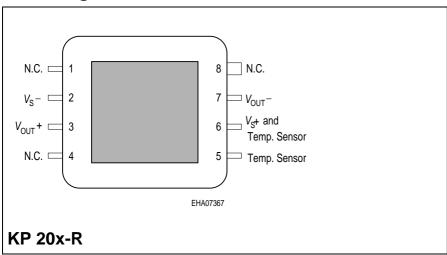


Sensory Thinking

KP20x-R- Series

Silicon Piezoresistive Relative Pressure Sensors Low Cost Surface Mounted Version


Features

- High sensitivity and linearity
- Fast response
- Very small dimensions
- Low cost
- Produced in qualified semiconductor fabrication lines
- SMD housing
- Built in silicon temperature sensor

Туре	Marking	Ordering Code	Pressure Range	Package
KP 202-R	KP202R	Q62705K0424	0 60 kPa (0.6 bar)	P-DSOF-8-6
KP 203-R	KP203R	Q62705K0430	0 160 kPa (1.6 bar)	P-DSOF-8-6

Pin Configuration

Pin Definitions and Functions

Pin No.	Function
1	Not connected
2	V_{S} –
3	V_{OUT} +
4	Not connected
5	Temperature Sensor, typ. $R_{25} = 2 \text{ k}\Omega$
6	$V_{\rm S}$ + and Temperature Sensor
7	V _{OUT} -
8	Not connected

Electric Network

Four piezoresistors form a bridge circuit, providing a very accurate and linear output voltage, directly proportional to the applied pressure.

$$V_{\rm OUT} = V_{\rm O} = V_{\rm FIN} = V_{\rm S} \times (R_1(p) \times R_3(p) - R_2(p) \times R_4(p)) / [(R_1(p) + R_2(p)) \times (R_3(p) + R_4(p))]$$
 with

$$R_1(0) \cong R_2(0) \cong R_3(0) \cong R_4(0) \cong R_B$$

A temperature sensor chip R_T , that is built in the housing, can be used to compensate the temperature drift of the pressure sensor.

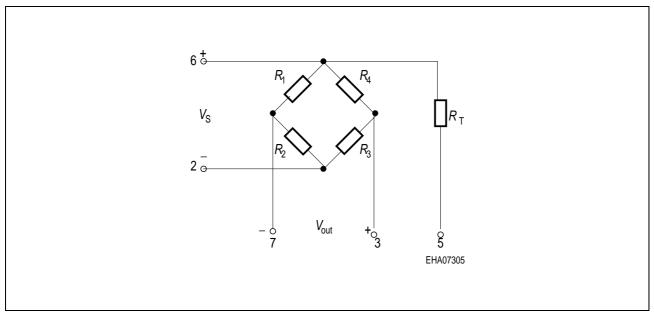


Figure 1 Sensor Schematic

Piezoresistors R_1 ... R_4 denote the pressure sensitive resistors connected as a Wheatstone bridge. R_T is a KTY-series temperature dependent resistor with a positive TC.

KP202-R KP203-R

Absolute Maximum Ratings

Parameter	Symbol	Limit Values	Unit
Supply voltage	V _{S MAX}	12	V
Overpressure ¹⁾	p_{MAX}	250	kPa
Burst Pressure	$p_{\sf BURST}$		kPa
KP 202-R,		400	
KP 203-R		800	
Operating temperature range	T_{OP}	- 40 + 125	°C
Storage temperature range	T_{STG}	- 40 + 125	°C
Mechanical shock survival	_	2000	g

Overpressure is limited to $p_{\rm max}$, due to absorption of gas into the protective gel covering the sensor at higher pressures. Abrupt decrease of pressure from values higher than $p_{\rm max}$ to low pressures can cause in the gel to rupture.

Electrical Characteristics

at $T_{\rm A}{=}$ 25 $^{\circ}{\rm C}$ and $V_{\rm S}$ = 5 V unless otherwise specified

Parameter	Sym-	Limit Values			Unit
	bol	min.	typ.	max.]
Pressure Range	P_{N}				kPa
KP 202-R		0	_	60	
KP 203-R		0	_	160	
Bridge Resistance	R_{B}	5.5	6.3	7.5	kΩ
Sensitivity	S				
KP 202-R		0.24	0.44	0.74	mV / V /
KP 203-R		0.11	0.20	0.30	kPa
Full Scale Span ($p = p_N$, $V_S = 5 \text{ V}$)	V_{FIN}				mV
KP 202-R		80	132	222	
KP 203-R		88	160	240	
Offset signal	V_{O}	- 25	_	+ 25	mV
$p = p_0$					
Linearity error (best fit straight line)	F_{L}				$%V_{FIN}$
$p = p_0 \dots p_N$					
KP 202-R		_	± 3	-	
KP 203-R		-	± 3	-	

5

KP202-R KP203-R

Pressure Hysteresis	P_{H}				$\% V_{\sf FIN}$
KP 202-R		_	_	_	
KP 203-R		_	± 0.1	_	

