
KS57C5116/P5116 MICROCONTROLLER PRODUCT OVERVIEW

1–1

1 PRODUCT OVERVIEW

The KS57C5116/P5116 single-chip CMOS microcontroller has been designed for high-performance using
Samsung's newest 4-bit CPU core, SAM47 (Samsung Arrangeable Microcontrollers). The KS57P5116 is a
microcontroller which has 16-kbyte one-time-programmable EPROM but its functions are same to KS57C5116.

With its DTMF generator, 8-bit serial I/O interface, and versatile 8-bit timer/counters, the KS57C5116/P5116
offers an excellent design solution for a wide variety of telecommunication applications.

Up to 55 pins of the 64-pin SDIP or QFP package can be dedicated to I/O. Seven vectored interrupts provide
fast response to internal and external events. In addition, the KS57C5116/P5116's advanced CMOS technology
provides for low power consumption and a wide operating voltage range.

DEVELOPMENT SUPPORT

The Samsung Microcontroller Development System, SMDS, provides you with a complete PC-based develop-
ment environment for KS57-series microcontrollers that is powerful, reliable, and portable. In addition to its
window-based program development structure, the SMDS toolset includes versatile debugging, trace, instruction
timing, and performance measurement applications.

The Samsung Generalized Assembler (SAMA) has been designed specifically for the SMDS environment and
accepts assembly language sources in a variety of microprocessor formats. SAMA generates industry-standard
hex files that also contain program control data for SMDS compatibility.

PRODUCT OVERVIEW KS57C5116/P5116 MICROCONTROLLER

1–2

FEATURES SUMMARY

MEMORY

512 × 4-bit RAM
16,384 × 8-bit ROM

55 I/O PINS

Input only: 4 pins
I/O: 43 pins
N-channel open-drain I/O: 8 pins

MEMORY-MAPPED I/O STRUCTURE

Data memory bank 15

DTMF GENERATOR

16 dual-tone frequencies for tone dialing

8-BIT BASIC TIMER

4 interval timer functions

TWO 8-BIT TIMER/COUNTERS

Programmable interval timer
External event counter function
Timer/counters clock outputs to TCLO0 and
TCLO1 pins
External clock signal divider
Serial I/O interface clock generator

WATCH TIMER

Time interval generation: 0.5 s, 3.9 ms at 32.768
kHz
4 frequency outputs to the BUZ pin

8-BIT SERIAL I/O INTERFACE

8-bit transmit/receive mode
8-bit receive mode
LSB-first or MSB-first transmission selectable

BIT SEQUENTIAL CARRIER

Supports 8-bit serial data transfer in arbitrary
format

INTERRUPTS

3 external interrupt vectors
4 internal interrupt vectors
2 quasi-interrupts

POWER-DOWN MODES

Idle: Only CPU clock stops
Stop: System clock stops

OSCILLATION SOURCES

Crystal, ceramic for main system clock
Crystal oscillator for subsystem clock
Main system clock frequency: 3.579545 MHz
(typical)
Subsystem clock frequency: 32.768 kHz (typical)
CPU clock divider circuit (by 4, 8, or 64)

INSTRUCTION EXECUTION TIMES

0.67, 1.33, 10.7 µs at 6.0 MHz
1.12, 2.23, 17.88 µs at 3.579545 MHz
122, 244, 1952 µs at 32.768 kHz

OPERATING TEMPERATURE

– 40 °C to 85 °C

OPERATING VOLTAGE RANGE

2.0 V to 5.5 V

PACKAGE TYPES

64 SDIP, 64 QFP

KS57C5116/P5116 MICROCONTROLLER PRODUCT OVERVIEW

1–3

FUNCTION OVERVIEW

SAM47 CPU

All KS57-series microcontrollers have the advanced SAM47 CPU core. The SAM47 CPU can directly address
up to 32 K bytes of program memory. The arithmetic logic unit (ALU) performs 4-bit addition, subtraction, logical,
and shift-and-rotate operations in one instruction cycle and most 8-bit arithmetic and logical operations in two
cycles.

CPU REGISTERS

Program Counter

A 14-bit program counter (PC) stores addresses for instruction fetches during program execution. Usually, the
PC is incremented by the number of bytes of the fetched instruction. The one instruction fetch that does not
increment the PC is the 1-byte REF instruction which references instructions stored in a look-up table in the
ROM. Whenever a reset operation or an interrupt occurs, bits PC13 through PC0 are set to the vector address.

Stack Pointer

An 8-bit stack pointer (SP) stores addresses for stack operations. The stack area is located in general-purpose
data memory bank 0. The SP is 8-bit read/writeable and SP bit 0 must always be logic zero.

During an interrupt or a subroutine call, the PC value and the PSW are written to the stack area. When the
service routine has completed, the values referenced by the stack pointer are restored. Then, the next instruction
is executed.

The stack pointer can access the stack despite data memory access enable flag status. Since the reset value
of the stack pointer is not defined in firmware, you use program code to initialize the stack pointer to 00H. This
sets the first register of the stack area to data memory location 0FFH.

PROGRAM MEMORY

In its standard configuration, the 16,384 × 8-bit ROM is divided into four areas:

— 16-byte area for vector addresses

— 16-byte general-purpose area (0010–001FH)

— 96-byte instruction reference area

— 16,256-byte area for general-purpose program memory

The vector address area is used mostly during reset operations and interrupts. These 16 bytes can alternately
be used as general-purpose ROM.

The REF instruction references 2 x 1-byte or 2-byte instructions stored in reference area locations 0020H–
007FH. REF can also reference three-byte instructions such as JP or CALL. So that a REF instruction can
reference these instructions, however, the JP or CALL must be shortened to a 2-byte format. To do this, JP or
CALL is written to the reference area with the format TJP or TCALL instead of the normal instruction name.
Unused locations in the REF instruction look-up area can be allocated to general-purpose use.

PRODUCT OVERVIEW KS57C5116/P5116 MICROCONTROLLER

1–4

DATA MEMORY

Overview

The 512 × 4 bit data memory has four areas:

— 32 × 4-bit working register area

— 224 × 4-bit general-purpose area in bank 0 which is also used as the stack area

— 256 × 4-bit general-purpose area in bank 1

— 128 × 4-bit area in bank 15 for memory-mapped I/O addresses

The data memory area is also organized as three memory banks — bank 0, bank 1, and bank 15. You use the
select memory bank instruction (SMB) to select one of the banks as working data memory.

Data stored in RAM locations are 1-, 4-, and 8-bit addressable. After a hardware reset, data memory
initialization values must be defined by program code.

Data Memory Addressing Modes

The enable memory bank (EMB) flag controls the addressing mode for data memory banks 0, 1, or 15. When
the EMB flag is logic zero, only locations 00H–7FH of bank 0 and bank 15 can be accessed. When the EMB flag
is set to logic one, all three data memory banks can be accessed based on the current SMB value.

Working Registers

The RAM's working register area in data memory bank 0 is also divided into four register banks. Each register
bank has eight 4-bit registers. Paired 4-bit registers are 8-bit addressable.

Register A can be used as a 4-bit accumulator and double register EA as an 8-bit extended accumulator;
double registers WX, WL, and HL are used as address pointers for indirect addressing.

To limit the possibility of data corruption due to incorrect register addressing, it is advisable to use bank 0 for
main programs and banks 1, 2, and 3 for interrupt service routines.

Bit Sequential Carrier

The bit sequential carrier (BSC) mapped in data memory bank 15 is a 8-bit general register that you can
manipulate using 1-, 4-, and 8-bit RAM control instructions.

Using the BSC register, addresses and bit locations can be specified sequentially using 1-bit indirect address-
ing instructions. In this way, a program can generate 8-bit data output by moving the bit location sequentially,
incrementing or decrementing the value of the L register. You can also use direct addressing to manipulate data
in the BSC.

KS57C5116/P5116 MICROCONTROLLER PRODUCT OVERVIEW

1–5

CONTROL REGISTERS

Program Status Word

The 8-bit program status word (PSW) controls ALU operations and instruction execution sequencing. It is also
used to restore a program's execution environment when an interrupt has been serviced. Program instructions
can always address the PSW regardless of the current value of data memory access enable flags.

Before an interrupt is processed, the PSW is pushed onto the stack in data memory bank 0. When the routine
is completed, PSW values are restored.

Interrupt status flags (IS1, IS0), the enable memory bank and enable register bank flags (EMB, ERB), and the
carry flag (C) are 1- and 4-bit read/write or 8-bit read-only addressable. Skip condition flags (SC0–SC2) can be
addressed using 8-bit read instructions only.

Select Bank (SB) Register

Two 4-bit locations called the SB register store address values used to access specific memory and register
banks: the select memory bank register, SMB, and the select register bank register, SRB.

'SMB n' instructions select a data memory bank (0, 1, or 15) and store the upper four bits of the 12-bit data
memory address in the SMB register. The 'SRB n' instruction is used to select register bank 0, 1, 2, or 3, and to
store the address data in the SRB.

The instructions 'PUSH SB' and 'POP SB' move SMB and SRB values to and from the stack for interrupts and
subroutines.

CLOCK CIRCUITS

Main system and subsystem oscillation circuits generate the internal clock signals for the CPU and peripheral
hardware. The main system clock can use a crystal, ceramic, or RC oscillation source, or an externally-generated
clock signal. The subsystem clock requires either a crystal oscillator or an external clock source.

Bit settings in the 4-bit power control and system clock mode registers select the oscillation source, the CPU
clock, and the clock used during power-down mode. The internal system clock signal (fxx) can be divided inter-
nally to produce three CPU clock frequencies — fxx/4, fxx/8, or fxx/64.

