0 and TREF0 registers coincide, the timer/counter interrupt request flag (IRQT0) is set to "1", the status of TCL0 is inverted, and an interrupt is generated. |
| Output enable flag (TOE0)      | Must be set to "1" before the contents of the TOE0 latch can be output to TCLO0.                                                                                                                                                                                                                            |
| Interrupt request flag (IRQT0) | Cleared when TC0 operation starts and the TC0 interrupt service routine is executed and enable whenever the counter value and reference value coincide.                                                                                                                                                     |
| Interrupt enable flag (IET0)   | Must be set to "1" before the interrupt requests generated by timer/counter 0 can be processed.                                                                                                                                                                                                             |

Table 11-4. TC0 Register Overview

| Register Name | Type      | Description                                                                                                            | Size  | RAM Address | Addressing Mode                                     | Reset Value |
|---------------|-----------|------------------------------------------------------------------------------------------------------------------------|-------|-------------|-----------------------------------------------------|-------------|
| TMOD0         | Control   | Controls TC0 enable/disable (bit 2); clears and resumes counting operation (bit 3); selects clock frequency (bits 6–4) | 8-bit | F90H-F91H   | 8-bit write-only; (TMOD0.3 is also 1-bit writeable) | "0"         |
| TCNT0         | Counter   | Counts clock pulses matching the TMOD0 frequency setting                                                               | 8-bit | F94H-F95H   | 8-bit read-only                                     | "0"         |
| TREF0         | Reference | Stores reference value for the timer/counter 0 interval setting                                                        | 8-bit | F96H-F97H   | 8-bit write-only                                    | FFH         |
| TOE0          | Flag      | Controls timer/counter 0 output to the TCLO0 pin                                                                       | 1-bit | F92H.2      | 1-bit write-only                                    | "0"         |

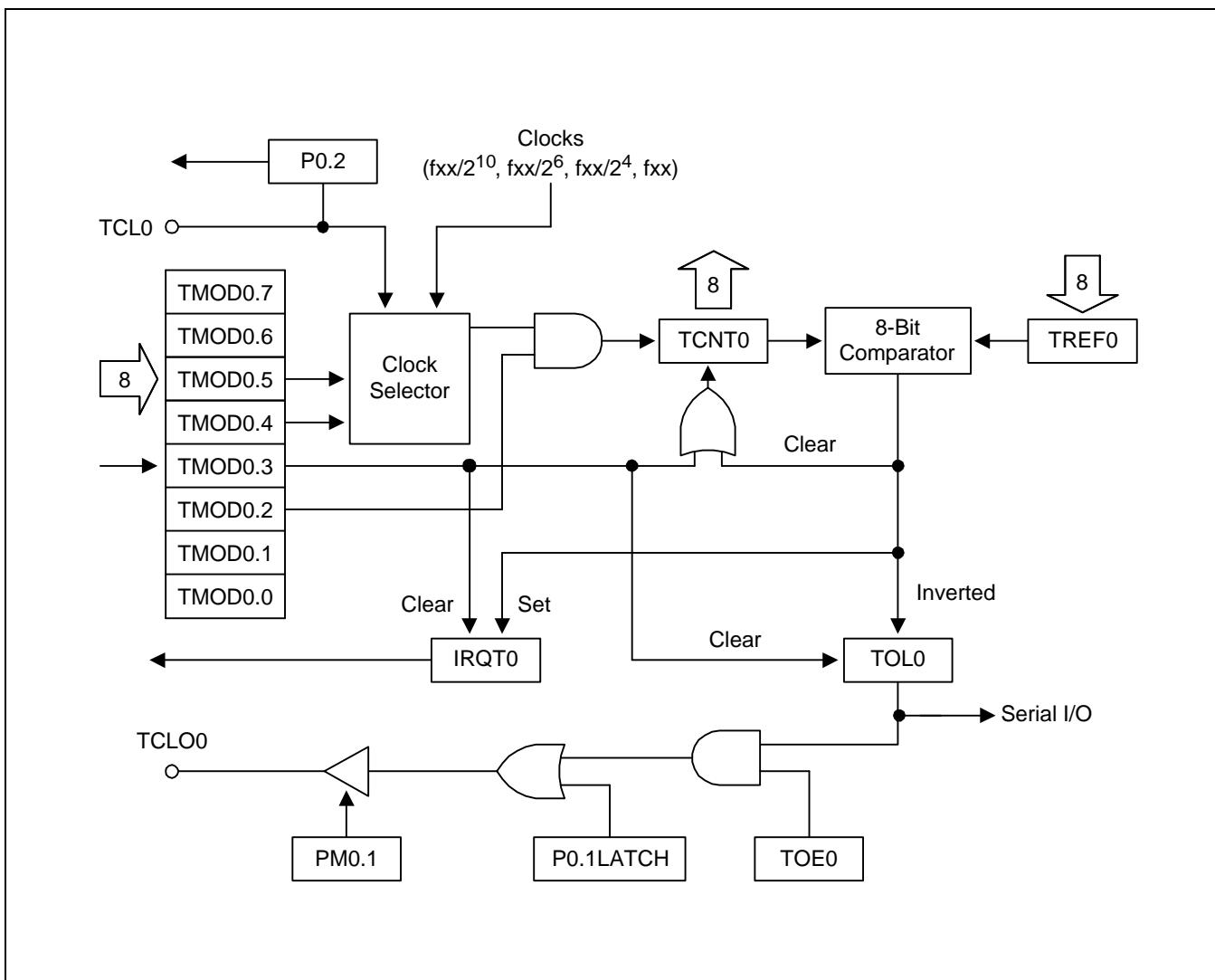



Figure 11-2. TC0 Circuit Diagram

## TC0 PROGRAMMABLE TIMER/COUNTER FUNCTION

You can program timer/counter 0 to generate interrupt requests at various interval based on the selected system clock frequency. Its 8-bit TC0 mode register TMOD0 is used to activate the timer/counter and to select the clock frequency.

The reference register TREF0 stores the value for the number of clock pulses to be generated between interrupt requests. The counter register, TCNT0, counts the incoming clock pulses, which are compared to the TREF0 value as TCNT0 is incremented. When there is a match (TREF0 = TCNT0), an interrupt request is generated.

To program timer to generate interrupt requests at specific intervals, choose one of four internal clock frequencies (divisions of the system clock, fxx) and load a counter reference value into the TREF0 register. TCNT0 is incremented each time an internal counter pulse is detected with the reference clock frequency specified by TMOD0.4-TMOD0.5 settings.

To generate an interrupt request, the TC0 interrupt request flag (IRQT0) is set to "1", the status of TOL0 is inverted and the interrupt is generated. The content of TCNT0 is then cleared to 00H and TC0 continues counting. The interrupt request mechanism for TC0 includes an interrupt enable flag (IET0) and an interrupt request flag (IRQT0).

## TC0 OPERATION SEQUENCE

The general sequence of operations for using TC0 can be summarized as follows:

1. Set TMOD0.2 to "1" to enable TC0.
2. Set TMOD0.6 to "0" to enable the system clock (fxx) input.
3. Set TMOD0.5 and TMOD0.4 bits to desired internal frequency ( $f_{xx}/2^n$ ).
4. Load a value to TREF0 to specify the interval between interrupt requests.
5. Set the TC0 interrupt enable flag (IET0) to "1".
6. Set TMOD0.3 bit to "1" to clear TCNT0, IRQT0 and TOL0, and start counting.
7. TCNT0 increments with each internal clock pulse.
8. When the comparator shows  $TCNT0 = TREF0$ , the IRQT0 flag is set to "1".
9. Output latch (TOL0) logic toggles high or low.
10. Interrupt request is generated.
11. TCNT0 is cleared to 00H and counting resumes.
12. Programmable timer/counter operation continues until TMOD0.2 is cleared to "0".

## TC0 EVENT COUNTER FUNCTION

Timer/counter 0 can monitor or detect system 'events' by using the external clock input at the TCL0 pin (I/O port 0.2) as the counter source. The TC0 mode register selects rising or falling edge detection for incoming clock signals. The counter register TCNT0 is incremented each time the selected states transition of the external clock signal occurs.

With the exception of the different TMOD0.4-TMOD0.6 settings, the operation sequence for TC0's event counter function is identical to its programmable timer/counter function. To activate the TC0 event counter function,

- Set TMOD0.2 to "1" to enable TC0;
- Clear TMOD0.6 to "0" to select the external clock source at the TCL0 pin;
- Select TCL0 edge detection for rising or falling signal edges by loading the appropriate values to TMOD0.5 and TMOD0.4.
- P0.2 must be set to input mode.

**Table 11-5. TMOD0 Setting for TCL0 Edge Detection**

| TMOD0.6 | TMOD0.5 | TMOD0.4 | TCL0 Edge Detection |
|---------|---------|---------|---------------------|
| 0       | 0       | 0       | Rising edges        |
| 0       | 0       | 1       | Falling edges       |

## TC0 CLOCK FREQUENCY OUTPUT

Using timer/counter 0, you can output a modifiable clock frequency to the TC0 clock output pin, TCLO0. To select the clock frequency, you load the appropriate value to the TC0 mode register, TMOD0. The clock interval is selected by loading the desired reference value into the reference register TREF0. To enable the output to the TCLO0 pin at I/O port 0.1, the following conditions must be met:

- TC0 output enable flag TOE0 must be set to “2”
- I/O mode flag for P0.1 (PM0.1) must be set to output mode (“1”)
- Output latch value for P0.1 must be cleared to “0”

Each time TCNT0 overflow and an interrupt request is generated, the state of the output latch TOL0 is inverted and the TC0-generated clock signal is output to the TCLO0 pin.

### PROGRAMMING TIP — TC0 Signal Output to the TCLO0 Pin

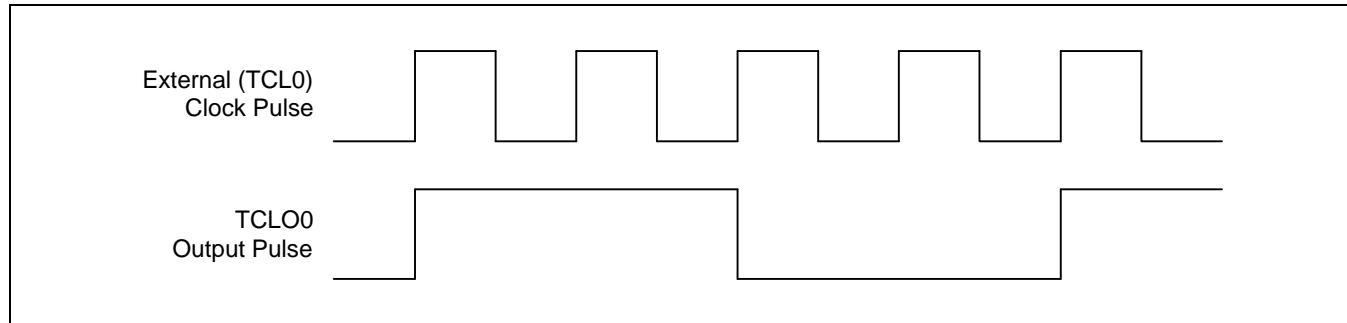
Output a 30-ms pulse width signal to the TCLO0 pin:

|      |          |                      |
|------|----------|----------------------|
| BITS | EMB      |                      |
| SMB  | 15       |                      |
| LD   | EA,#79H  |                      |
| LD   | TREF0,EA |                      |
| LD   | EA,#4CH  |                      |
| LD   | TMOD0,EA |                      |
| LD   | EA,#01H  |                      |
| LD   | PMG0,EA  | ; P0.1 ← output mode |
| BITR | P0.1     | ; Clear P0.1         |
| BITS | TOE0     |                      |

## TC0 SERIAL I/O CLOCK GENERATION

Timer/counter 0 can supply a clock signal to the clock selector circuit of the serial I/O interface for data shifter and clock counter operations (These internal SIO operations are controlled in turn by the SIO mode register, SMOD). This clock generation function enables you to adjust data transmission rates across the serial interface.

Use TMOD0 and TREF0 register setting to select the frequency and interval of the TC0 clock signal to be used as SCK input to the serial interface. The generated clock signal is then sent directly to the serial I/O clock selector circuit – not through the port 0.1 latch and TCLO0 pin (the TOE0 flag may be disabled).


## TC0 EXTERNAL INPUT SIGNAL DIVIDER

By selection an external clock source and loading a reference value into the TC0 reference register, TREF0, you can divide the incoming clock signal by the TREF0 value and then output this modified clock frequency to the TCLO0 pin. The sequence of operations used to divide external clock input can be summarized as follows:

1. Load a signal divider value to the TREF0 register.
2. Clear TMOD0.6 to “0” to enable external clock input at the TCL0 pin.
3. Set TMOD0.5 and TMOD0.4 to desired TCL0 signal edge detection.
4. Set port 0.1 output mode flag (PM0.1) to output (“1”)
5. Set P0.1 output latch to “0”
6. Set TOE0 flag to “1” to enable output of the divided frequency to the TCLO0 pin.

### PROGRAMMING TIP — External TCL0 Clock Output to the TCLO0 Pin

Output external TCL0 clock pulse to the TCLO0 pin (divided by four):



|      |                       |
|------|-----------------------|
| BITS | EMB                   |
| SMB  | 15                    |
| LD   | EA,#79H               |
| LD   | TREF0,EA              |
| LD   | EA,#0CH               |
| LD   | TMOD0,EA              |
| LD   | EA,#02H               |
| LD   | PMG0,EA               |
| BITR | P0.1                  |
| BITS | TOE0                  |
|      | ; P 0.1 ← output mode |
|      | ; P 0.1 clear         |

### TC0 MODE REGISTER (TMOD0)

TMOD0 is the 8-bit mode control register for timer/counter 0. It is addressable by 8-bit write instructions. One bit, TMOD0.3, is also 1-bit writeable. A system reset clears TMOD0 to '00H' and disables TC0 operations.

|      |         |         |         |         |
|------|---------|---------|---------|---------|
| F90H | TMOD0.3 | TMOD0.2 | "0"     | "0"     |
| F91H | "0"     | TMOD0.6 | TMOD0.5 | TMOD0.4 |

TMOD0.2 is the enable/disable bit for timer/counter 0. When TMOD0.3 is set to "1", the contents of TCNT0, IRQT0, and TOL0 are cleared, counting starts from '00H', and TMOD0.3 is automatically reset to "0" for normal TC0 operation. When TC0 operation stops (TMOD0.2 = "0"), the contents of the TC0 counter register TCNT0 are retained until TC0 is re-enabled.

The TMOD0.6, TMOD0.5 and TMOD0.4 bit settings are used together to select the TC0 clock source. This selection involves two variables:

- Synchronization of timer/counter operation with either the rising edge or the falling edge of the clock signal input at the TCL0 pin.
- Choosing of one of four frequencies, based on division of the incoming system clock frequency, for use in internal TC0 operation.

**Table 11-6. Timer 0 Mode Register Organization**

| Bit Name | Setting | Resulting TC0 Function                                                                                                         | Address |  |
|----------|---------|--------------------------------------------------------------------------------------------------------------------------------|---------|--|
| TMOD0.7  | 0       | Always logic zero                                                                                                              | F91H    |  |
| TMOD0.6  | 0, 1    | Specify input clock edge and internal frequency                                                                                |         |  |
| TMOD0.5  |         |                                                                                                                                |         |  |
| TMOD0.4  | 1       | Clear TCNT0, IRQT0 and TOL0 and resume counting immediately (This bit is automatically cleared to "0" after counting resumes.) | F90H    |  |
| TMOD0.3  |         |                                                                                                                                |         |  |
| TMOD0.2  |         |                                                                                                                                |         |  |
| TMOD0.1  | 0       | Disable timer/counter 0; retain TCNT0 contents                                                                                 | F90H    |  |
| TMOD0.0  | 0       | Enable timer/counter 0                                                                                                         |         |  |

**Table 11-7. TMOD0.6, TMOD0.5 and TMOD0.4 Bit Settings**

| <b>TMOD0.6</b> | <b>TMOD0.5</b> | <b>TMOD0.4</b> | <b>Resulting Counter Source and Clock Frequency</b> |
|----------------|----------------|----------------|-----------------------------------------------------|
| 0              | 0              | 0              | External Clock input (TCL0) on rising edges         |
| 0              | 0              | 1              | External Clock input (TCL0) on falling edges        |
| 1              | 0              | 0              | $f_{xx}/2^{10}$ (4.39 kHz)                          |
| 1              | 0              | 1              | $f_{xx}/2^6$ (70.3 kHz)                             |
| 1              | 1              | 0              | $f_{xx}/2^4$ (281 kHz)                              |
| 1              | 1              | 1              | $f_{xx} = 4.5$ MHz                                  |

**NOTE:**  $f_{xx}$  = selected system clock of 4.5 MHz.

 **PROGRAMMING TIP — Restarting TC0 Counting Operation**

1. Set TC0 timer interval to 4.39 kHz:

```

BITS      EMB
SMB      15
LD       EA,#4CH
LD       TMOD0,EA
EI
BITS      IET0

```

2. Clear TCNT0, IRQT0 and TOL0 and restart TC0 counting operation:

```

BITS      EMB
SMB      15
BITS      TMOD0.3

```

### TC0 COUNTER REGISTER (TCNT0)

The 8-bit counter register for timer/counter 0, TCNT0, is read-only and can be addressed by 8-bit RAM control instructions. A system reset sets TCNT0 to '00H'.

Whenever TMOD0.3 is enabled, TCNT0 is cleared to '00H' and counting resumes. The TCNT0 register value is incremented each time an incoming clock signal is detected that matches the signal edge and frequency setting of the TMOD0 register (specifically, TMOD0.6, TMOD0.5, and TMOD0.4).

Each time TCNT0 is incremented, the new value is compared to the reference value stored in the TC0 reference buffer, TREF0. When TCNT0 = TREF0, an overflow occurs in the TCNT0 register, the interrupt request flag, IRQT0, is set to "1", and an interrupt request is generated to indicate that the programmed timer/counter interval has elapsed.

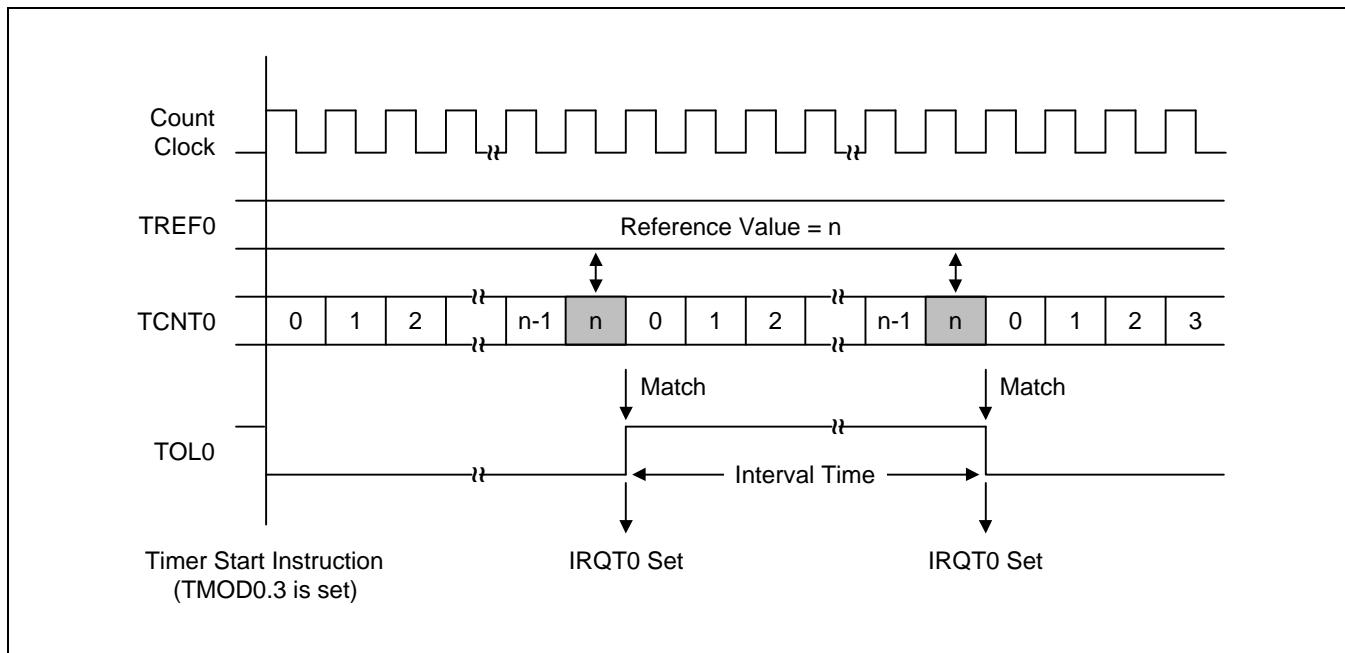



Figure 11-3. TC0 Timing Diagram

### TC0 REFERENCE REGISTER (TREF0)

The TC0 reference register TREF0 is an 8-bit write-only register. It is addressable by 8-bit RAM control instructions. A system reset initializes the TREF0 value to 'FFH'.

TREF0 is used to store a reference value to be compared to the incrementing TCNT0 register in order to identify an elapsed time interval. Reference values will differ depending upon the specific function that TC0 is being used to perform — as a programmable timer/counter, event counter, clock signal divider, or arbitrary frequency output source.

During timer/counter operation, the value loaded into the reference register is compared to the TCNT0 value. When TCNT0 = TREF0, an interrupt request is generated to signal the interval or event. The TREF0 value, together with the TMOD0 clock frequency selection, determines the specific TC0 timer interval. Use the following formula to calculate the correct value to load to the TREF0 reference register:

$$\text{TC0 timer interval} = (\text{TREF0 value} + 1) \times \frac{1}{\text{TMOD0 frequency setting}}$$

(TREF0 value  $\neq$  0)

**☞ PROGRAMMING TIP — Setting a TC0 Timer Interval**

To set a 30 ms timer interval for TC0, given  $f_{xx} = 4.5$  MHz, follow these steps.

1. Select the timer mode register with a maximum setup time of 58.3 ms (assume the TC0 counter clock =  $f_{xx}/2^{10}$ , and TREF0 is set to FFH):
2. Calculate the TREF0 value:

$$30 \text{ ms} = \frac{\text{TREF0 value} + 1}{4.39 \text{ kHz}}$$

$$\text{TREF0} + 1 = \frac{30 \text{ ms}}{227 \mu\text{s}} = 132.15 = 84\text{H}$$

$$\text{TREF0 value} = 84\text{H} - 1 = 83\text{H}$$

3. Load the value 83H to the TREF0 register:

|      |          |
|------|----------|
| BITS | EMB      |
| SMB  | 15       |
| LD   | EA,#83H  |
| LD   | TREF0,EA |
| LD   | EA,#4CH  |
| LD   | TMOD0,EA |

## WATCH TIMER

### OVERVIEW

The watch timer is a multi-purpose timer which consists of three basic components:

- 8-bit watch timer mode register (WMOD)
- Clock selector
- Frequency divider circuit

Watch timer functions include real-time and watch-time measurement and interval timing for the main and subsystem clock. It is also used as a clock source for the LCD controller and for generating buzzer (BUZ) output.

### Real-Time and Watch-Time Measurement

To start watch timer operation, set bit 2 of the watch timer mode register (WMOD.2) to logic one. The watch timer starts, the interrupt request flag IRQW is automatically set to logic one, and interrupt requests commence in 0.5-second intervals.

Since the watch timer functions as a quasi-interrupt instead of a vectored interrupt, the IRQW flag should be cleared to logic zero by program software as soon as a requested interrupt service routine has been executed.

### Using a System or Subsystem Clock Source

The watch timer can generate interrupts based on the system clock frequency or on the subsystem clock. When the zero bit of the WMOD register is set to "1", the watch timer uses the subsystem clock signal (fxt) as its source; if WMOD.0 = "0", the system clock (fx) is used as the signal source, according to the following formula:

$$\text{Watch timer clock (fw)} = \frac{\text{System clock (fx)}}{128} = 32.768 \text{ kHz (fx} = 4.19 \text{ MHz)}$$

This feature is useful for controlling timer-related operations during stop mode. When stop mode is engaged, the main system clock (fx) is halted, but the subsystem clock continues to oscillate. By using the subsystem clock as the oscillation source during stop mode, the watch timer can set the interrupt request flag IRQW to "1", thereby releasing stop mode.

### Clock Source Generation for LCD Controller

The watch timer supplies the clock frequency for the LCD controller ( $f_{LCD}$ ). Therefore, if the watch timer is disabled, the LCD controller does not operate.

### Buzzer Output Frequency Generator

The watch timer can generate a steady 2 kHz, 4 kHz, 8 kHz, or 16 kHz signal to the BUZ pin. To select the desired BUZ frequency, load the appropriate value to the WMOD register. This output can then be used to actuate an external buzzer sound. To generate a BUZ signal, three conditions must be met:

- The WMOD.7 register bit is set to "1"
- The port 0.3 output mode flag (PM0.3) set to 'output' mode
- The output latch for I/O port 0.3 is cleared to "0"

### Timing Tests in High-Speed Mode

By setting WMOD.1 to "1", the watch timer will function in high-speed mode, generating an interrupt every 3.91 ms. At its normal speed (WMOD.1 = '0'), the watch timer generates an interrupt request every 0.5 seconds. High-speed mode is useful for timing events for program debugging sequences.

### Check Subsystem Clock Level Feature

The watch timer can also check the input level of the subsystem clock by testing WMOD.3. If WMOD.3 is "1", the input level at the XT<sub>IN</sub> pin is high; if WMOD.3 is "0", the input level at the XT<sub>IN</sub> pin is low.

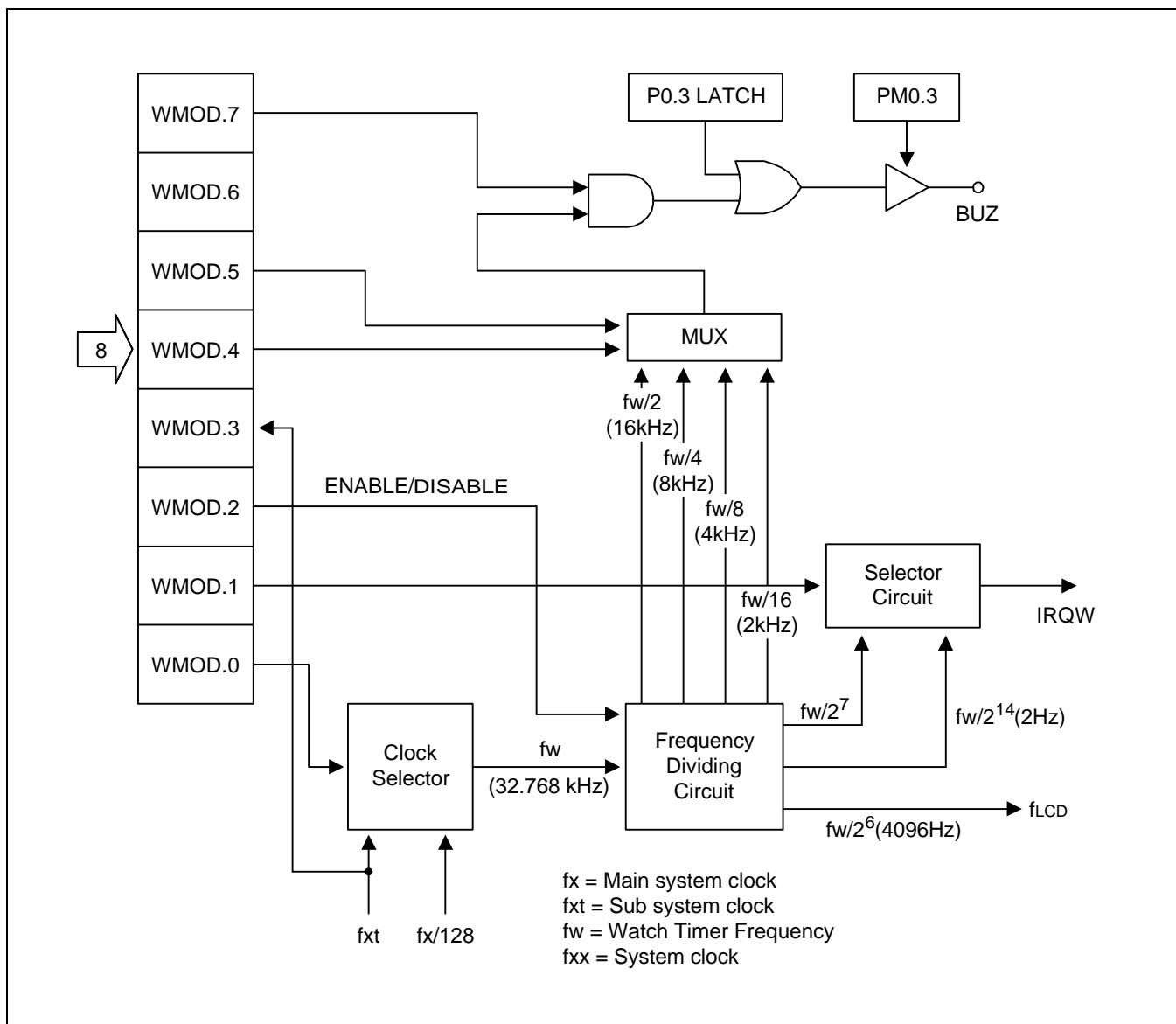



Figure 11-4. Watch Timer Circuit Diagram

## WATCH TIMER MODE REGISTER (WMOD)

The watch timer mode register WMOD is used to select specific watch timer operations. It is 8-bit write-only addressable. An exception is WMOD bit 3 (the XT<sub>IN</sub> input level control bit) which is 1-bit read-only addressable. A system reset automatically sets WMOD.3 to the current input level of the subsystem clock, XT<sub>IN</sub> (high, if logic one; low, if logic zero), and all other WMOD bits to logic zero.

|      |        |        |        |        |
|------|--------|--------|--------|--------|
| F88H | WMOD.3 | WMOD.2 | WMOD.1 | WMOD.0 |
| F89H | WMOD.7 | "0"    | WMOD.5 | WMOD.4 |

In summary, WMOD settings control the following watch timer functions:

- Watch timer clock selection (WMOD.0)
- Watch timer speed control (WMOD.1)
- Enable/disable watch timer (WMOD.2)
- XT<sub>IN</sub> input level test (WMOD.3)
- Buzzer frequency selection (WMOD.4 and WMOD.5)
- Enable/disable buzzer output (WMOD.7)

**Table 11-8. Watch Timer Mode Register (WMOD) Organization**

| Bit Name | Values |   | Function                                               | Address |
|----------|--------|---|--------------------------------------------------------|---------|
| WMOD.7   | 0      |   | Disable buzzer (BUZ) signal output                     | F89H    |
|          | 1      |   | Enable buzzer (BUZ) signal output                      |         |
| WMOD.6   | 0      |   | Always logic zero                                      |         |
| WMOD.5-4 | 0      | 0 | 2 kHz buzzer (BUZ) signal output                       |         |
|          | 0      | 1 | 4 kHz buzzer (BUZ) signal output                       |         |
|          | 1      | 0 | 8 kHz buzzer (BUZ) signal output                       |         |
|          | 1      | 1 | 16 kHz buzzer (BUZ) signal output                      |         |
| WMOD.3   | 0      |   | Input level to XT <sub>IN</sub> pin is low             | F88H    |
|          | 1      |   | Input level to XT <sub>IN</sub> pin is high            |         |
| WMOD.2   | 0      |   | Disable watch timer; clear frequency dividing circuits |         |
|          | 1      |   | Enable watch timer                                     |         |
| WMOD.1   | 0      |   | Normal mode; sets IRQW to 0.5 seconds                  |         |
|          | 1      |   | High-speed mode; sets IRQW to 3.91 ms                  |         |
| WMOD.0   | 0      |   | Select fxx/128 as the watch timer clock (fw)           |         |
|          | 1      |   | Select subsystem clock (fxt) as watch timer clock (fw) |         |

**NOTE:** System clock frequency (fxx) is assumed to be 4.19 MHz; subsystem clock (fxt) is assumed to be 32.768 kHz.

**☞ PROGRAMMING TIP — Using the Watch Timer**

1. Select a subsystem clock as the LCD display clock, a 0.5 second interrupt, and 2 kHz buzzer enable:

```
BITS      EMB
SMB      15
LD       EA,#08H
LD       PMG0,EA      ; P0.3 ← output mode
BITR      P0.3
LD       EA,#85H
LD       WMOD,EA
BITS      IEW
```

2. Sample real-time clock processing method:

|       |       |      |                                        |
|-------|-------|------|----------------------------------------|
| CLOCK | BTSTZ | IRQW | ; 0.5 second check                     |
|       | RET   |      | ; No, return                           |
| •     |       |      | ; Yes, 0.5 second interrupt generation |
| •     |       |      |                                        |
| •     |       |      | ; Increment HOUR, MINUTE, SECOND       |

# 12 LCD CONTROLLER/DRIVER

## OVERVIEW

The KS57C3316 microcontroller can directly drive an up to 28 SEG x 4 COM LCD panel. Its LCD block has the following components:

- LCD controller/driver
- Display RAM for storing display data
- 28 segment output pins (SEG0-SEG27)
- 4 common output pins (COM0-COM3)
- Internal resistor circuit for LCD bias

The frame frequency, duty and bias, and the segment pins used for display output, are determined by bit settings in the LCON and LMOD.

The LCD control register, LCON, is used to turn the LCD display on and off, to switch current to the dividing resistors for the LCD display. Data written to the LCD display RAM can be transferred to the segment signal pins automatically without program control.

When a subsystem clock is selected as the LCD clock source, the LCD display is enabled even during main clock stop and idle modes if the clock source is activated.