Temperature Characteristics

at T_1 = 25 °C, T_2 = 90 °C, T_3 = 25 °C and V_S = 5 V unless otherwise specified

Parameter	Sym-	Limit Values			Unit
	bol	min.	typ.	max.	
Temperature Coefficient of Span ¹⁾	TC_{VFIN}	_	- 0.17	_	% K ⁻¹
Temperature Coefficient of Offset ¹⁾	TC_{V0}				% K ⁻¹
KP 202-R		_	± 0.01	_	
KP 203-R		_	± 0.01	_	
Temperature Coefficient of Bridge Resistance ²⁾	TC_{RB}	_	+ 0.26	_	% K ⁻¹
Temperature Hysteresis of Span ³⁾	TH_{VFIN}				% K ⁻¹
KP 202-R		_	± 0.4	_	
KP 203-R		-	± 0.3	_	
Temperature Hysteresis of Offset ³⁾	TH_{V0}				$%V_{FIN}^{-1}$
KP 202-R		_	± 0.3	_	
KP 203-R		-	± 0.3	_	

Change in value of TC V_{FIN} or TCV between 25 °C and 125 °C relative to V_{FIN} (25 °C)

6

 $^{^{2)}}$ Change in RB between 25 °C and 125 °C relative to RB (25 °C)

Change in V_0 (25 °C) or $V_{\rm FIN}$ (25 °C) after temp. cycle 25 °C \rightarrow 125 °C \rightarrow 25 °C relative to $V_{\rm FIN}$ (25 °C)

Temperature Compensation

Cost-effective temperature compensation can be achieved using standard ohmic resistors in combination with the built in temperature sensor.

With fixed values for R_{\lor} and R_{\lor} a temperature compensation error of the output signal (span plus offset) of typical less then \pm 1% is achieved in the range 10 °C to 40 °C (see **Figure 2**).

A better temperature compensation is possible by measurement of the temperature coefficients of the sensor. In this case R_V is optimized as described in Chapter 3.10 (see Data Book).

Alternatively an ASIC can be used for calibration and compensation.

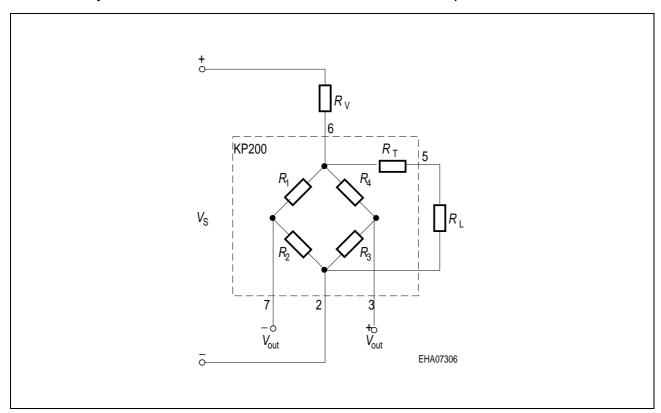


Figure 2 Electrical Circuit for Temperature Compensation

Broken line denotes sensor assembly. R_V and R_L need to be added externally.

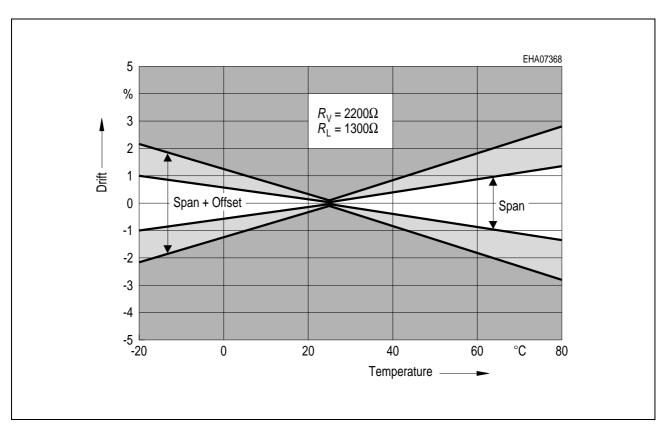


Figure 3 Error Band of Typical Signal Drift after Temperature Compensation Using Fixed Values for $R_{\rm V}$ and $R_{\rm L}$

Using fixed resistor $R_{\rm V}$ = 2200 Ω and $R_{\rm L}$ = 1300 Ω . Graph shows typical results for compensated span + offset signals.