INTERRUPTS

Interrupt requests may be generated internally by on-chip processes (INTB, INTT0, INTT1, and INTS) or
externally by peripheral devices (INT0, INT1, and INT4). There are two quasi-interrupts: INT2 and INTW.
INT2/KS0–KS7 detects rising/falling edges of incoming signals and INTW detects time intervals of 0.5 seconds
or 3.91 milliseconds at the watch timer clock frequency of 32.768 kHz. The following components support
interrupt processing:

— Interrupt enable flags

— Interrupt request flags

— Interrupt priority registers

— Power-down termination circuit

IS1 IS0 EMB ERB

C SC2 SC1 SC0

PRODUCT OVERVIEW KS57C5116/P5116 MICROCONTROLLER

1–6

POWER-DOWN

To reduce power consumption, there are two power-down modes: idle and stop. The IDLE instruction initiates
idle mode and the STOP instruction initiates stop mode.

In idle mode, only the CPU clock stops while peripherals and the oscillation source continue to operate
normally. Stop mode effects only the main system clock — a subsystem clock, if used, continues oscillating. In
stop mode, main system clock oscillation stops completely, halting all operations except for a few basic
peripheral functions. RESET or an interrupt (with the exceptions of INT0) can be used to terminate either idle or
stop mode.

RESET

When a RESET signal occurs during normal operation or during power-down mode, the CPU enters idle mode
when the reset operation is initiated. When the standard oscillation stabilization interval (36.6 ms at 3.579545
MHz) has elapsed, normal CPU operation resumes.

I/O PORTS

The KS57C5116/P5116 has 14 I/O ports. Pin addresses for all I/O ports are mapped in bank 15 of the RAM.
There are 4 input pins, 43 configurable I/O pins, and 8 n-channel open-drain I/O pins, for a total of 55 I/O pins.
The contents of I/O port pin latches can be read, written, or tested at the corresponding address using bit
manipulation instructions.

TIMERS and TIMER/COUNTERS

The timer function has four main components: an 8-bit basic interval timer, two 8-bit timer/counters, and a
watch timer. The 8-bit basic timer generates interrupt requests at precise intervals, based on the selected CPU
clock frequency.

The programmable 8-bit timer/counters are used for external event counting, generation of arbitrary clock
frequencies for output, and dividing external clock signals. The 8-bit timer/counter 0 generates a clock signal
(SCK) for the serial I/O interface.

The watch timer has an 8-bit watch timer mode register, a clock selector, and a frequency divider circuit. Its
functions include real-time and watch-time measurement, and frequency outputs for buzzer sound.

SERIAL I/O INTERFACE

The serial I/O interface supports the transmission or reception of 8-bit serial data with an external device. The
serial interface has the following functional components:

— 8-bit mode register

— Clock selector circuit

— 8-bit buffer register

— 3-bit serial clock counter

The serial I/O circuit can be set either to transmit-and-receive or to receive-only mode. MSB-first or LSB-first
transmission is also selectable. The serial interface operates with an internal or an external clock source, or using
the clock signal generated by the 8-bit timer/counter 0. To modify transmission frequency, the appropriate bits in
the serial I/O mode register (SMOD) must be manipulated.

KS57C5116/P5116 MICROCONTROLLER PRODUCT OVERVIEW

1–7

BLOCK DIAGRAM

BASIC
TIMER

ARITHMETIC
AND

LOGIC UNIT

INTERRUPT
CONTROL

BLOCK

STACK
POINTER

PROGRAM
COUNTER

PROGRAM
STATUS WORD

P0.0 / SCK

P0.1 / SO
P0.2 / SI
P0.3 / BTCO

512 x 4-BIT

DATA

MEMORY

WATCH
TIMER

16 K BYTE

PROGRAM

MEMORY

FLAGS

INSTRUCTION DECODER

CLOCK

RESET

Xin
XTin

Xout
XTout

INTERNAL
INTERRUPTS

P8.0–P8.3

P4.0–P4.3

P5.0–P5.3

P6.0–P6.3 /
KS0–KS3

P7.0–P7.3 /
KS4–KS7

P9.0–P9.3

DTMF

P10.0–P10.3

P11.0–P11.3

P12.0–P12.3

P13.0–P13.2

INT0, INT1, INT2, INT4

8-BIT
TIMER/

COUNTER 0

I/O PORT 8

8-BIT
TIMER/

COUNTER 1

I/O PORT 6

I/O PORT 7

I/O PORT 9

I/O PORT 10

I/O PORT 11

I/O PORT 12

I/O PORT 13

I/O PORT 0

SERIAL I/O
PORT

P2.0 / TCLO0
P2.1 / TCLO1
P2.2 / CLO

P2.3 / BUZ

I/O PORT 2

P3.0 / TCL0

P3.1 / TCL1
P3.2
P3.3

I/O PORT 3

I/O PORT 4

I/O PORT 5

DTMF
GENERATOR

P1.0 / INT0
P1.1 / INT1
P1.2 / INT2
P1.3 / INT4

INPUT
PORT 1

Figure 1–1. KS57C5116/P5116 Simplified Block Diagram

PRODUCT OVERVIEW KS57C5116/P5116 MICROCONTROLLER

1–8

PIN ASSIGNMENTS

VSS
P9.0
P9.1
P9.2
P9.3
P8.0
P8.1
P8.2
P8.3
P7.0 / KS4
P7.1 / KS5
P7.2 / KS6
P7.3 / KS7
P6.0 / KS0
P6.1 / KS1
P6.2 / KS2
P6.3 / KS3
XTout
XTin
Xin
Xout
RESET
P5.0
P5.1
P5.2
P5.3
P4.0
P4.1
P4.2
P4.3
P3.0 / TCL0
P3.1 / TCL1

P1.3 / INT4
P1.2 / INT2
P1.1 / INT1
P1.0 / INT0

P13.2
P13.1
P13.0

P2.3 / BUZ
P2.2 / CLO

P2.1 / TCLO1
P2.0 / TCLO0
P0.3 / BTCO

P0.2 / SI
P0.1 / SO

P0.0 / SCK
P10.3
P10.2
P10.1
P10.0
P11.3
P11.2
P11.1
P11.0
P12.3
P12.2
P12.1
P12.0
P3.3
P3.2

NC
DTMF
VDD

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

K
S

57C
5116

(64-S
D

IP
-750)

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

Figure 1–2. KS57C5116/P5116 Pin Assignment Diagrams

KS57C5116/P5116 MICROCONTROLLER PRODUCT OVERVIEW

1–9

32
31
30
29
28
27
26
25
24
23
22
21
20

P5.3
P4.0
P4.1
P4.2
P4.3
P3.0 / TCL0
P3.1 / TCL1
VDD
DTMF
NC
P3.2
P3.3
P12.0

52
53
54
55
56
57
58
59
60
61
62
63
64

P8.0
P9.3
P9.2
P9.1
P9.0
VSS

P1.3 / INT4
P1.2 / INT2
P1.1 / INT1
P1.0 / INT0

P13.2
P13.1
P13.0

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

P
8.

1
P

8.
2

P
8.

3
P

7.
0

/ K
S

4
P

7.
1

/ K
S

5
P

7.
2

/ K
S

6
P

7.
3

/ K
S

7
P

6.
0

/ K
S

0
P

6.
1

/ K
S

1
P

6.
2

/ K
S

2
P

6.
3

/ K
S

3
X

T
ou

t
X

T
in

X

in

X
ou

t
R

E
S

E
T

P

5.
0

P
5.

1
P

5.
2

P
2.

3
/ B

U
Z

P

2.
2

/ C
LO

P

2.
1

/ T
C

LO
1

P
2.

0
/ T

C
LO

0
P

0.
3

/ B
T

C
O

P

0.
2

/ S
I

P
0.

1
/ S

O

P
0.

0
/ S

C
K

P

10
.3

P

10
.2

P

10
.1

P

10
.0

P

11
.3

P

11
.2

P

11
.1

P

11
.0

P

12
.3

P

12
.2

P

12
.1

KS57C5116

(64-QFP-1420F)

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

Figure 1–2. KS57C5116/P5116 Pin Assignment Diagrams (Continued)

PRODUCT OVERVIEW KS57C5116/P5116 MICROCONTROLLER

1–10

PIN DESCRIPTIONS

Table 1–1. KS57C5116/P5116 Pin Descriptions

Pin Name Pin Type Description Number Share Pin

P0.0
P0.1
P0.2
P0.3

I/O 4-bit I/O port.
1-bit or 4-bit read/write and test is possible.
Individual pins are software configurable as input or
output.
4-bit pull-up resistors are software assignable; pull-up
resistors are automatically disabled for output pins.

15 (8)
14 (7)
13 (6)
12 (5)

SCK
SO
SI

BTCO

P1.0
P1.1
P1.2
P1.3

I 4-bit input port.
1-bit and 4-bit read and test is possible.
3-bit pull-up resistors are assignable by software to
pins P1.0, P1.1, and P1.2.

1 (61)
2 (60)
3 (59)
4 (58)

INT0
INT1
INT2
INT4

P2.0
P2.1
P2.2
P2.3

I/O Same as port 0. 11 (4)
10 (3)
9 (2)
8 (1)

TCLO0
TCLO1

CLO
BUZ

P3.0
P3.1
P3.2
P3.3

I/O Same as port 0. 34 (27)
33 (26)
29 (22)
28 (21)

TCL0
TCL1

P4.0–P4.3

P5.0–P5.3

I/O 4-bit I/O ports.
N-channel open-drain output up to 9 volts.
1-bit and 4-bit read/write and test is possible.
Ports 4 and 5 can be paired to support 8-bit data
transfer.
8-bit unit pull-up resistors are assignable by mask
option.

38–35
(31–28)
42–39

(35–32)

–

P6.0–P6.3

P7.0–P7.3

I/O 4-bit I/O ports.
1-bit or 4-bit read/write and test is possible.
Port 6 pins are individually software configurable as
input or output.
4-bit pull-up resistors are software assignable; pull-up
resistors are automatically disabled for output pins
(port 6 only). Ports 6 and 7 can be paired to enable
8-bit data transfer.