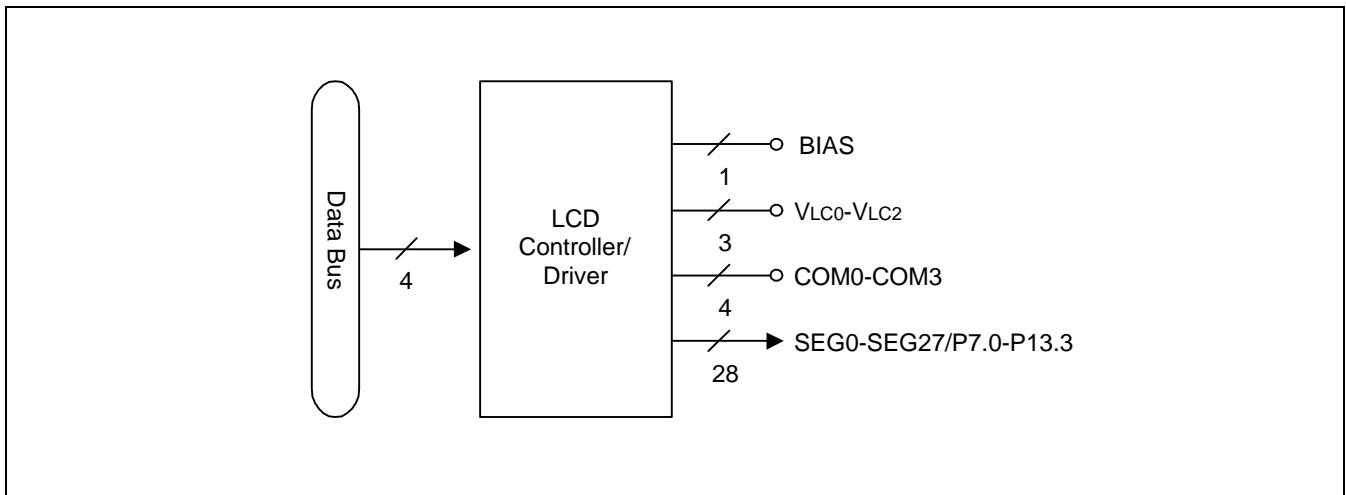



Figure 12-1. LCD Function Diagram

## LCD CIRCUIT DIAGRAM

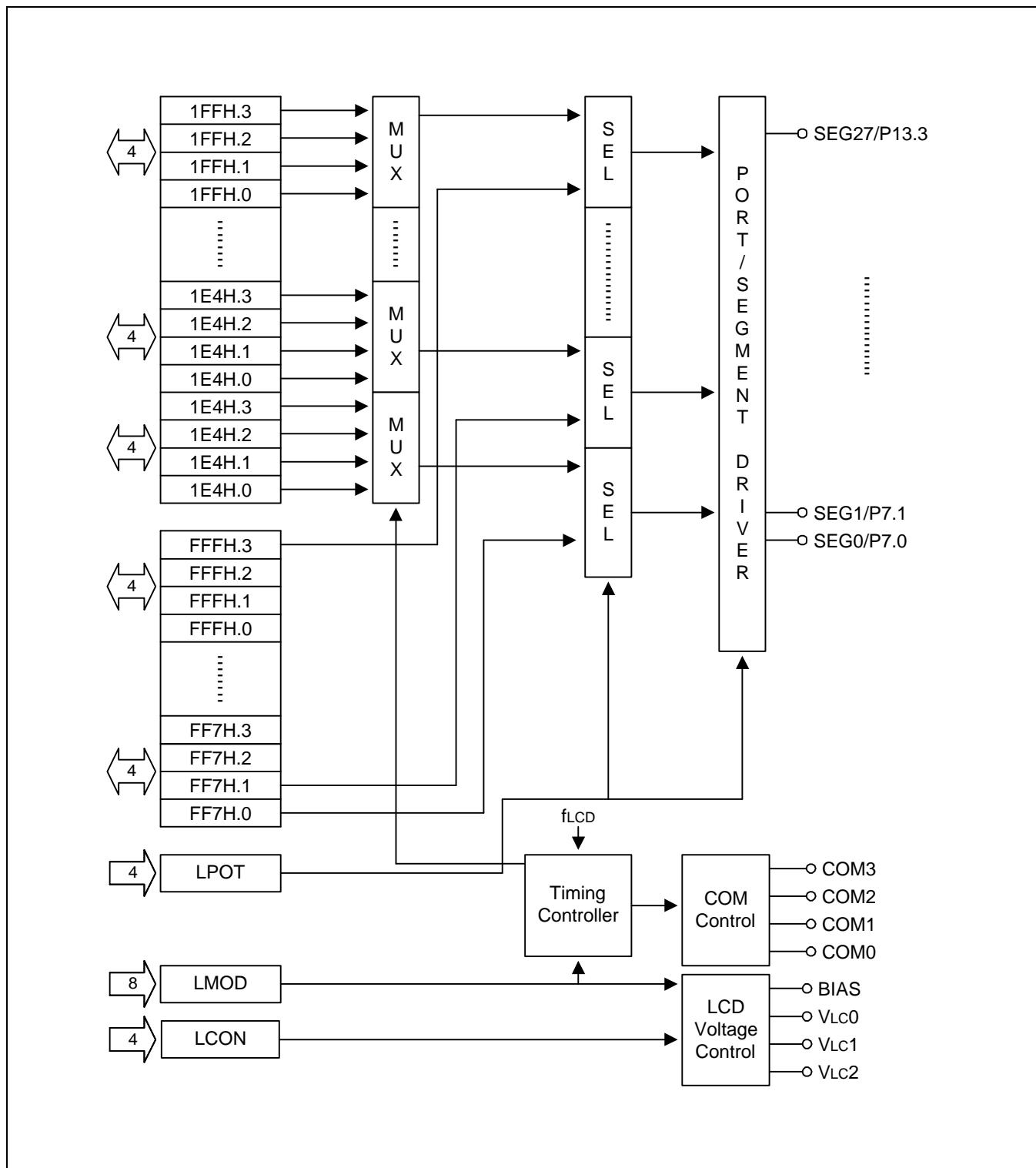



Figure 12-2. LCD Circuit Diagram

## LCD RAM ADDRESS AREA

RAM addresses, 1E4H-1FFH, are used as LCD data memory. These locations can be addressed by 1-bit, 4-bit instructions. When the bit value of a display segment is "1", the LCD display is turned on; when the bit value is "0", the display is turned off.

Display RAM data are sent out through segment pins SEG0-SEG27 using a direct memory access (DMA) method that is synchronized with the  $f_{LCD}$  signal. RAM addresses in this location that are not used for LCD display can be allocated to general-purpose use.

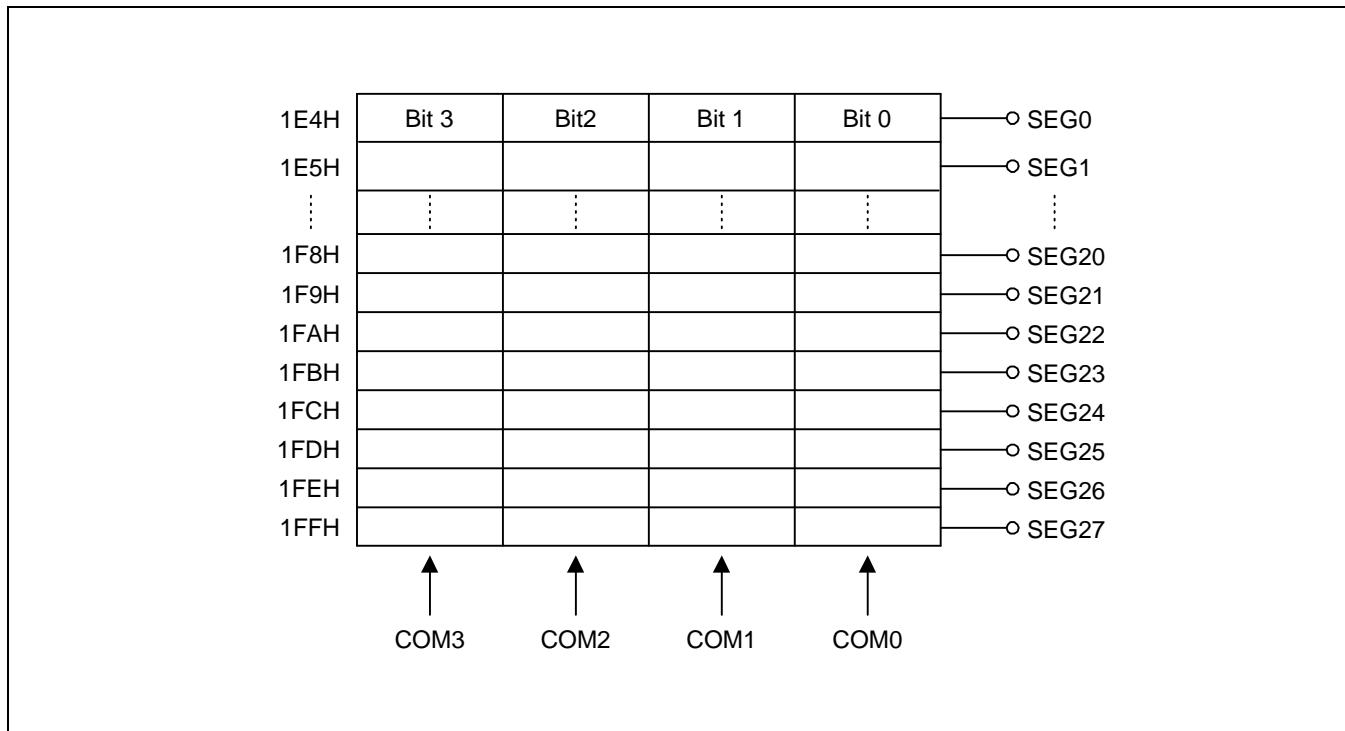



Figure 12-3. LCD Display Data RAM Organization

Table 12-1. Common Signal Pins Used per Duty Cycle

| Display Mode | COM0 Pin | COM1 Pin | COM2 Pin | COM3 Pin |
|--------------|----------|----------|----------|----------|
| Static duty  | Selected | N/C      | N/C      | N/C      |
| 1/2 duty     | Selected | Selected | N/C      | N/C      |
| 1/3 duty     | Selected | Selected | Selected | N/C      |
| 1/4 duty     | Selected | Selected | Selected | Selected |

NOTE: NC = no connection is required.

## LCD CONTROL REGISTER (LCON)

LCON is a 4-bit write-only register. The LCON register can be used to turn the LCD display on or off, and to control the current to dividing resistors in the LCD circuit. A reset operation clears all LCON values to "0". This turns the LCD display off and stops the current to the dividing resistors and LCON.1 used for P6.

- When LCON.1 is "0", P6 is connected an external source and be used for input port.
- When LCON.1 is "1", P6 is open with an external source, so the states of P6 is high impedance.

The reason this mode exists is to enhance LCD quality during a key scanning.

The effect of the LCON.0 setting is depends on the setting value of LMOD.3.

- When LCON.0 is "1" and LMOD.3 is "0", the LCD display is turned off.
- When LCON.0 is "1" and LMOD.3 is "1", the LCD display is turned on and the COM and SEG signal outputs operation in normal display mode.

**Table 12-2. LCD Control Register (LCON) Organization**

| LCON Bit | Setting | Description                                                                                   |
|----------|---------|-----------------------------------------------------------------------------------------------|
| LCON.3   | 0       | Always logic zero                                                                             |
| LCON.2   | 0       | Always logic zero                                                                             |
| LCON.1   | 0       | Port 6 input enable                                                                           |
|          | 1       | Port 6 input disable                                                                          |
| LCON.0   | 0       | LCD output low, cut off current to dividing resistor                                          |
|          | 1       | When LMOD.3 = "0": Turn display off.<br>When LMOD.3 = "1": COM and SEG output in display mode |

**Table 12-3. LCON.0 and LMOD.3 Bit Settings**

| LCON.0 | LMOD.3 | COM0–COM3                              | SEG0–SEG27                             | Results                                                   |
|--------|--------|----------------------------------------|----------------------------------------|-----------------------------------------------------------|
| 0      | x      | Output low; turn LCD display off       | Output low; turn LCD display off       | LCD display off.<br>Cut off current to dividing resistors |
| 1      | 0      | LCD display off                        | LCD display off                        | LCD display off                                           |
|        | 1      | COM output corresponds to display mode | SEG output corresponds to display mode | LCD display on                                            |

## LCD MODE REGISTER (LMOD)

The LCD mode control register LMOD is used to control display mode; LCD clock, segment or port output, and display on/off. LMOD can be manipulated using 8-bit write instructions, bit 3 (LMOD.3) can be also written by 1-bit instructions.

|      |        |        |        |        |
|------|--------|--------|--------|--------|
| F8CH | LMOD.3 | LMOD.2 | LMOD.1 | LMOD.0 |
| F8DH | LMOD.7 | "0"    | LMOD.5 | LMOD.4 |

The LCD clock signal, LCDCK, determines the frequency of COM signal scanning of each segment output. This is also referred to as the 'frame frequency. Since LCDCK is generated by dividing the watch timer clock (fw), the watch timer must be enabled when the LCD display is turned on. A chip reset clears the LMOD register values to logic zero.

The LCD display can continue to operate during idle and stop modes if a subsystem clock is used as the watch timer source. The LCD mode register, LMOD, controls the output mode of the 8 pins used for normal outputs (P8.0-P9.3). Bits LMOD.7-6 define the segment output and normal output configuration.

**Table 12-4. LCD Mode Register (LMOD) Organization**

| LMOD.7 | LCD Voltage Dividing Register Control Bit                                        |  |
|--------|----------------------------------------------------------------------------------|--|
| 0      | Internal voltage dividing resistor                                               |  |
| 1      | External voltage dividing resistor; Internal voltage dividing resistors are off. |  |

|        |                   |
|--------|-------------------|
| LMOD.6 | Always logic zero |
|--------|-------------------|

| LMOD.5 | LMOD.4 | LCD Clock (LCDCK) Frequency |
|--------|--------|-----------------------------|
| 0      | 0      | $fw/2^9 = 64$ Hz            |
| 0      | 1      | $fw/2^8 = 128$ Hz           |
| 1      | 0      | $fw/2^7 = 256$ Hz           |
| 1      | 1      | $fw/2^6 = 512$ Hz           |

| LMOD.3 | LMOD.2 | LMOD.1 | LMOD.0 | Duty and Bias Selection for LCD Display |
|--------|--------|--------|--------|-----------------------------------------|
| 0      | x      | x      | x      | LCD Display off                         |
| 1      | 0      | 0      | 0      | 1/4 duty, 1/3 bias (3)                  |
| 1      | 0      | 0      | 1      | 1/3 duty, 1/3 bias (3)                  |
| 1      | 0      | 1      | 0      | 1/2 duty, 1/2 bias (3)                  |
| 1      | 0      | 1      | 1      | 1/3 duty, 1/2 bias (3)                  |
| 1      | 1      | 0      | 0      | Static                                  |

**NOTES:**

1. 'x' means don't care.
2. fw = 32.768 kHz, watch timer clock.
3. Bias can be configured as external connections.

Table 12-5. LCD Clock Signal (LCDCK) and Frame Frequency

| LCDCK Frequency   | Static | 1/2 Duty | 1/3 Duty | 1/4 Duty |
|-------------------|--------|----------|----------|----------|
| $fw/2^9 = 64$ Hz  | 64     | 32       | 21       | 16       |
| $fw/2^8 = 128$ Hz | 128    | 64       | 43       | 32       |
| $fw/2^7 = 256$ Hz | 256    | 128      | 85       | 64       |
| $fw/2^6 = 512$ Hz | 512    | 256      | 171      | 128      |

NOTES: fw = 32.768 kHz

## LCD PORT CONTROL REGISTER (LPOT)

The LCD port control register LPOT is used to control using P7-P13 as segment or normal output port . LPOT can be manipulated using 4-bit write instructions. Following a system reset, all LPOT values cleared to "0".

Table 12-6. LCD Port Control Register Setting

|      |        |        |        |        |
|------|--------|--------|--------|--------|
| F8AH | LPOT.3 | LPOT.2 | LPOT.1 | LPOT.0 |
|------|--------|--------|--------|--------|

| LPOT.3 | LPOT.2 | LPOT.1 | LPOT.0 | Effect of LPOT Settings                                                         |
|--------|--------|--------|--------|---------------------------------------------------------------------------------|
| 0      |        |        |        | COM signal on                                                                   |
| 1      |        |        |        | COM signal off                                                                  |
| 0      | 0      | 0      | 0      | Select to use P7-P13 pins as SEG0-SEG27                                         |
|        | 0      | 0      | 1      | Select to use P8-P13 pins as SEG4-SEG27 and P7 pins as normal output port       |
|        | 0      | 1      | 0      | Select to use P9-P13 pins as SEG8-SEG27 and P7-P8 pins as normal output port    |
|        | 0      | 1      | 1      | Select to use P10-P13 pins as SEG12-SEG27 and P7-P9 pins as normal output port  |
|        | 1      | 0      | 0      | Select to use P11-P13 pins as SEG16-SEG27 and P7-P10 pins as normal output port |
|        | 1      | 0      | 1      | Select to use P12-P13 pins as SEG20-SEG27 and P7-P11 pins as normal output port |
|        | 1      | 1      | 0      | Select to use P13 pins as SEG24-SEG27 and P7-P12 pins as normal output port     |
|        | 1      | 1      | 1      | Select to use P7-P13 pins as normal output port                                 |

## LCD DRIVE VOLTAGE

The LCD display is turned on only whenever the voltage difference between the common and segment signals is greater than  $V_{LCD}$ . The LCD display is turned off whenever the difference between the common and segment signal voltages is less than  $V_{LCD}$ . The turn-on voltage,  $+V_{LCD}$  or  $-V_{LCD}$ , is generated only when both signals are the selected signals of the bias.

**Table 12-7. LCD Drive Voltage Values**

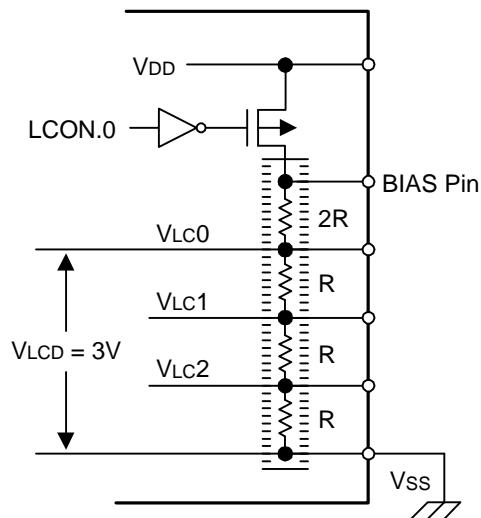
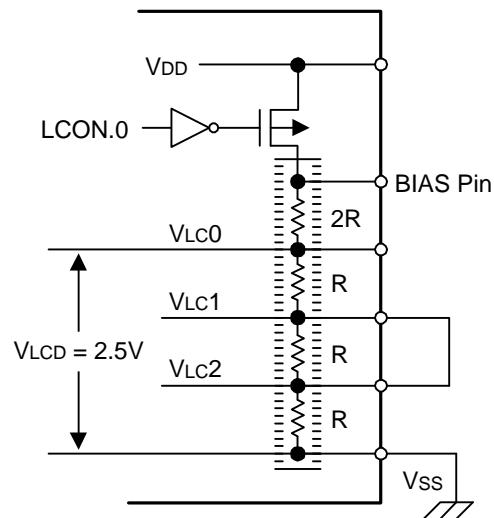
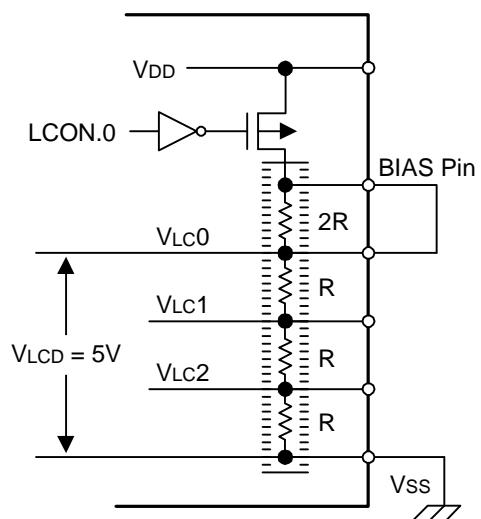
| LCD Power Supply | Static Mode   | 1/2 Bias      | 1/3 Bias      |
|------------------|---------------|---------------|---------------|
| $V_{LC0}$        | $V_{LCD}$     | $V_{LCD}$     | $V_{LCD}$     |
| $V_{LC1}$        | $2/3 V_{LCD}$ | $1/2 V_{LCD}$ | $2/3 V_{LCD}$ |
| $V_{LC2}$        | $1/3 V_{LCD}$ | $1/2 V_{LCD}$ | $1/3 V_{LCD}$ |

**NOTE:** The LCD panel display may deteriorate if a DC voltage is applied that lies between the common and segment signal voltage. Therefore, always drive the LCD panel with AC voltage.

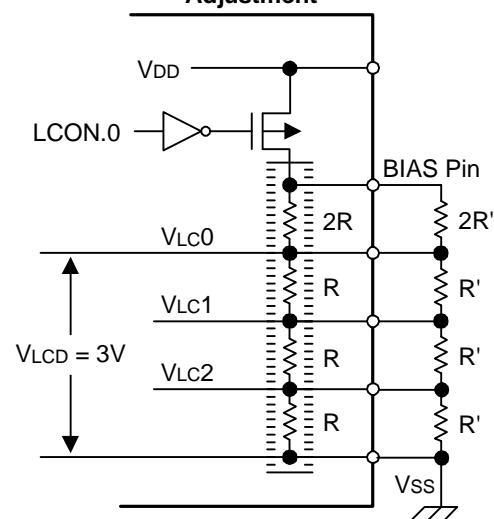
## LCD VOLTAGE DIVIDING RESISTORS

On-chip voltage dividing resistor for the LCD circuit are configured by software option (LMOD.7). Using these optional internal voltage resistor, you can drive a 2.5V, 3V, or 5V LCD panel using external biasing. BIAS pins are connected externally to the  $V_{LCD}$  pin so that it can handle the different LCD drive voltage. To cut off the current supply to the voltage dividing resistors, clear LCON.0 when you turn the LCD display off.

## COMMON (COM) SIGNALS




The common signal output pin selection (COM pin selection) varies according to the selected duty cycle.

- In static mode, COM0 pin is selected
- In 1/2 duty mode, COM0–COM1 pins are selected
- In 1/3 duty mode, COM0–COM2 pins are selected
- In 1/4 duty mode, COM0–COM3 pins are selected


## SEGMENT (SEG) SIGNALS

The 28 LCD segment signal pins are connected to corresponding display RAM locations at bank 1. Bits of the display RAM are synchronized with the common signal output pins.

When the bit value of a display RAM location is "1", a select signal is sent to the corresponding segment pin. When the display bit is "0", a 'no-select' signal is sent to the corresponding segment pin.

Static and 1/3 Bias ( $V_{LCD} = 3V$  at  $V_{DD} = 5V$ )1/2 Bias ( $V_{LCD} = 2.5V$  at  $V_{DD} = 5V$ )Static and 1/3 Bias ( $V_{LCD} = 5V$  at  $V_{DD} = 5V$ )

Voltage Dividing Register Adjustment



R = Option Voltage Dividing Resistor (By setting LMOD.7)