8

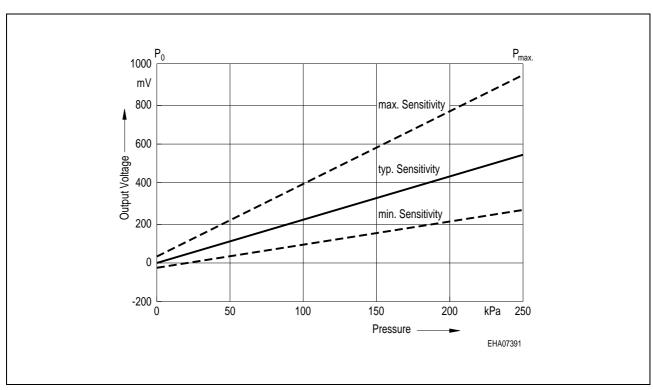


Figure 4 Output Voltage for Nominal and Maximal Pressure Range KP 202-R

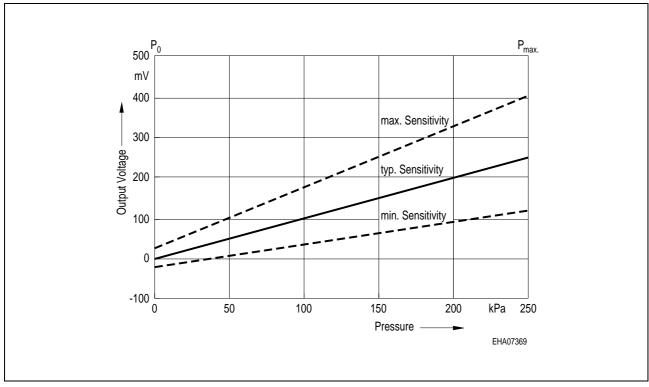
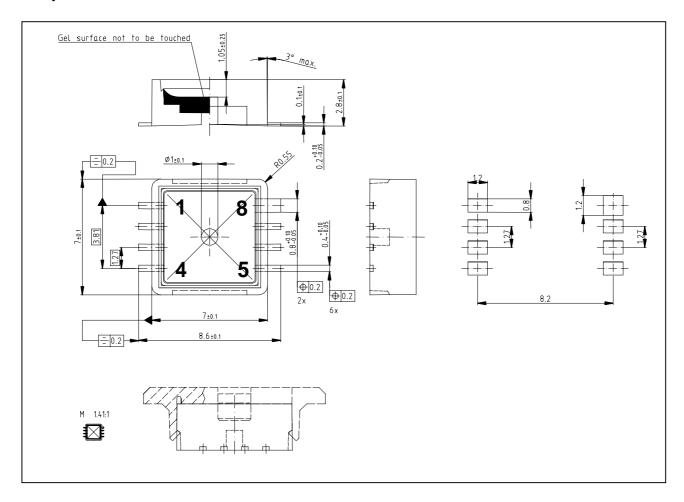


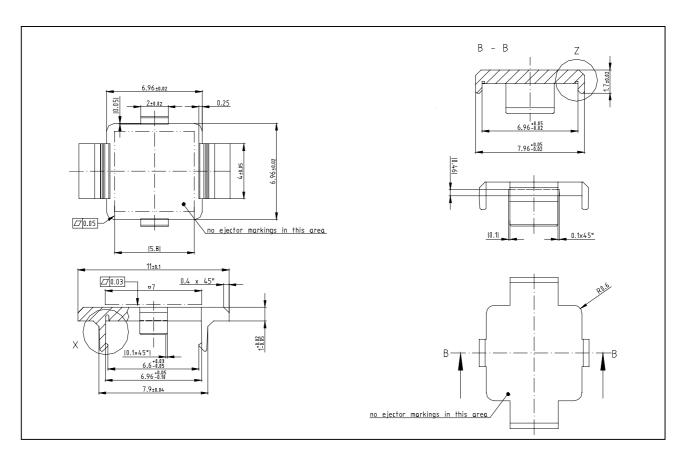
Figure 5 Output Voltage for Nominal and Maximal Pressure Range KP 203-R



Package Outlines

P-DSOF-8-6

(Plastic Dual Small Outline Flat Package)


Body:

Dimensions in mm

Cap:

Dimensions in mm

The package is made of a thermoplast housing and copper leadframe with NiPdAu finish. The chip is glued into the premolded plastic package using silicone glue, gold-wire bonded and covered with a protective gel. The pressure vent hole in the rear side of the package is 2.0 ± 0.3 mm in diameter. Finally the pressure port cap is mounted on the housing.

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

Dimensions in mm

KP202-R KP203-R

How To Reach Us:

http://www.infineon.com

Infineon Technologies AG Richard-Strauss-Strasse 76 81679 München Tel. (+49) 89-92 21 40 86 Fax (+49) 89-92 21 20 71

Infineon Technologies (AP) Pte Ltd 25 New Industrial Road Singapore 536211 Tel. (+65) 8-40 05 91 Fax (+65) 8-40 00 76

Infineon Technologies Corp. Suite 112, Sensors Marketing Group 21800 Haggerty Rd. NORTHVILLE, (MI) 48167 Tel. (+1) 2 48-3 74 08 90 Fax (+1) 2 48-3 74 25 01

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81541 München

© Infineon Technologies AG 2001. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding cir-cuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office

Infineon Technologies Components may only be used in lifesupport devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or main-tain and sustain and/or protect human life. If they fail, it is rea-sonable to assume that the health of the user or other persons may be endangered.