51–48
(44–41)
55–52

(48–45)

KS0–KS3

KS4–KS7

P8.0–P8.3 I/O Same as port 0. 59–56
(52–49)

–

P9.0–P9.3 I/O 4-bit I/O port.
1-bit or 4-bit read/write and test is possible.
4-bit pull-up resistors are software assignable; pull-up
resistors are automatically disabled for output pins.

63–60
(56–53)

–

* Parentheses indicate pin number for 64 QFP package.

KS57C5116/P5116 MICROCONTROLLER PRODUCT OVERVIEW

1–11

Table 1–1. KS57C5116/P5116 Pin Descriptions (Continued)

Pin Name Pin Type Description Number Share Pin

P10.0–P10.3

P11.0–P11.3

I/O Same as port 9.
Ports 10 and 11 can be paired to support 8-bit data
transfer.

19–16
(12–9)
23–20

(16–13)

–

P12.0–P12.3 I/O 4-bit I/O port.
1-bit or 4-bit read/write and test is possible.
Individual pins are software configurable as input or
output.
4-bit pull-down resistors are software assignable;
pull-down resistors are automatically disabled for
output pins.

27–24
(20–17)

–

P13.0–P13.2 I/O 3-bit I/O port; characteristics are same as port 9. 7–5
(64–62)

–

DTMF O DTMF output. 31 (24) –

SCK I/O Serial I/O interface clock signal 15 (8) P0.0

SO I/O Serial data output 14 (7) P0.1

SI I/O Serial data input 13 (6) P0.2

BTCO I/O Basic timer clock output 12 (5) P0.3

INT0, INT1 I External interrupts. The triggering edge for INT0 and
INT1 is selectable. INT0 is synchronized to system
clock.

4, 3
(61, 60)

P1.0, P1.1

INT2 I Quasi-interrupt with detection of rising edges 2 (59) P1.2

INT4 I External interrupt with detection of rising and falling
edges.

1 (58) P1.3

TCLO0 I/O Timer/counter 0 clock output 11 (4) P2.0

TCLO1 I/O Timer/counter 1 clock output 10 (3) P2.1

CLO I/O Clock output 9 (2) P2.2

BUZ I/O 2 kHz, 4 kHz, 8 kHz, or 16 kHz frequency output at
the watch timer clock frequency of 32.768 kHz for
buzzer sound

8 (1) P2.3

TCL0 I/O External clock input for timer/counter 0 34 (27) P3.0

TCL1 I/O External clock input for timer/counter 1 33 (26) P3.1

KS0–KS3

KS4–KS7

I/O Quasi-interrupt inputs with falling edge detection 51–48
(44–41)
55–52

(48–45)

P6.0–P6.3

P7.0–P7.3

* Parentheses indicate pin number for 64 QFP package.

PRODUCT OVERVIEW KS57C5116/P5116 MICROCONTROLLER

1–12

Table 1–1. KS57C5116/P5116 Pin Descriptions (Concluded)

Pin Name Pin Type Description Number Share Pin

VDD – Power supply 32 (25) –

VSS – Ground 64 (57) –

RESET I Reset signal 43 (36) –

Xin, Xout – Crystal, ceramic, or R/C oscillator signal for main
system clock. (For external clock input, use Xin and
input Xin's reverse phase to Xout)

45, 44
(38, 37)

–

XTin, XTout – Crystal oscillator signal for subsystem clock. (For
external clock input, use XTin and input XTin's
reverse phase to XTout)

46, 47
(39, 40)

–

NC – No connection (must be connected to VSS) 30 (23) –

* Parentheses indicate pin number for 64 QFP package.

KS57C5116/P5116 MICROCONTROLLER PRODUCT OVERVIEW

1–13

Table 1–2. Overview of KS57C5116/P5116 Pin Data

Pin Names Share Pins I/O Type Reset Value Circuit Type

P0.0–P0.3 SCK, SO, SI, BTCO I/O Input D-1

P1.0–P1.2 INT0, INT1, INT2 I Input A-3

P1.3 INT4 I Input B-4

P2.0–P2.3 TCLO0, TCLO1, CLO,
BUZ

I/O Input D

P3.0–P3.1 TCL0, TCL1 I/O Input D-1

P3.2–P3.3 – I/O Input D

P4.0–P4.3
P5.0–P5.3

– I/O (NOTE) E-2

P6.0–P6.3
P7.0–P7.3

KS0–KS3
KS4–KS7

I/O Input D-1

P8.0–P8.3 – I/O Input D

P9.0–P9.3 – I/O Input D

P10.0–P10.3
P11.0–P11.3

– I/O Input D

P12.0–P12.3 – I/O Input D-2

P13.0–P13.2 – I/O Input D

DTMF – O High impedence G-2

Xin, Xout
XTin, XTout

– – – –

RESET – I – B

NC – – – –

VDD, VSS – – – –

NOTE: When pull-up resistors are provided: High level
When pull-up resistors are not provided: High impedence

PRODUCT OVERVIEW KS57C5116/P5116 MICROCONTROLLER

1–14

PIN CIRCUIT DIAGRAMS

P-CHANNEL

IN

N-CHANNEL

VDD

Figure 1–3. Pin Circuit Type A

IN

P-CHANNEL PULL-UP RESISTOR
ENABLE

VDD

PULL-UP
RESISTOR

SCHMITT TRIGGER

Figure 1–4. Pin Circuit Type A-3

SCHMITT TRIGGER

VDD

PULL-UP
RESISTOR

IN

Figure 1–5. Pin Circuit Type B

SCHMITT TRIGGER

IN

Figure 1–6. Pin Circuit Type B-4

KS57C5116/P5116 MICROCONTROLLER PRODUCT OVERVIEW

1–15

VDD

P-CHANNEL
DATA

OUTPUT
DISABLE

N-CHANNEL

OUT

Figure 1–7. Pin Circuit Type C

P-CHANNEL

PULL-UP
RESISTOR

RESISTOR
EMABLE

DATA

OUTPUT
DISABLE

CIRCUIT TYPE A

I/O

VDD

CIRCUIT
TYPE C

Figure 1–8. Pin Circuit Type D

P-CHANNEL

PULL-UP
RESISTOR

RESISTOR
EMABLE

DATA

OUTPUT
DISABLE

SCHNITT TRIGER

I/O

VDD

CIRCUIT
TYPE C

Figure 1–9. Pin Circuit Type D-1

CIRCUIT
TYPE C

DATA

OUTPUT
DISABLE

CIRCUIT TYPE A

I/O

PULL-DOWN
RESISTOR

N-CHANNELRESISTOR
ENABLE

Figure 1–10. Pin Circuit Type D-2

PRODUCT OVERVIEW KS57C5116/P5116 MICROCONTROLLER

1–16

DATA

OUTPUT
DISABLE

VDD

I/O

PULL-UP
RESISTOR

(MASK OPTION)

N-CHANNEL

Figure 1–11. Pin Circuit Type E-2

DTMF OUTPUT

VDD

Figure 1-12. Pin Circuit Type G-2

KS57C5116/P5116 MICROCONTROLLER ADDRESS SPACES

2–1

2 ADDRESS SPACES

PROGRAM MEMORY (ROM)

OVERVIEW

ROM maps for the KS57C5116 are mask programmable at the factory. In its standard configuration, the
device's 16,384 × 8-bit program memory has three areas that are directly addressable by the program counter
(PC):

— 16-byte area for vector addresses

— 16-byte general-purpose area

— 96-byte instruction reference area

— 16,256-byte general-purpose area

General-Purpose Program Memory

Two program memory areas are allocated for general-purpose use: One area is 16 bytes in size and the other
is 16,256 bytes.

Vector Addresses

A 16-byte vector address area is used to store the vector addresses required to execute system resets and
interrupts. Start addresses for interrupt service routines are stored in this area, along with the values of the
enable memory bank (EMB) and enable register bank (ERB) flags that are used to initialize the corresponding
service routines. The 16-byte area can be used alternately as general-purpose ROM.

REF Instructions

Locations 0020H–007FH are used as a reference area (look-up table) for 1-byte REF instructions. The REF
instruction reduces the byte size of instruction operands. REF can reference one 2-byte instruction, two 1-byte
instructions, and three-byte instructions which are stored in the look-up table. Unused look-up table addresses
can be used as general-purpose ROM.

Table 2–1. Program Memory Address Ranges

ROM Area Function Address Ranges Area Size (in Bytes)

Vector address area 0000H–000FH 16

General-purpose program memory 0010H–001FH 16

REF instruction look-up table area 0020H–007FH 96

General-purpose program memory 0080H–3FFFH 16,256

ADDRESS SPACES KS57C5116/P5116 MICROCONTROLLER

2–2

GENERAL-PURPOSE MEMORY AREAS

The 16-byte area at ROM locations 0010H–001FH and the 16,256-byte area at ROM locations 0080H–3FFFH
are used as general-purpose program memory. Unused locations in the vector address area and REF instruction
look-up table areas can be used as general-purpose program memory. However, care must be taken not to
overwrite live data when writing programs that use special-purpose areas of the ROM.

VECTOR ADDRESS AREA

The 16-byte vector address area of the ROM is used to store the vector addresses for executing system resets
and interrupts. The starting addresses of interrupt service routines are stored in this area, along with the enable
memory bank (EMB) and enable register bank (ERB) flag values that are needed to initialize the service routines.
16-byte vector addresses are organized as follows:

To set up the vector address area for specific programs, use the instruction VENTn. The programming tips on
the next page explain how to do this.