R' = External Resistor

Figure 12-4. Voltage Dividing Resistor Circuit Diagrams

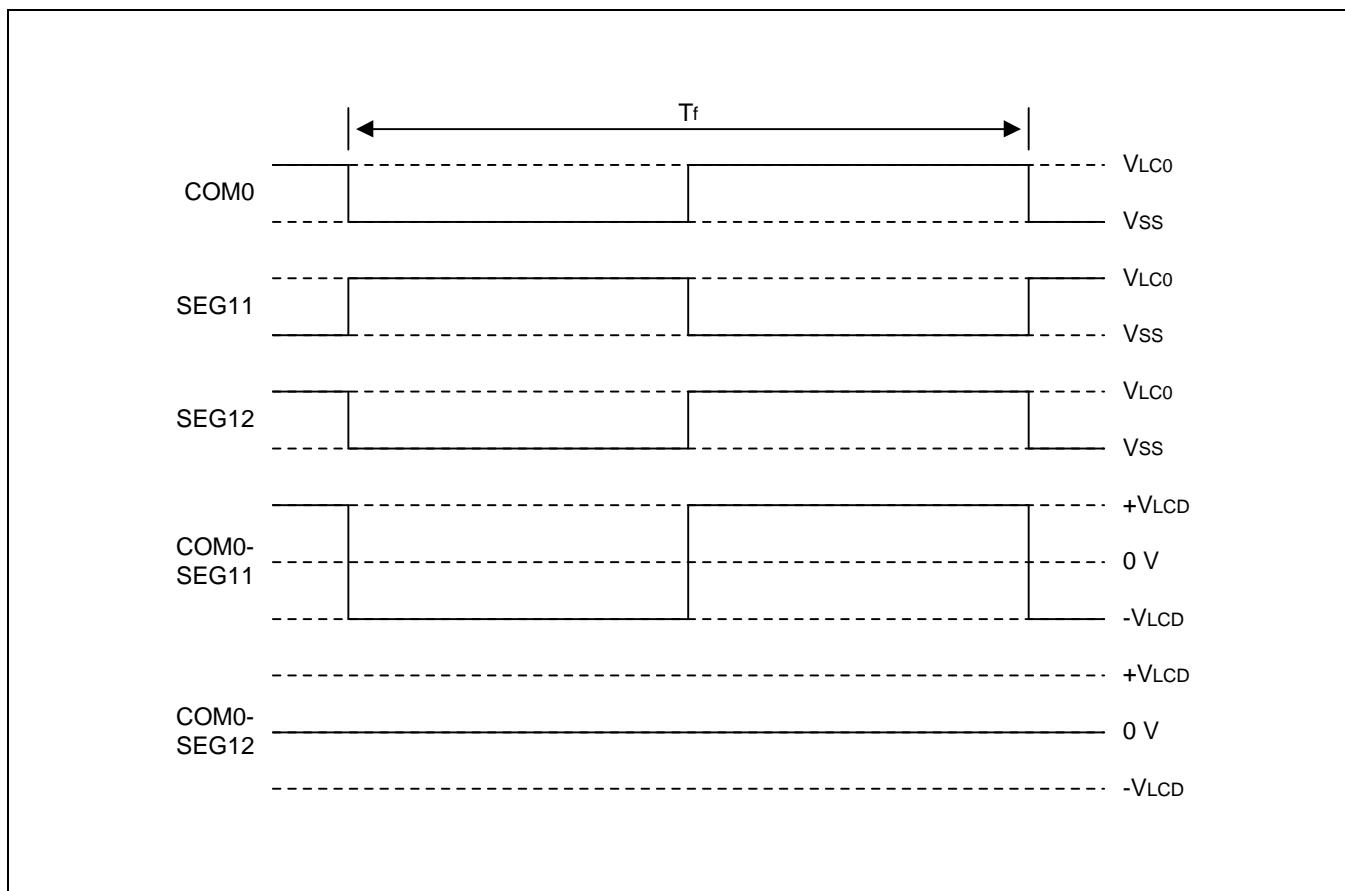



Figure 12-5. LCD Signal Waveforms in Static Mode

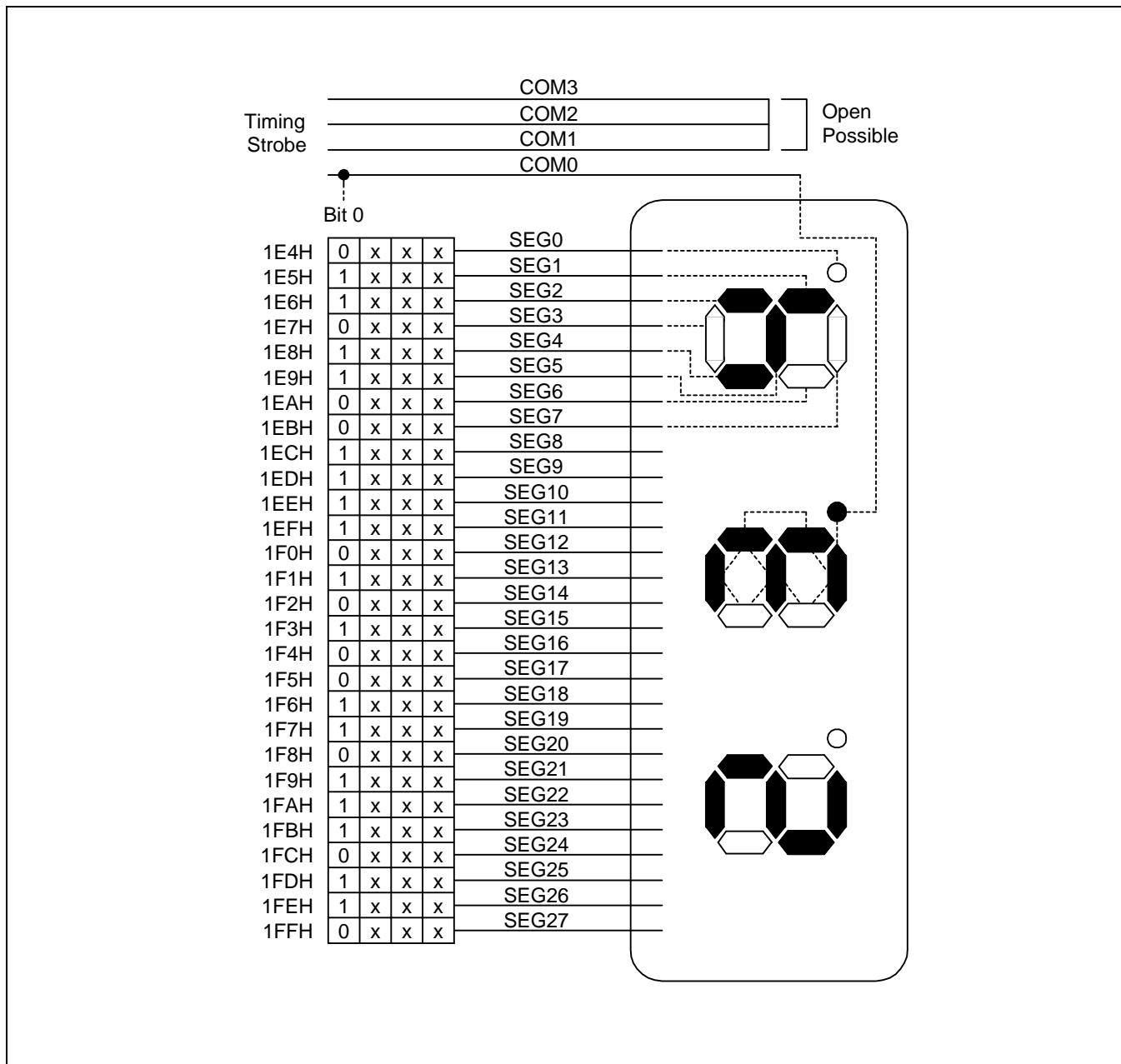



Figure 12-6. LCD Connection Example in Static Mode

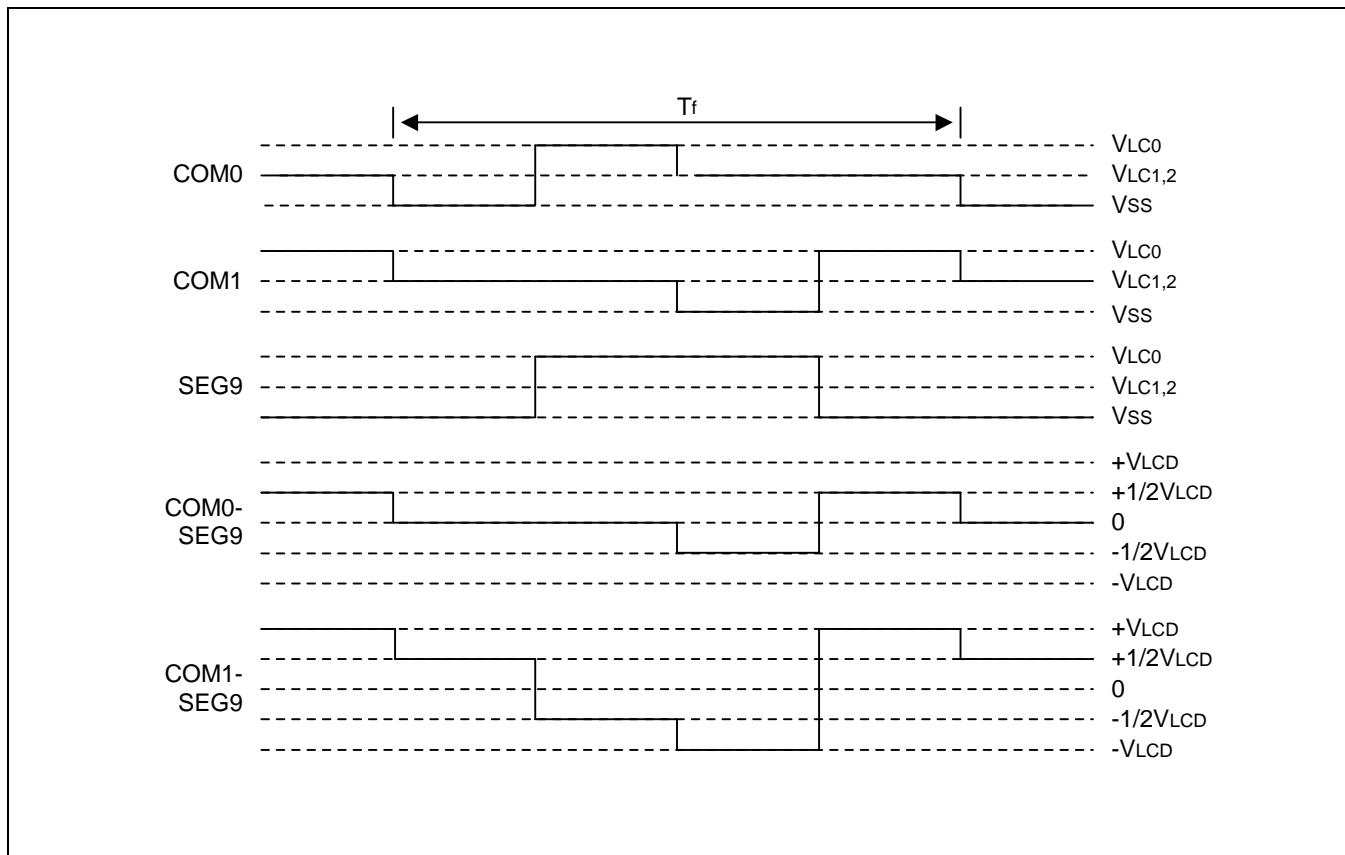



Figure 12-7. LCD Signal Waveforms at 1/2 Duty, 1/2 Bias

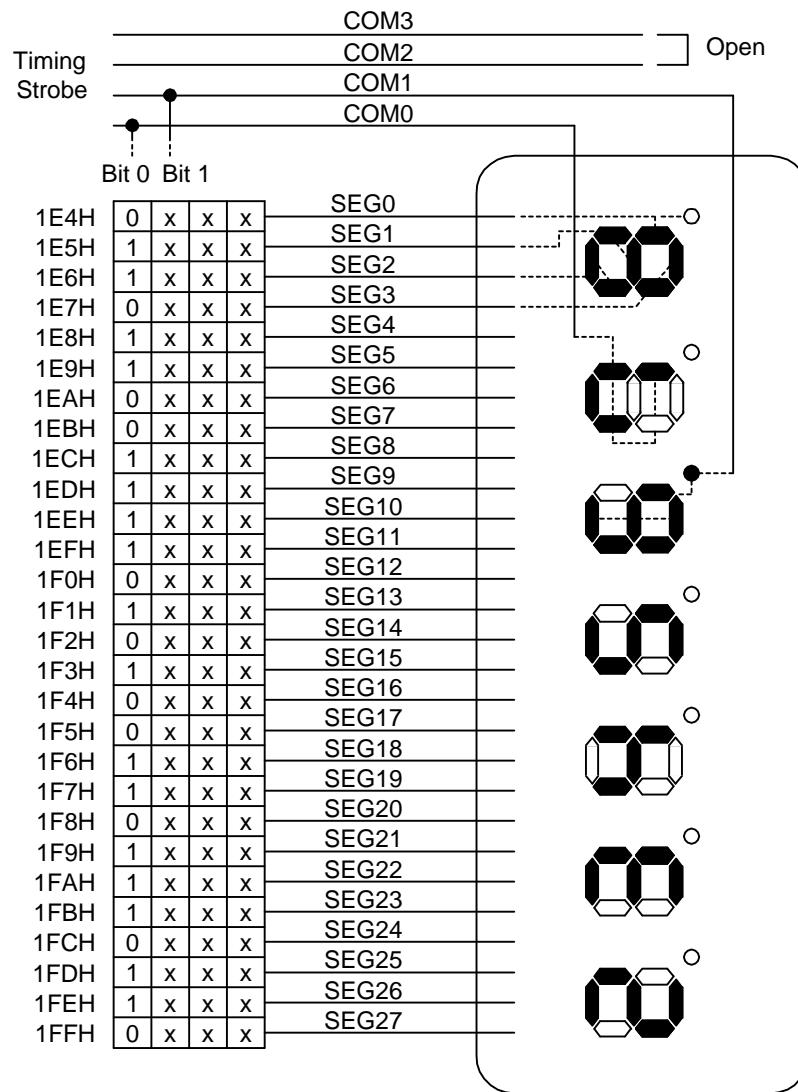



Figure 12-8. LCD Connection Example at 1/2 Duty, 1/2 Bias

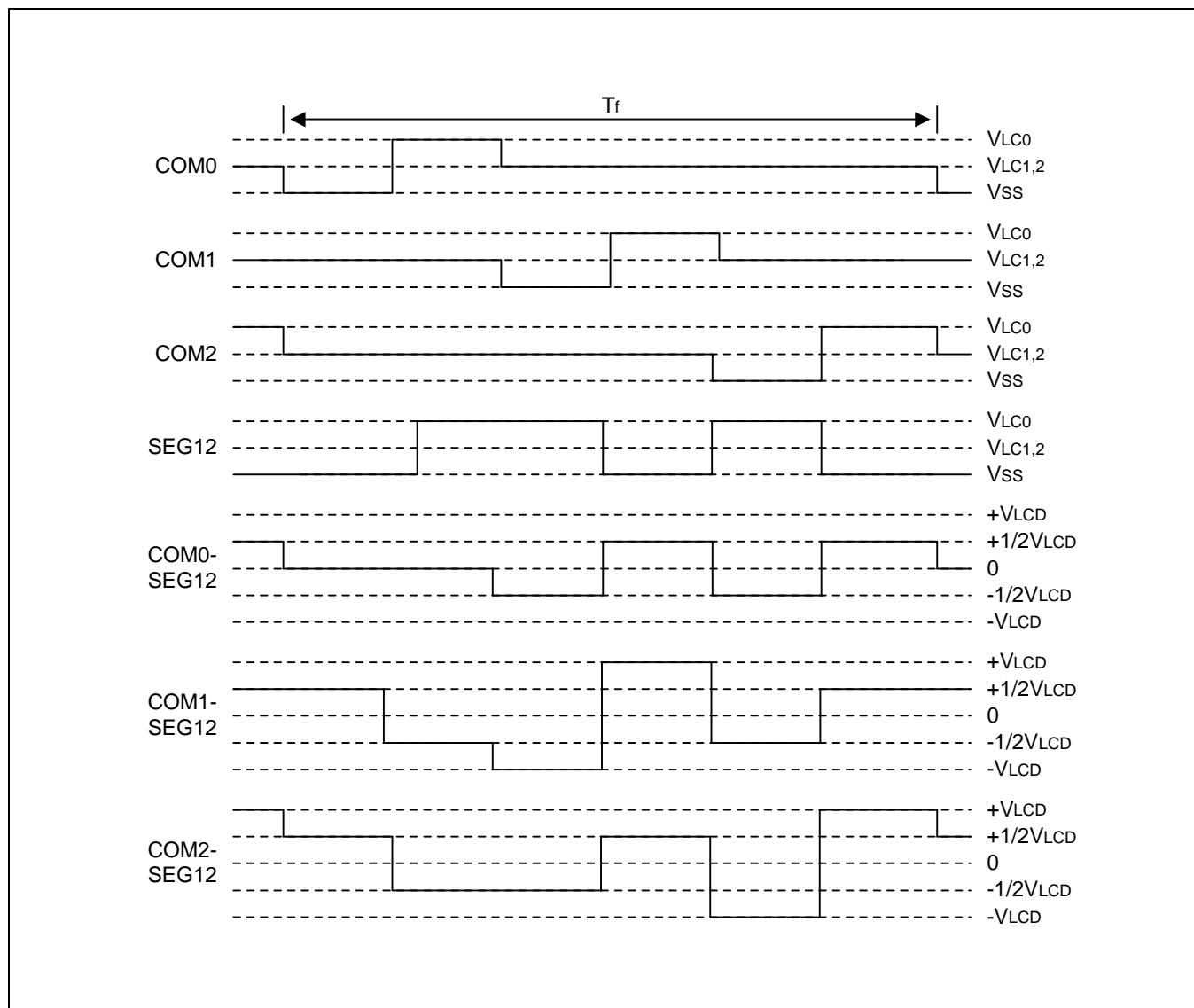



Figure 12-9. LCD Signal Waveforms at 1/3 Duty, 1/2 Bias

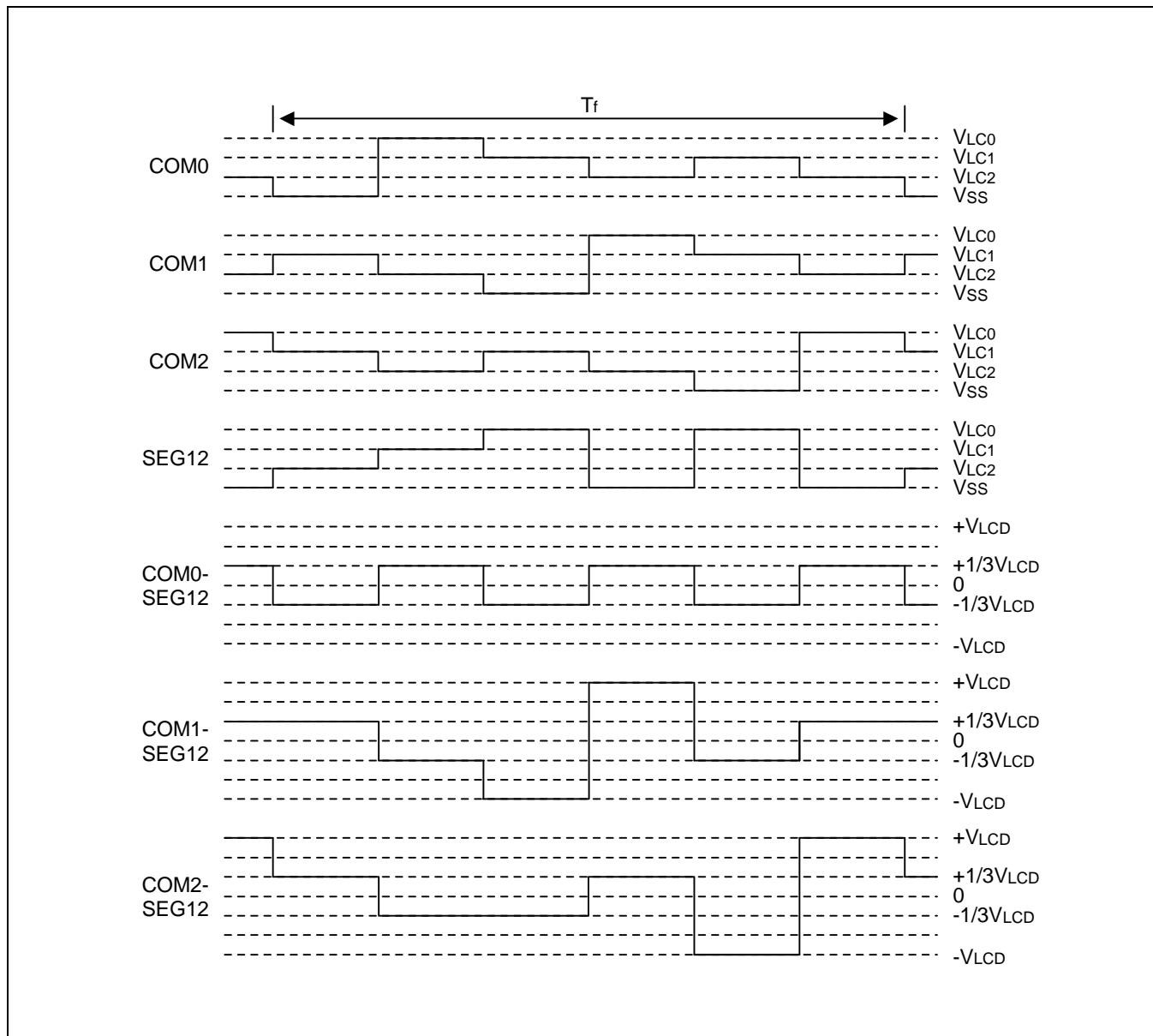



Figure 12-10. LCD Signal Waveforms at 1/3 Duty, 1/3 Bias

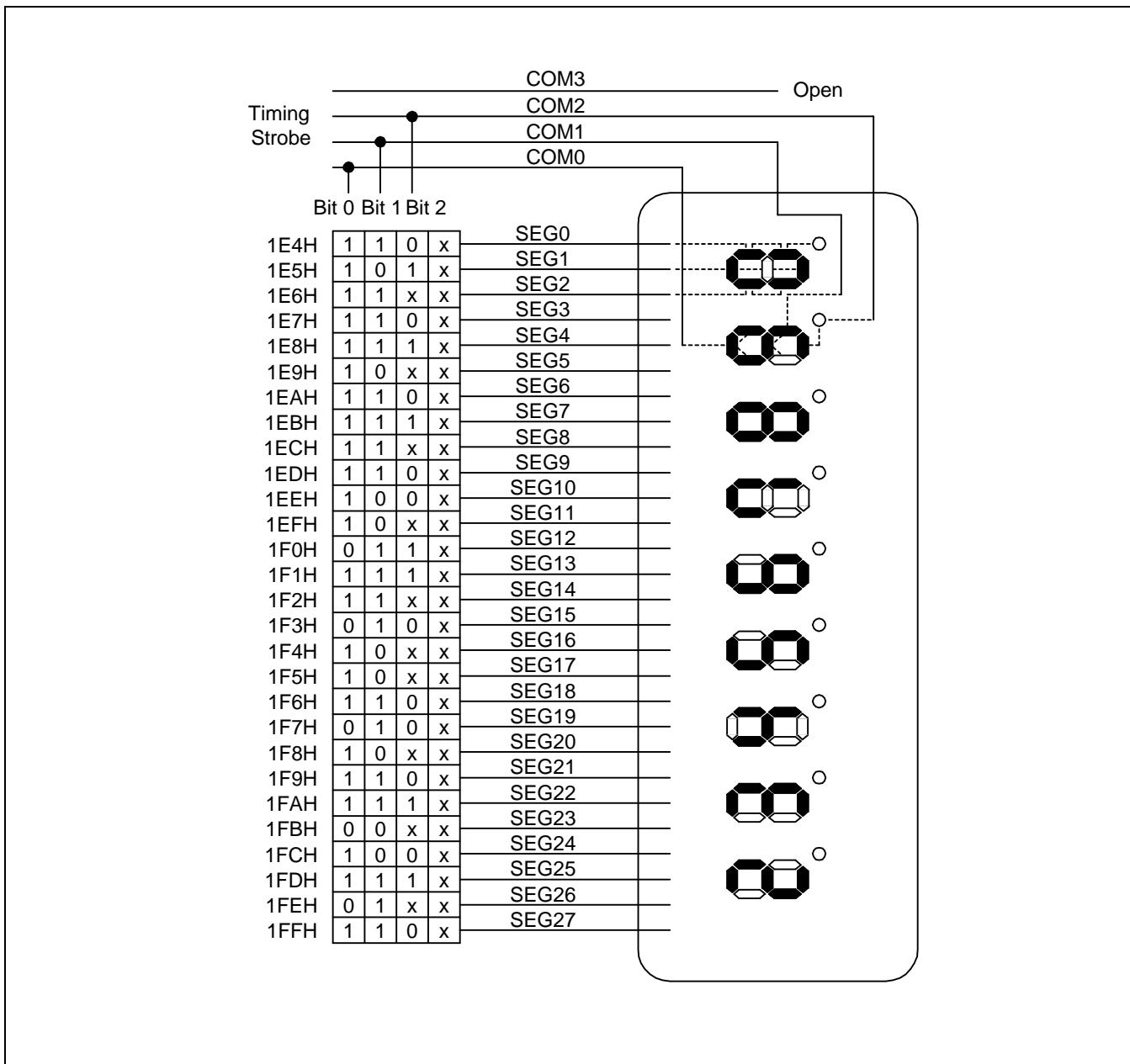



Figure 12-11. LCD Connection Example at 1/3 Duty, 1/3 Bias

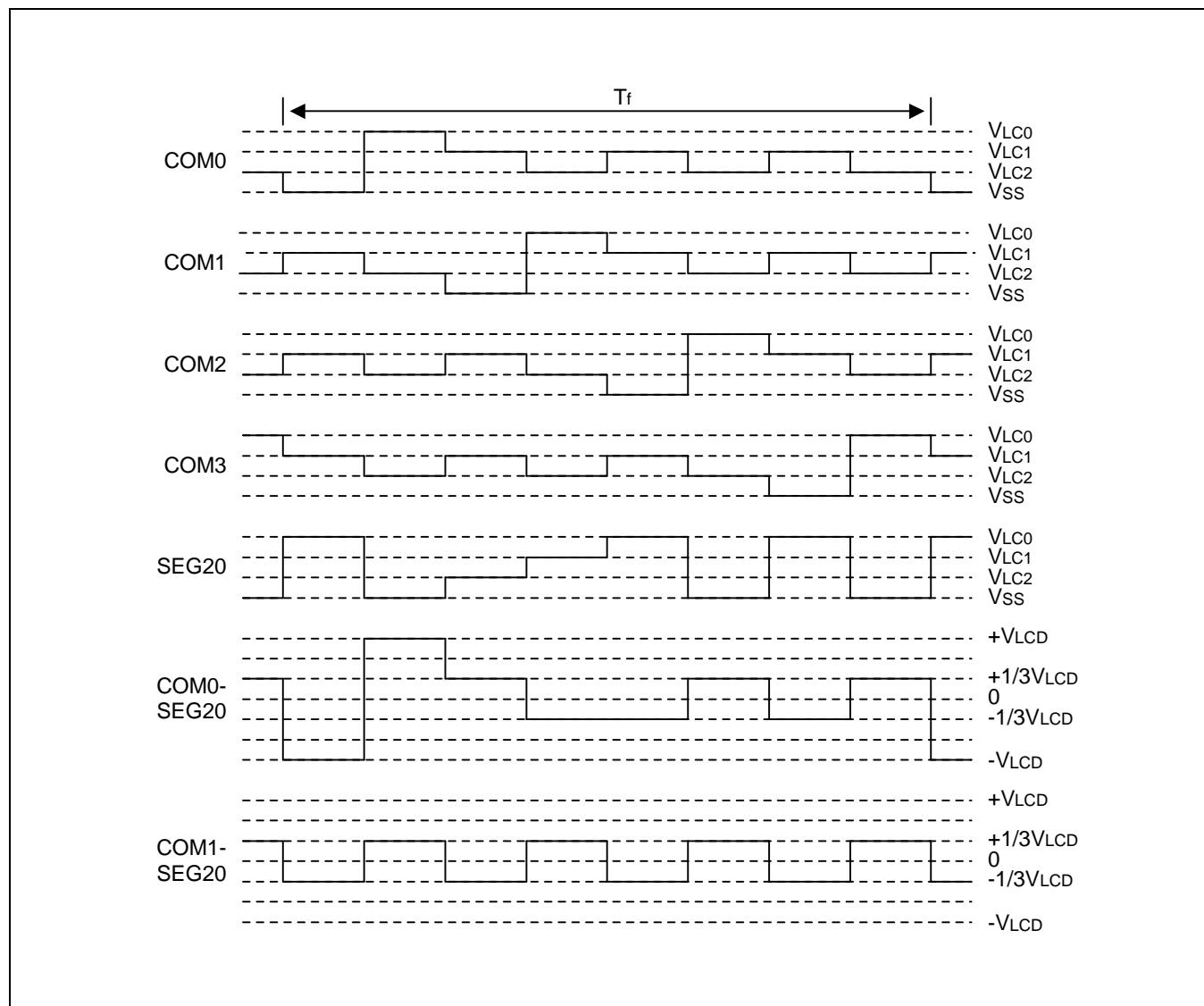



Figure 12-12. LCD Signal Waveforms at 1/4 Duty, 1/3 Bias

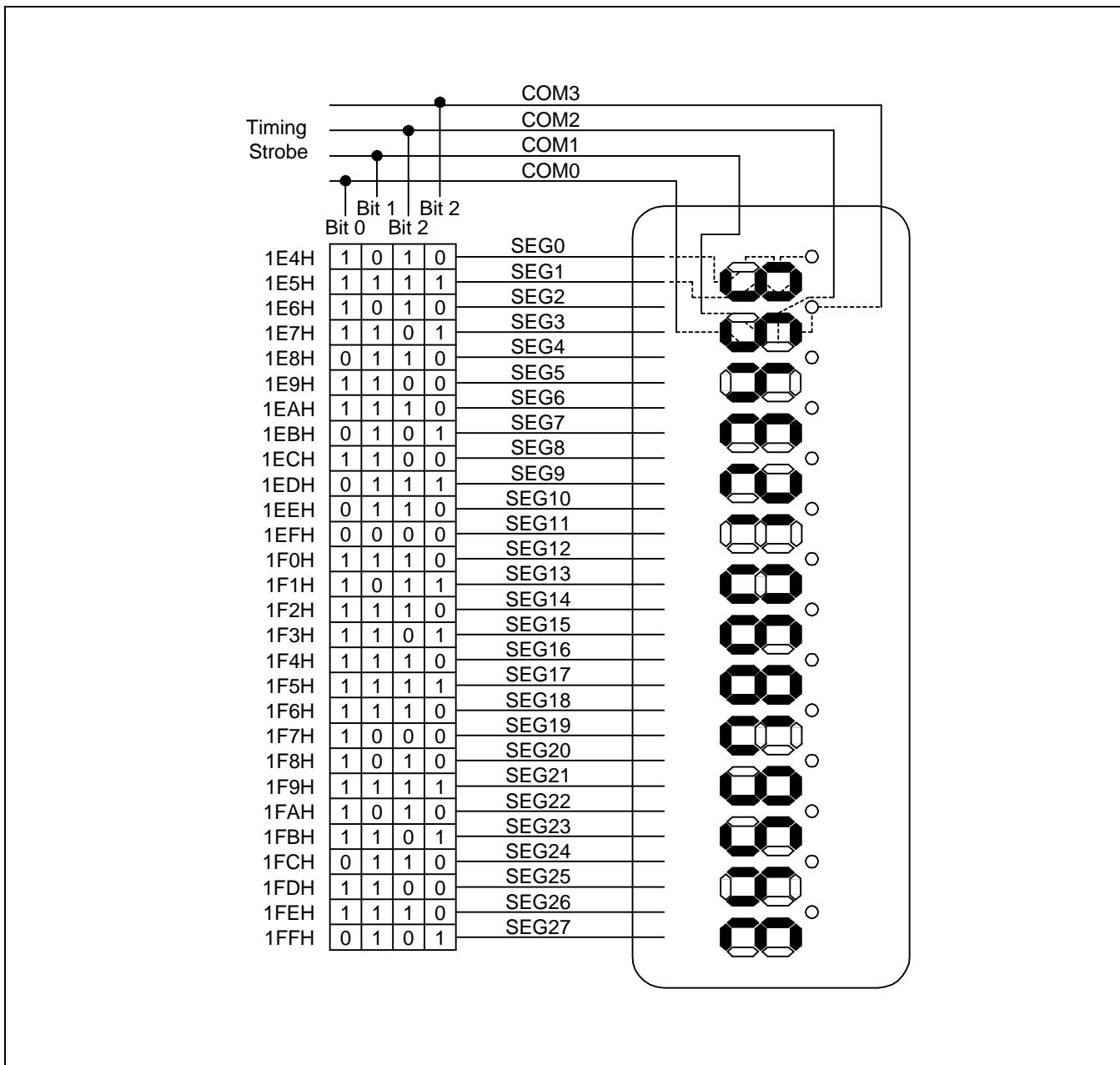



Figure 12-13. LCD Connection Example at 1/4 Duty, 1/3 Bias

# 13 ANALOG-TO-DIGITAL CONVERTER

## OVERVIEW

The 8-bit A/D converter (ADC) module uses a successive approximation logic to convert analog levels entering at one of the four input channels to equivalent 8-bit digital values. The analog input level must lie between the  $V_{DD}$  and the  $V_{SS}$  values. The A/D converter has the following components:

- Analog comparator with successive approximation logic
- D/A converter logic (resistor string type)
- ADC and port control register (APCON)
- ADC control register (AFLAG)
- ADC mode register (ADMOD)
- Four multiplexed analog data input pins (ADC0-ADC3)
- 8-bit A/D conversion data output register (ADATA)

To operate the A/D converter, P5 must be configured to ADC mode as using APCON register and one of the 4-channel is selected by writing the appropriate value to the A/D mode register, ADMOD, and the conversion start bit, AFLAG.3 must be set to "1". Conversion speed is determined by the system clock (fx or fxt).

When the A/D operation is complete, the EOC flag must be tested in order to verify that the conversion was successful. When the EOC value is "1", the converted digital values stored in the data register ADATA can be read.

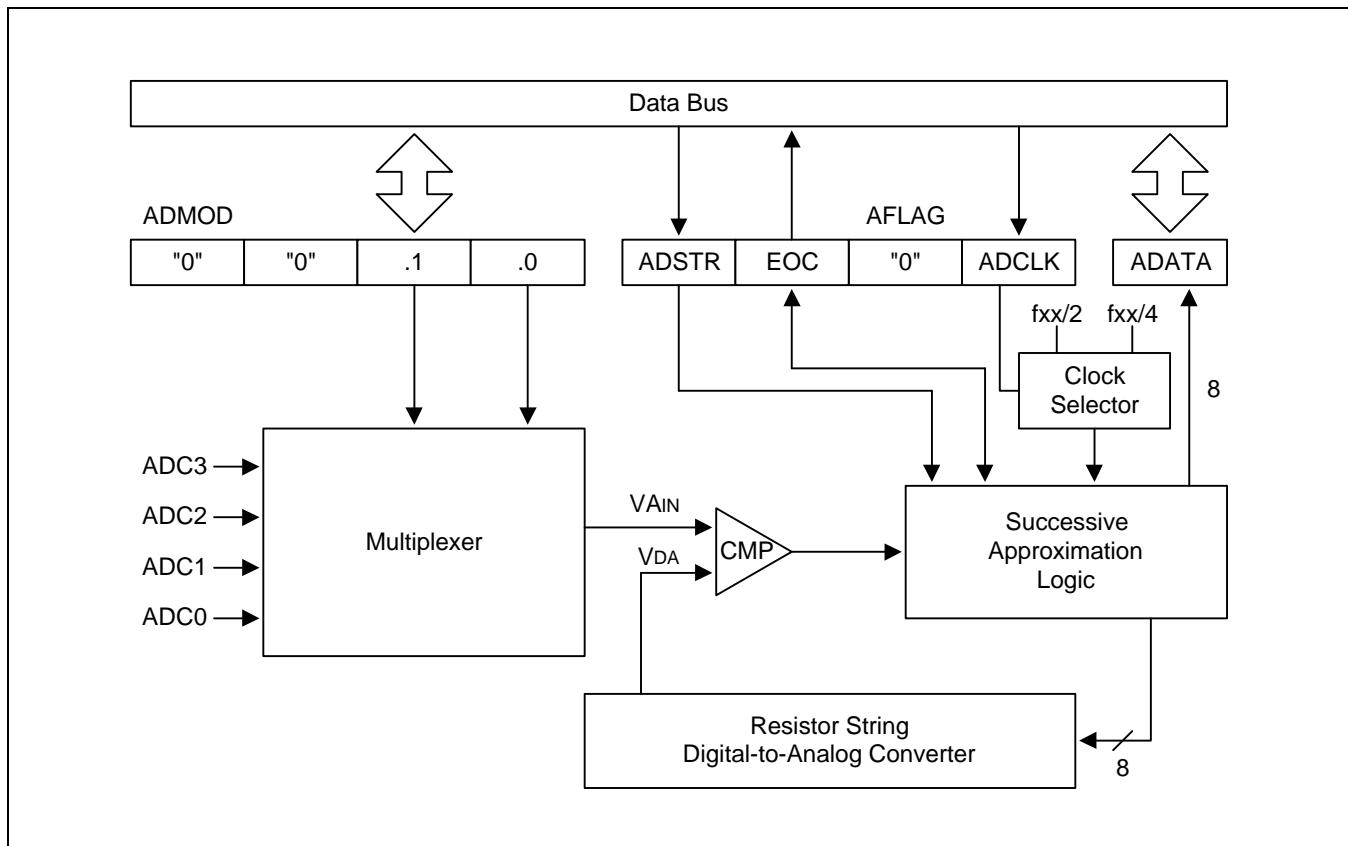



Figure 13-1. A/D Converter Circuit Diagram

Table 13-1. A/D Converter Component Overview

| ADC Function                   | Mnemonic | Description                                                                                                                                                                                                                                                                   |
|--------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital-to-analog converter    | DAC      | Uses successive approximation logic to convert digital input into the reference analog voltage, V <sub>DA</sub> . These V <sub>DA</sub> values are input to the comparator and then compared to the multiplexed external analog source voltage, V <sub>A<sub>IN</sub></sub> . |
| Comparator                     | CMP      | Compares the applied external analog input voltage, V <sub>A<sub>IN</sub></sub> , to the analog reference voltage (V <sub>DA</sub> ) that is generated by the DAC and writes the corresponding digital value to the ADATA register.                                           |
| Digital data register          | ADATA    | Stores digital values as analog-to-digital conversion is completed.                                                                                                                                                                                                           |
| ADC mode register              | ADMOD    | Used to select one of four analog channels as the input source for the analog data to be converted.                                                                                                                                                                           |
| ADC control register           | AFLAG    | Contains the control flags used to start A/D converter operation and to monitor operational status.                                                                                                                                                                           |
| Successive approximation logic | —        | Control blocks in the A/D converter contain the successive approximation logic required to generate the analog reference voltage.                                                                                                                                             |

## ADC DATA REGISTER (ADATA)

The A/D converter data register, ADATA, is an 8-bit register in which digital data values are stored as an A/D conversion operation is completed. Digital values stored in ADATA are retained until another conversion operation is initiated. ADATA is addressable by 8-bit read instructions only.

|      |       |       |       |       |
|------|-------|-------|-------|-------|
| FD8H | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| FD9H | Bit 7 | Bit 6 | Bit 5 | Bit 4 |

## ADC MODE REGISTER (ADMOD)

The analog-to-digital converter mode register ADMOD is a 4-bit register that is used to select one of four analog channels as the analog data input source. ADMOD is addressable by 1-bit or 4-bit read or write instructions.

|      |     |     |         |         |
|------|-----|-----|---------|---------|
| FDAH | "0" | "0" | ADMOD.1 | ADMOD.0 |
|------|-----|-----|---------|---------|

Input channels ADC0-ADC3 (corresponding to input port , P5.0-P5.3) may be used either for analog input to the A/D converter, or as normal input ports. Since only one of the four pins can be selected at one time as external source of analog data, the three remaining input pins are always available for normal inputs.

**Table 13-2. A/D Converter Mode Register Settings**

| 0 | 0 | ADMOD.1 | ADMOD.0 | Effect of ADMOD Bit Setting |
|---|---|---------|---------|-----------------------------|
|   |   | 0       | 0       | Select input channel AD0    |
|   |   | 0       | 1       | Select input channel AD1    |
|   |   | 1       | 0       | Select input channel AD2    |
|   |   | 1       | 1       | Select input channel AD3    |

## ADC AND PORT CONTROL REGISTER (APCON)

| FAEH | .3             | .2 | .1 | .0 | Effect of Bit Settings                                                                                                                                                                                                                               |
|------|----------------|----|----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 0              | 0  | 0  | 0  |                                                                                                                                                                                                                                                      |
|      | Other settings |    |    |    | Each bit corresponds with P5.0, P5.1, P5.2, and P5.3 respectively. If the specific bits are set to logic "1", the corresponding pins are connected to ADC block, but disconnected from the normal input and automatically the pull-up registers off. |

**NOTE:** All bits are cleared to "0" after a chip reset.

## ADC CONTROL REGISTER (AFLAG)

The A/D converter control register, AFLAG, is a 4-bit register that contains the control flags used to start the A/D converter and to monitor its operational status.

|      |       |     |     |       |
|------|-------|-----|-----|-------|
| FDBH | ADSTR | EOC | "0" | ADCLK |
|------|-------|-----|-----|-------|

A conversion is started by setting ADSTR in the AFLAG register. ADSTR is write-only and is 1-bit and 4-bit addressable. The EOC bit (End Of Conversion) is a flag that can be read to determine the current status of an A/D conversion operation. When a conversion is completed, this bit is set so that an A/D conversion result is ready to be read. EOC is cleared by ADSTR setting. While this flag is set, the ADC cannot start a new conversion. EOC is 1-bit or 4-bit read-only addressable.

**Table 13-3. A/D Converter Control Flag Settings**

| ADSTR | EOC | 0 | ADCLK | Effect of AFLAG Bit Setting                                                                                                            |
|-------|-----|---|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1     |     |   |       | Enable A/D converter (when the ADSTR bit is set to "1", the A/D converter starts operating and the ADSTR bit is cleared automatically) |
|       | 0   |   |       | A/D conversion is not completed (the start of a new conversion is blocked)                                                             |
|       | 1   |   |       | A/D conversion is completed.                                                                                                           |
|       |     | 0 |       | Select fxx/2 clock for conversion                                                                                                      |
|       |     | 1 |       | Select fxx/4 clock for conversion                                                                                                      |

## DIGITAL-TO ANALOG CONVERTER (DAC) BLOCK

The 8-bit digital-to analog converter (DAC) generates analog voltage reference values for the comparator. The DAC is a 256-step resistor string type digital-to-analog converter that uses successive approximation logic to convert digital input into the reference analog voltage, VDA.

VDA values are input from the DAC to the comparator where they are compared to the multiplexed external analog source voltage, VA<sub>IN</sub>. Since the DAC has 8-bit resolution, it generates the 256-step analog reference voltage as follows:

$$V_{DA} = V_{REF} \left( \frac{n}{256} \pm \frac{1}{512} \right) (1/2 \text{ LSB compensation}), V_{REF} = V_{DD}$$

(n = 0–256, as determined by successive approximation logic)

## CONVERSION TIMING

The A/D conversion process requires 8-clock to convert each bit. Therefore a total of 34 clocks are required to complete an 8-bit conversion. With a system clock frequency (fxx). 4MHz and setting ADCLK = 0, the conversion time can be calculated as follows:

$$\text{Start 1 clock} + (4 \text{ clock/bit} \times 8 \text{ bits}) + \text{EOC 1 clock} = 34 \text{ clocks}, 34 \times 2/4 \text{ MHz} = 17 \mu\text{s}$$

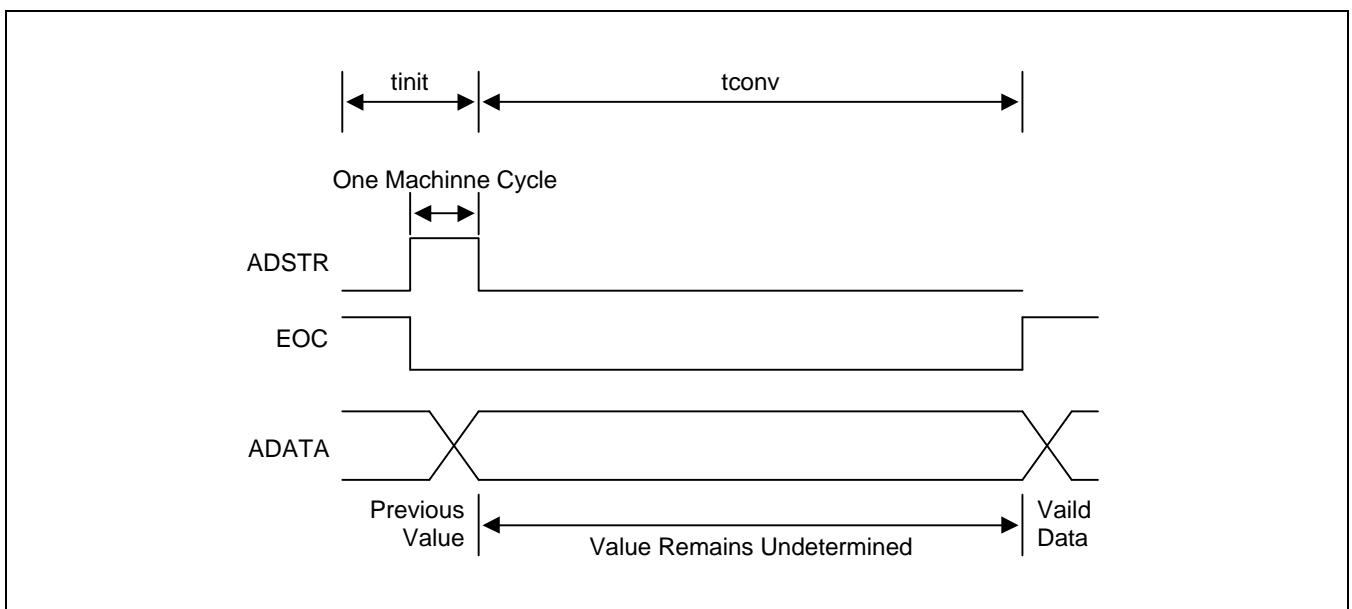



Figure 13-2. A/D Converter Timing Diagram

## ADC PROCEDURE DESCRIPTION

Use these steps as a general guideline for writing A/D converter programs:

1. Select one of the conversion clocks,  $fxx/2$  or  $fxx/4$ .
2. Configure port to ADC input mode as using APCON register.
3. Select one of the four analog channels, ADC0-ADC3, as the analog input source. To do this, write the appropriate value to the ADMOD register, bits ADMOD.1-ADMOD.0.
4. Start the A/D converter by setting the ADSTR flag of the AFLAG register to logic one.
5. When the converter starts, the EOC (End Of Conversion) flag in the AFLAG register is automatically set to logic one, and the ADSTR flag is cleared to logic zero.
6. The analog-to-digital conversion speed is determined by the oscillator frequency as follows:

$$t_{conv} = 34 \times \text{conversion clock} \ (fxx/2 \text{ or } fxx/4)$$

For example, with a 4.5 MHz oscillator clock and  $fxx/4$ , the  $t_{conv}$  value is 30.2  $\mu$ s. The 'tinit' value is determined by the instruction type and the speed of the CPU clock.