GENERAL-PURPOSE
AREA

(16 Bytes)

GENERAL-PURPOSE
AREA

(16,256 Bytes)

VECTOR
ADDRESS AREA

(16 Bytes)

INSTRUCTION
REFERENCE AREA

(96 Bytes)

0000H

000FH

0010H

001FH

0020H

007FH

0080H

3FFFH

Figure 2-1. ROM Address Structure

7 6 5 4 3 2 1 0

RESET

INTB/INT4

INT0

INT1

INTS

INTT0

INTT1

0000H

0002H

0004H

0006H

0008H

000AH

000CH

000EH Not implemented

(reserved for future use)

Figure 2-2. Vector Address Map

EMB ERB PC13 PC12 PC11 PC10 PC9 PC8

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

KS57C5116/P5116 MICROCONTROLLER ADDRESS SPACES

2–3

+ + PROGRAMMING TIP — Defining Vectored Interrupts

The following examples show you several ways you can define the vectored interrupt and instruction reference
areas in program memory:

1. When all vector interrupts are used:

ORG 0000H
;

VENT0 1,0,RESET ; EMB ← 1, ERB ← 0; Jump to RESET address
VENT1 0,0,INTB ; EMB ← 0, ERB ← 0; Jump to INTB address
VENT2 0,0,INT0 ; EMB ← 0, ERB ← 0; Jump to INT0 address
VENT3 0,0,INT1 ; EMB ← 0, ERB ← 0; Jump to INT1 address
VENT4 0,0,INTS ; EMB ← 0, ERB ← 0; Jump to INTS address
VENT5 0,0,INTT0 ; EMB ← 0, ERB ← 0; Jump to INTT0 address
VENT6 0,0,INTT1 ; EMB ← 0, ERB ← 0; Jump to INTT1 address

2. When a specific vectored interrupt such as INT0, and INTT0 is not used, the unused vector interrupt
locations must be skipped with the assembly instruction ORG so that jumps will address the correct
locations:

ORG 0000H
;

VENT0 1,0,RESET ; EMB ← 1, ERB ← 0; Jump to RESET address
VENT1 0,0,INTB ; EMB ← 0, ERB ← 0; Jump to INTB address

;
ORG 0006H ; INT0 interrupt not used

;
VENT3 0,0,INT1 ; EMB ← 0, ERB ← 0; Jump to INT1 address
VENT4 0,0,INTS ; EMB ← 0, ERB ← 0; Jump to INTS address

;
ORG 00C0H ; INTT0 interrupt not used

;
VENT6 0,0,INTT1 ; EMB ← 0, ERB ← 0; Jump to INTT1 address

;
ORG 0010H

ADDRESS SPACES KS57C5116/P5116 MICROCONTROLLER

2–4

+ + PROGRAMMING TIP — Defining Vectored Interrupts (Continued)

3. If an INT0 interrupt is not used and if its corresponding vector interrupt area is not fully utilized, or if it is
not written by a ORG instruction as in Example 2, a CPU malfunction will occur:

ORG 0000H
;

VENT0 1,0,RESET ; EMB ← 1, ERB ← 0; Jump to RESET address
VENT1 0,0,INTB ; EMB ← 0, ERB ← 0; Jump to INTB address
VENT3 0,0,INT1 ; EMB ← 0, ERB ← 0; Jump to INT0 address
VENT4 0,0,INTS ; EMB ← 0, ERB ← 0; Jump to INT1 address
VENT5 0,0,INTT0 ; EMB ← 0, ERB ← 0; Jump to INTS address
VENT6 0,0,INTT1 ; EMB ← 0, ERB ← 0; Jump to INTT0 address

;
ORG 0010H

;
General-purpose ROM area

;

In this example, when an INTS interrupt is generated, the corresponding vector area is not VENT4 INTS,
but VENT5 INTT0. This causes an INTS interrupt to jump incorrectly to the INTT0 address and causes a
CPU malfunction to occur.

KS57C5116/P5116 MICROCONTROLLER ADDRESS SPACES

2–5

INSTRUCTION REFERENCE AREA

Using 1-byte REF instructions, you can easily reference instructions with larger byte sizes that are stored in
addresses 0020H–007FH of program memory. This 96-byte area is called the REF instruction reference area, or
look-up table. Locations in the REF look-up table may contain two one-byte instructions, a single two-byte
instruction, or three-byte instruction such as a JP (jump) or CALL. The starting address of the instruction you are
referencing must always be an even number. To reference a JP or CALL instruction, it must be written to the
reference area in a two-byte format: for JP, this format is TJP; for CALL, it is TCALL. In summary, there are
three ways to the REF instruction:

By using REF instructions to execute instructions larger than one byte, you can improve program execution
time considerably by reducing the number of program steps. In summary, there are three ways you can use the
REF instruction:

— Using the 1-byte REF instruction to execute one 2-byte or two 1-byte instructions,

— Branching to any location by referencing a branch instruction stored in the look-up table,

— Calling subroutines at any location by referencing a call instruction stored in the look-up table.

+ + PROGRAMMING TIP — Using the REF Look-Up Table

Here is one example of how to use the REF instruction look-up table:

ORG 0020H
;
JMAIN TJP MAIN ; 0, MAIN
KEYCK BTSF KEYFG ; 1, KEYFG check
WATCH TCALL CLOCK ; 2, call CLOCK
INCHL LD @HL,A ; 3, (HL) ← A

INCS HL
•
•
•

ABC LD EA,#00H ; 47, EA ← #00H
ORG 0080

;
MAIN NOP

NOP
•
•
•
REF KEYCK ; BTSF KEYFG (1-byte instruction)
REF JMAIN ; KEYFG = 1, jump to MAIN (1-byte instruction)
REF WATCH ; KEYFG = 0, call CLOCK (1-byte instruction)
REF INCHL ; LD @HL,A

; INCS HL
REF ABC ; LD EA,#00H (1-byte instruction)
•
•
•

ADDRESS SPACES KS57C5116/P5116 MICROCONTROLLER

2–6

DATA MEMORY (RAM)

OVERVIEW

In its standard configuration, the 512 × 4-bit data memory has four areas:

— 32 × 4-bit working register area

— 224 × 4-bit general-purpose area (also used as stack area)

— 256 × 4-bit general-purpose area

— 128 × 4-bit area for peripheral hardware

To make it easier to reference, the data memory area has three memory banks — bank 0, bank 1, and bank
15. The select memory bank instruction (SMB) is used to select the bank you want to select as working data
memory. Data stored in RAM locations are 1-, 4-, and 8-bit addressable.

Initialization values for the data memory area are not defined by hardware and must therefore be initialized by
program software following RESET. However, when RESET signal is generated in power-down mode, the data
memory contents are held.

000H

01FH
020H

0FFH
100H

1FFH

WORKING REGISTERS
(32 x 4 Bits)

GENERAL-PURPOSE
REGISTERS

AND STACK AREA
(224 x 4 Bits)

GENERAL-PURPOSE
(256 x 4 Bits)

F80H

PERIPHRAL
HARDWARE
REGISTERS

FFFH

BANK 0

BANK 1

BANK 15

~~ ~~

Figure 2–3. Data Memory (RAM) Map

KS57C5116/P5116 MICROCONTROLLER ADDRESS SPACES

2–7

Memory Banks 0, 1, and 15

Bank 0 (000H–0FFH) The lowest 32 nibbles of bank 0 (000H–01FH) are used as working registers;
the next 224 nibbles (020H–0FFH) can be used both as stack area and as
general-purpose data memory. Use the stack area for implementing subroutine
calls and returns, and for interrupt processing.

Bank 1 (100H–1FFH) The 256 nibbles of bank 1 (100H–1FFH) are for general-purpose use.

Bank 15 (F80H–FFFH) The microcontroller uses bank 15 for memory-mapped peripheral I/O. Fixed
RAM locations for each peripheral hardware register: the port latches, timers,
peripherals controls, etc. are mapped into this area.

Data Memory Addressing Modes

The enable memory bank (EMB) flag controls the addressing mode for data memory banks 0, 1, or 15. When
the EMB flag is logic zero, the addressable area is restricted to specific locations, depending on whether direct or
indirect addressing is used. With direct addressing, you can access locations 000H–07FH of bank 0 and bank 15.
With indirect addressing, only bank 0 (000H–0FFH) can be accessed. When the EMB flag is set to logic one, all
three data memory banks can be accessed according to the current SMB value.

For 8-bit addressing, two 4-bit registers are addressed as a register pair. Also, when using 8-bit instructions to
address RAM locations, remember to use the even-numbered register address as the instruction operand.

Working Registers

The RAM working register area in data memory bank 0 is further divided into four register banks (bank 0, 1, 2,
and 3). Each register bank has eight 4-bit registers and paired 4-bit registers are 8-bit addressable.

Register A is used as a 4-bit accumulator and register pair EA as an 8-bit extended accumulator. The carry
flag bit can also be used as a 1-bit accumulator. Register pairs WX, WL, and HL are used as address pointers for
indirect addressing. To limit the possibility of data corruption due to incorrect register addressing, it is advisable
to use register bank 0 for the main program and banks 1, 2, and 3 for interrupt service routines.

ADDRESS SPACES KS57C5116/P5116 MICROCONTROLLER

2–8

Table 2–2. Data Memory Organization and Addressing

Addresses Register Areas Bank EMB Value SMB Value

000H–01FH Working registers 0 0, 1 0

020H–0FFH Stack and general-purpose registers

100H–1FFH General-purpose registers 1 1 1

F80H–FFFH Peripheral hardware registers 15 0, 1 15

+ + PROGRAMMING TIP — Clearing Data Memory Banks 0 and 1

Clear banks 0 and 1 of the data memory area:

RAMCLR SMB 1 ; RAM (100H–1FFH) clear
LD HL,#00H
LD A,#0H

RMCL1 LD @HL,A
INCS HL
JR RMCL1

;
SMB 0 ; RAM (010H–0FFH) clear
LD HL,#10H

RMCL0 LD @HL,A
INCS HL
JR RMCL0

KS57C5116/P5116 MICROCONTROLLER ADDRESS SPACES

2–9

WORKING REGISTERS

Working registers, mapped to RAM address 000H–01FH in data memory bank 0, are used to temporarily store
intermediate results during program execution, as well as pointer values used for indirect addressing. Unused
registers may be used as general-purpose memory. Working register data can be manipulated as 1-bit units, 4-
bit units or, using paired registers, as 8-bit units.

000H

0001

002H

003H

004H

005H

006H

007H

00FH
010H

017H
018H

01FH

008H

DATA
MEMORY
BANK 0

A ... Y

A

E

L

H

X

W

Z

Y

A ... Y

WORKING
REGISTER

BANK 0

REGISTER
BANK 1

REGISTER
BANK 2

REGISTER
BANK 3

A ... Y

A ... Y

Figure 2–4. Working Register Map

ADDRESS SPACES KS57C5116/P5116 MICROCONTROLLER

2–10

Working Register Banks

For addressing purposes, the working register area is divided into four register banks — bank 0, bank 1, bank
2, and bank 3. Any one of these banks can be selected as the working register bank by the register bank
selection instruction (SRB n) and by setting the status of the register bank enable flag (ERB).

Generally, working register bank 0 is used for the main program, and banks 1, 2, and 3 for interrupt service
routines. Following this convention helps to prevent possible data corruption during program execution due to
contention in register bank addressing.

Table 2–3. Working Register Organization and Addressing

ERB Setting SRB Settings Selected Register Bank

3 2 1 0

0 0 0 x x Always set to bank 0

0 0 Bank 0

1 0 0 0 1 Bank 1

1 0 Bank 2

1 1 Bank 3

NOTE: 'x' means don't care.

Paired Working Registers

Each of the register banks is subdivided into eight 4-bit registers. These registers, named Y, Z, W, X, H, L, E
and A, can either be manipulated individually using 4-bit instructions, or together as register pairs for 8-bit data
manipulation.

The names of the 8-bit register pairs in each register bank are EA, HL, WX, YZ and WL. Registers A, L, X and
Z always become the lower nibble when registers are addressed as 8-bit pairs. This makes a total of eight 4-bit
registers or four 8-bit double registers in each of the four working register banks.

(MSB) (LSB) (MSB) (LSB)

Y

W

H

E

Z

X

L

A

Figure 2–5. Register Pair Configuration

KS57C5116/P5116 MICROCONTROLLER ADDRESS SPACES

2–11

Special-Purpose Working Registers

Register A is used as a 4-bit accumulator and double register EA as an 8-bit accumulator. The carry flag can
also be used as a 1-bit accumulator.

8-bit double registers WX, WL and HL are used as data pointers for indirect addressing. When the HL register
serves as a data pointer, the instructions LDI, LDD, XCHI, and XCHD can make very efficient use of working
registers as program loop counters by letting you transfer a value to the L register and increment or decrement it
using a single instruction.

C

A

EA
8-BIT

ACCUMULATOR

1-BIT
ACCUMULATOR

4-BIT
ACCUMULATOR

Figure 2–6. 1-Bit, 4-Bit, and 8-Bit Accumulator

Recommendation for Multiple Interrupt Processing

If more than four interrupts are being processed at one time, you can avoid possible loss of working register
data by using the PUSH RR instruction to save register contents to the stack before the service routines are exe-
cuted in the same register bank. When the routines have executed successfully, you can restore the register con-
tents from the stack to working memory using the POP instruction.

ADDRESS SPACES KS57C5116/P5116 MICROCONTROLLER

2–12

+ + PROGRAMMING TIP — Selecting the Working Register Area

The following examples show the correct programming method for selecting working register area:

1. When ERB = "0":

VENT2 1,0,INT0 ; EMB ← 1, ERB ← 0, Jump to INT0 address
;
INT0 PUSH SB ; PUSH current SMB, SRB

SRB 2 ; Instruction does not execute because ERB = "0"
PUSH HL ; PUSH HL register contents to stack
PUSH WX ; PUSH WX register contents to stack
PUSH YZ ; PUSH YZ register contents to stack
PUSH EA ; PUSH EA register contents to stack
SMB 0
LD EA,#00H
LD 80H,EA
LD HL,#40H
INCS HL
LD WX,EA
LD YZ,EA
POP EA ; POP EA register contents from stack
POP YZ ; POP YZ register contents from stack
POP WX ; POP WX register contents from stack
POP HL ; POP HL register contents from stack
POP SB ; POP current SMB, SRB
IRET

The POP instructions execute alternately with the PUSH instructions. If an SMB n instruction is used in an
interrupt service routine, a PUSH and POP SB instruction must be used to store and restore the current SMB
and SRB values, as shown in Example 2 below.

2. When ERB = "1":

VENT2 1,1,INT0 ; EMB ← 1, ERB ← 1, Jump to INT0 address
;
INT0 PUSH SB ; Store current SMB, SRB

SRB 2 ; Select register bank 2 because of ERB = "1"
SMB 0
LD EA,#00H
LD 80H,EA
LD HL,#40H
INCS HL
LD WX,EA
LD YZ,EA
POP SB ; Restore SMB, SRB
IRET

KS57C5116/P5116 MICROCONTROLLER ADDRESS SPACES

2–13

STACK OPERATIONS

STACK POINTER (SP)

The stack pointer (SP) is an 8-bit register that stores the address used to access the stack, an area of data
memory set aside for temporary storage of stack addresses. The SP can be read or written by 8-bit control
instructions.When addressing the SP, bit 0 must always remain cleared to logic zero.

F80H SP3 SP2 SP1 "0"

F81H SP7 SP6 SP5 SP4

There are two basic stack operations: writing to the top of the stack (push), and reading from the top of the
stack (pop). A push decrements the SP and a pop increments it so that the SP always points to the top address
of the last data to be written to the stack.

The program counter contents and program status word are stored in the stack area prior to the execution of a
CALL or a PUSH instruction, or during interrupt service routines. Stack operation is a LIFO (Last In-First Out)
type. The stack area is located in general-purpose data memory bank 0.

During an interrupt or a subroutine, the PC value and the PSW are saved to the stack area. When the routine
has completed, the stack pointer is referenced to restore the PC and PSW, and the next instruction is executed.

The SP can address stack registers in bank 0 (addresses 000H-0FFH) regardless of the current value of the
enable memory bank (EMB) flag and the select memory bank (SMB) flag. Although general-purpose register
areas can be used for stack operations, be careful to avoid data loss due to simultaneous use of the same
register(s).

Since the reset value of the stack pointer is not defined in firmware, we recommend that you initialize the
stack pointer by program code to location 00H. This sets the first register of the stack area to 0FFH.

NOTE

A subroutine call occupies six nibbles in the stack; an interrupt requires six. When subroutine
nesting or interrupt routines are used continuously, the stack area should be set in accordance with
the maximum number of subroutine levels. To do this, estimate the number of nibbles that will be
used for the subroutines or interrupts and set the stack area correspondingly.

+ + PROGRAMMING TIP — Initializing the Stack Pointer

To initialize the stack pointer (SP):

1. When EMB = "1":

SMB 15 ; Select memory bank 15
LD EA,#00H ; Bit 0 of accumulator A is always cleared to "0"
LD SP,EA ; Stack area initial address (0FFH) ← (SP) – 1

2. When EMB = "0":

LD EA,#00H
LD SP,EA ; Memory addressing area (00H–7FH, F80H–FFFH)

ADDRESS SPACES KS57C5116/P5116 MICROCONTROLLER

2–14

PUSH OPERATIONS

Three kinds of push operations reference the stack pointer (SP) to write data from the source register to the
stack: PUSH instructions, CALL instructions, and interrupts. In each case, the SP is decremented by a number
determined by the type of push operation and then points to the next available stack location.

PUSH Instructions

A PUSH instruction references the SP to write two 4-bit data nibbles to the stack. Two 4-bit stack addresses
are referenced by the stack pointer: one for the upper register value and another for the lower register. After the
PUSH has executed, the SP is decremented by two and points to the next available stack location.

CALL Instructions

When a subroutine call is issued, the CALL instruction references the SP to write the PC's contents to six 4-bit
stack locations. Current values for the enable memory bank (EMB) flag and the enable register bank (ERB) flag
are also pushed to the stack. Since six 4-bit stack locations are used per CALL, you may nest subroutine calls up
to the number of levels permitted in the stack.

Interrupt Routines

An interrupt routine references the SP to push the contents of the PC and the program status word (PSW) to
the stack. Six 4-bit stack locations are used to store this data. After the interrupt has executed, the SP is
decremented by six and points to the next available stack location. During an interrupt sequence, subroutines
may be nested up to the number of levels which are permitted in the stack area.

SP - 6

SP - 5

SP - 4

SP - 3

SP - 2

SP - 1

SP

SP - 2

SP - 1

SP

SP - 6

SP - 5

SP - 4

SP - 3

SP - 2

SP - 1

SP

CALL
(After CALL, SP SP - 6)

EMB ERB

0

PC3 - PC0

PC7 - PC4

0

0 0 0

0

0

0 0 0

PUSH
(After PUSH, SP SP - 2)

LOWER REGISTER

UPPER REGISTER

(When INT is acknowledged,
SP SP - 6)

INTERRUPT

0

PC3 - PC0

PC7 - PC4

IS1 IS0 EMB ERB

PSW
C SC2 SC1 SC0

000

PC 11-PC 8PC 11-PC 8

Figure 2–7. Push-Type Stack Operations

KS57C5116/P5116 MICROCONTROLLER ADDRESS SPACES

2–15

POP OPERATIONS

For each push operation there is a corresponding pop operation to write data from the stack back to the source
register or registers: for the PUSH instruction it is the POP instruction; for CALL, the instruction RET or SRET;
for interrupts, the instruction IRET. When a pop operation occurs, the SP is incremented by a number determined
by the type of operation and points to the next free stack location.