7. When conversion has been completed, the EOC flag is set automatically so that a check can be made to verify that the conversion was successful.
8. Converted digital values that have been stored in the 8-bit ADATA register can now be read. Conversion values are retained until the next A/D conversion operation starts.

### PROGRAMMING TIP — Configuring A/D Converter Input Pins

In this A/D converter program sample, the ADC0, ADC1 and ADC2 pins are used as A/D input pins and the P5.3/ADC3 is used as normal input pin:

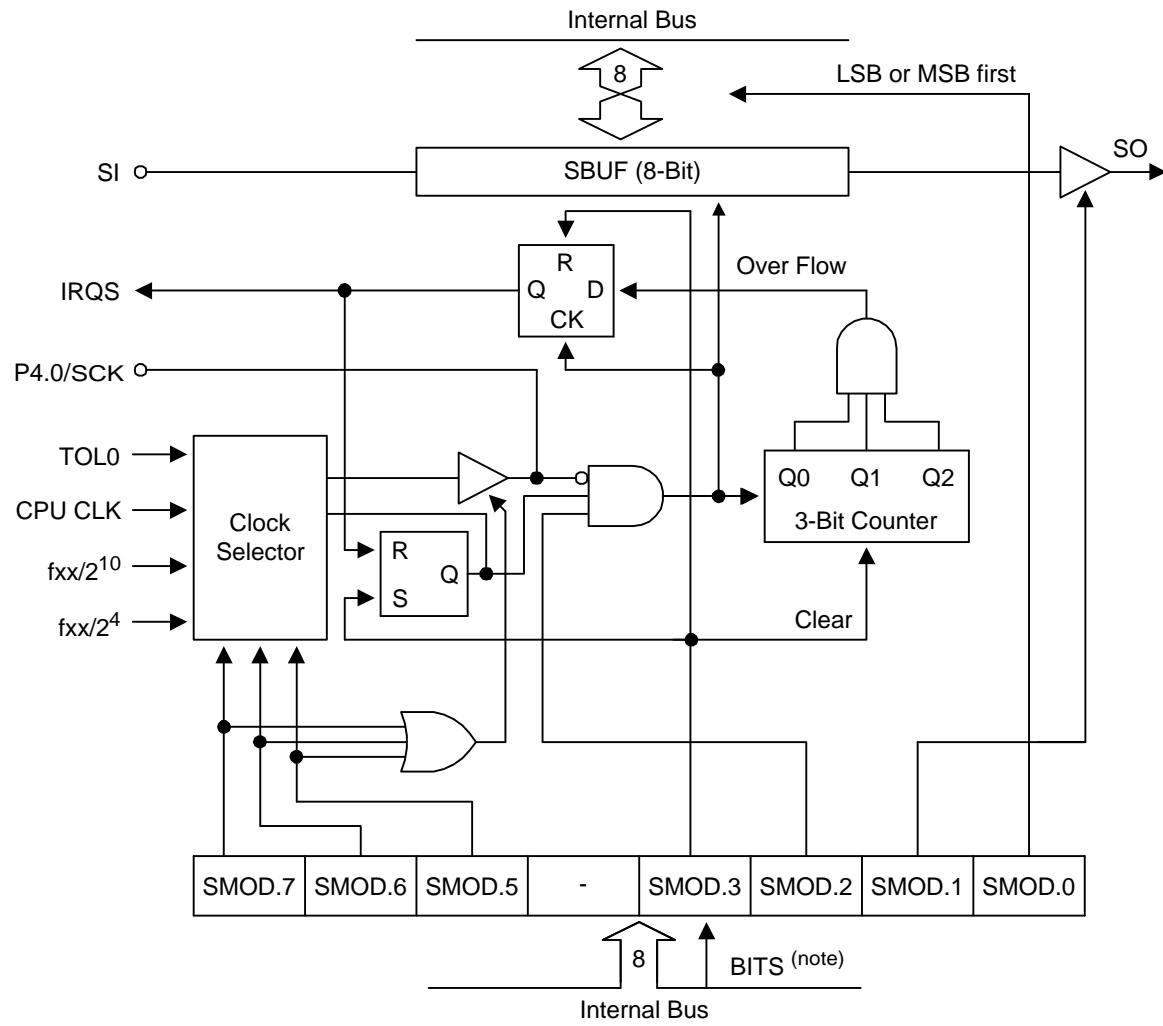
|       |      |            |                                            |
|-------|------|------------|--------------------------------------------|
|       | BITR | EMB        |                                            |
|       | BITS | ADCLK      | ; Selects fxx/4 clock for conversion       |
|       | LD   | A,#7H      | ; Setting ADC0, ADC1 and ADC2 as ADC input |
|       | LD   | APCON,A    | ; and P5.3 as normal input                 |
|       | LD   | A,#0H      |                                            |
|       | LD   | ADMOD,A    | ; ADC0 pin select for A/D conversion       |
|       | BITS | ADSTR      | ; A/D conversion start                     |
| AD0CK | BTST | EOC        | ; A/D conversion end check                 |
|       | JR   | AD0CK      | ; A/D conversion not completed             |
|       | LD   | EA,ADATA   | ; A/D conversion end                       |
|       | LD   | ADC0BUF,EA | ; ADC0BUF ← ADC0 conversion data           |
|       | LD   | A,#1H      |                                            |
|       | LD   | ADMOD,A    | ; ADC1 pin select for A/D conversion       |
|       | BITS | ADSTR      | ; A/D conversion start                     |
| AD1CK | BTST | EOC        | ; A/D conversion end check                 |
|       | JR   | AD1CK      | ; A/D conversion not completed             |
|       | LD   | EA,ADATA   | ; A/D conversion end                       |
|       | LD   | ADC1BUF,EA | ; ADC1BUF ← ADC1 conversion data           |
|       | LD   | A,#2H      |                                            |
|       | LD   | ADMOD,A    | ; ADC2 pin select for A/D conversion       |
|       | BITS | ADSTR      | ; A/D conversion start                     |
| AD2CK | BTST | EOC        | ; A/D conversion end check                 |
|       | JR   | AD2CK      | ; A/D conversion not completed             |
|       | LD   | EA,ADATA   | ; A/D conversion end                       |
|       | LD   | ADC2BUF,EA | ; ADC2BUF ← ADC2 conversion data           |

# 14 SERIAL I/O INTERFACE

## OVERVIEW

The serial I/O interface (SIO) has the following functional components:

- 8-bit mode register (SMOD)
- Clock selector circuit
- 8-bit buffer register (SBUF)
- 3-bit serial clock counter


Using the serial I/O interface, you can exchange 8-bit data with an external device. You control the transmission frequency by the appropriate bit settings to the SMOD register.

The serial interface can run off an internal or an external clock source, or the TOL0 signal that is generated by the 8-bit timer/counter 0, TC0. If you use the TOL0 clock signal, you can modify its frequency to adjust the serial data transmission rate.

## SIO OPERATION SEQUENCE

The general sequence of operations for the serial I/O interface may be summarized as follows:

1. Set SIO mode to transmit-and-receive or to receive-only.
2. Select MSB-first or LSB-first transmission mode.
3. Set the SCK clock signal in the mode register, SMOD.
4. Set SIO interrupt enable flag (IES) to "1".
5. Initiate SIO transmission by setting bit 3 of the SMOD to "1".
6. When the SIO operation is complete, IRQS flag is set and an interrupt is generated.



**Figure 14-1. Serial I/O Interface Circuit Diagram**

## SERIAL I/O MODE REGISTER (SMOD)

The serial I/O mode register, SMOD, is an 8-bit register that specifies the operation mode of the serial interface. Its reset value is logic zero. SMOD is organized in two 4-bit registers, as follows:

|      |        |        |        |        |
|------|--------|--------|--------|--------|
| FE0H | SMOD.3 | SMOD.2 | SMOD.1 | SMOD.0 |
| FE1H | SMOD.7 | SMOD.6 | SMOD.5 | "0"    |

SMOD register settings let you to select either MSB-first or LSB-first serial transmission, and to operate in transmit-and-receive mode or receive-only mode. SMOD is a write-only register and can be addressed only by 8-bit RAM control instructions. One exception to this is SMOD.3, which can be written by a 1-bit RAM control instruction. When SMOD.3 is set to 1, the contents of the serial interface interrupt request flag, IRQS, and the 3-bit serial clock counter are cleared, and SIO operations are initiated. When the SIO transmission starts, SMOD.3 is cleared to logic zero.

**Table 14-1. SIO Mode Register (SMOD) Organization**

|               |   |                                                                                                             |
|---------------|---|-------------------------------------------------------------------------------------------------------------|
| <b>SMOD.0</b> | 0 | Most significant bit (MSB) is transmitted first                                                             |
|               | 1 | Least significant bit (LSB) is transmitted first                                                            |
| <b>SMOD.1</b> | 0 | Receive-only mode; output buffer is off                                                                     |
|               | 1 | Transmit-and-receive mode                                                                                   |
| <b>SMOD.2</b> | 0 | Disable the data shifter and clock counter; retain contents of IRQS flag when serial transmission is halted |
|               | 1 | Enable the data shifter and clock counter; set IRQS flag to "1" when serial transmission is halted          |
| <b>SMOD.3</b> | 1 | Clear IRQS flag and 3-bit clock counter to "0"; initiate transmission and then reset this bit to logic zero |
| <b>SMOD.4</b> | 0 | Bit not used; value is always "0"                                                                           |

| <b>SMOD.7</b> | <b>SMOD.6</b> | <b>SMOD.5</b> | <b>Clock Selection</b>              | <b>R/W Status of SBUF</b>                                           |
|---------------|---------------|---------------|-------------------------------------|---------------------------------------------------------------------|
| 0             | 0             | 0             | External clock at SCK pin           | SBUF is enabled when SIO operation is halted or when SCK goes high. |
| 0             | 0             | 1             | Use TOL0 clock from TC0             |                                                                     |
| 0             | 1             | x             | CPU clock: fxx/4, fxx/8, fxx/64     | Enable SBUF read/write                                              |
| 1             | 0             | 0             | 4.39 kHz clock: fxx/2 <sup>10</sup> | SBUF is enabled when SIO operation is halted or when SCK goes high. |
| 1             | 1             | 1             | 281 kHz clock: fxx/2 <sup>4</sup>   |                                                                     |

**NOTES:**

1. 'fxx' = system clock; 'x' means 'don't care.'
2. kHz frequency ratings assume a system clock (fxx) running at 4.5 MHz.
3. The SIO clock selector circuit cannot select a fxx/2<sup>4</sup> clock if the CPU clock is fxx/64.

## SERIAL I/O TIMING DIAGRAMS

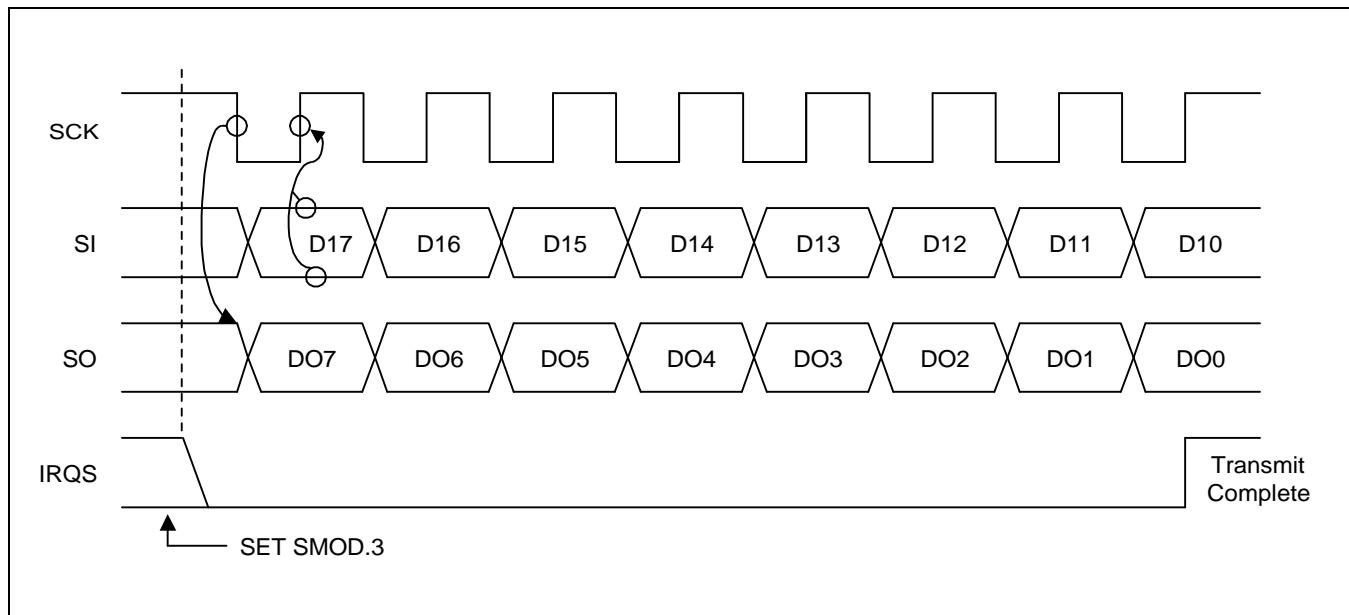



Figure 14-2. SIO Timing in Transmit/Receive Mode

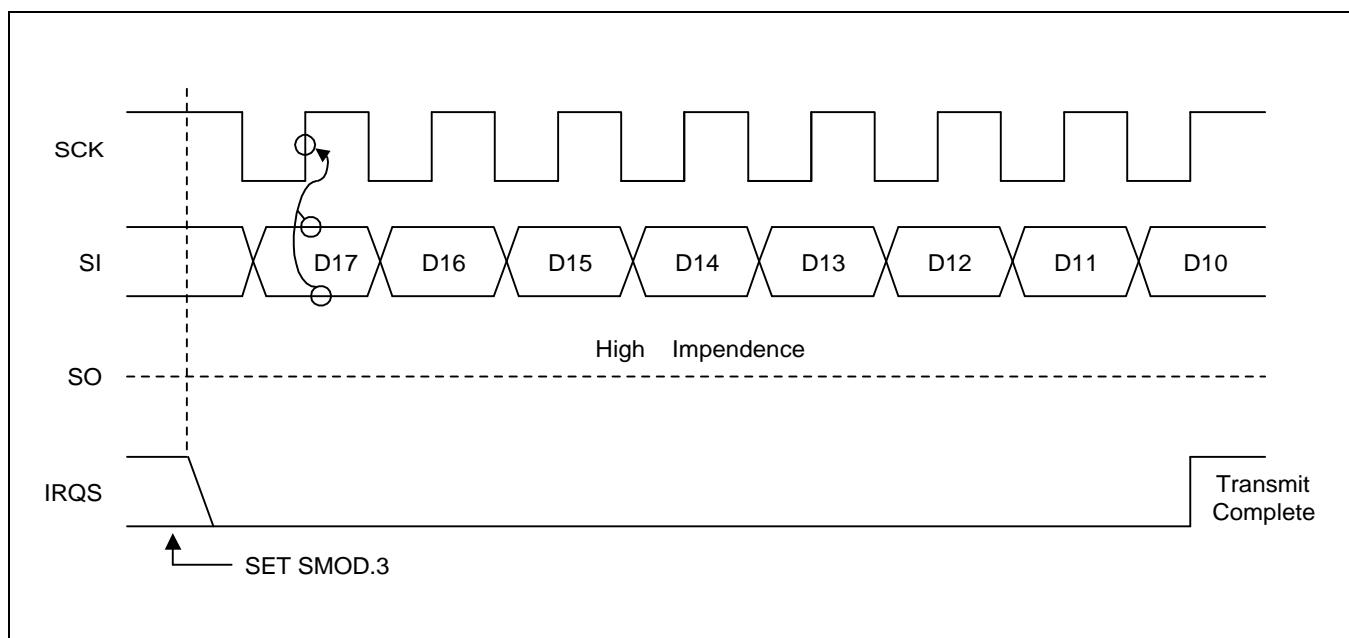
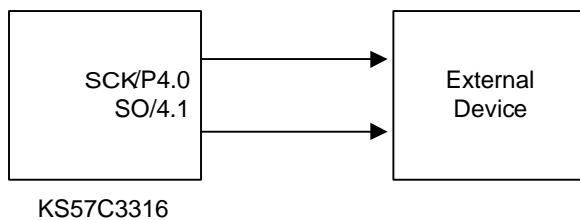



Figure 14-3. SIO Timing in Receive-Only Mode

## SERIAL I/O BUFFER REGISTER (SBUF)

The serial I/O buffer register, SBUF, can be read or written using 8-bit RAM control instructions. After a reset operation, the value of SBUF is undetermined.

When the serial interface operates in transmit-and-receive mode (SMOD.1 = "1"), transmit data in the SIO buffer register are output to the SO pin (P4.1) at the rate of one bit for each falling edge of the SIO clock. Receive data is simultaneously input from the SI pin (P4.2) to SBUF at the rate of one bit for each rising edge of the SIO clock. When receive-only mode is used, incoming data is input to the SIO buffer at the rate of one bit for each rising edge of the SIO clock.


### PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O

1. Transmit the data value 48H through the serial I/O interface using an internal clock frequency of  $fx/2^4$  and in MSB-first mode:

```

BITS      EMB
SMB      15
LD       EA,#03H
LD       PMG2,EA      ; P4.0/SCK and P4.1/SO ← Output
LD       EA,#0E6H      ;
LD       SMOD,EA      ;
LD       EA,#48H      ;
LD       SBUF,EA      ;
BITS      SMOD.3      ; SIO data transfer

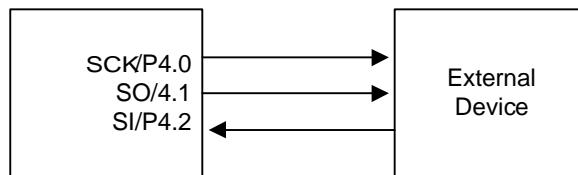
```



KS57C3316

2. Use CPU clock to transfer and receive serial data at high speed:

```

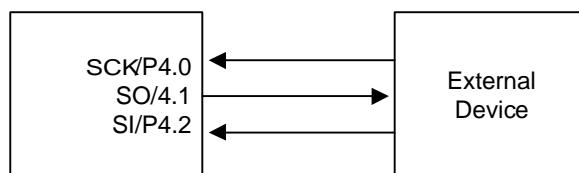

BITR      EMB
LD       EA,#03H
LD       PMG2,EA      ; P4.0/SCK and P4.1/SO ← Output, P4.2/SI ← Input
LD       EA,#47H      ; TDATA address = Bank0 (20H-7FH)
LD       SMOD,EA      ;
LD       EA,#TDATA      ;
LD       SBUF,EA      ;
BITS      SMOD.3      ; SIO start
BITR      IES          ; SIO Interrupt Disable
STEST    BTSTZ        IRQS
JR      STEST         STEST
LD       EA,SBUF      ;
LD       RDATA,EA      ; RDATA address = Bank0 (20H-7FH)

```

 **PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O (Continued)**

3. Transmit and receive an internal clock frequency of 4.39 kHz (at 4.5 MHz) in LSB-first mode:

|      |      |          |                                                      |
|------|------|----------|------------------------------------------------------|
|      | BITR | EMB      |                                                      |
|      | LD   | EA,#03H  |                                                      |
|      | LD   | PMG2,EA  | ; P4.0 / SCK and P4.1 / SO ← Output, P4.2/SI ← Input |
|      | LD   | EA,#87H  | ; TDATA address = Bank0 (20H-7FH)                    |
|      | LD   | SMOD,EA  |                                                      |
|      | LD   | EA,TDATA |                                                      |
|      | LD   | SBUF,EA  |                                                      |
|      | BITS | SMOD.3   | ; SIO start                                          |
|      | EI   |          |                                                      |
|      | BITS | IES      | ; SIO Interrupt Enable                               |
|      | •    |          |                                                      |
|      | •    |          |                                                      |
|      | •    |          |                                                      |
| INTS | PUSH | SB       | ; Store SMB, SRB                                     |
|      | PUSH | EA       | ; Store EA                                           |
|      | BITR | EMB      |                                                      |
|      | LD   | EA,TDATA | ; EA ← Receive data                                  |
|      |      |          | ; TDATA address = Bank0 (20H-7FH)                    |
|      | XCH  | EA,SBUF  | ; Transmit data ↔ Receive data                       |
|      | LD   | RDATA,EA | ; RDATA address = Bank0 (20H-7FH)                    |
|      | BITS | SMOD.3   | ; SIO start                                          |
|      | POP  | EA       |                                                      |
|      | POP  | SB       |                                                      |
|      | IRET |          |                                                      |




KS57C3316

 **PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O (Concluded)**

4. Transmit and receive an external clock in LSB-first mode:

|      |      |          |                                                    |
|------|------|----------|----------------------------------------------------|
|      | BITR | EMB      |                                                    |
|      | LD   | EA,#02H  |                                                    |
|      | LD   | PMG2,EA  | ; P4.1 / SO ← Output, P4.0/SCK and P4.2/SI ← Input |
|      | LD   | EA,#07H  |                                                    |
|      | LD   | SMOD,EA  | ; SIO start                                        |
|      | LD   | EA,TDATA | ; TDATA address = Bank0 (20H-7FH)                  |
|      | LD   | SBUF,EA  |                                                    |
|      | BITS | SMOD.3   |                                                    |
|      | EI   |          |                                                    |
|      | BITS | IES      | ; SIO Interrupt Enable                             |
|      | •    |          |                                                    |
|      | •    |          |                                                    |
|      | •    |          |                                                    |
| INTS | PUSH | SB       | ; Store SMB, SRB                                   |
|      | PUSH | EA       | ; Store EA                                         |
|      | BITR | EMB      |                                                    |
|      | LD   | EA,TDATA | ; EA ← Transmit data                               |
|      |      |          | ; TDATA address = Bank0 (20H-7FH)                  |
|      | XCH  | EA,SBUF  | ; Transmit data ↔ Receive data                     |
|      | LD   | RDATA,EA | ; RDATA address = Bank0 (20H-7FH)                  |
|      | BITS | SMOD.3   | ; SIO start                                        |
|      | POP  | EA       |                                                    |
|      | POP  | SB       |                                                    |
|      | IRET |          |                                                    |



KS57C3316

High Speed SIO Transmission

# 15

## PLL FREQUENCY SYNTHESIZER

### OVERVIEW

The phase locked loop (PLL) frequency synthesizer locks medium frequency (MF), high frequency (HF), and very high frequency (VHF) signals to a fixed frequency using a phase difference comparison system. As shown in Figure 15-1, the PLL frequency synthesizer consists of an input selection circuit, programmable divider, phase detector, reference frequency generator, and a charge pump.

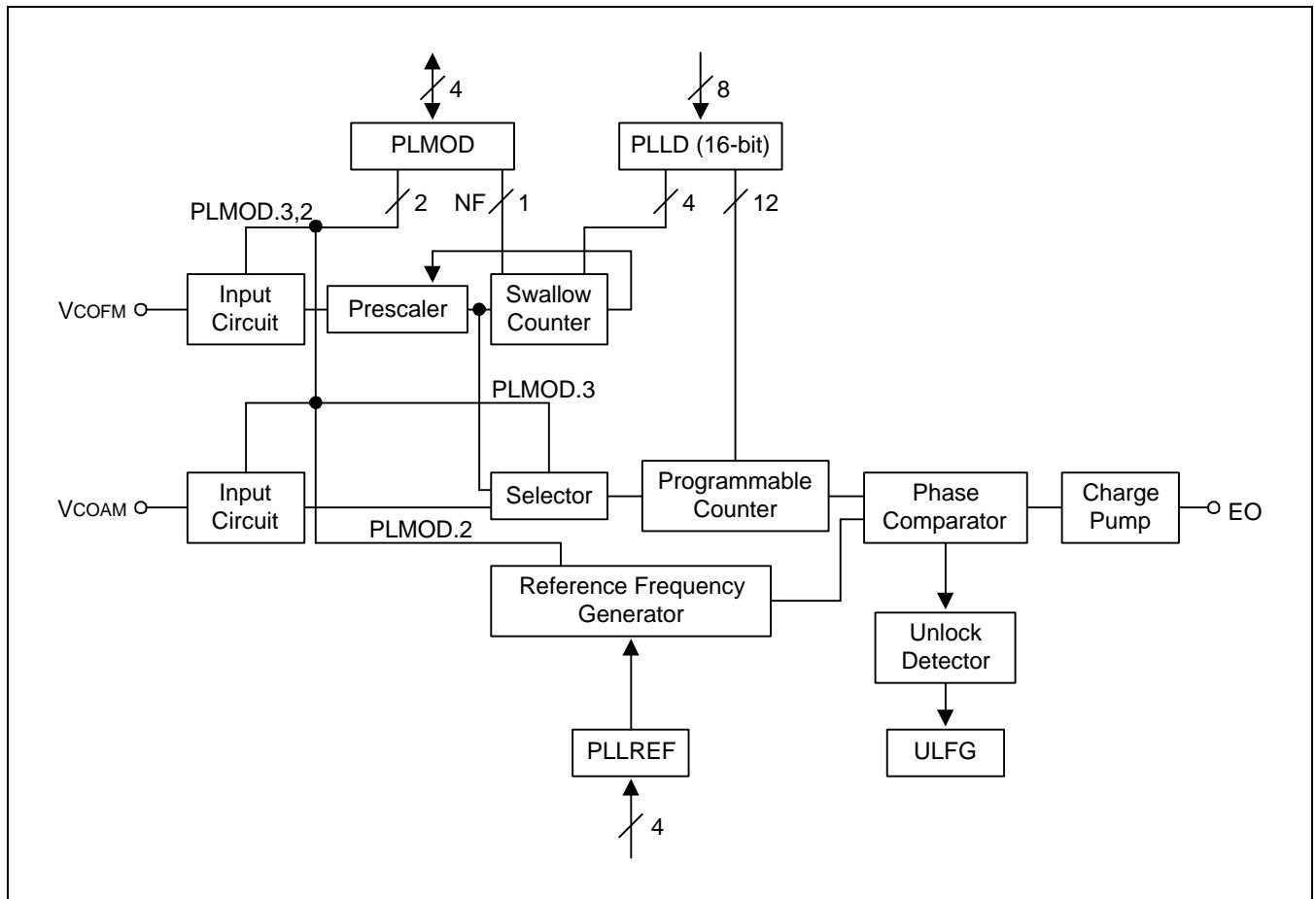



Figure 15-1. Block Diagram of the PLL Frequency Synthesizer

## PLL FREQUENCY SYNTHESIZER FUNCTION

The PLL frequency synthesizer divides the signal frequency at the  $V_{COAM}$  or  $V_{COFM}$  pin using the programmable divider. It then outputs the phase difference between the divided frequency and reference frequency at the EO pin.

### NOTE

The PLL frequency synthesizer operates only when the CE pin is High level. When the CE pin is Low level, the synthesizer is disable.

### Input Selection Circuit

The input selection circuit consists of the  $V_{COAM}$  pin and  $V_{COFM}$  pins, an FM/AM selector, and two amplifiers. The input selection circuit selects the frequency division method and the input pin of the PLL frequency.

You can choose one of two frequency division methods using the PLL mode register: 1) direct frequency division method, or 2) pulse swallow method. The PLL mode register is also used to select the  $V_{COAM}$  or  $V_{COFM}$  pin as the frequency input pin.

### Programmable Divider

The programmable divider divides the frequency of the signal from the  $V_{COAM}$  and  $V_{COFM}$  pins in accordance with the values contained in the swallow counter and programmable counter. The programmable divider consists of prescalers, a swallow counter, and a programmable counter.

When the PLL operation starts, the contents of the PLL data registers (PLLD0-PLLD3) and the NF bit in the PLMOD register are automatically loaded into the 12-bit programmable counter and the 5-bit swallow counter.

When the 12-bit programmable down counter reaches zero, the contents of the data register are automatically reloaded into the programmable counter and the swallow counter for the next counting operation.

If you modify the data register value while the PLL is operating, the new values are not immediately loaded into the two counters; the new data are loaded into the two counters when the current count operation has been completed.

The contents of the data register undetermined after initial power-on. However, the data register retains its current value when the reset operation is initiated by an external reset or a change in level at the CE pin.

The swallow counter is a 5-bit binary down counter; the programmable counter is a 12-bit binary down counter. The swallow counter is for FM mode only. The swallow counter and programmable counter start counting down simultaneously. When the swallow counter starts counting down, the 1/33 prescaler is selected. When the swallow counter reaches zero, it stops operation and selects the 1/32 prescaler.

## PLL DATA REGISTER (PLLD)

The frequency division value of the swallow counter and programmable counter is set in the PLL data register (PLLD0-PLLD3). Figure 15-2 shows the PLL data register configuration. The PLLD register can be manipulated using 4-bit and 8-bit RAM control instructions.

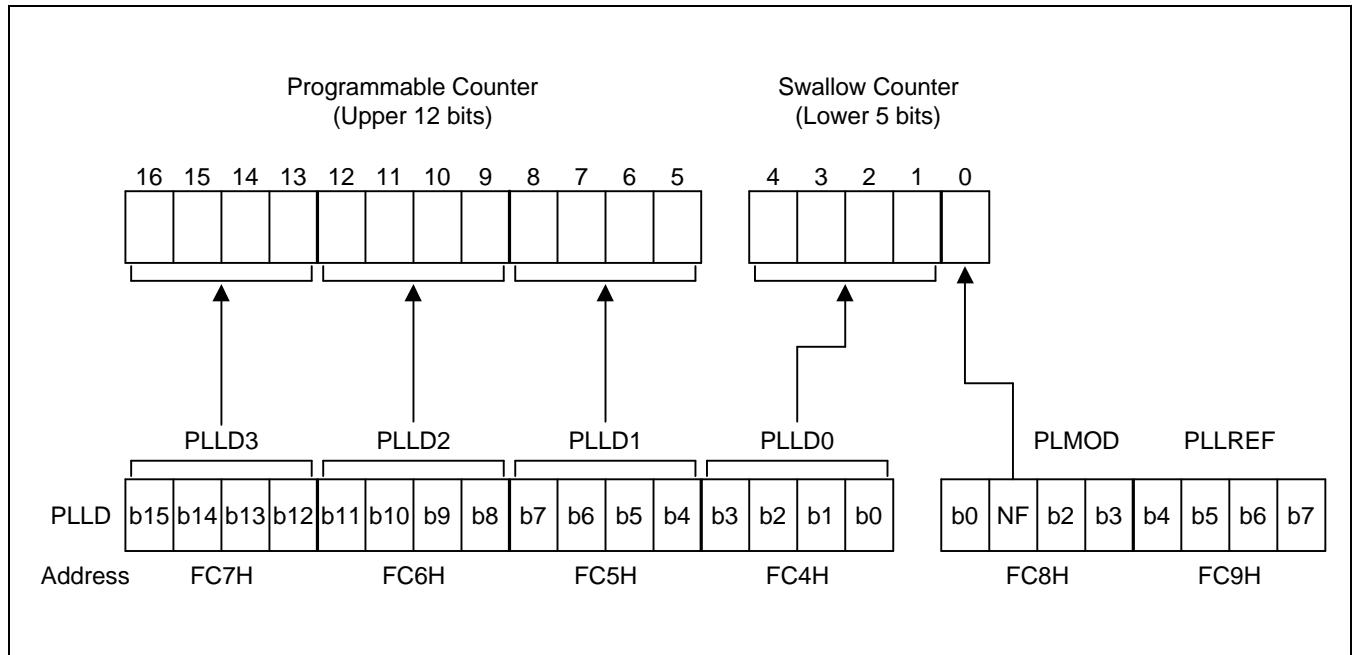



Figure 15-2. PLL Register Configuration

### Direct Frequency Division and Pulse Swallow Formulas

In the direct frequency division method, the upper 12 bits are valid. In the pulse swallow method, all 16 bits are valid. The upper 12 bit are set in the programmable counter and the lower 4 bits and the NF bit are set in the swallow counter. The frequency division formulas for both methods, as set in the PLL data register, are shown below:

- Direct frequency division (AM) is

$$f_R = \frac{f_{V_{COAM}}}{N}$$

Where the frequency division value (N) is 12 bits;  $f_{V_{COAM}}$  = input frequency at the  $V_{COAM}$  pin

- Pulse swallow system (FM) is

$$f_R = \frac{f_{V_{COFM}}}{N}$$

where the frequency division value (N) is 16 bits;  $f_{V_{COFM}}$  = input frequency at the  $V_{COFM}$  pin

## REFERENCE FREQUENCY GENERATOR

The reference frequency generator produce reference frequency which are then compared by the phase comparator. As shown in Figure 15-3, the reference frequency generator divides a crystal oscillation frequency of 4.5 MHz and generates the reference frequency ( $f_R$ ) for the PLL frequency synthesizer. Using the PLLREF register, you can select from ten different reference frequencies.