POP Instructions

A POP instruction references the SP to write data stored in two 4-bit stack locations back to the register pairs
and SB register. The value of the lower 4-bit register is popped first, followed by the value of the upper 4-bit
register. After the POP has executed, the SP is incremented by two and points to the next free stack location.

RET and SRET Instructions

The end of a subroutine call is signaled by the return instruction, RET or SRET. The RET or SRET uses the
SP to reference the six 4-bit stack locations used for the CALL and to write this data back to the PC, the EMB,
and the ERB. After the RET or SRET has executed, the SP is incremented by six and points to the next free
stack location.

IRET Instructions

The end of an interrupt sequence is signaled by the instruction IRET. IRET references the SP to locate the six
4-bit stack addresses used for the interrupt and to write this data back to the PC and the PSW. After the IRET
has executed, the SP is incremented by six and points to the next free stack location.

(SP SP + 2)
POP

LOWER REGISTER

UPPER REGISTER

SP

SP + 1

SP + 2

RET OR SRET
(SP SP + 6)

IRET
(SP SP + 6)

SP

SP + 1

SP + 2

SP + 3

SP + 4

SP + 5

SP + 6

EMB ERB

0

PC3 - PC0

PC7 - PC4

0

0 0 0

0

0 0 0 0

PC11-PC8 SP

SP + 1

SP + 2

SP + 3

SP + 4

SP + 5

SP + 6

0

PC3 - PC0

PC7 - PC4

IS1 IS0 EMB ERB
PSW

C SC2 SC1 SC0

000

PC11-PC8

Figure 2–8. Pop-Type Stack Operations

ADDRESS SPACES KS57C5116/P5116 MICROCONTROLLER

2–16

BIT SEQUENTIAL CARRIER (BSC)

The bit sequential carrier (BSC) is a 8-bit general register that can be manipulated using 1-, 4-, and 8-bit RAM
control instructions. RESET clears all BSC bit values to logic zero.

Using the BSC, you can specify sequential addresses and bit locations using 1-bit indirect addressing
(memb.@L). (Bit addressing is independent of the current EMB value.) In this way, programs can process 8-bit
data by moving the bit location sequentially and then incrementing or decrementing the value of the L register.

BSC data can also be manipulated using direct addressing.
If the values of the L register are 0H at BSC2.@L, the address and bit location assignment is FC2H.0. If the L

register content is 8H at BSC2.@L, the address and bit location assignment is FC3H.3.

Table 2–4. BSC Register Organization

Name Address Bit 3 Bit 2 Bit 1 Bit 0

BSC2 FC2H BSC2.3 BSC2.2 BSC2.1 BSC2.0

BSC3 FC3H BSC3.3 BSC3.2 BSC3.1 BSC3.0

+ + PROGRAMMING TIP — Using the BSC Register to Output 16-Bit Data

To use the bit sequential carrier (BSC) register to output 8-bit data (59H) to the P2.3 pin:

BITS EMB
SMB 15
LD EA,#59H ;
LD BSC2,EA ; BSC2 ← A, BSC3 ← E
SMB 0
LD L,#8H ;

AGN LDB C,BSC2.@L ;
LDB P2.3,C ; P2.3 ← C
INCS L
JR AGN
RET

KS57C5116/P5116 MICROCONTROLLER ADDRESS SPACES

2–17

PROGRAM COUNTER (PC)

A 14-bit program counter (PC) stores addresses for instruction fetches during program execution. Whenever a
reset operation or an interrupt occurs, bits PC13 through PC0 are set to the vector address.

Usually, the PC is incremented by the number of bytes of the instruction being fetched. One exception is the
1-byte REF instruction which is used to reference instructions stored in the ROM.

PROGRAM STATUS WORD (PSW)

The program status word (PSW) is an 8-bit word that defines system status and program execution status and
which permits an interrupted process to resume operation after an interrupt request has been serviced. PSW
values are mapped as follows:

FB0H IS1 IS0 EMB ERB

FB1H C SC2 SC1 SC0

The PSW can be manipulated by 1-bit or 4-bit read/write and by 8-bit read instructions, depending on the spe-
cific bit or bits being addressed. The PSW can be addressed during program execution regardless of the current
value of the enable memory bank (EMB) flag.

Part or all of the PSW is saved to stack prior to execution of a subroutine call or hardware interrupt. After the
interrupt has been processed, the PSW values are popped from the stack back to the PSW address.

When a RESET is generated, the EMB and ERB values are set according to the RESET vector address, and
the carry flag is left undefined (or the current value is retained). PSW bits IS0, IS1, SC0, SC1, and SC2 are all
cleared to logical zero.

Table 2–5. Program Status Word Bit Descriptions

PSW Bit Identifier Description Bit Addressing Read/Write

IS1, IS0 Interrupt status flags 1, 4 R/W

EMB Enable memory bank flag 1 R/W

ERB Enable register bank flag 1 R/W

C Carry flag 1 R/W

SC2, SC1, SC0 Program skip flags 8 R

ADDRESS SPACES KS57C5116/P5116 MICROCONTROLLER

2–18

INTERRUPT STATUS FLAGS (IS0, IS1)

PSW bits IS0 and IS1 contain the current interrupt execution status values. You can manipulate IS0 and IS1
flags directly using 1-bit RAM control instructions

By manipulating interrupt status flags in conjunction with the interrupt priority register (IPR), you can process
multiple interrupts by anticipating the next interrupt in an execution sequence. The interrupt priority control circuit
determines the IS0 and IS1 settings in order to control multiple interrupt processing. When both interrupt status
flags are set to "0", all interrupts are allowed. The priority with which interrupts are processed is then determined
by the IPR.

When an interrupt occurs, IS0 and IS1 are pushed to the stack as part of the PSW and are automatically
incremented to the next status. Then, when the interrupt service routine ends with an IRET instruction, IS0 and
IS1 values are restored to the PSW. Table 2–6 shows the effects of IS0 and IS1 flag settings.

Table 2–6. Interrupt Status Flag Bit Settings

IS1
Value

IS0
Value

Status of Currently
Executing Process

Effect of IS0 and IS1 Settings
on Interrupt Request Control

0 0 0 All interrupt requests are serviced

0 1 1 Only high-priority interrupt as determined in the interrupt
priority register (IPR) is serviced

1 0 2 No more interrupt requests are serviced

1 1 — Not applicable; these bit settings are undefined

Since interrupt status flags can be addressed by write instructions, programs can exert direct control over
interrupt processing status. Before interrupt status flags can be addressed, however, you must first execute a DI
instruction to inhibit additional interrupt routines. When the bit manipulation has been completed, execute an EI
instruction to re-enable interrupt processing.

+ + PROGRAMMING TIP — Setting ISx Flags for Interrupt Processing

The following instruction sequence shows how to use the IS0 and IS1 flags to control interrupt processing:

INTB DI ; Disable interrupt
BITR IS1 ; IS1 ← 0
BITS IS0 ; Allow interrupts according to IPR priority level
EI ; Enable interrupt

KS57C5116/P5116 MICROCONTROLLER ADDRESS SPACES

2–19

EMB FLAG (EMB)

The EMB flag is used to enable whether the memory bank selected by SMB register is to be valid or not. In
this way, it controls the addressing mode for data memory banks 0, 1, or 15.

When the EMB flag is "0", the data memory address space is restricted to bank 15 and addresses 000H–07FH
of memory bank 0, regardless of the SMB register contents. When the EMB flag is set to "1", the general-
purpose areas of bank 0, 1, and 15 can be accessed by using the appropriate SMB value.

+ + PROGRAMMING TIP — Using the EMB Flag to Select Memory Banks

EMB flag settings for memory bank selection:

1. When EMB = "0":

SMB 1 ; Non-essential instruction since EMB = "0"
LD A,#9H
LD 90H,A ; (F90H) ← A, bank 15 is selected
LD 34H,A ; (034H) ← A, bank 0 is selected
SMB 0 ; Non-essential instruction since EMB = "0"
LD 90H,A ; (F90H) ← A, bank 15 is selected
LD 34H,A ; (034H) ← A, bank 0 is selected
SMB 15 ; Non-essential instruction, since EMB = "0"
LD 20H,A ; (020H) ← A, bank 0 is selected
LD 90H,A ; (F90H) ← A, bank 15 is selected

2. When EMB = "1":

SMB 1 ; Select memory bank 1
LD A,#9H
LD 90H,A ; (190H) ← A, bank 1 is selected
LD 34H,A ; (134H) ← A, bank 1 is selected
SMB 0 ; Select memory bank 0
LD 90H,A ; (090H) ← A, bank 0 is selected
LD 34H,A ; (034H) ← A, bank 0 is selected
SMB 15 ; Select memory bank 15
LD 20H,A ; Program error, but assembler does not detect it
LD 90H,A ; (F90H) ← A, bank 15 is selected

ADDRESS SPACES KS57C5116/P5116 MICROCONTROLLER

2–20

ERB FLAG (ERB)

The 1-bit register bank enable flag (ERB) determines the range of addressable working register area. When
the ERB flag is "1", the working register area from register banks 0 to 3 is selected according to the register bank
selection register (SRB). When the ERB flag is "0", register bank 0 is the selected working register area,
regardless of the current value of the register bank selection register (SRB).

When an internal RESET is generated, bit 6 of program memory address 0000H is written to the ERB flag. This
automatically initializes the flag. When a vectored interrupt is generated, bit 6 of the respective address table in
program memory is written to the ERB flag, setting the correct flag status before the interrupt service routine is
executed.

During the interrupt routine, the ERB value is automatically pushed to the stack area along with the other PSW
bits. Afterwards, it is popped back to the FB0H.0 bit location in the PSW. The initial ERB flag settings for each
vectored interrupt are defined using VENTn instructions.