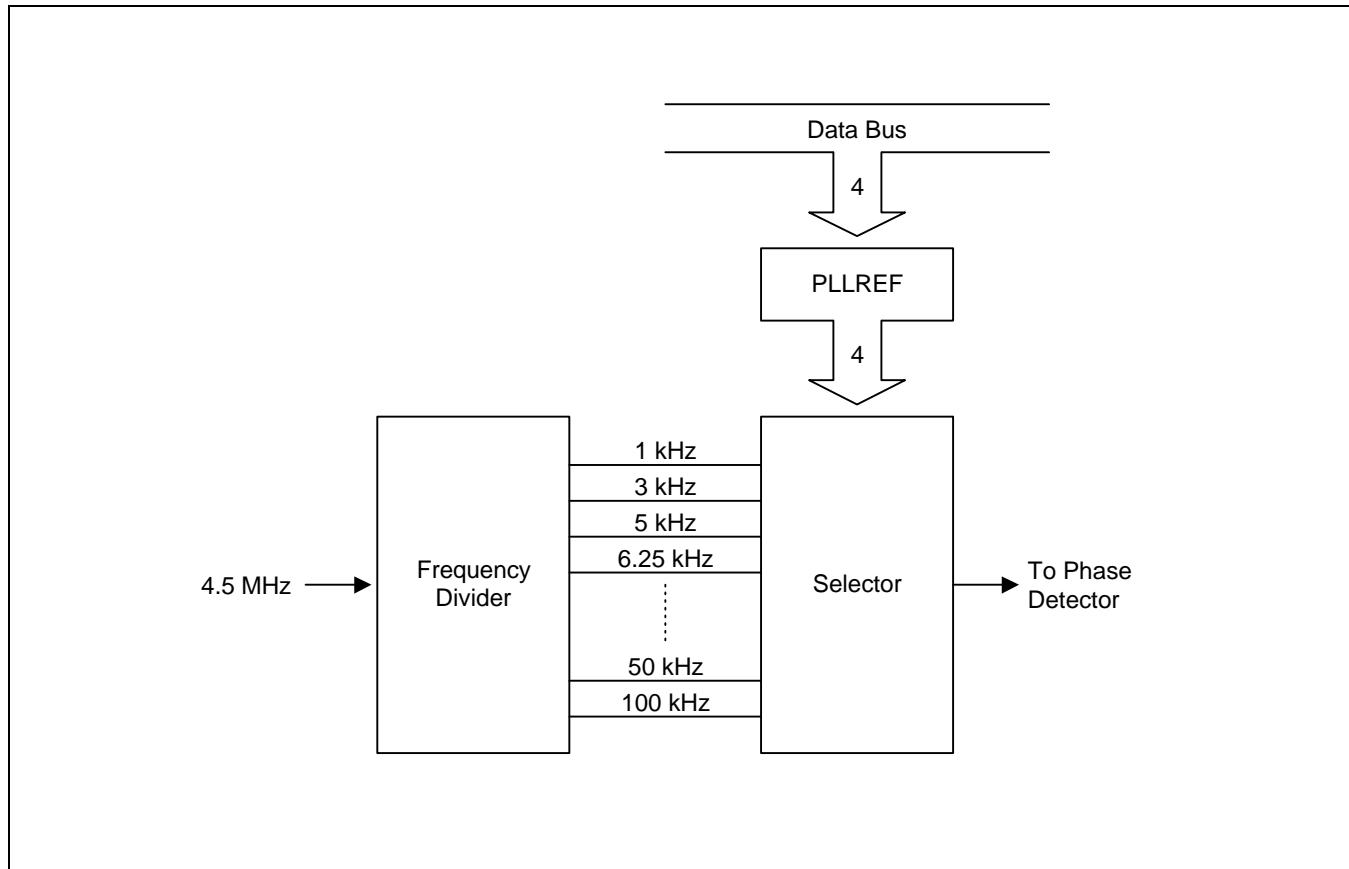



Figure 15-3. Reference Frequency Generator

## PLL MODE REGISTER (PLMOD)

The PLL mode register (PLMOD) is used to start and stop PLL operation. PLMOD values also determine the frequency dividing method.

|       |         |         |    |         |
|-------|---------|---------|----|---------|
| PLMOD | PLMOD.3 | PLMOD.2 | NF | PLMOD.0 |
|-------|---------|---------|----|---------|

PLMOD.3 selects the frequency dividing method. The basic configuration for the two frequency dividing methods are as follows:

### Direct Method

- Used for AM mode
- Swallow counter is not used
- $V_{COAM}$  pin is selected for input

### Pulse Swallow Method

- Used for FM mode
- Swallow counter is used
- $V_{COFM}$  pin is selected for input

The input frequency at the  $V_{COAM}$  or  $V_{COFM}$  pin is divided by the programmable divider. The frequency division value of the programmable divider is written to the PLL data register.

When the pulse swallow method is selected by setting PLMOD.3, the input signal is first divided by a 1/32 or 1/33 prescaler and the divided frequency is input to the programmable divider. PLMOD can be written using 4-bit RAM control instructions. Table 15-1 shows PLMOD organization.

**Table 15-1. PLMOD Organization**

#### PLL Enable Bit

|                |   |                                                    |
|----------------|---|----------------------------------------------------|
| <b>PLMOD.2</b> | 0 | PLL disable                                        |
|                | 1 | PLL enable                                         |
| <b>PLMOD.0</b> | 0 | Select the PLL operating voltage as 4.0 V to 5.5 V |
|                | 1 | Select the PLL operating voltage as 2.5 V to 3.5 V |

#### Frequency Division Method Selection Bit

| PLMOD.3 | Frequency Division Method   | Selected Pin                                  | Input Voltage       | Input Frequency | Division Value                           |
|---------|-----------------------------|-----------------------------------------------|---------------------|-----------------|------------------------------------------|
| 0       | Direct method for AM        | $V_{COAM}$ selected;<br>$V_{COFM}$ pulled Low | 300mV <sub>PP</sub> | 0.5 - 30 MHz    | 16 to (2 <sup>12</sup> - 1)              |
| 1       | Pulse swallow method for FM | $V_{COFM}$ selected;<br>$V_{COAM}$ pulled Low | 300mV <sub>PP</sub> | 30 - 150 MHz    | 2 <sup>10</sup> to (2 <sup>17</sup> - 2) |

**NOTE:** The NF bit, a one-bit frequency division value, is written to bit 0 in the swallow counter.

## PLL REFERENCE FREQUENCY SELECTION REGISTER (PLLREF)

The PLL reference frequency selection register (PLLREF) used to determine the reference frequency. You can select one of ten reference frequencies by setting bits PLLREF.3-PLLREF.0 to the appropriate value.

|        |          |          |          |          |
|--------|----------|----------|----------|----------|
| PLLREF | PLLREF.3 | PLLREF.2 | PLLREF.1 | PLLREF.0 |
|--------|----------|----------|----------|----------|

You can select one of the reference frequencies by setting bits PLLREF.3-PLLREF.0.

**Table 15-2. PLLREF Register Organization**

| PLLREF.3 | PLLREF.2 | PLLREF.1 | PLLREF.0 | Reference Frequency Selection          |
|----------|----------|----------|----------|----------------------------------------|
| 0        | 0        | 0        | 0        | Select 1 kHz as reference frequency    |
| 0        | 0        | 0        | 1        | Select 3 kHz as reference frequency    |
| 0        | 0        | 1        | 0        | Select 5 kHz as reference frequency    |
| 0        | 0        | 1        | 1        | Select 6.25 kHz as reference frequency |
| 0        | 1        | 0        | 0        | Select 9 kHz as reference frequency    |
| 0        | 1        | 0        | 1        | Select 10 kHz as reference frequency   |
| 0        | 1        | 1        | 0        | Select 12.5 kHz as reference frequency |
| 0        | 1        | 1        | 1        | Select 25 kHz as reference frequency   |
| 1        | 0        | 0        | 0        | Select 50 kHz as reference frequency   |
| 1        | 0        | 0        | 1        | Select 100 kHz as reference frequency  |

## PHASE DETECTOR, CHARGE PUMP, AND UNLOCK DETECTOR

The phase comparator compare the phase difference between divided frequency ( $f_N$ ) output from the programmable divider and the reference frequency ( $f_R$ ) output from the reference frequency generator.

The charge pump outputs the phase comparator's output from error output pins EO. The relation between the error output pin, divided frequency  $f_N$ , and reference frequency  $f_R$  is shown below:

$$f_R > f_N = \text{Low level output}$$

$$f_R < f_N = \text{High level output}$$

$$f_R = f_N = \text{Floating level}$$

A PLL operation starts when a value is loaded to the PLMOD register. The PLL unlock flag (ULFG) in the PLL flag register, PLLREG, provides status information regarding the reference frequency and divided frequency.

The unlock detector detects the unlock state of the PLL frequency synthesizer. The unlock flag in the PLLREG register is set to "1" in an unlock state. When ULFG = "0", the PLL locked state is selected.

|        |      |      |       |   |      |
|--------|------|------|-------|---|------|
| PLLREG | ULFG | CEFG | IFCFG | 0 | FCAH |
|--------|------|------|-------|---|------|

## PHASE DETECTOR, CHARGE PUMP, AND UNLOCK DETECTOR (Continued)

The ULFG flag is set continuously at a period of reference frequency  $f_R$  by the unlock detector. You must therefore read the ULFG flag in the PLLREG register at periods longer than  $1/f_R$  of the reference frequency. ULFG is reset wherever it is read. The PLLREG register can be read using 1-bit or 4-bit RAM control register instructions.

PLL operation is controlled by the state of the CE (chip enable) pin. The PLL frequency synthesizer is disabled and the error output pin is set to floating state whenever the CE pin is Low. When CE pin is High level, the PLL operates normally.

The chip enable flag in the PLLREG register, CEFC, provides the status of the current level of the CE pin. Whenever the state of the CE pin goes from Low to High, the CEFG flag is set to "1" and a CE reset operation occurs. When the CE pin goes from High to Low, the CEFG flag is cleared to "0" and a CE interrupt is generated.

## USING THE PLL FREQUENCY SYNTHESIZER

This section describes the steps you should follow when using the PLL direct frequency division method and the pulse swallow method. In each case, you must make the following selections in this order:

1. Frequency division method: Direct frequency division (AM) or pulse swallow (FM)
2. Output pin: VCOAM or VCOFM
3. Reference frequency:  $f_R$
4. Frequency division value:  $N$

### Direct Frequency Division Method

Select the direct frequency division method by writing a "0" to PLMOD.3.

The VCOAM pin is configured for input when you select the direct frequency division method.

Select the reference frequency by writing the appropriate values to the PLLREF register.

The frequency division value is

$$N = \frac{f_{V_{COAM}}}{f_R}$$

where  $f_{V_{COAM}}$  is the input frequency at the  $V_{COAM}$  pin, and  $f_R$  is the reference frequency.

### Example:

The following data are used to receive an AM-band broadcasting station:

|                         |           |
|-------------------------|-----------|
| Receive frequency:      | 1422 kHz  |
| Reference frequency:    | 9 kHz     |
| Intermediate frequency: | + 450 kHz |

The frequency division value  $N$  is calculated as follows:

$$N = \frac{f_{V_{COAM}}}{f_R} = \frac{f_{V_{COAM}}}{f_R} = 208 \text{ (decimal)}$$

$$= 0D0H \text{ (hexadecimal)}$$

You would modify the PLL data register and PLMOD register as follows:

| PLLD3   | PLLD2   | PLLD1   | PLLD0   | PLMOD   | NF |
|---------|---------|---------|---------|---------|----|
| 0 0 0 0 | 1 1 0 1 | 0 0 0 0 | x x x x | 0 1 x 0 |    |

**NOTE:** In the direct method, the contents of PLLD0 and NF are not evaluated.

## Pulse Swallow Method

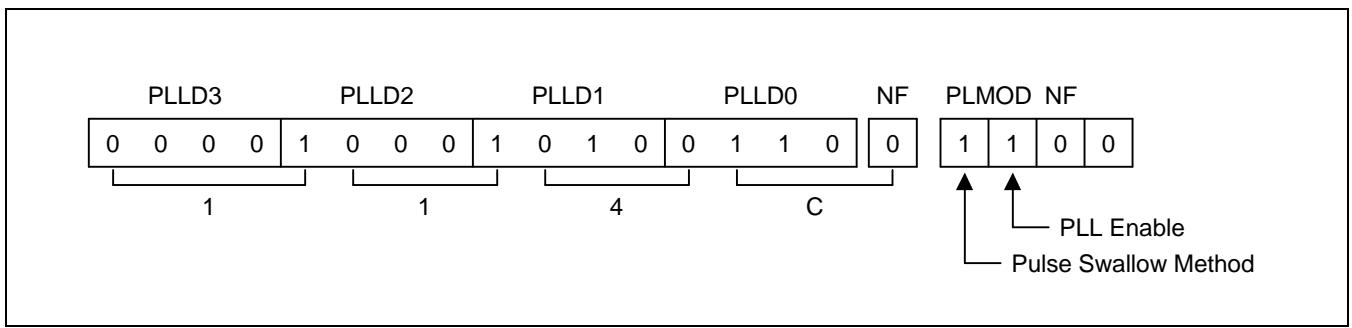
1. Select the pulse swallow method by writing a “1” to PLMOD.3
2. The VCOFM pin is configured for input when you select the pulse swallow method.
3. Select the reference frequency by writing the appropriate value to the PLLREF register.
4. Calculate the frequency division value as follows:

$$N = \frac{fV_{COFM}}{f_R}$$

where  $f_{V_{COFM}}$  is the input frequency at the  $V_{COFM}$  pin, and  $f_R$  is the reference frequency

## Example:

The following data are used to receive an FM-band broadcasting station:


Receive frequency: 100.0 MHz  
Reference frequency: 25 kHz  
Intermediate frequency: 10.7 kHz

The frequency division value  $N$  is calculated as follows:

$$N = \frac{fV_{COFM}}{f_R} = \frac{(100.0 + 10.7) \times 10^6}{2 \times 25 \times 10^3} = 4428 \text{ (decimal)}$$

$$= 114CH \text{ (hexadecimal)}$$

You would modify the PLL data register and PLMOD register as follows:



In the above example, each time NF bit value (LSB) is inverted, the VCO oscillation frequency varies by 25 kHz. To simplify programming, it is therefore better not to use the NF bit.

In the next example, the reference frequency is calculated in multiples of 25 kHz and the NF bit is not used.

### Example:

$$N = \frac{fV_{COFM}}{f_R} = \frac{(100.0 + 10.7) \times 10^6}{2 \times 25 \times 10^3} = 2214 \text{ (decimal)}$$

$$= 8A6H \text{ (hexadecimal)}$$



As this example shows, all 16 bits (the 16 PLLD bits, except for the NF bit) are used for the pulse swallow method. When you use the direct method, only the most-significant 12 bits of the PLLD value (PLLD3, PLLD2, and PLLD1) are evaluated.

# 16

## INTERMEDIATE FREQUENCY COUNTER

### OVERVIEW

The KS57C3316 uses an intermediate frequency counter (IFC) to counter the frequency of the AM or FM signal at FMIF or AMIF pin. The IFC block consists of a 1/2 divider, gate control circuit, IFC mode register (IFMOD) and a 16-bit binary counter. The gate control circuit, which controls the frequency counting time, is programmed using the IFMOD register. Four different gate times can be selected using IFMOD register settings.

During gate time, the 16-bit IFC counts the input frequency at the FMIF or AMIF pins. The FMIF or AMOIF pin input signal for the 16-bit counter is selected using IFMOD register settings.

The 16-bit binary counter (IFCNT1-IFCNT0) can be read by 8-bit RAM control instructions, only. When the FMIF pin input signal is selected, the signal is divided by two. When the AMIF pin input signal is directly connected to the IFC, it is not divided.

By setting IFMOD register, the gate is opened for 1-ms, 4-ms, or 8-ms periods. During the open period of the gate, input frequency is counted by the 16-bit counter. When the gate is closed, the counting operation is complete, and an interrupt is generated.

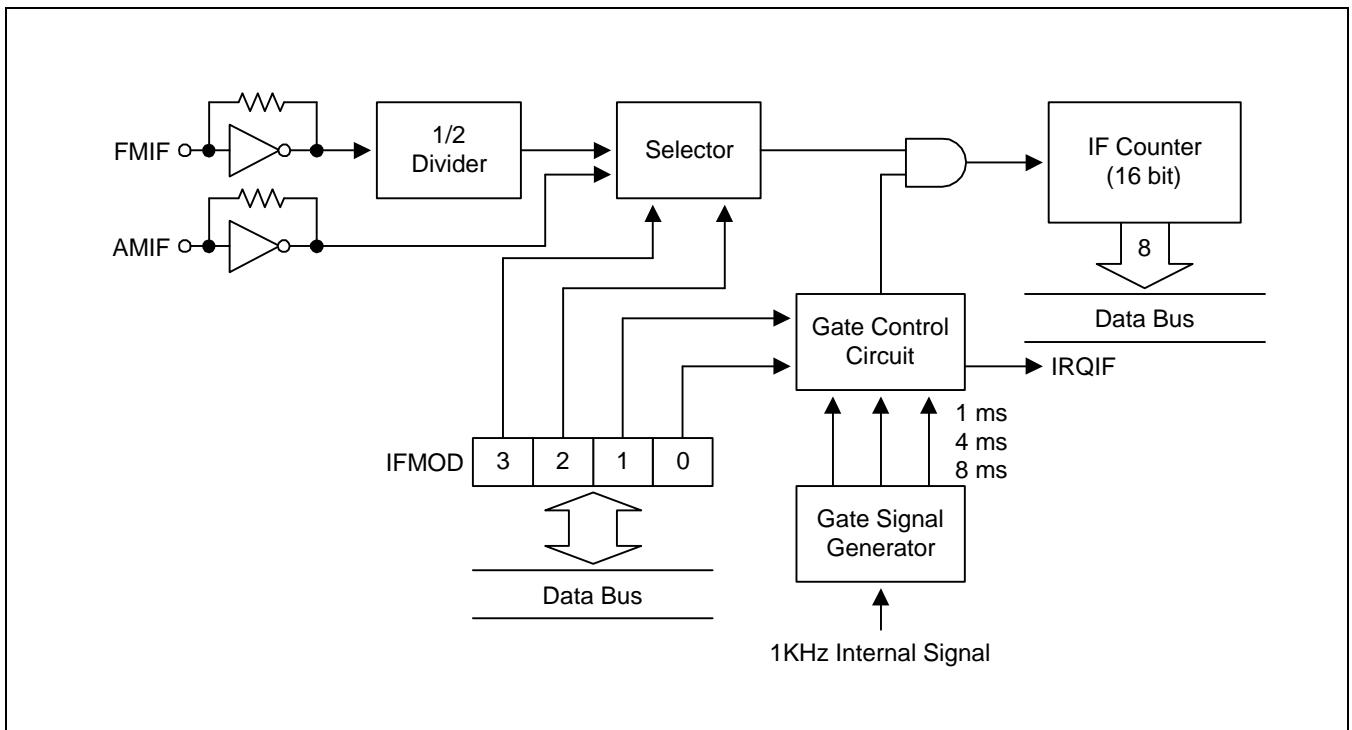



Figure 16-1. IF Counter Block Diagram

## IFC MODE REGISTER (IFMOD)

The IFC mode register (IFMOD) is a 4-bit register that is used to select the input pin and gate time. Setting IFMOD register reset IFC value and IFC gate flag value, and starts IFC operation. You use the IFMOD register to select the AMIF or FMIF input pin and the gate time.

|       |         |         |         |         |      |
|-------|---------|---------|---------|---------|------|
| IFMOD | IFMOD.3 | IFMOD.2 | IFMOD.1 | IFMOD.0 | F9BH |
|-------|---------|---------|---------|---------|------|

IFC operation starts when you select AMIF or FMIF as the IFC input pin. The IFMOD register can be read or written by 4-bit RAM control instructions. A reset operation clears all IFMOD values to "0".

**Table 16-1. IFMOD Organization**

### Pin Selection Bits

| IFMOD.3 | IFMOD.2 | Effect of Control Setting                                                                             |
|---------|---------|-------------------------------------------------------------------------------------------------------|
| 0       | 0       | IFC is disable; FMIF/AMIF are pulled down and FMIF/AMIF's feed-back resistor are off.                 |
| 0       | 1       | Enable IFC operation; AMIF pin is selected; FMIF is pulled down and FMIF's feed-back resistor is off. |
| 1       | 0       | Enable IFC operation; FMIF is selected; AMIF is pulled down and AMIF's feed-back resistor is off.     |
| 1       | 1       | Enable IFC operation; Both AMIF and FMIF are selected.                                                |

### Gate Time Select Bits

| IFMOD.1 | IFMOD.0 | Select Gate Time   |
|---------|---------|--------------------|
| 0       | 0       | Gate time is 1 ms. |
| 0       | 1       | Gate time is 4 ms. |
| 1       | 0       | Gate time is 8 ms. |
| 1       | 1       | Gate is open       |

## PLL FLAG REGISTER (PLLREG)

The PLL flag register (PLLREG) is a 4-bit read-only register.

|        |      |      |       |   |      |
|--------|------|------|-------|---|------|
| PLLREG | ULFG | CEFG | IFCFG | 0 | FCAH |
|--------|------|------|-------|---|------|

When IFC operation is started by setting IFMOD, the IFC gate flag (IFCFG) is cleared to "0". After a specified gate time has elapsed, the IFCFG bit is automatically set to "1". This lets you check whether a IFC counting operation has been completed or not.

The IFC interrupt can also be used to check whether or not a IFC counting operation is complete. The reset value of IFCFG is "0".

## GATE TIMES

When you write a value to IFMOD, the IFC gate is opened for a 1-millisecond, 4-millisecond, or 8-millisecond interval, setting with a rising clock edge. When the gate is open, the frequency at the AMIF or FMIF pin is counted by the 16-bit counter. When the gate closes, the IFC gate flag (IFCFG) is set to "1". An interrupt is then generated and the IFC interrupt request flag (IRQIF) is set.

Figure 16-2 shows gate timings with a 1-kHz internal clock.

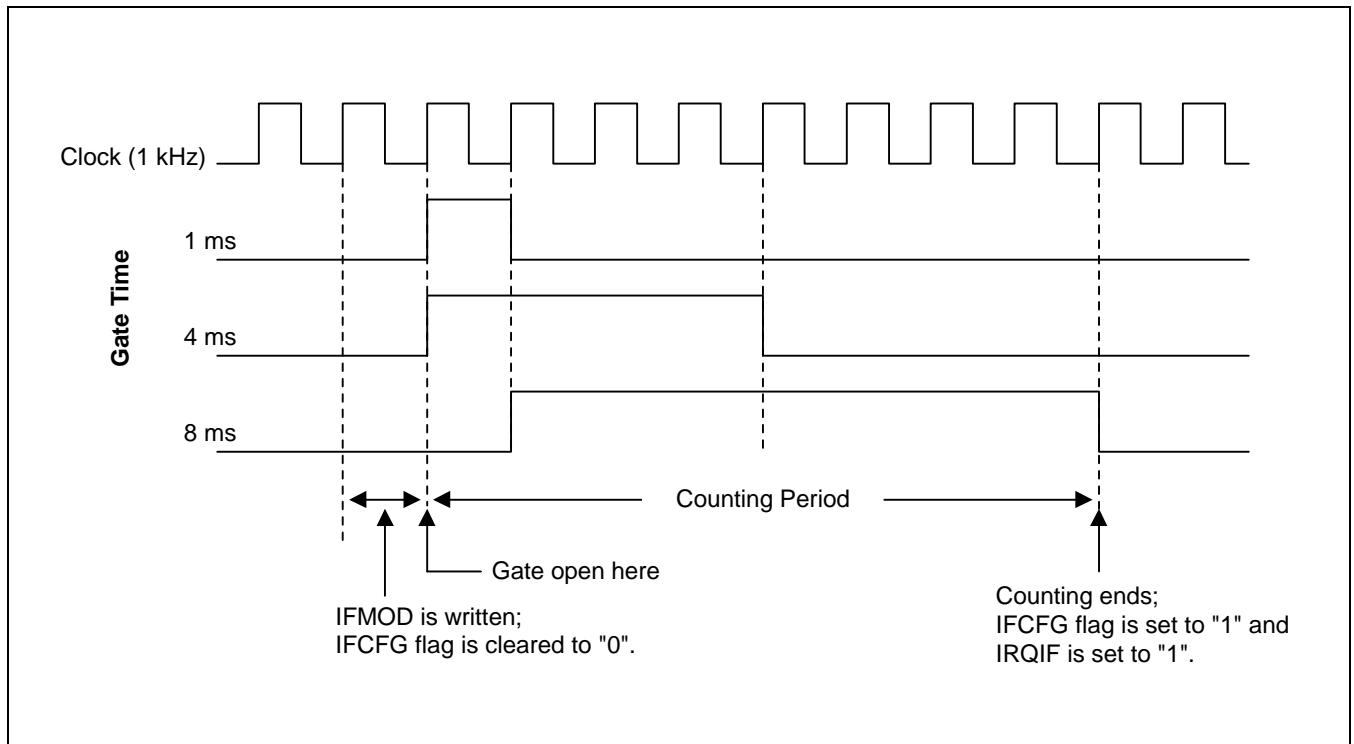
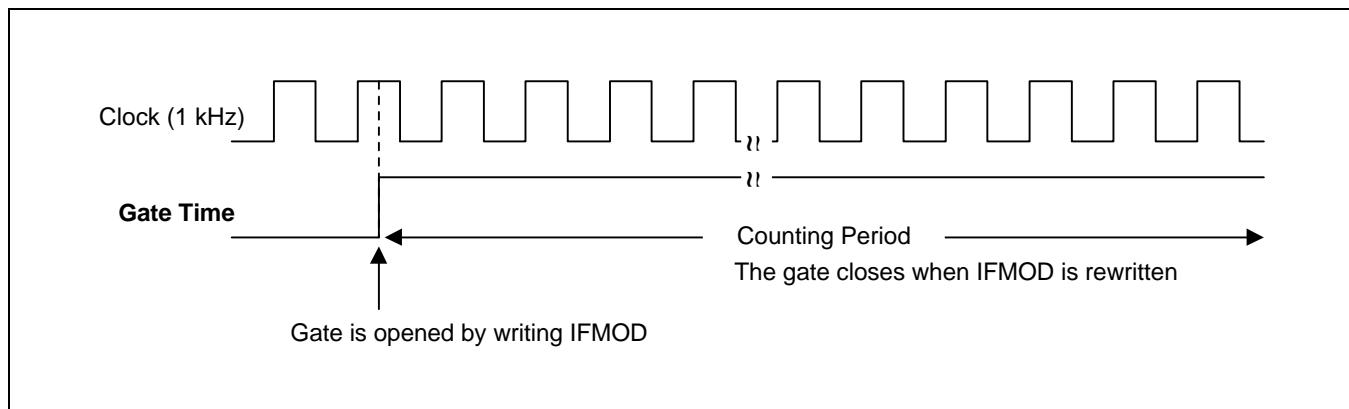
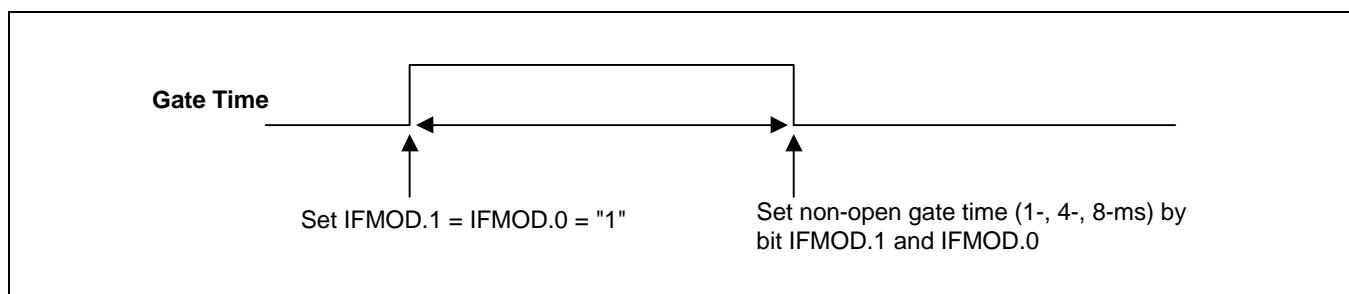
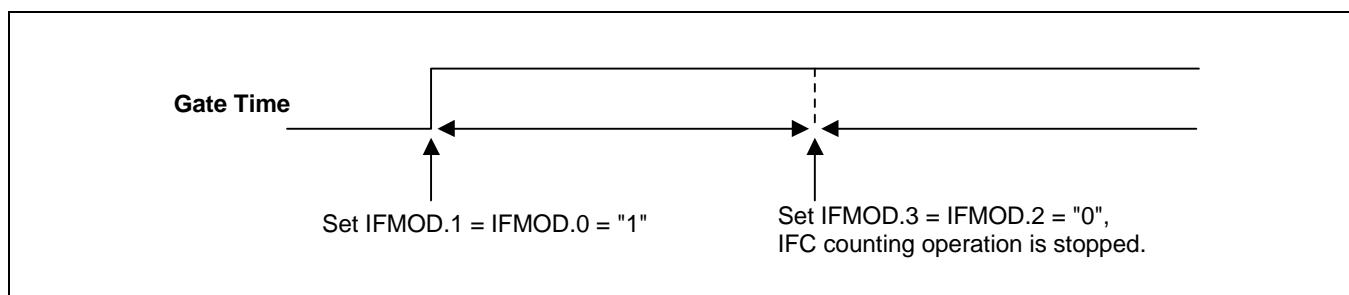



Figure 16-2. Gate Timing (1,4, or 8 ms)

### Selecting “Gate Remains Open”

If you select “gate remain open” (IFMOD.0 and IFMOD.1 = “1”), the IFC counts the input signal during the open period of the gate. The gate closes the next time a value is written to IFMOD.



Figure 16-3. Gate Timing (When Open)

When you select “gate remains open” as the gating time, you can control the opening and closing of the gate in one of two ways:

- Set the gate time to a specific interval (1-ms, 4-ms, or 8-ms) by setting bits IFMOD.1 and IFMOD.0.



- Disable IFC operation by clearing bits IFMOD.3 and IFMOD.2 to “0”. This method lets the gate remain open, and stops the counting operation.



### Gate Time Errors

A gate time error occurs whenever the gate signals are not synchronized to the interval instruction clock. That is, the IFC does not start counter operation until a rising edge of the gate signal is detected, even though the counter start instruction (setting bits IFMOD.3 and IFMOD.2) has been executed. Therefore, there is a maximum 1-ms timing error (see Figure 16-4).

After you have executed the IFC start instruction, you can check the gate state at any time. Please note, however that the IFC does not actually start its counting operation until stabilization time for the gate control signal has elapsed.




Figure 16-4. Gate Timing (1-ms Error)

### Counting Errors

The IF counter counts the rising edges of the input signal in order to determine the frequency. If the input signal is High level when the gate is open, one additional pulse is counted. When the gate is close, however, counting is not affected by the input signal status. In other words, the counting error is "+1, 0".

## IF COUNTER (IFC) OPERATION

IFMOD register bits 2 and 3 are used to select the input pin and to start or stop IFC counting operation. You stop the counting operation by clearing IFMOD.2 and IFMOD.3 to "0". The IFC retains its previous value until IFMOD register values are specified.

Setting bits IFMOD.3 and IFMOD.2 starts the frequency counting operation. Counting continues as long as the gate is open. The 16-bit counter value is automatically cleared to 0000H after it overflows (at FFFFH), and continues counting from zero. The 16-bit count value (IFCNT1-IFCNT0) can be read by 8-bit RAM control instructions. A reset operation clears the counter to zero.

|        |          |          |          |          |          |          |          |          |
|--------|----------|----------|----------|----------|----------|----------|----------|----------|
| IFCNT0 | IFCNT0.7 | IFCNT0.6 | IFCNT0.5 | IFCNT0.4 | IFCNT0.3 | IFCNT0.2 | IFCNT0.1 | IFCNT0.0 |
| IFCNT1 | IFCNT1.7 | IFCNT1.6 | IFCNT1.5 | IFCNT1.4 | IFCNT1.3 | IFCNT1.2 | IFCNT1.1 | IFCNT1.0 |

When the specified gate open time has elapsed, the gate closes in order to complete the counter operation. At this time, the IFC interrupt request flag (IRQIF) is automatically set to "1" and an interrupt is generated. The IRQIF flag is automatically cleared to "0" when the interrupt is serviced. The IFC gate flag (IFCFG) is set to "1" at the same time the gate is closed. Since the IFCFG flag is cleared to "0" when IFC operation start, you can check the IFCFG flag to determine when IFC operation stops (that is, when the specified gate open time has elapsed).

The frequency applied to FMIF or AMIF pin is counted while the gate is open. The frequency applied to FMIF pin is divided by 2 before counting. The relationship between the count value (N) and input frequencies  $f_{AMIF}$  and  $f_{FMIF}$  is shown below.

- FMIF pin input frequency is

$$f_{FMIF} = \frac{N \text{ (DEC)}}{T_G} \times 2$$

when  $T_G$  = gate time (1 ms, 4 ms, 8 ms)

- AMIF pin input frequency is

$$f_{AMIF} = \frac{N \text{ (DEC)}}{T_G}$$

when  $T_G$  = gate time (1 ms, 4 ms, 8 ms)

Table 16-2 shows the range of frequency that you can apply to the AMIF and FMIF pins.

**Table 16-2. IF Counter Frequency Characteristics**

| Pin  | Voltage Level               | Frequency Range  |
|------|-----------------------------|------------------|
| AMIF | 300 m V <sub>PP</sub> (min) | 0.1 MHz to 1 MHz |
| FMIF | 300 m V <sub>PP</sub> (min) | 5 MHz to 15 MHz  |

## INPUT PIN CONFIGURATION

The AMIF and FMIF pins have built-in AC amplifiers (see Figure 16-5). The DC component of the input signal must be stripped off by the external capacitor.

When the AMIF or FMIF pin is selected for the IFC function and the switch is turned on voltage of each pin increases to approximately  $1/2 V_{DD}$  after a sufficiently long time. If the pin voltage does not increase to approximately  $1/2 V_{DD}$ , the AC amplifier exceeds its operating range, possibly causing an IFC malfunction. To prevent this from occurring, you should program a sufficiently long time delay interval before starting the count operation.

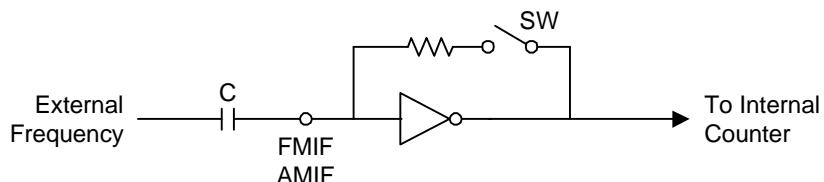



Figure 16-5. AMIF and FMIF Pin Configuration

### ☞ PROGRAMMING TIP — Counting the Frequency at the FMIF pin (8-ms Gate Time)

You must insert a time delay before starting an IF counter operation. This time delay ensures the normal operation of the built-in AC amplifier when each pin is selected as a IFC input pin.

```

SMB      15
(Time delay)          ; Built-in AC amplifier stabilization time
LD       A,#0AH
LD       IFMOD          ; FMIF pin is selected and gate time is set to 8 ms
                        ; Start IFC operation
LOOP    BTSF    IFCG          ; Check gate open/close status
      JPS     READ          ; Jump to READ if gate closes
      .
      .
      .
      JPS     LOOP
READ    (Read IFCNT1, IFCNT0)

```

## IFC DATA CALCULATION

### Selecting the FMIF pin for IFC Input

First, divide the signal at the FMIF pin by 2, and then apply this value to the IF counter. This means that the IF counter value is equal to one-half of the input signal frequency.

FMIF input frequency ( $f_{FMIF}$ ): 10.7 MHz

Gate time ( $T_G$ ): 8 ms

IFC counter value (N):

$$\begin{aligned} N &= (f_{FMIF}/2) \times T_G \\ &= 10.7 \times 10^6 / 2 \times 8 \times 10^{-3} \\ &= 42800 \\ &= A730H \end{aligned}$$

|       |        |   |   |   |   |   |   |   |        |   |   |   |   |   |   |   |
|-------|--------|---|---|---|---|---|---|---|--------|---|---|---|---|---|---|---|
| Bin   | 1      | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0      | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| Dec   | A      |   |   |   | 7 |   |   |   | 3      |   |   |   | 0 |   |   |   |
| IFCNT | IFCNT1 |   |   |   |   |   |   |   | IFCNT0 |   |   |   |   |   |   |   |

### Selecting the AMIF Pin for IFC Input

The signal at AMIF pin is directly input to the IF counter.

AMIF input frequency ( $f_{AMIF}$ ): 450 kHz

Gate time ( $T_G$ ): 8 ms

IFC counter value (N):

$$\begin{aligned} N &= (f_{AMIF}) \times T_G \\ &= 450 \times 10^3 \times 8 \times 10^{-3} \\ &= 3600 \\ &= E10H \end{aligned}$$

|       |        |   |   |   |   |   |   |   |        |   |   |   |   |   |   |   |
|-------|--------|---|---|---|---|---|---|---|--------|---|---|---|---|---|---|---|
| Bin   | 0      | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0      | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| Dec   | 0      |   |   |   | E |   |   |   | 1      |   |   |   | 0 |   |   |   |
| IFCNT | IFCNT1 |   |   |   |   |   |   |   | IFCNT0 |   |   |   |   |   |   |   |

# 17 ELECTRICAL DATA

## OVERVIEW

In this section, information on KS57C3316 electrical characteristics is presented as tables and graphics. The information is arranged in the following order:

### Standard Electrical Characteristics

- Absolute maximum ratings
- D.C. electrical characteristics
- System clock oscillator characteristics
- I/O capacitance
- A.C. electrical characteristics
- Operating voltage range

### Miscellaneous Timing Waveforms

- A.C timing measurement point
- Clock timing measurement at  $X_{IN}$
- Clock timing measurement at  $XT_{IN}$
- Input timing for RESET
- Input timing for external interrupts and Quasi-Interrupts

### Stop Mode Characteristics and Timing Waveforms

- RAM data retention supply voltage in stop mode
- Stop mode release timing when initiated by RESET
- Stop mode release timing when initiated by an interrupt request

Table 17-1. Absolute Maximum Ratings

(T<sub>A</sub> = 25 °C)

| Parameter             | Symbol           | Conditions                   | Rating                         | Units |
|-----------------------|------------------|------------------------------|--------------------------------|-------|
| Supply voltage        | V <sub>DD</sub>  | —                            | - 0.3 to + 6.5                 | V     |
| Input voltage         | V <sub>IN</sub>  | Applies to all I/O ports     | - 0.3 to V <sub>DD</sub> + 0.3 |       |
| Output voltage        | V <sub>O</sub>   | —                            | - 0.3 to V <sub>DD</sub> + 0.3 |       |
| Output current high   | I <sub>OH</sub>  | One I/O port active          | - 15                           | mA    |
|                       |                  | All I/O ports active         | -30                            |       |
| Output current low    | I <sub>OL</sub>  | One I/O port active          | + 30 (peak value)              | mA    |
|                       |                  | Total value for output ports | + 15 (note)                    |       |
|                       |                  |                              | + 100 (peak value)             |       |
|                       |                  |                              | + 60 *                         |       |
| Operating temperature | T <sub>A</sub>   |                              | - 40 to + 85                   | °C    |
| Storage temperature   | T <sub>STG</sub> |                              | - 65 to + 150                  |       |

**NOTE:** The values for output current low ( I<sub>OL</sub> ) are calculated as Peak Value  $\times \sqrt{\text{Duty}}$  .

**Table 17-2. D.C. Electrical Characteristics**(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

| Parameter                                     | Symbol           | Conditions                                                                          | Min                  | Typ | Max                 | Units |
|-----------------------------------------------|------------------|-------------------------------------------------------------------------------------|----------------------|-----|---------------------|-------|
| Input high voltage                            | V <sub>IH1</sub> | All input pins except those specified below                                         | 0.7 V <sub>DD</sub>  | -   | V <sub>DD</sub>     | V     |
|                                               | V <sub>IH2</sub> | P0.2, P1, P4.0, P4.2, P5, P6, CE and RESET                                          | 0.8 V <sub>DD</sub>  |     | V <sub>DD</sub>     |       |
|                                               | V <sub>IH3</sub> | X <sub>IN</sub> , X <sub>OUT</sub> , XT <sub>IN</sub> , and XT <sub>OUT</sub>       | V <sub>DD</sub> -0.1 |     | V <sub>DD</sub>     |       |
| Input low voltage                             | V <sub>IL1</sub> | All input pins except those specified below                                         | -                    | -   | 0.3 V <sub>DD</sub> | V     |
|                                               | V <sub>IL2</sub> | P0.2, P1, P4.0, P4.2, P5, P6, CE and RESET                                          |                      |     | 0.2 V <sub>DD</sub> |       |
|                                               | V <sub>IL3</sub> | X <sub>IN</sub> , X <sub>OUT</sub> , XT <sub>IN</sub> , and XT <sub>OUT</sub>       |                      |     | 0.1                 |       |
| Output high voltage                           | V <sub>OH1</sub> | V <sub>DD</sub> = 4.5 V to 5.5 V, EO;<br>I <sub>OH</sub> = -1 mA                    | V <sub>DD</sub> -2.0 | -   | V <sub>DD</sub>     | V     |
|                                               | V <sub>OH2</sub> | V <sub>DD</sub> = 4.5 V to 5.5 V;<br>Other output ports;<br>I <sub>OH</sub> = -1 mA | V <sub>DD</sub> -1.0 |     | V <sub>DD</sub>     |       |
| Output low voltage                            | V <sub>OL1</sub> | V <sub>DD</sub> = 4.5 V to 5.5 V, EO;<br>I <sub>OL</sub> = 1 mA,                    | -                    | -   | 2.0                 | V     |
|                                               | V <sub>OL2</sub> | V <sub>DD</sub> = 4.5 V to 5.5 V<br>Other output ports; I <sub>OL</sub> = 10 mA     | -                    |     | 2                   |       |
| Input high leakage current <sup>(note)</sup>  | I <sub>LIH</sub> | V <sub>IN</sub> = V <sub>DD</sub><br>All input pins                                 | -                    | -   | 3                   | μA    |
| Input low leakage current <sup>(note)</sup>   | I <sub>LIL</sub> | V <sub>IN</sub> = 0 V<br>All input pins                                             | -                    | -   | -3                  |       |
| Output high leakage current <sup>(note)</sup> | I <sub>LOH</sub> | V <sub>OUT</sub> = V <sub>DD</sub><br>All output pins                               | -                    | -   | 3                   |       |

NOTE: Except for X<sub>IN</sub>, X<sub>OUT</sub>, XT<sub>IN</sub> and XT<sub>OUT</sub>.

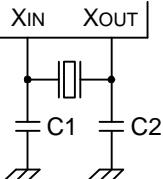
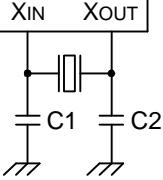
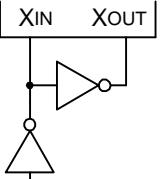
Table 17-2. D.C. Electrical Characteristics (Continued)

(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

| Parameter                       | Symbol            | Conditions                                                                                                      | Min                       | Typ                 | Max                       | Units |
|---------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|---------------------------|-------|
| V <sub>LC0</sub> output voltage | V <sub>LC0</sub>  | T <sub>A</sub> = 25 °C                                                                                          | 0.6 V <sub>DD</sub> - 0.2 | 0.6 V <sub>DD</sub> | 0.6 V <sub>DD</sub> + 0.2 | V     |
| V <sub>LC1</sub> output voltage | V <sub>LC1</sub>  | T <sub>A</sub> = 25 °C                                                                                          | 0.4 V <sub>DD</sub> - 0.2 | 0.4 V <sub>DD</sub> | 0.4 V <sub>DD</sub> + 0.2 |       |
| V <sub>LC2</sub> output voltage | V <sub>LC2</sub>  | T <sub>A</sub> = 25 °C                                                                                          | 0.2 V <sub>DD</sub> - 0.2 | 0.2 V <sub>DD</sub> | 0.2 V <sub>DD</sub> + 0.2 |       |
| COM output voltage deviation    | V <sub>DC</sub>   | V <sub>DD</sub> = 5V, (V <sub>LC0</sub> - COM <sub>i I = 0 - 3</sub> )<br>IO = ± 15 µA (I = 0 - 3)              | -                         | ± 45                | ± 120                     | mV    |
| SEG output voltage deviation    | V <sub>DS</sub>   | V <sub>DD</sub> = 5V, (V <sub>LC0</sub> - COM <sub>i I = 0 - 3</sub> )<br>IO = ± 15 µA (I = 0 - 3)              |                           | ± 45                | ± 120                     |       |
| LCD output voltage deviation    | R <sub>LCD</sub>  | T <sub>A</sub> = 25 °C                                                                                          | 70                        | 100                 | 150                       | KΩ    |
| Oscillator feed back resistors  | R <sub>OSC1</sub> | V <sub>DD</sub> = 5.0 V, T <sub>A</sub> = 25 °C<br>X <sub>IN</sub> = V <sub>DD</sub> , X <sub>OUT</sub> = 0 V   | 300                       | 600                 | 1500                      |       |
|                                 | R <sub>OSC2</sub> | V <sub>DD</sub> = 5.0 V, T <sub>A</sub> = 25 °C<br>XT <sub>IN</sub> = V <sub>DD</sub> , XT <sub>OUT</sub> = 0 V | 1500                      | 3000                | 4500                      |       |
| Pull-down resistor              | R <sub>D</sub>    | V <sub>DD</sub> = 5.0 V, V <sub>IN</sub> = V <sub>DD</sub> ;<br>VCOFM, VCOAM, AMIF, and FMIF                    | 15                        | 30                  | 45                        |       |
| PLL-up Resistor                 | R <sub>L1</sub>   | V <sub>IN</sub> = 0 V; V <sub>DD</sub> = 5 V<br>Ports 1, 2, 3, 4, 5, and 6                                      | 25                        | 47                  | 100                       |       |
|                                 |                   | V <sub>DD</sub> = 3 V                                                                                           | 50                        | 95                  | 200                       |       |
|                                 | R <sub>L2</sub>   | V <sub>IN</sub> = 0 V; V <sub>DD</sub> = 5 V<br>RESET                                                           | 100                       | 220                 | 400                       |       |
|                                 |                   | V <sub>DD</sub> = 3 V                                                                                           | 200                       | 450                 | 800                       |       |

Table 17-2. D.C. Electrical Characteristics (Concluded)

(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

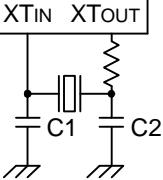
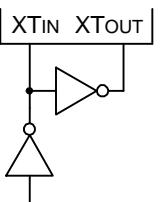



| Parameter                       | Symbol                                                                                                                      | Conditions                                                                                                                                                      | Min     | Typ | Max | Units |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-----|-------|
| Supply Current <sup>(1)</sup>   | I <sub>DD1</sub> <sup>(2)</sup>                                                                                             | Main operating, PLL operating:<br>PCON = 0011B, SCMOD = 0000B<br>CE = V <sub>DD</sub> ;<br>Crystal oscillator<br>C1 = C2 = 22 pF<br>V <sub>DD</sub> = 5 V ± 10% | 4.5 MHz | —   | 5.5 | 27    |
| I <sub>DD2</sub> <sup>(2)</sup> | CE Low,<br>PCON = 0011B, SCMOD = 0000B<br>CE = 0 V<br>Crystal oscillator<br>C1 = C2 = 22 pF<br>V <sub>DD</sub> = 5 V ± 10%  | 6.0 MHz                                                                                                                                                         | —       | 3.5 | 8   |       |
|                                 |                                                                                                                             | 4.5 MHz                                                                                                                                                         |         | 2.5 | 5.5 |       |
|                                 | V <sub>DD</sub> = 3 V ± 10%                                                                                                 | 6.0 MHz                                                                                                                                                         |         | 1.6 | 4   |       |
|                                 |                                                                                                                             | 4.5 MHz                                                                                                                                                         |         | 1.2 | 3   |       |
| I <sub>DD3</sub> <sup>(2)</sup> | Main idle mode,<br>PCON = 0111B, SCMOD = 0000B<br>Crystal oscillator<br>C1 = C2 = 22 pF<br>V <sub>DD</sub> = 5 V ± 10%      | 6.0 MHz                                                                                                                                                         | —       | 1.0 | 2.5 |       |
|                                 |                                                                                                                             | 4.5 MHz                                                                                                                                                         |         | 0.9 | 2.0 |       |
|                                 | V <sub>DD</sub> = 3 V ± 10%                                                                                                 | 6.0 MHz                                                                                                                                                         |         | 0.5 | 1.0 |       |
|                                 |                                                                                                                             | 4.5 MHz                                                                                                                                                         |         | 0.4 | 0.8 |       |
| I <sub>DD4</sub> <sup>(2)</sup> | Sub operating mode:<br>PCON = 0011B, SCMOD = 1001B<br>CE = 0 V;<br>V <sub>DD</sub> = 3 V ± 10%<br>32 kHz crystal oscillator | —                                                                                                                                                               | —       | 15  | 30  | uA    |
| I <sub>DD5</sub> <sup>(2)</sup> | Sub idle mode:<br>PCON = 0111B, SCMOD = 1001B<br>CE = 0 V;<br>V <sub>DD</sub> = 3 V ± 10%<br>32 kHz crystal oscillator      | —                                                                                                                                                               | —       | 6   | 15  |       |
| I <sub>DD6</sub> <sup>(2)</sup> | Stop mode:<br>CPU = f <sub>x</sub> /4, SCMOD = 1101B<br>CE = 0 V;<br>V <sub>DD</sub> = 5 V ± 10%                            | —                                                                                                                                                               | —       | 0.5 | 3   |       |
| I <sub>DD7</sub> <sup>(2)</sup> | Stop mode:<br>CPU = f <sub>x</sub> /4, SCMOD = 0100B<br>V <sub>DD</sub> = 5 V ± 10%                                         | —                                                                                                                                                               | —       | —   | —   |       |

## NOTES:

- Supply current does not include current drawn through internal pull-up resistors and LCD voltage dividing resistors.
- Data includes the power consumption for sub-system clock oscillation.

Table 17-3. Main System Clock Oscillator Characteristics

(T<sub>A</sub> = -40 °C + 85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)



| Oscillator         | Clock Configuration                                                                 | Parameter                                                                           | Test Condition                                                                              | Min  | Typ | Max | Units |
|--------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------|-----|-----|-------|
| Ceramic Oscillator |    | Oscillation frequency (1)                                                           | V <sub>DD</sub> = 2.7 V to 5.5 V                                                            | 0.4  | —   | 6   | MHz   |
|                    |                                                                                     | Stabilization time (2)                                                              | Stabilization occurs when V <sub>DD</sub> is equal to the minimum oscillator voltage range. | —    | —   | 4   | ms    |
| Crystal Oscillator |   | Oscillation frequency (1)                                                           | V <sub>DD</sub> = 2.7 V to 5.5 V                                                            | 0.4  | —   | 6   | MHz   |
|                    |                                                                                     | Stabilization time (2)                                                              | V <sub>DD</sub> = 4.5 V to 5.5 V                                                            | —    | —   | 10  | ms    |
|                    |                                                                                     |                                                                                     | V <sub>DD</sub> = 1.8 V to 4.5 V                                                            | —    | —   | 30  |       |
| External Clock     |  | X <sub>IN</sub> input frequency (1)                                                 | —                                                                                           | 0.4  | —   | 6   | MHz   |
|                    |                                                                                     | X <sub>IN</sub> input high and low level width (t <sub>XH</sub> , t <sub>XL</sub> ) | —                                                                                           | 83.3 | —   | —   | ns    |

**NOTES:**

1. Oscillation frequency and X<sub>IN</sub> input frequency data are for oscillator characteristics only.
2. Stabilization time is the interval required for oscillator stabilization after a power-on occurs, or when stop mode is terminated.

Table 17-4. Subsystem Clock Oscillator Characteristics

(T<sub>A</sub> = -40 °C + 85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

| Oscillator         | Clock Configuration                                                               | Parameter                                                                              | Test Condition                   | Min | Typ    | Max | Units |
|--------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------|-----|--------|-----|-------|
| Crystal Oscillator |  | Oscillation frequency (1)                                                              | —                                | 32  | 32.768 | 35  | kHz   |
|                    |                                                                                   | Stabilization time (2)                                                                 | V <sub>DD</sub> = 2.7 V to 5.5 V | —   | 1.0    | 2   | s     |
|                    |                                                                                   |                                                                                        | V <sub>DD</sub> = 1.8 V to 4.5 V | —   | —      | 10  |       |
| External Clock     |  | XT <sub>IN</sub> input frequency (1)                                                   | —                                | 32  | —      | 100 | kHz   |
|                    |                                                                                   | XT <sub>IN</sub> input high and low level width (t <sub>XTL</sub> , t <sub>XTH</sub> ) | —                                | 5   | —      | 15  | μs    |

**NOTES:**

1. Oscillation frequency and XT<sub>IN</sub> input frequency data are for oscillator characteristics only.
2. Stabilization time is the interval required for oscillator stabilization after a power-on occurs.

Table 17-5. Input/Output Capacitance

(T<sub>A</sub> = 25 °C, V<sub>DD</sub> = 0 V)

| Parameter          | Symbol           | Condition                                                                 | Min | Typ | Max | Units |
|--------------------|------------------|---------------------------------------------------------------------------|-----|-----|-----|-------|
| Input capacitance  | C <sub>IN</sub>  | f <sub>CLK</sub> = 1 MHz; Unmeasured pins are returned to V <sub>SS</sub> | —   | —   | 15  | pF    |
| Output capacitance | C <sub>OUT</sub> |                                                                           | —   | —   | 15  | pF    |
| I/O capacitance    | C <sub>IO</sub>  |                                                                           | —   | —   | 15  | pF    |

Table 17-6. A.C. Electrical Characteristics

(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

| Parameter                       | Symbol                                | Conditions                       | Min  | Typ | Max | Units |
|---------------------------------|---------------------------------------|----------------------------------|------|-----|-----|-------|
| Instruction cycle time (1)      | t <sub>CY</sub>                       | V <sub>DD</sub> = 2.7 V to 5.5 V | 0.67 | —   | 64  | μs    |
|                                 |                                       | V <sub>DD</sub> = 1.8 V to 5.5 V | 1.3  |     | 64  |       |
| Interrupt input high, low width | t <sub>INTH</sub> , t <sub>INTL</sub> | INT0                             | (2)  | —   | —   | μs    |
|                                 |                                       | INT1, INT2, INT4, KS0-KS2        | 10   |     | —   |       |
| RESET and CE Input Low Width    | t <sub>RSL</sub>                      | Input                            | 10   | 1   | —   | μs    |

**NOTES:**

1. Unless otherwise specified, Instruction Cycle Time condition values assume a main system clock/4 (fx/4) source.
2. Minimum value for INT0 is based on a clock of 2t<sub>CY</sub> or 128/fxx as assigned by the IMOD0 register setting.

Table 17-6. A.C. Electrical Characteristics (Continued)

(T<sub>A</sub> = -10 °C to +70 °C, V<sub>DD</sub> = 3.5 V to 5.5 V)

| Parameter                 | Symbol           | Conditions            | Min             | Typ           | Max             | Units |
|---------------------------|------------------|-----------------------|-----------------|---------------|-----------------|-------|
| A/D converting Resolution | —                | —                     | —               | 8             | —               | bits  |
| Absolute accuracy         | —                | —                     | —               | —             | ± 2             | LSB   |
| AD conversion time        | t <sub>CON</sub> | —                     | 17              | 34/fxx (note) | —               | μs    |
| Analog input voltage      | V <sub>IAN</sub> | —                     | V <sub>SS</sub> | —             | V <sub>DD</sub> | V     |
| Analog input impedance    | R <sub>AN</sub>  | V <sub>DD</sub> = 5 V | 2               | 1000          | —               | MΩ    |

**NOTE:** fxx stands for the system clock (fx or fxt).

Table 17-6. A.C. Electrical Characteristics (Continued)

(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 2.5 V to 3.5 V or V<sub>DD</sub> = 4.0 V to 5.5 V)

| Parameter                                                | Symbol             | Conditions                                                         | Min | Typ | Max             | Units |
|----------------------------------------------------------|--------------------|--------------------------------------------------------------------|-----|-----|-----------------|-------|
| VCOFM, VCOAM, FMIF and AMIF Input Voltage (Peak to Peak) | V <sub>IN</sub>    | Sine wave input                                                    | 0.3 | —   | V <sub>DD</sub> | V     |
| Frequency                                                | f <sub>VCOAM</sub> | VCOAM mode, sine wave input; V <sub>IN</sub> = 0.3V <sub>P-P</sub> | 0.5 | —   | 30              | MHz   |
|                                                          | f <sub>VCOFM</sub> | VCOFM mode, sine wave input; V <sub>IN</sub> = 0.3V <sub>P-P</sub> | 30  |     | 150             |       |
|                                                          | f <sub>AMIF</sub>  | AMIF mode, sine wave input; V <sub>IN</sub> = 0.3V <sub>P-P</sub>  | 0.1 |     | 1.0             |       |
|                                                          | f <sub>FMIF</sub>  | FMIF mode, sine wave input; V <sub>IN</sub> = 0.3V <sub>P-P</sub>  | 5   |     | 15              |       |

Table 17-6. A.C. Electrical Characteristics (Concluded)

(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

| Parameter                  | Symbol                              | Conditions                                              | Min                     | Typ | Max  | Units |
|----------------------------|-------------------------------------|---------------------------------------------------------|-------------------------|-----|------|-------|
| Instruction cycle time (1) | t <sub>CY</sub>                     | V <sub>DD</sub> = 2.7 V to 5.5 V                        | 0.67                    | —   | 64   | μs    |
|                            |                                     | V <sub>DD</sub> = 1.8 V to 5.5 V                        | 1.3                     | —   | 64   |       |
|                            |                                     | With subsystem clock (f <sub>xt</sub> )                 | 114                     | 122 | 125  |       |
| TCL0 input frequency       | f <sub>TI</sub>                     | V <sub>DD</sub> = 2.7 V to 5.5 V                        | 0                       | —   | 1.5  | MHz   |
|                            |                                     | V <sub>DD</sub> = 1.8 V to 5.5 V                        |                         |     | 1    |       |
| TCL0 input high, low width | t <sub>TIH</sub> , t <sub>TIL</sub> | V <sub>DD</sub> = 2.7 V to 5.5 V                        | 0.48                    | —   | —    | μs    |
|                            |                                     | V <sub>DD</sub> = 1.8 V to 5.5 V                        | 1.8                     |     | —    |       |
| SCK cycle time             | t <sub>KCY</sub>                    | V <sub>DD</sub> = 2.7 V to 5.5 V<br>External SCK source | 800                     | —   | —    | ns    |
|                            |                                     | Internal SCK source                                     | 650                     |     | —    |       |
|                            |                                     | V <sub>DD</sub> = 1.8 V to 5.5 V<br>External SCK source | 3200                    |     | —    |       |
|                            |                                     | Internal SCK source                                     | 3800                    |     | —    |       |
| SCK high, low width        | t <sub>KH</sub> , t <sub>KL</sub>   | V <sub>DD</sub> = 2.7 V to 5.5 V<br>External SCK source | 400                     | —   | —    |       |
|                            |                                     | Internal SCK source                                     | t <sub>KCY</sub> /2- 50 |     | —    |       |
|                            |                                     | V <sub>DD</sub> = 1.8 V to 5.5 V<br>External SCK source | 1600                    |     | —    |       |
|                            |                                     | Internal SCK source                                     | t <sub>KCY</sub> /2-150 |     | —    |       |
| SI setup time to SCK high  | t <sub>SIK</sub>                    | External SCK source                                     | 100                     | —   | —    |       |
|                            |                                     | Internal SCK source                                     | 150                     |     | —    |       |
| SI hold time to SCK high   | t <sub>KSI</sub>                    | External SCK source                                     | 400                     | —   | —    |       |
|                            |                                     | Internal SCK source                                     | 400                     |     | —    |       |
| Output delay for SCK to SO | t <sub>KSO</sub>                    | V <sub>DD</sub> = 2.7 V to 5.5 V<br>External SCK source | —                       | —   | 300  |       |
|                            |                                     | Internal SCK source                                     |                         |     | 250  |       |
|                            |                                     | V <sub>DD</sub> = 1.8 V to 5.5 V<br>External SCK source |                         |     | 1000 |       |
|                            |                                     | Internal SCK source                                     |                         |     | 1000 |       |
|                            |                                     | —                                                       |                         |     | —    |       |

NOTE: Unless otherwise specified, Instruction Cycle Time condition values assume a main system clock/4 (f<sub>x4</sub>) source.

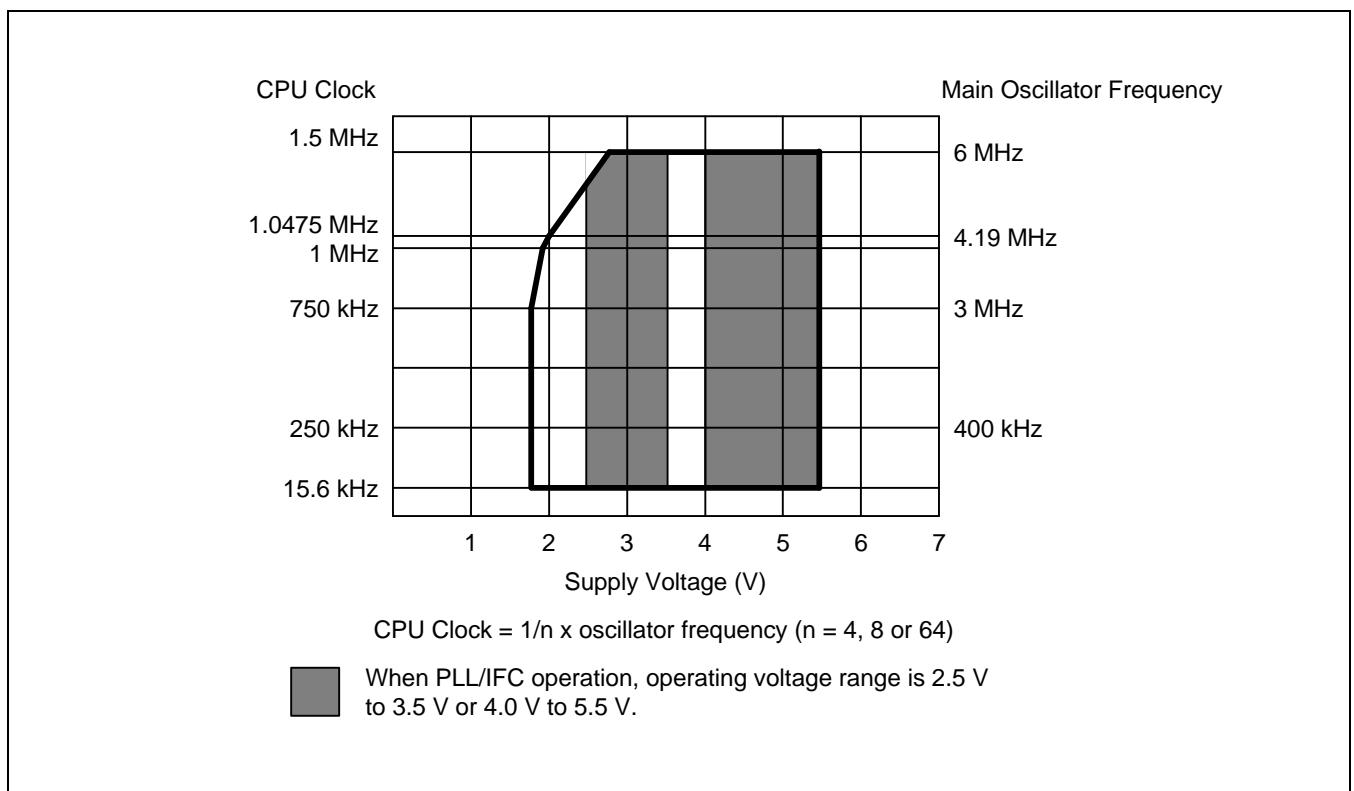



Figure 17-1. Standard Operating Voltage Range

Table 17-7. RAM Data Retention Supply Voltage in Stop Mode

 $(T_A = -40^\circ\text{C} \text{ to } +85^\circ\text{C})$ 

| Parameter                     | Symbol            | Conditions                        | Min | Typ | Max | Unit          |
|-------------------------------|-------------------|-----------------------------------|-----|-----|-----|---------------|
| Data retention supply voltage | $V_{\text{DDDR}}$ | Normal operation                  | 1.8 | —   | 5.5 | V             |
| Data retention supply current | $I_{\text{DDDR}}$ | $V_{\text{DDDR}} = 1.8 \text{ V}$ | —   | 0.1 | 1   | $\mu\text{A}$ |

## TIMING WAVEFORMS

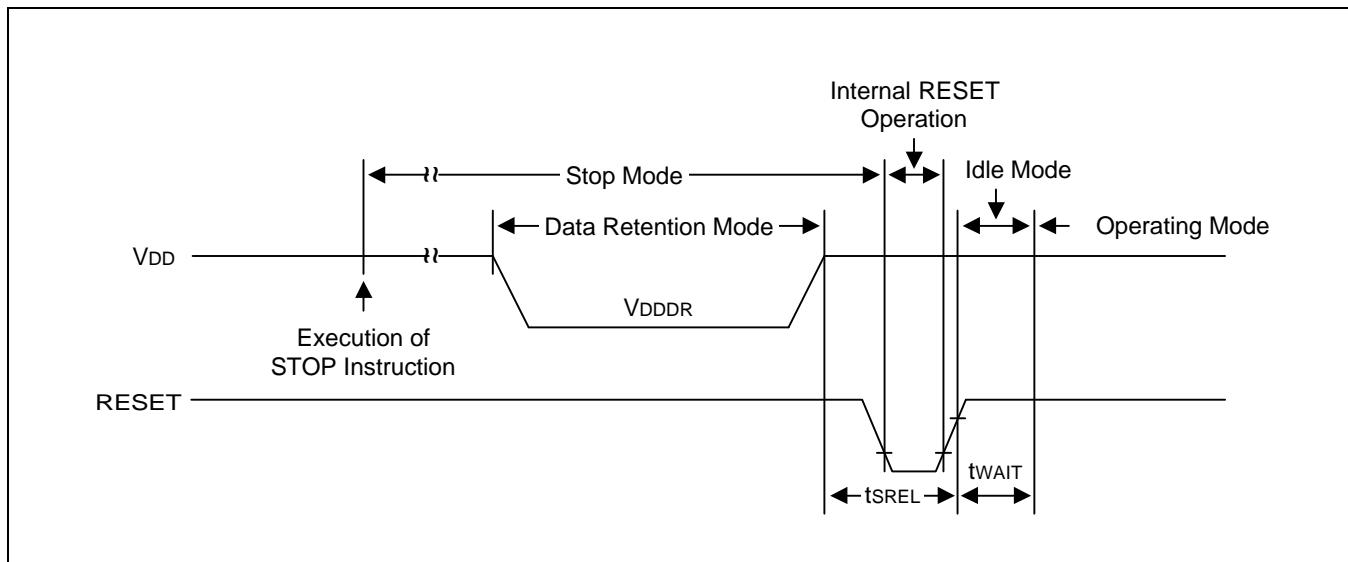



Figure 17-2. Stop Mode Release Timing When Initiated by RESET

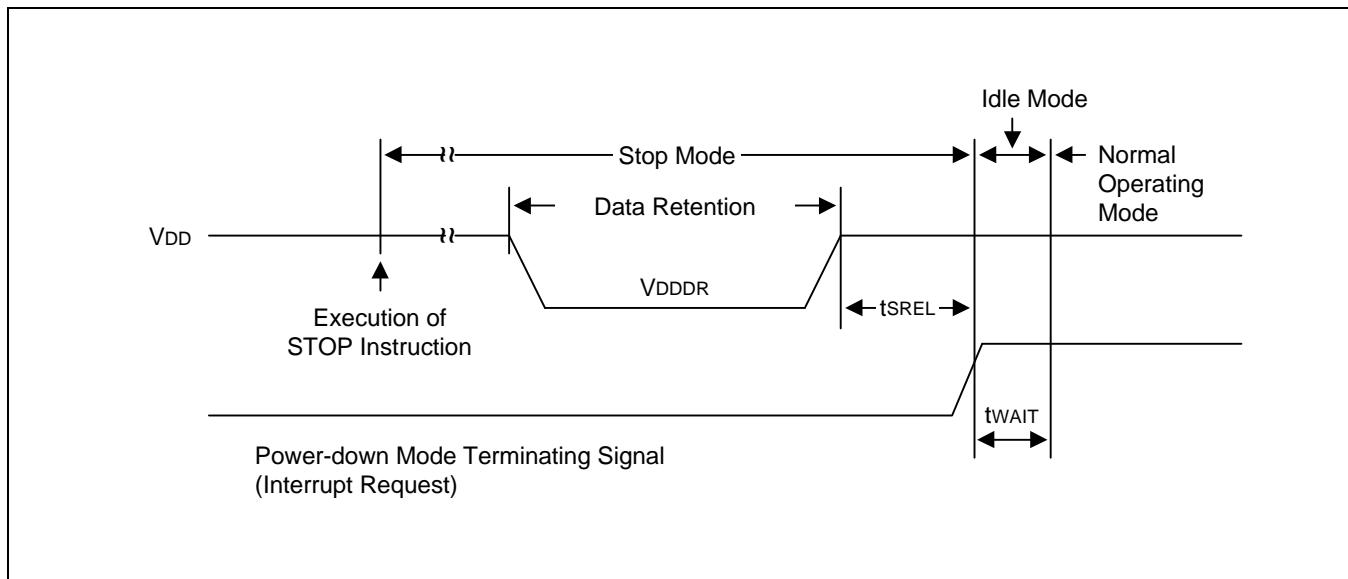



Figure 17-3. Stop Mode Release Timing When Initiated by an Interrupt Request

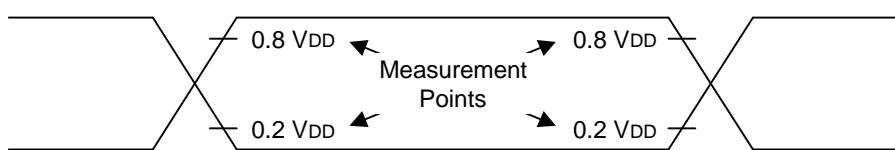



Figure 17-4. A.C. Timing Measurement Points (Except for  $X_{IN}$  and  $XT_{IN}$ )