+ + PROGRAMMING TIP — Using the ERB Flag to Select Register Banks

ERB flag settings for register bank selection:

1. When ERB = "0":

SRB 1 ; Register bank 0 is selected (since ERB = "0", the
; SRB is configured to bank 0)

LD EA,#34H ; Bank 0 EA ← #34H
LD HL,EA ; Bank 0 HL ← EA
SRB 2 ; Register bank 0 is selected
LD YZ,EA ; Bank 0 YZ ← EA
SRB 3 ; Register bank 0 is selected
LD WX,EA ; Bank 0 WX ← EA

2. When ERB = "1":

SRB 1 ; Register bank 1 is selected
LD EA,#34H ; Bank 1 EA ← #34H
LD HL,EA ; Bank 1 HL ← Bank 1 EA
SRB 2 ; Register bank 2 is selected
LD YZ,EA ; Bank 2 YZ ← BANK2 EA
SRB 3 ; Register bank 3 is selected
LD WX,EA ; Bank 3 WX ← Bank 3 EA

KS57C5116/P5116 MICROCONTROLLER ADDRESS SPACES

2–21

SKIP CONDITION FLAGS (SC2, SC1, SC0)

The skip condition flags SC2, SC1, and SC0 indicate the current program skip conditions and are set and
reset automatically during program execution. Skip condition flags can only be addressed by 8-bit read
instructions. Direct manipulation of the SC2, SC1, and SC0 bits is not allowed.

CARRY FLAG (C)

The carry flag is used to save the result of an overflow or borrow when executing arithmetic instructions
involving a carry (ADC, SBC). The carry flag can also be used as a 1-bit accumulator for performing Boolean
operations involving bit-addressed data memory.

If an overflow or borrow condition occurs when executing arithmetic instructions with carry (ADC, SBC), the
carry flag is set to "1". Otherwise, its value is "0". When a RESET occurs, the current value of the carry flag is
retained during power-down mode, but when normal operating mode resumes, its value is undefined.

The carry flag can be directly manipulated by predefined set of 1-bit read/write instructions, independent of
other bits in the PSW. Only the ADC and SBC instructions, and the instructions listed in Table 2–7, affect the
carry flag.

Table 2–7. Valid Carry Flag Manipulation Instructions

Operation Type Instructions Carry Flag Manipulation

Direct manipulation SCF Set carry flag to "1"

RCF Clear carry flag to "0" (reset carry flag)

CCF Invert carry flag value (complement carry flag)

BTST C Test carry and skip if C = "1"

Bit transfer LDB (operand) (1),C Load carry flag value to the specified bit

LDB C,(operand) (1) Load contents of the specified bit to carry flag

Boolean manipulation BAND C,(operand) (1) AND the specified bit with contents of carry flag and save
the result to the carry flag

BOR C,(operand) (1) OR the specified bit with contents of carry flag and save
the result to the carry flag

BXOR C,(operand) (1) XOR the specified bit with contents of carry flag and save
the result to the carry flag

Interrupt routine INTn (2) Save carry flag to stack with other PSW bits

Return from interrupt IRET Restore carry flag from stack with other PSW bits

NOTES:
1. The operand has three bit addressing formats: mema.a, memb.@L, and @H + DA.b.
2. 'INTn' refers to the specific interrupt being executed and is not an instruction.

ADDRESS SPACES KS57C5116/P5116 MICROCONTROLLER

2–22

+ + PROGRAMMING TIP — Using the Carry Flag as a 1-Bit Accumulator

1. Set the carry flag to logic one:

SCF ; C ← 1
LD EA,#0C3H ; EA ← #0C3H
LD HL,#0AAH ; HL ← #0AAH
ADC EA,HL ; EA ← #0C3H + #0AAH + #1H, C ← 1

2. Logical-AND bit 3 of address 3FH with P3.3 and output the result to P5.0:

LD H,#3H ; Set the upper four bits of the address to the H register value
LDB C,@H+0FH.3 ; C ← bit 3 of 3FH
BAND C,P3.3 ; C ← C AND P3.3
LDB P5.0,C ; Output result from carry flag to P5.0

KS57C5116/P5116 MICROCONTROLLER ADDRESSING MODES

3–1

3 ADDRESSING MODES

OVERVIEW

The enable memory bank flag, EMB, controls the two addressing modes for data memory. When the EMB flag
is set to logic one, you can address the entire RAM area; when the EMB flag is cleared to logic zero, the
addressable area in the RAM is restricted to specific locations.

The EMB flag works in connection with the select memory bank instruction, SMBn. You will recall that the
SMBn instruction is used to select RAM bank 0, 1, or 15. The SMB setting is always contained in the upper four
bits of a 12-bit RAM address. For this reason, both addressing modes (EMB = "0" and EMB = "1") apply
specifically to the memory bank indicated by the SMB instruction, and any restrictions to the addressable area
within banks 0, 1, or 15. Direct and indirect 1-bit, 4-bit, and 8-bit addressing methods can be used. Several RAM
locations are addressable at all times, regardless of the current EMB flag setting.

Here are a few guidelines to keep in mind regarding data memory addressing:

— When you address peripheral hardware locations in bank 15, the mnemonic for the memory-mapped
hardware component can be used as the operand in place of the actual address location.

— Always use an even-numbered RAM address as the operand in 8-bit direct and indirect addressing.

— With direct addressing, use the RAM address as the instruction operand; with indirect addressing, the
instruction specifies a register which contains the operand's address.

ADDRESSING MODES KS57C5116/P5116 MICROCONTROLLER

3–2

DA
DA.b

@HL
@H + DA.b

@WX
@WL

mema.b memb.@L

EMB = 0 EMB = 1 X X X

000H
WORKING

REGISTERS

BANK 0
(GENERAL
REGISTERS
AND STACK)

01FH

020H

07FH
080H

0FFH

100H

1FFH

BANK 1:
(GENERAL

REGISTERS)

RAM
AREAS

ADDRESSING
MODE

F80H

FFFH

BANK 15
(PERIPHERAL
HARDWARE
REGISTERS)

FB0H
FBFH

FF0H

FC0HSMB = 15 SMB = 15

1. 'X' means don't care.
2. Blank columns indicate RAM areas that are not addressable, given the addressing method
 and enable memory bank (EMB) flag setting shown in the column headers.

NOTES:

EMB = 1 EMB = 0

SMB = 0 SMB = 0

SMB = 1 SMB = 1

Figure 3–1. RAM Address Structure

KS57C5116/P5116 MICROCONTROLLER ADDRESSING MODES

3–3

EMB AND ERB INITIALIZATION VALUES

The EMB and ERB flag bits are set automatically by the values of the RESET vector address and the interrupt
vector address. When a RESET is generated internally, bit 7 of program memory address 0000H is written to the
EMB flag, initializing it automatically. When a vectored interrupt is generated, bit 7 of the respective vector
address table is written to the EMB. This automatically sets the EMB flag status for the interrupt service routine.
When the interrupt is serviced, the EMB value is automatically saved to stack and then restored when the
interrupt routine has completed.

At the beginning of a program, the initial EMB and ERB flag values for each vectored interrupt must be set by
using VENT instruction. The EMB and ERB can be set or reset by bit manipulation instructions (BITS, BITR)
despite the current SMB setting.

+ + PROGRAMMING TIP — Initializing the EMB and ERB Flags

The following assembly instructions show how to initialize the EMB and ERB flag settings:

ORG 0000H ; ROM address assignment

VENT0 1,0,RESET ; EMB ← 1, ERB ← 0, branch RESET

VENT1 0,1,INTB ; EMB ← 0, ERB ← 1, branch INTB

VENT2 0,1,INT0 ; EMB ← 0, ERB ← 1, branch INT0

VENT3 0,1,INT1 ; EMB ← 0, ERB ← 1, branch INT1

VENT4 0,1,INTS ; EMB ← 0, ERB ← 1, branch INTS

VENT5 0,1,INTT0 ; EMB ← 0, ERB ← 1, branch INTT0

VENT6 0,1,INTT1 ; EMB ← 0, ERB ← 1, branch INTT1

RESET

 •
 •
 •
BITR EMB

ADDRESSING MODES KS57C5116/P5116 MICROCONTROLLER

3–4

ENABLE MEMORY BANK SETTINGS

EMB = "1"

When the enable memory bank flag EMB is set to logic one, you can address the data memory bank specified
by the select memory bank (SMB) value (0, 1, or 15) using 1-, 4-, or 8-bit instructions. You can use both direct
and indirect addressing modes. The addressable RAM areas when EMB = "1" are as follows:

If SMB = 0, 000H–0FFH

If SMB = 1, 100H–1FFH

If SMB = 15, F80H–FFFH

EMB = "0"

When the enable memory bank flag EMB is set to logic zero, the addressable area is defined independently of
the SMB value, and is restricted to specific locations depending on whether a direct or indirect address mode is
used.

If EMB = "0", the addressable area is restricted to locations 000H–07FH in bank 0 and to locations F80H–
FFFH in bank 15 for direct addressing. For indirect addressing, only locations 000H–0FFH in bank 0 are
addressable, regardless of SMB value.

To address the peripheral hardware register (bank 15) using indirect addressing, the EMB flag must first be set
to "1" and the SMB value to "15". When a RESET occurs, the EMB flag is set to the value contained in bit 7 of
ROM address 0000H.

EMB-Independent Addressing

At any time, several areas of the data memory can be addressed independently of the current status of the
EMB flag. These exceptions are described in Table 3–1.

Table 3–1. RAM Addressing Not Affected by the EMB Value

Address Addressing Method Affected Hardware Program Examples

000H–0FFH 4-bit indirect addressing using WX
and WL register pairs;
8-bit indirect addressing using SP

Not applicable LD A,@WX

PUSH
POP

FB0H–FBFH
FF0H–FFFH

1-bit direct addressing PSW,
IEx, IRQx, I/O

BITS EMB
BITR IE4

FC0H–FFFH 1-bit indirect addressing using the
L register

 I/O BAND C,P3.@L

KS57C5116/P5116 MICROCONTROLLER ADDRESSING MODES

3–5

SELECT BANK REGISTER (SB)

The select bank register (SB) is used to assign the memory bank and register bank. The 8-bit SB register con-
sists of the 4-bit select register bank register (SRB) and the 4-bit select memory bank register (SMB), as shown
in Figure 3–2.