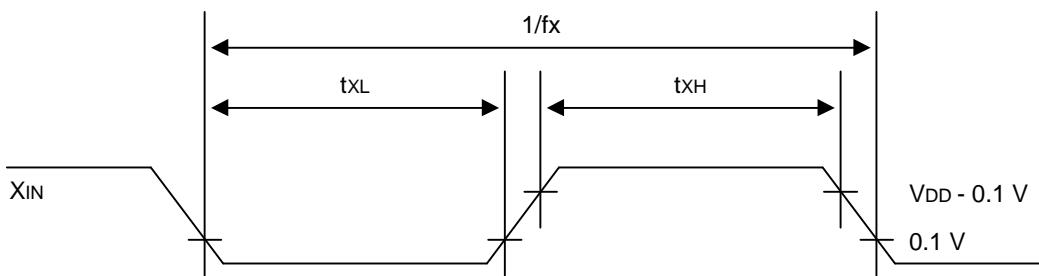



Figure 17-5. Clock Timing Measurement at  $X_{IN}$

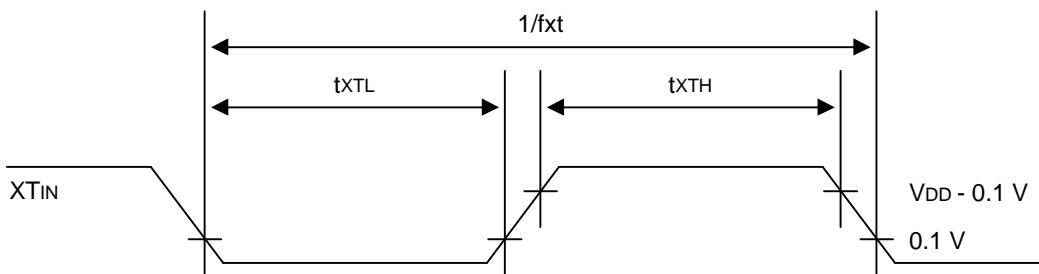



Figure 17-6. Clock Timing Measurement at  $XT_{IN}$

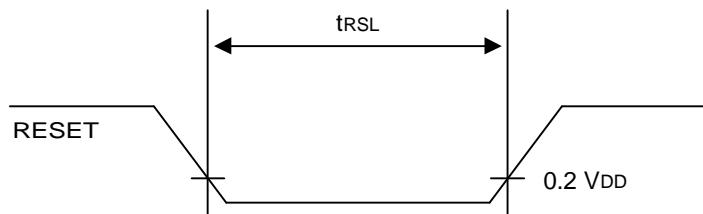



Figure 17-7. Input Timing for RESET Signal

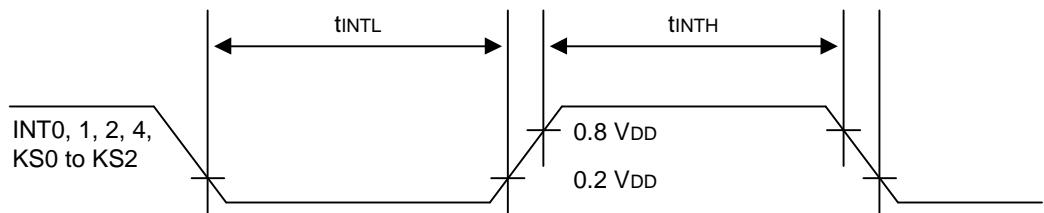



Figure 17-8. Input Timing for External Interrupts and Quasi-Interrupts

# 18 MECHANICAL DATA

## OVERVIEW

This section contains the following information about the device package:

- Package dimensions in millimeters
- Pad diagram
- Pad/pin coordinate data table

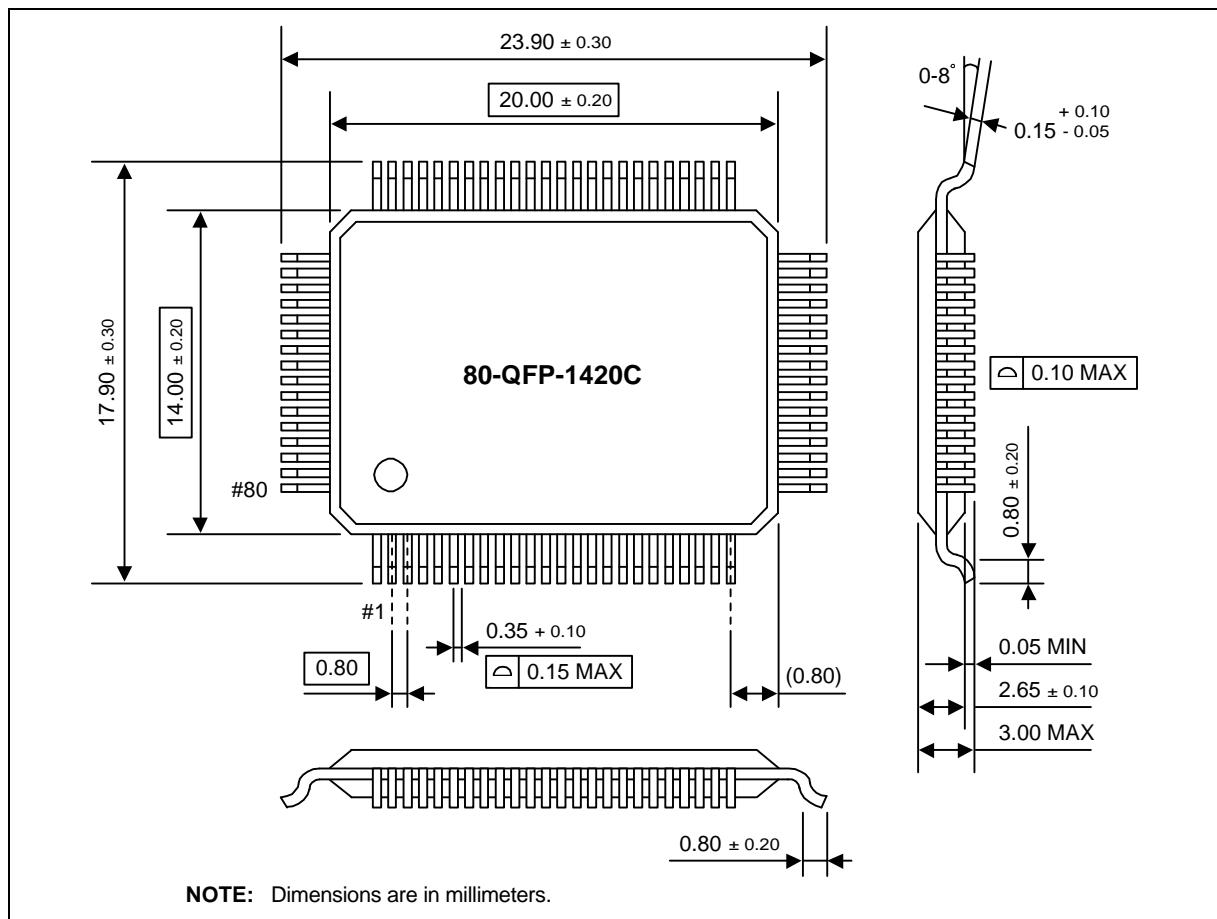



Figure 18-1. 80-QFP-1420C Package Dimensions

# 19

## KS57P3316 OTP

### OVERVIEW

The KS57P3316 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the KS57C3316 microcontroller. It has an on-chip EPROM instead of masked ROM. The EPROM is accessed by a serial data format.

The KS57P3316 is fully compatible with the KS57C3316, both in function and in pin configuration. Because of its simple programming requirements, the KS57P3316 is ideal for use as an evaluation chip for the KS57C3316.

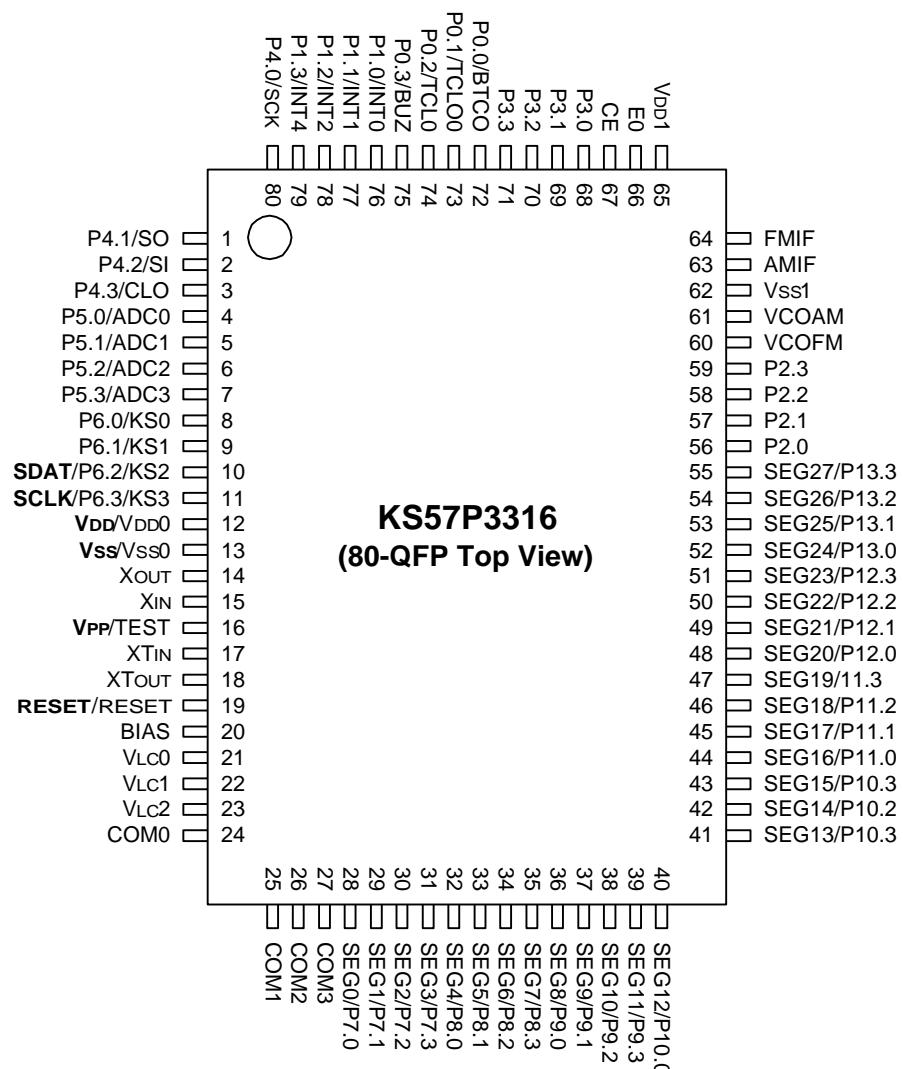



Figure 19-1. KS57P3316 Pin Assignments (80-QFP)

**Table 19-1. Pin Descriptions Used to Read/Write the EPROM**

| Main Chip           | During Programming  |         |     |                                                                                                                                                                                            |
|---------------------|---------------------|---------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin Name            | Pin Name            | Pin No. | I/O | Function                                                                                                                                                                                   |
| P6.2                | SDAT                | 10      | I/O | Serial data pin. Output port when reading and input port when writing. Can be assigned as a Input or push-pull output port.                                                                |
| P6.3                | SCLK                | 11      | I/O | Serial clock pin. Input only pin.                                                                                                                                                          |
| TEST                | $V_{PP}$ (TEST)     | 16      | I   | Power supply pin for EPROM cell writing (indicates that OTP enters into the writing mode). When 12.5 V is applied, OTP is in writing mode and when 5 V is applied, OTP is in reading mode. |
| RESET               | RESET               | 19      | I   | Chip initialization                                                                                                                                                                        |
| $V_{DD}$ / $V_{SS}$ | $V_{DD}$ / $V_{SS}$ | 12/13   | I   | Logic power supply pin. $V_{DD}$ should be tied to +5 V during programming.                                                                                                                |

**Table 19-2. Comparison of KS57P3316 and KS57C3316 Features**

| Characteristic                 | KS57P3316                                                                  | KS57C3316                                                                  |
|--------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Program Memory                 | 16K bytes EPROM                                                            | 16K bytes mask ROM                                                         |
| Operating Voltage ( $V_{DD}$ ) | 1.8 V to 5.5 V<br>2.5 V to 3.5 V or 4.0 V to 5.5 V<br>at PLL/IFC operation | 1.8 V to 5.5 V<br>2.5 V to 3.5 V or 4.0 V to 5.5 V<br>at PLL/IFC operation |
| OTP Programming Mode           | $V_{DD}$ = 5 V, $V_{PP}$ (TEST) = 12.5 V                                   | –                                                                          |
| Pin Configuration              | 80 QFP                                                                     | 80 QFP                                                                     |
| EPROM Programmability          | User Program 1 time                                                        | Programmed at the factory                                                  |

## OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the  $V_{PP}$  (TEST) pin of the KS57P3316, the EPROM programming mode is entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in Table 17-3 below.

**Table 19-3. Operating Mode Selection Criteria**

| $V_{DD}$ | $V_{PP}$ (TEST) | REG/MEM | Address(A15-A0) | R/W | Mode                  |
|----------|-----------------|---------|-----------------|-----|-----------------------|
| 5 V      | 5 V             | 0       | 0000H           | 1   | EPROM read            |
|          | 12.5 V          | 0       | 0000H           | 0   | EPROM program         |
|          | 12.5 V          | 0       | 0000H           | 1   | EPROM verify          |
|          | 12.5 V          | 1       | 0E3FH           | 0   | EPROM read protection |

**NOTE:** "0" means low level; "1" means high level.

Table 19-4. D.C. Electrical Characteristics

(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

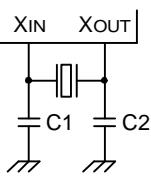
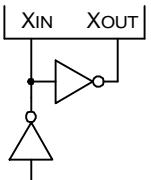
| Parameter                                     | Symbol           | Conditions                                                                          | Min                  | Typ | Max                 | Units |
|-----------------------------------------------|------------------|-------------------------------------------------------------------------------------|----------------------|-----|---------------------|-------|
| Input high voltage                            | V <sub>IH1</sub> | All input pins except those specified below                                         | 0.7 V <sub>DD</sub>  | -   | V <sub>DD</sub>     | V     |
|                                               | V <sub>IH2</sub> | P0.2, P1, P4.0, P4.2, P5, P6, CE and RESET                                          | 0.8 V <sub>DD</sub>  |     | V <sub>DD</sub>     |       |
|                                               | V <sub>IH3</sub> | X <sub>IN</sub> , X <sub>OUT</sub> , XT <sub>IN</sub> , and XT <sub>OUT</sub>       | V <sub>DD</sub> -0.1 |     | V <sub>DD</sub>     |       |
| Input low voltage                             | V <sub>IL1</sub> | All input pins except those specified below                                         | -                    | -   | 0.3 V <sub>DD</sub> | V     |
|                                               | V <sub>IL2</sub> | P0.2, P1, P4.0, P4.2, P5, P6, CE and RESET                                          |                      |     | 0.2 V <sub>DD</sub> |       |
|                                               | V <sub>IL3</sub> | X <sub>IN</sub> , X <sub>OUT</sub> , XT <sub>IN</sub> , and XT <sub>OUT</sub>       |                      |     | 0.1                 |       |
| Output high voltage                           | V <sub>OH1</sub> | V <sub>DD</sub> = 4.5 V to 5.5 V, EO;<br>I <sub>OH</sub> = -1 mA                    | V <sub>DD</sub> -2.0 | -   | V <sub>DD</sub>     | V     |
|                                               | V <sub>OH2</sub> | V <sub>DD</sub> = 4.5 V to 5.5 V;<br>Other output ports;<br>I <sub>OH</sub> = -1 mA | V <sub>DD</sub> -1.0 |     | V <sub>DD</sub>     |       |
| Output low voltage                            | V <sub>OL1</sub> | V <sub>DD</sub> = 4.5 V to 5.5 V, EO;<br>I <sub>OL</sub> = 1 mA,                    | -                    | -   | 2.0                 |       |
|                                               | V <sub>OL2</sub> | V <sub>DD</sub> = 4.5 V to 5.5 V<br>Other output ports; I <sub>OL</sub> = 10 mA     |                      |     | 2                   |       |
| Input high leakage current <sup>(note)</sup>  | I <sub>LIH</sub> | V <sub>IN</sub> = V <sub>DD</sub><br>All input pins                                 | -                    | -   | 3                   | μA    |
| Input low leakage current <sup>(note)</sup>   | I <sub>LIL</sub> | V <sub>IN</sub> = 0 V<br>All input pins                                             |                      |     | -3                  |       |
| Output high leakage current <sup>(note)</sup> | I <sub>LOH</sub> | V <sub>OUT</sub> = V <sub>DD</sub><br>All output pins                               | -                    | -   | 3                   |       |
| Output low leakage current <sup>(note)</sup>  | I <sub>LOL</sub> | V <sub>OUT</sub> = 0 V<br>All output pins                                           |                      |     | -3                  |       |

NOTE: Except for X<sub>IN</sub>, X<sub>OUT</sub>, XT<sub>IN</sub>, and XT<sub>OUT</sub>

**Table 19-4. D.C. Electrical Characteristics (Continued)**(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

| Parameter                       | Symbol            | Conditions                                                                                                      | Min                       | Typ                 | Max                       | Units |
|---------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|---------------------------|-------|
| V <sub>LC0</sub> output voltage | V <sub>LC0</sub>  | T <sub>A</sub> = 25 °C                                                                                          | 0.6 V <sub>DD</sub> - 0.2 | 0.6 V <sub>DD</sub> | 0.6 V <sub>DD</sub> + 0.2 | V     |
| V <sub>LC1</sub> output voltage | V <sub>LC1</sub>  | T <sub>A</sub> = 25 °C                                                                                          | 0.4 V <sub>DD</sub> - 0.2 | 0.4 V <sub>DD</sub> | 0.4 V <sub>DD</sub> + 0.2 |       |
| V <sub>LC2</sub> output voltage | V <sub>LC2</sub>  | T <sub>A</sub> = 25 °C                                                                                          | 0.2 V <sub>DD</sub> - 0.2 | 0.2 V <sub>DD</sub> | 0.2 V <sub>DD</sub> + 0.2 |       |
| COM output voltage deviation    | V <sub>DC</sub>   | V <sub>DD</sub> = 5V, (V <sub>LC0</sub> - COM <sub>i I=0-3</sub> )<br>IO = ± 15 µA (I = 0 - 3)                  | -                         | ± 45                | ± 120                     | mV    |
| SEG output voltage deviation    | V <sub>DS</sub>   | V <sub>DD</sub> = 5V, (V <sub>LC0</sub> - COM <sub>i I=0-3</sub> )<br>IO = ± 15 µA (I = 0 - 3)                  |                           | ± 45                | ± 120                     |       |
| LCD output voltage deviation    | R <sub>LCD</sub>  | T <sub>A</sub> = 25 °C                                                                                          | 70                        | 100                 | 150                       | kΩ    |
| Oscillator feed back resistors  | R <sub>OSC1</sub> | V <sub>DD</sub> = 5.0 V, T <sub>A</sub> = 25 °C<br>X <sub>IN</sub> = V <sub>DD</sub> , X <sub>OUT</sub> = 0 V   | 300                       | 600                 | 1500                      |       |
|                                 | R <sub>OSC2</sub> | V <sub>DD</sub> = 5.0 V, T <sub>A</sub> = 25 °C<br>XT <sub>IN</sub> = V <sub>DD</sub> , XT <sub>OUT</sub> = 0 V | 1500                      | 3000                | 4500                      |       |
| Pull-down resistor              | R <sub>D</sub>    | V <sub>DD</sub> = 5.0 V, V <sub>IN</sub> = V <sub>DD</sub> ;<br>VCOFM, VCOAM, AMIF, and FMIF                    | 15                        | 30                  | 45                        |       |
| Pull-up resistor                | R <sub>L1</sub>   | V <sub>IN</sub> = 0 V; V <sub>DD</sub> = 5 V<br>Ports 1, 2, 3, 4, 5, and 6                                      | 25                        | 47                  | 100                       |       |
|                                 |                   | V <sub>DD</sub> = 3 V                                                                                           | 50                        | 95                  | 200                       |       |
|                                 | R <sub>L2</sub>   | V <sub>IN</sub> = 0 V; V <sub>DD</sub> = 5 V<br>RESET                                                           | 100                       | 220                 | 400                       |       |
|                                 |                   | V <sub>DD</sub> = 3 V                                                                                           | 200                       | 450                 | 800                       |       |

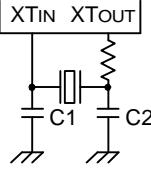
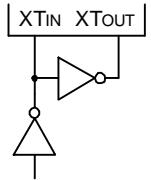
Table 19-4. D.C. Electrical Characteristics (Concluded)



(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

| Parameter                       | Symbol                                                                                                                          | Conditions                                                                                                                                       | Min     | Typ | Max | Units |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-----|-------|
| Supply Current <sup>(1)</sup>   | I <sub>DD1</sub> <sup>(2)</sup>                                                                                                 | Main operating:<br>PCON = 0011B, SCMOD = 0000B<br>CE = V <sub>DD</sub> ;<br>Crystal oscillator<br>C1 = C2 = 22 pF<br>V <sub>DD</sub> = 5 V ± 10% | 4.5 MHz | —   | 5.5 | 27    |
| I <sub>DD2</sub> <sup>(2)</sup> | CE Low mate:<br>PCON = 0011B, SCMOD = 0000B<br>CE = 0 V<br>Crystal oscillator<br>C1 = C2 = 22 pF<br>V <sub>DD</sub> = 5 V ± 10% | 6.0 MHz                                                                                                                                          | —       | 3.5 | 8   | mA    |
|                                 |                                                                                                                                 | 4.5 MHz                                                                                                                                          |         | 2.5 | 5.5 |       |
|                                 | V <sub>DD</sub> = 3 V ± 10%                                                                                                     | 6.0 MHz                                                                                                                                          | —       | 1.6 | 4   |       |
|                                 |                                                                                                                                 | 4.5 MHz                                                                                                                                          |         | 1.2 | 3   |       |
| I <sub>DD3</sub> <sup>(2)</sup> | Main idle mode:<br>PCON = 0111B, SCMOD = 0000B<br>Crystal oscillator<br>C1 = C2 = 22 pF<br>V <sub>DD</sub> = 5 V ± 10%          | 6.0 MHz                                                                                                                                          | —       | 1.0 | 2.5 | uA    |
|                                 |                                                                                                                                 | 4.5 MHz                                                                                                                                          |         | 0.9 | 2.0 |       |
|                                 | V <sub>DD</sub> = 3 V ± 10%                                                                                                     | 6.0 MHz                                                                                                                                          | —       | 0.5 | 1.0 |       |
|                                 |                                                                                                                                 | 4.5 MHz                                                                                                                                          |         | 0.4 | 0.8 |       |
| I <sub>DD4</sub> <sup>(2)</sup> | Sub operating mode:<br>PCON = 0011B, SCMOD = 1001B<br>CE = 0 V;<br>V <sub>DD</sub> = 3 V ± 10%<br>32 kHz crystal oscillator     | —                                                                                                                                                | —       | 15  | 30  |       |
| I <sub>DD5</sub> <sup>(2)</sup> | Sub idle mode:<br>PCON = 0111B, SCMOD = 1001B<br>CE = 0 V;<br>V <sub>DD</sub> = 3 V ± 10%<br>32 kHz crystal oscillator          | —                                                                                                                                                | —       | 6   | 15  | —     |
| I <sub>DD6</sub> <sup>(2)</sup> | Stop mode:<br>CPU = fxt/4, SCMOD = 1101B<br>CE = 0 V;<br>V <sub>DD</sub> = 5 V ± 10%                                            | —                                                                                                                                                | —       | 0.5 | 3   | —     |
| I <sub>DD7</sub> <sup>(2)</sup> | Stop mode:<br>CPU = fx/4, SCMOD = 0100B<br>V <sub>DD</sub> = 5 V ± 10%                                                          | —                                                                                                                                                | —       | —   | —   | —     |

## NOTES:

- Supply current does not include current drawn through internal pull-up resistors and LCD voltage dividing resistors.
- Data includes the power consumption for sub-system clock oscillation.



**Table 19-5. Main System Clock Oscillator Characteristics** $(T_A = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}, V_{DD} = 1.8 \text{ V to } 5.5 \text{ V})$ 

| Oscillator         | Clock Configuration                                                                 | Parameter                                                    | Test Condition                                                                       | Min  | Typ | Max | Units |
|--------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------|------|-----|-----|-------|
| Ceramic Oscillator |    | Oscillation frequency (1)                                    | $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$                                           | 0.4  | —   | 6   | MHz   |
|                    |                                                                                     | Stabilization time (2)                                       | Stabilization occurs when $V_{DD}$ is equal to the minimum oscillator voltage range. | —    | —   | 4   | ms    |
| Crystal Oscillator |    | Oscillation frequency (1)                                    | $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$                                           | 0.4  | —   | 6   | MHz   |
|                    |                                                                                     | Stabilization time (2)                                       | $V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$                                           | —    | —   | 10  | ms    |
|                    |                                                                                     |                                                              | $V_{DD} = 1.8 \text{ V to } 4.5 \text{ V}$                                           | —    | —   | 30  |       |
| External Clock     |  | $X_{IN}$ input frequency (1)                                 | —                                                                                    | 0.4  | —   | 6   | MHz   |
|                    |                                                                                     | $X_{IN}$ input high and low level width ( $t_{XH}, t_{XL}$ ) | —                                                                                    | 83.3 | —   | —   | ns    |

**NOTES:**

1. Oscillation frequency and  $X_{IN}$  input frequency data are for oscillator characteristics only.
2. Stabilization time is the interval required for oscillator stabilization after a power-on occurs, or when stop mode is terminated.

**Table 19-6. Subsystem Clock Oscillator Characteristics**(T<sub>A</sub> = -40 °C + 85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

| Oscillator         | Clock Configuration                                                               | Parameter                                                                              | Test Condition                   | Min | Typ    | Max | Units |
|--------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------|-----|--------|-----|-------|
| Crystal Oscillator |  | Oscillation frequency (1)                                                              | —                                | 32  | 32.768 | 35  | kHz   |
|                    |                                                                                   | Stabilization time (2)                                                                 | V <sub>DD</sub> = 2.7 V to 5.5 V | —   | 1.0    | 2   | s     |
|                    |                                                                                   |                                                                                        | V <sub>DD</sub> = 1.8 V to 4.5 V | —   | —      | 10  |       |
| External Clock     |  | XT <sub>IN</sub> input frequency (1)                                                   | —                                | 32  | —      | 100 | kHz   |
|                    |                                                                                   | XT <sub>IN</sub> input high and low level width (t <sub>XTL</sub> , t <sub>XTH</sub> ) | —                                | 5   | —      | 15  | μs    |

**NOTES:**

1. Oscillation frequency and XT<sub>IN</sub> input frequency data are for oscillator characteristics only.
2. Stabilization time is the interval required for oscillator stabilization after a power-on occurs.

**Table 19-7. Input/Output Capacitance**(T<sub>A</sub> = 25 °C, V<sub>DD</sub> = 0 V)

| Parameter          | Symbol           | Condition                                                                 | Min | Typ | Max | Units |
|--------------------|------------------|---------------------------------------------------------------------------|-----|-----|-----|-------|
| Input capacitance  | C <sub>IN</sub>  | f <sub>CLK</sub> = 1 MHz; Unmeasured pins are returned to V <sub>SS</sub> | —   | —   | 15  | pF    |
| Output capacitance | C <sub>OUT</sub> |                                                                           | —   | —   | 15  | pF    |
| I/O capacitance    | C <sub>IO</sub>  |                                                                           | —   | —   | 15  | pF    |

**Table 19-8. A.C. Electrical Characteristics**(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

| Parameter                       | Symbol                                | Conditions                       | Min  | Typ | Max | Units |
|---------------------------------|---------------------------------------|----------------------------------|------|-----|-----|-------|
| Instruction cycle time (1)      | t <sub>CY</sub>                       | V <sub>DD</sub> = 2.7 V to 5.5 V | 0.67 | —   | 64  | μs    |
|                                 |                                       | V <sub>DD</sub> = 1.8 V to 5.5 V | 1.3  |     | 64  |       |
| Interrupt input high, low width | t <sub>INTH</sub> , t <sub>INTL</sub> | INT0                             | (2)  | —   | —   | μs    |
|                                 |                                       | INT1, INT2, INT4, KS0-KS2        | 10   |     | —   |       |
| RESET and CE Input Low Width    | t <sub>RSL</sub>                      | Input                            | 10   | 1   | —   | μs    |

**NOTES:**

1. Unless otherwise specified, Instruction Cycle Time condition values assume a main system clock/4 (fx/4) source.
2. Minimum value for INT0 is based on a clock of 2t<sub>CY</sub> or 128/fxx as assigned by the IMOD0 register setting.

**Table 19-8. A.C. Electrical Characteristics (continued)**(T<sub>A</sub> = -10 °C to +70 °C, V<sub>DD</sub> = 3.5 V to 5.5 V)

| Parameter                 | Symbol           | Conditions            | Min             | Typ           | Max             | Units |
|---------------------------|------------------|-----------------------|-----------------|---------------|-----------------|-------|
| A/D converting Resolution | —                | —                     | —               | 8             | —               | bits  |
| Absolute accuracy         | —                | —                     | —               | —             | ± 2             | LSB   |
| AD conversion time        | t <sub>CON</sub> | —                     | 17              | 34/fxx (note) | —               | μs    |
| Analog input voltage      | V <sub>IAN</sub> | —                     | V <sub>SS</sub> | —             | V <sub>DD</sub> | V     |
| Analog input impedance    | R <sub>AN</sub>  | V <sub>DD</sub> = 5 V | 2               | 1000          | —               | MΩ    |

NOTE: fxx stands for the system clock (fx or fxt).

**Table 19-8. A.C. Electrical Characteristics (Continued)**(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 2.5 V to 3.5 V or V<sub>DD</sub> = 4.0 V to 5.5 V)

| Parameter                                                | Symbol             | Conditions                                                         | Min | Typ | Max             | Units |
|----------------------------------------------------------|--------------------|--------------------------------------------------------------------|-----|-----|-----------------|-------|
| VCOFM, VCOAM, FMIF and AMIF Input Voltage (Peak to Peak) | V <sub>IN</sub>    | Sine wave input                                                    | 0.3 | —   | V <sub>DD</sub> | V     |
| Frequency                                                | f <sub>VCOAM</sub> | VCOAM mode, sine wave input; V <sub>IN</sub> = 0.3V <sub>P-P</sub> | 0.5 | —   | 30              | MHz   |
|                                                          | f <sub>VCOFM</sub> | VCOFM mode, sine wave input; V <sub>IN</sub> = 0.3V <sub>P-P</sub> | 30  |     | 150             |       |
|                                                          | f <sub>AMIF</sub>  | AMIF mode, sine wave input; V <sub>IN</sub> = 0.3V <sub>P-P</sub>  | 0.1 |     | 1.0             |       |
|                                                          | f <sub>FMIF</sub>  | FMIF mode, sine wave input; V <sub>IN</sub> = 0.3V <sub>P-P</sub>  | 5   |     | 15              |       |

**Table 19-8. A.C. Electrical Characteristics (continued)**(T<sub>A</sub> = -40 °C to +85 °C, V<sub>DD</sub> = 1.8 V to 5.5 V)

| Parameter                             | Symbol                              | Conditions                       | Min                     | Typ | Max  | Units |
|---------------------------------------|-------------------------------------|----------------------------------|-------------------------|-----|------|-------|
| Instruction cycle time <sup>(1)</sup> | t <sub>CY</sub>                     | V <sub>DD</sub> = 2.7 V to 5.5 V | 0.67                    | —   | 64   | μs    |
|                                       |                                     | V <sub>DD</sub> = 1.8 V to 5.5 V | 1.3                     | —   | 64   |       |
|                                       |                                     | With subsystem clock (fxt)       | 114                     | 122 | 125  |       |
| TCL0 input frequency                  | f <sub>TI</sub>                     | V <sub>DD</sub> = 2.7 V to 5.5 V | 0                       | —   | 1.5  | MHz   |
|                                       |                                     | V <sub>DD</sub> = 1.8 V to 5.5 V |                         |     | 1    |       |
| TCL0 input high, low width            | t <sub>TIH</sub> , t <sub>TIL</sub> | V <sub>DD</sub> = 2.7 V to 5.5 V | 0.48                    | —   | —    | μs    |
|                                       |                                     | V <sub>DD</sub> = 1.8 V to 5.5 V | 1.8                     |     | —    |       |
| SCK cycle time                        | t <sub>KCY</sub>                    | V <sub>DD</sub> = 2.7 V to 5.5 V | 800                     | —   | —    | ns    |
|                                       |                                     | External SCK source              | 650                     |     | —    |       |
|                                       |                                     | Internal SCK source              | 3200                    |     | —    |       |
|                                       |                                     | External SCK source              | 3800                    |     | —    |       |
| SCK high, low width                   | t <sub>KH</sub> , t <sub>KL</sub>   | V <sub>DD</sub> = 2.7 V to 5.5 V | 400                     | —   | —    |       |
|                                       |                                     | External SCK source              | t <sub>KCY</sub> /2- 50 |     | —    |       |
|                                       |                                     | V <sub>DD</sub> = 1.8 V to 5.5 V | 1600                    |     | —    |       |
|                                       |                                     | External SCK source              | t <sub>KCY</sub> /2-150 |     | —    |       |
| SI setup time to SCK high             | t <sub>SIK</sub>                    | External SCK source              | 100                     | —   | —    |       |
|                                       |                                     | Internal SCK source              | 150                     |     | —    |       |
| SI hold time to SCK high              | t <sub>KSI</sub>                    | External SCK source              | 400                     | —   | —    |       |
|                                       |                                     | Internal SCK source              | 400                     |     | —    |       |
| Output delay for SCK to SO            | t <sub>KSO</sub>                    | V <sub>DD</sub> = 2.7 V to 5.5 V | —                       | —   | 300  |       |
|                                       |                                     | External SCK source              |                         |     | 250  |       |
|                                       |                                     | Internal SCK source              |                         |     | 1000 |       |
|                                       |                                     | V <sub>DD</sub> = 1.8 V to 5.5 V |                         |     | 1000 |       |
|                                       |                                     | External SCK source              |                         |     | —    |       |

NOTE: Unless otherwise specified, Instruction Cycle Time condition values assume a main system clock/4 (fx/4) source.

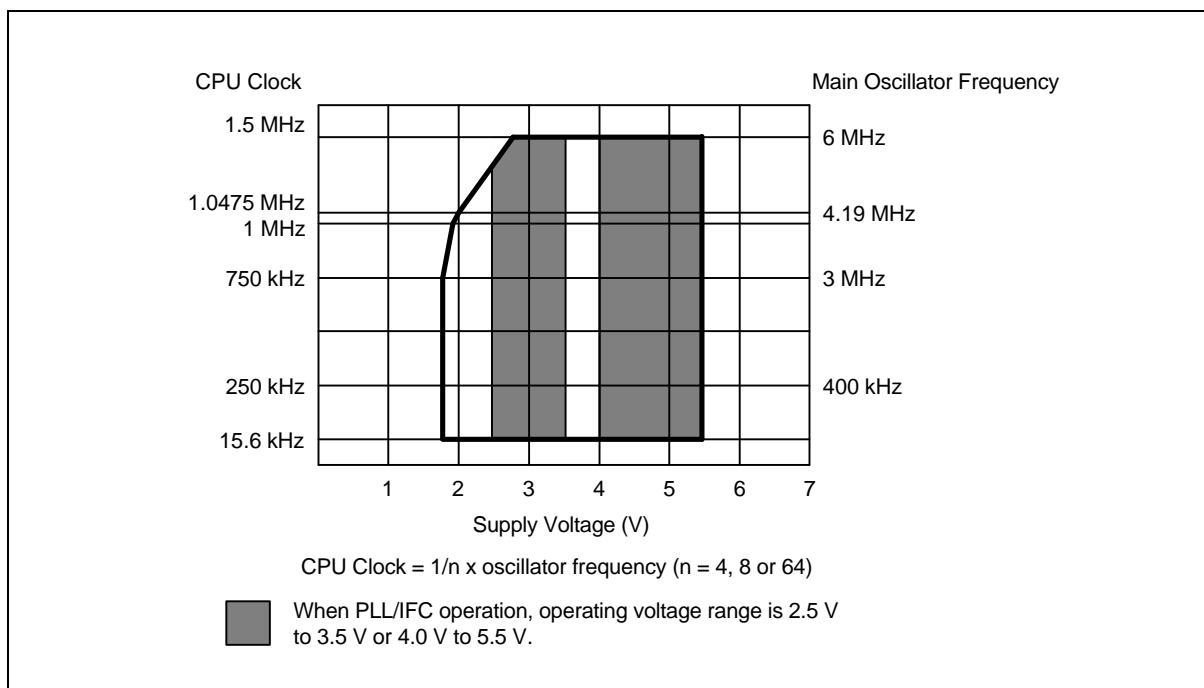
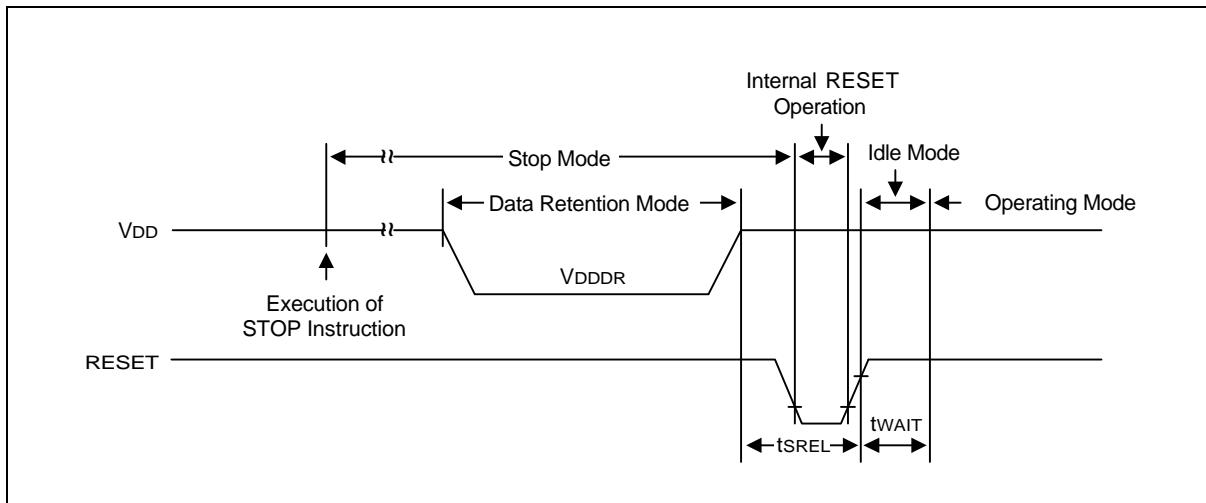
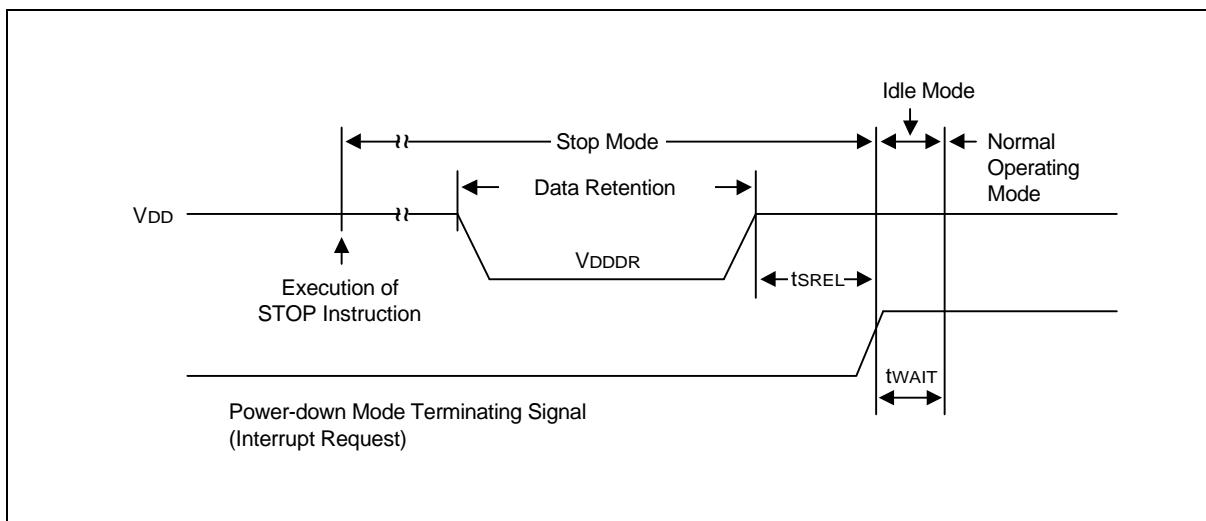





Figure 19-2. Standard Operating Voltage Range

Table 19-9. RAM Data Retention Supply Voltage in Stop Mode

( $T_A = -40^\circ\text{C}$  to  $+85^\circ\text{C}$ )

| Parameter                     | Symbol            | Conditions                       | Min | Typ | Max | Unit          |
|-------------------------------|-------------------|----------------------------------|-----|-----|-----|---------------|
| Data retention supply voltage | $V_{\text{DDDR}}$ | Normal operation                 | 1.8 | —   | 5.5 | V             |
| Data retention supply current | $I_{\text{DDDR}}$ | $V_{\text{DDDR}} = 1.8\text{ V}$ | —   | 0.1 | 1   | $\mu\text{A}$ |

**TIMING WAVEFORMS****Figure 19-3. Stop Mode Release Timing When Initiated by RESET****Figure 19-4. Stop Mode Release Timing When Initiated by an Interrupt Request**

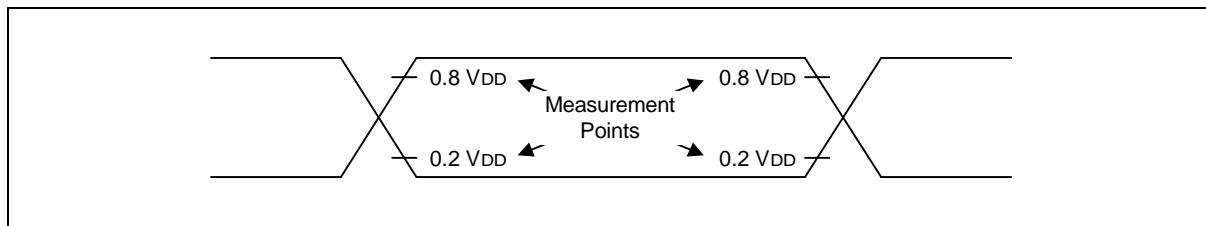



Figure 19-5. A.C. Timing Measurement Points (Except for  $X_{IN}$  and  $XT_{IN}$ )

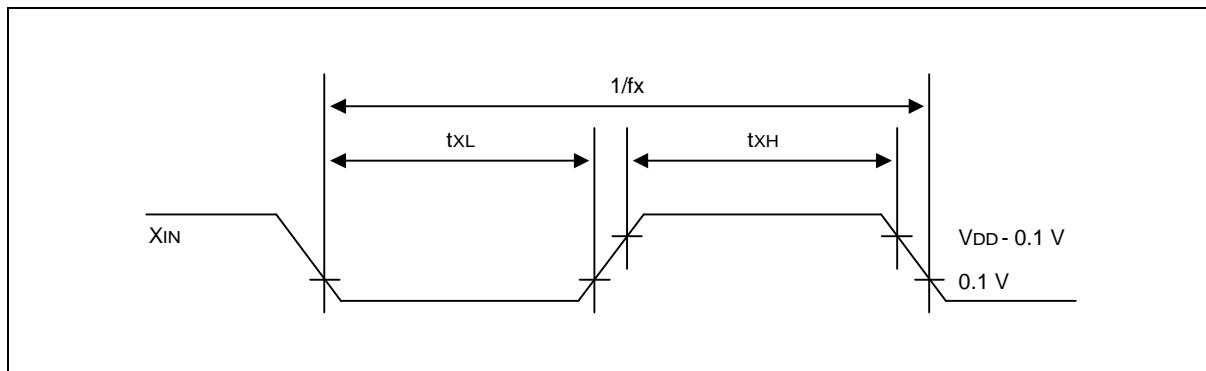



Figure 19-6. Clock Timing Measurement at  $X_{IN}$

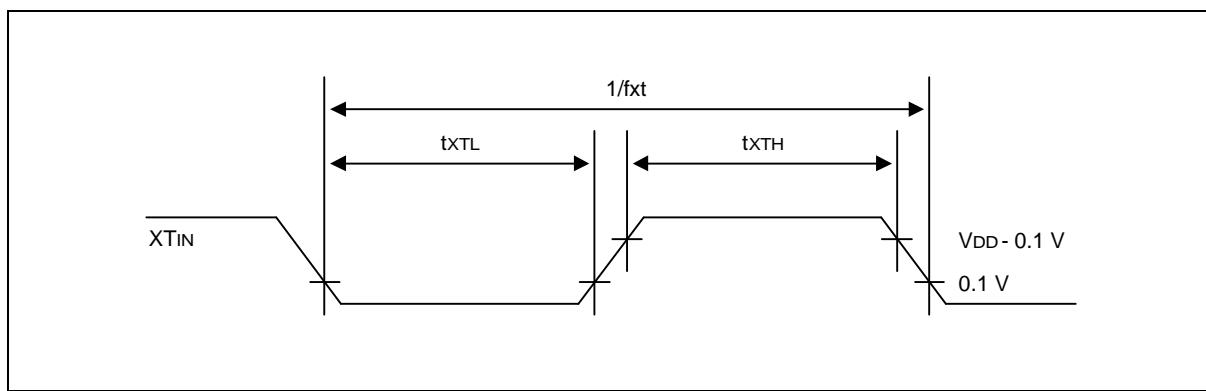



Figure 19-7. Clock Timing Measurement at  $XT_{IN}$

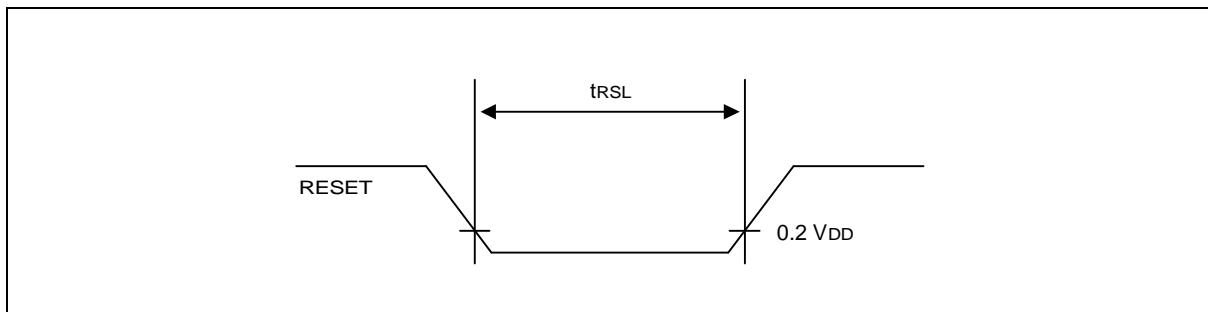



Figure 19-8. Input Timing for RESET Signal

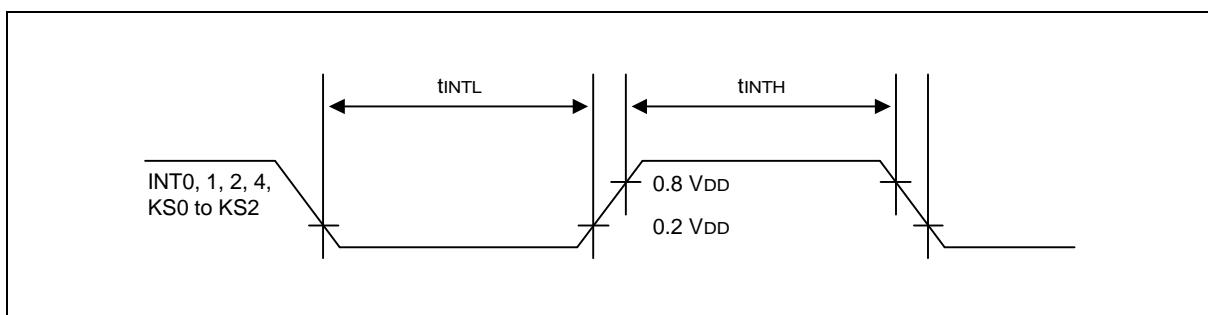



Figure 19-9. Input Timing for External Interrupts and Quasi-Interrupts

# 20

## DEVELOPMENT TOOLS

### OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development support system is configured with a host system, debugging tools, and support software. For the host system, any standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for KS57, KS86, KS88 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2. Samsung also offers support software that includes debugger, assembler, and a program for setting options.

### SHINE

Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be sized, moved, scrolled, highlighted, added, or removed completely.

### SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates object code in standard hexadecimal format. Assembled program code includes the object code that is used for ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and an auxiliary definition (DEF) file with device specific information.

### SASM57

The SASM57 is an relocatable assembler for Samsung's KS57-series microcontrollers. The SASM57 takes a source file containing assembly language statements and translates into a corresponding source code, object code and comments. The SASM57 supports macros and conditional assembly. It runs on the MS-DOS operating system. It produces the relocatable object code only, so the user should link object file. Object files can be linked with other object files and loaded into memory.

### HEX2ROM

HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by HEX2ROM, the value 'FF' is filled into the unused ROM area upto the maximum ROM size of the target device automatically.

### TARGET BOARDS

Target boards are available for all KS57-series microcontrollers. All required target system cables and adapters are included with the device-specific target board.

### OTPs

One time programmable microcontroller (OTP) for the KS57C3316 microcontroller and OTP programmer (Gang) are now available.

---

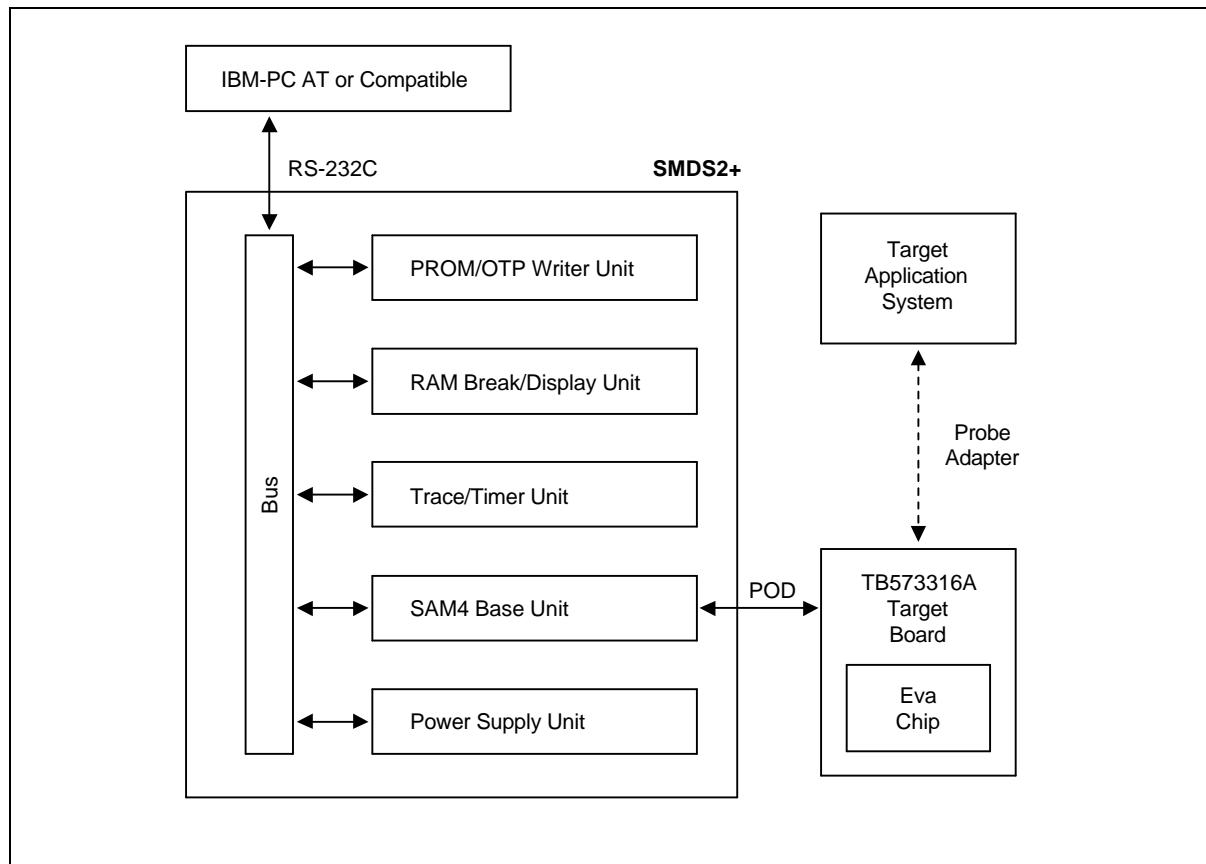



Figure 20-1. SMDS Product Configuration (SMDS2+)

**TB573204A TARGET BOARD**

The TB573316A target board is used for the KS57C3316/P3316 microcontroller. It is supported by the SMDS2+ development system.

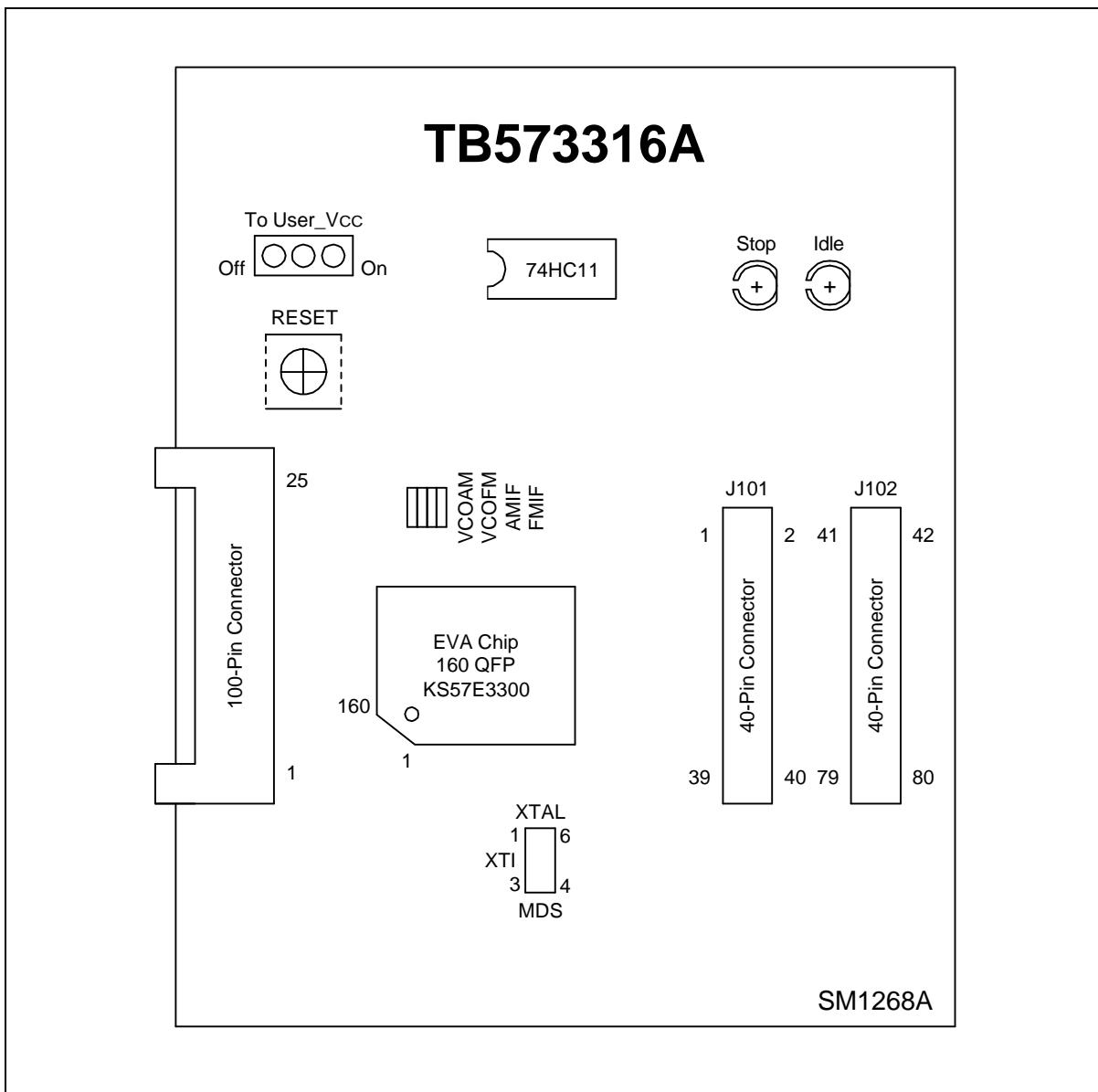



Figure 20-2. TB573316A Target Board Configuration

Table 20-1. Power Selection Settings for TB573316A

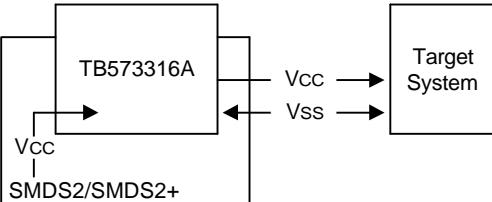
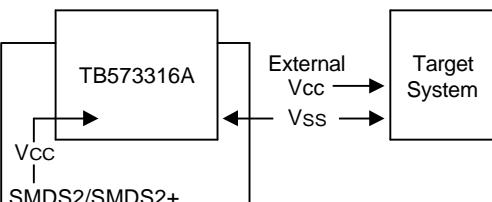


| 'To User_Vcc' Settings                                                       | Operating Mode                                                                    | Comments                                                                                                                         |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| To User_Vcc<br>Off <input type="radio"/> On <input checked="" type="radio"/> |  | The SMDS2/SMDS2+ supplies $V_{CC}$ to the target board (evaluation chip) and the target system.                                  |
| To User_Vcc<br>Off <input checked="" type="radio"/> On <input type="radio"/> |  | The SMDS2/SMDS2+ supplies $V_{CC}$ only to the target board (evaluation chip). The target system must have its own power supply. |

Table 20-2. Pin Selection Settings for TB573316A

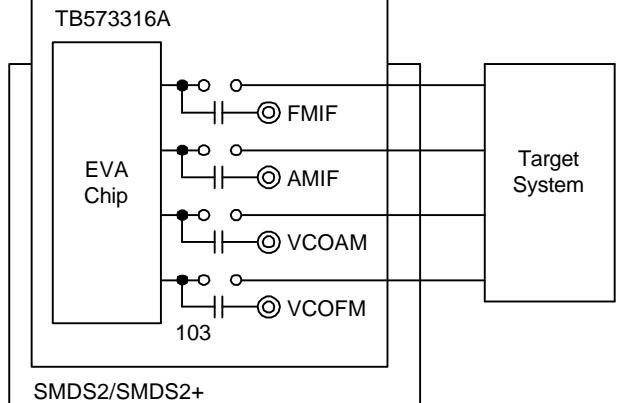
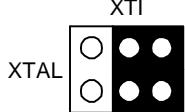
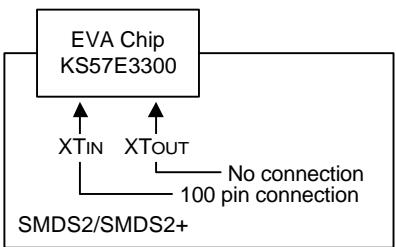
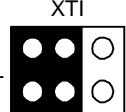
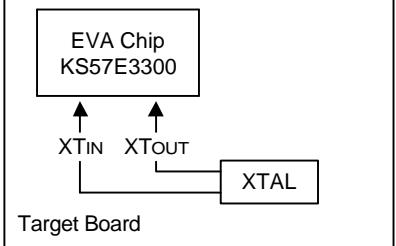





|                                                                                                                        | Operating Mode                                                                      |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| <input type="radio"/> FMIF<br><input type="radio"/> AMIF<br><input type="radio"/> VCOAM<br><input type="radio"/> VCOFM |  |

Table 20-3. Sub-clock Selection Settings for TB573316A

| Sub Clock Setting                                                                             | Operating Mode                                                                    | Comments                                                                                                                   |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <br>XTAL MDS |  | Set the XTI switch to "MDS" when the target board is connected to the SMDS2/SMDS2+.                                        |
| <br>XTAL MDS |  | Set the XTI switch to "XTAL" when the target board is used as a standalone unit, and is not connected to the SMDS2/SMDS2+. |

**IDLE LED**

This LED is ON when the evaluation chip (KS57E3300) is in idle mode.

**STOP LED**

This LED is ON when the evaluation chip (KS57E3300) is in stop mode.

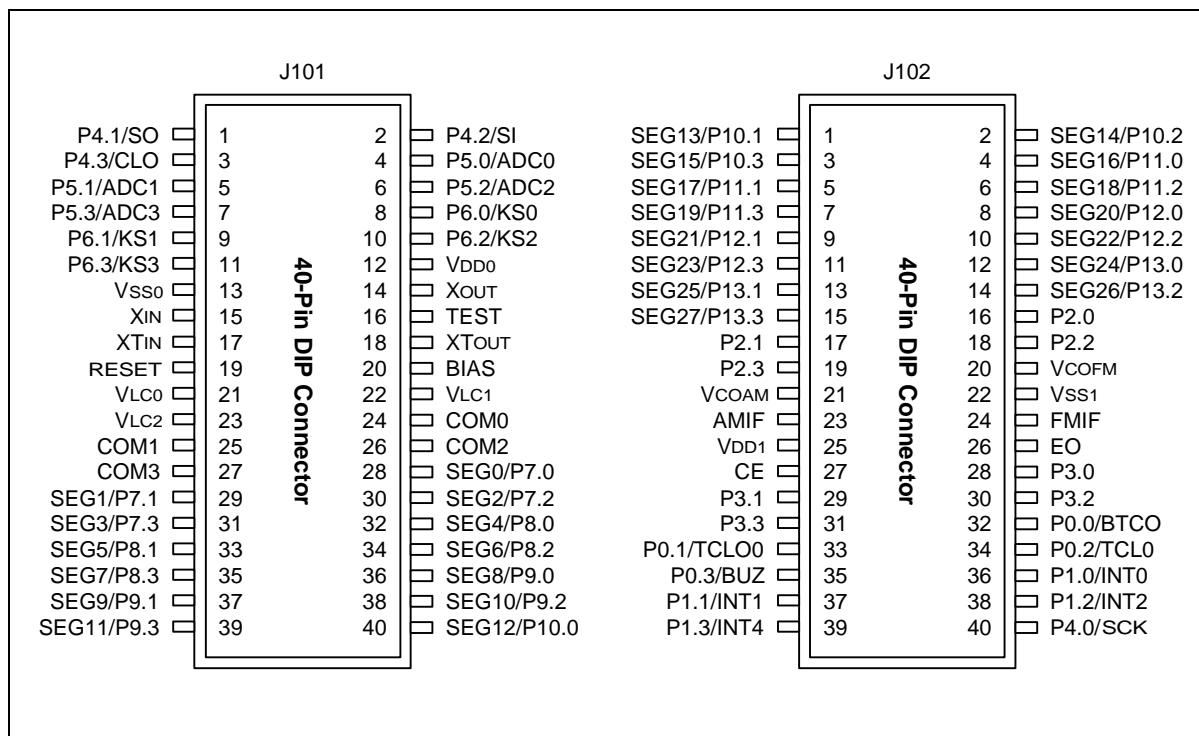



Figure 20-3. 40-Pin Connectors for TB573316A

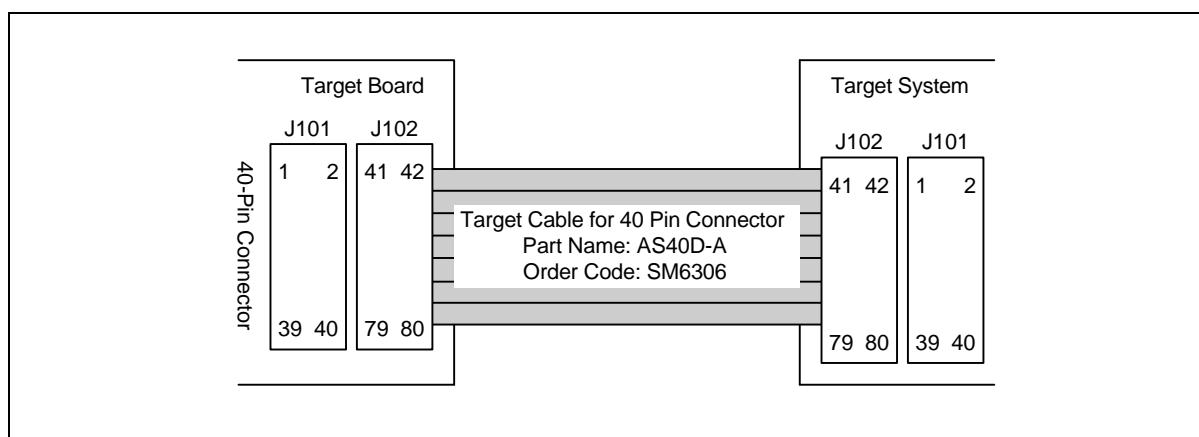



Figure 20-4. TB573316A Adapter Cable for 80-QFP Package (KS57C3316)