During interrupts and subroutine calls, SB register contents can be saved to stack in 8-bit units by the PUSH
SB instruction. You later restore the value to the SB using the POP SB instruction.

SMB 3 SMB 2 SMB 1 SMB 0 0 0 SRB 1 SRB 0

SRB (F82H)SMB (F83H)

SB
REGISTER

Figure 3–2. SMB and SRB Values in the SB Register

Select Register Bank (SRB) Instruction

The select register bank (SRB) value specifies which register bank is to be used as a working register bank.
The SRB value is set by the 'SRB n' instruction, where n = 0, 1, 2, 3.

One of the four register banks is selected by the combination of ERB flag status and the SRB value that is set
using the 'SRB n' instruction. The current SRB value is retained until another register is requested by program
software. PUSH SB and POP SB instructions are used to save and restore the contents of SRB during interrupts
and subroutine calls. RESET clears the 4-bit SRB value to logic zero.

Select Memory Bank (SMB) Instruction

To select one of the three available data memory banks, you must execute an SMB n instruction specifying
the number of the memory bank you want (0, 1, or 15). For example, the instruction 'SMB 1' selects bank 1 and
'SMB 15' selects bank 15. (And remember to enable the selected memory bank by making the appropriate EMB
flag setting.

The upper four bits of the 12-bit data memory address are stored in the SMB register. If the SMB value is not
specified by software (or if a RESET does not occur) the current value is retained. RESET clears the 4-bit SMB
value to logic zero.

The PUSH SB and POP SB instructions save and restore the contents of the SMB register to and from the
stack area during interrupts and subroutine calls.

ADDRESSING MODES KS57C5116/P5116 MICROCONTROLLER

3–6

DIRECT AND INDIRECT ADDRESSING

1-bit, 4-bit, and 8-bit data stored in data memory locations can be addressed directly using a specific register
or bit address as the instruction operand.

Indirect addressing specifies a memory location that contains the required direct address. The KS57
instruction set supports 1-bit, 4-bit, and 8-bit indirect addressing. For 8-bit indirect addressing, an even-numbered
RAM address must always be used as the instruction operand.

1-BIT ADDRESSING

Table 3–2. 1-Bit Direct and Indirect RAM Addressing

Operand
Notation

Addressing Mode
Description

EMB Flag
Setting

Addressable
Area

Memory
Bank

Hardware I/O
Mapping

000H–07FH Bank 0 —

DA.b Direct: bit is indicated by the
RAM address (DA), memory
bank selection, and specified
bit number (b).

0 F80H–FFFH Bank 15 All 1-bit ad-
dressable

peripherals
(SMB = 15)

1 000H–FFFH SMB = 0, 1,
15

mema.b Direct: bit is indicated by ad-
dressable area (mema) and
bit number (b).

x FB0H–FBFH
FF0H–FFFH

Bank 15 IS0, IS1, EMB,
ERB, IEx, IRQx,

Pn.n

memb.@L Indirect: lower two bits of reg-
ister L as indicated by the up-
per 10 bits of RAM area
(memb) and the upper two
bits of register L.

x FC0H–FFFH Bank 15
Pn.n

@H + DA.b Indirect: bit indicated by the
lower four bits of the address
(DA), memory bank selection,
and the H register identifier.

0 000H–0FFH Bank 0 All 1-bit ad-
dressable pe-

ripherals
(SMB = 15)

1 000H–FFFH SMB = 0, 1,
15

NOTE: 'x' means don't care.

KS57C5116/P5116 MICROCONTROLLER ADDRESSING MODES

3–7

+ + PROGRAMMING TIP — 1-Bit Addressing Modes

1-Bit Direct Addressing

1. If EMB = "0":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
BITS AFLAG ; 34H.3 ← 1
BITS BFLAG ; F85H.3 (BMOD.3) ← 1
BTST CFLAG ; If FBAH.0 (IRQW) = 1, skip
BITS BFLAG ; Else if, FBAH.0 (IRQW) = 0, F85H.3 (BMOD.3) ← 1
BITS P3.0 ; FF3H.0 (P3.0) ← 1

2. If EMB = "1":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
BITS AFLAG ; 34H.3 ← 1
BITS BFLAG ; 85H.3 ← 1
BTST CFLAG ; If 0BAH.0 = 1, skip
BITS BFLAG ; Else if 0BAH.0 = 0, 085H.3 ← 1
BITS P3.0 ; FF3H.0 (P3.0) ← 1

ADDRESSING MODES KS57C5116/P5116 MICROCONTROLLER

3–8

+ + PROGRAMMING TIP — 1-Bit Addressing Modes (Continued)

1-Bit Indirect Addressing

1. If EMB = "0":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
LD H,#0BH ; H ← #0BH
BTSTZ @H+CFLAG ; If 0BAH.0 = 1, 0BAH.0 ← 0 and skip
BITS CFLAG ; Else if 0BAH.0 = 0, FBAH.0 (IRQW) ← 1

2. If EMB = "1":

AFLAG EQU 34H.3
BFLAG EQU 85H.3
CFLAG EQU 0BAH.0

SMB 0
LD H,#0BH ; H ← #0BH
BTSTZ @H+CFLAG ; If 0BAH.0 = 1, 0BAH.0 ← 0 and skip
BITS CFLAG ; Else if 0BAH.0 = 0, 0BAH.0 ← 1

KS57C5116/P5116 MICROCONTROLLER ADDRESSING MODES

3–9

4-BIT ADDRESSING

Table 3–3. 4-Bit Direct and Indirect RAM Addressing

Operand
Notation

Addressing Mode
Description

EMB Flag
Setting

Addressable
Area

Memory
Bank

Hardware I/O
Mapping

000H–07FH Bank 0 —

DA Direct: 4-bit address indicated
by the RAM address (DA) and
the memory bank selection

0 F80H–FFFH Bank 15

1 000H–FFFH SMB = 0, 1,
15

@HL Indirect: 4-bit address indi-
cated by the memory bank
selection and register HL

0 000H–0FFH Bank 0 All 4-bit ad-
dressable pe-

ripherals

1 000H–FFFH SMB = 0, 1,
15

(SMB = 15)

@WX Indirect: 4-bit address indi-
cated by register WX

x 000H–0FFH Bank 0

@WL Indirect: 4-bit address indi-
cated by register WL

x 000H–0FFH Bank 0

NOTE: 'x' means don't care.

+ + PROGRAMMING TIP — 4-Bit Addressing Modes

4-Bit Direct Addressing

1. If EMB = "0":

ADATA EQU 46H
BDATA EQU 8EH

SMB 15 ; Non-essential instruction, since EMB = "0"
LD A,P3 ; A ← (P3)
SMB 0 ; Non-essential instruction, since EMB = "0"
LD ADATA,A ; (046H) ← A
LD BDATA,A ; (F8EH) ← A

2. If EMB = "1":

ADATA EQU 46H
BDATA EQU 8EH

SMB 15
LD A,P3 ; A ← (P3)
SMB 0
LD ADATA,A ; (046H) ← A
LD BDATA,A ; (08EH) ← A

ADDRESSING MODES KS57C5116/P5116 MICROCONTROLLER

3–10

+ + PROGRAMMING TIP — 4-Bit Addressing Modes (Continued)

4-Bit Indirect Addressing (Example 1)

1. If EMB = "0", compare bank 0 locations 040H–046H with bank 0 locations 060H–066H:

ADATA EQU 46H
BDATA EQU 66H

SMB 1 ; Non-essential instruction, since EMB = "0"
LD HL,#BDATA
LD WX,#ADATA

COMP LD A,@WL ; A ← bank 0 (040H–046H)
CPSE A,@HL ; If bank 0 (060H–066H) = A, skip
SRET
DECS L
JR COMP
RET

2. If EMB = "1", compare bank 0 locations 040H–046H to bank 1 locations 160H–166H:

ADATA EQU 46H
BDATA EQU 66H

SMB 1
LD HL,#BDATA
LD WX,#ADATA

COMP LD A,@WL ; A ← bank 0 (040H–046H)
CPSE A,@HL ; If bank 1 (160H–166H) = A, skip
SRET
DECS L
JR COMP
RET

KS57C5116/P5116 MICROCONTROLLER ADDRESSING MODES

3–11

+ + PROGRAMMING TIP — 4-Bit Addressing Modes (Concluded)

4-Bit Indirect Addressing (Example 2)

1. If EMB = "0", exchange bank 0 locations 040H–046H with bank 0 locations 060H–066H:

ADATA EQU 46H
BDATA EQU 66H

SMB 1 ; Non-essential instruction, since EMB = "0"
LD HL,#BDATA
LD WX,#ADATA

TRANS LD A,@WL ; A ← bank 0 (040H–046H)
XCHD A,@HL ; Bank 0 (060H–066H) ← A
JR TRANS

2. If EMB = "1", exchange bank 0 locations 040H–046H to bank 1 locations 160H–166H:

ADATA EQU 46H
BDATA EQU 66H

SMB 1
LD HL,#BDATA
LD WX,#ADATA

TRANS LD A,@WL ; A ← bank 0 (040H–046H)
XCHD A,@HL ; Bank 1 (160H–166H) ← A
JR TRANS

ADDRESSING MODES KS57C5116/P5116 MICROCONTROLLER

3–12

8-BIT ADDRESSING

Table 3–4. 8-Bit Direct and Indirect RAM Addressing

Instruction
Notation

Addressing Mode
Description

EMB Flag
Setting

Addressable
Area

Memory
Bank

Hardware I/O
Mapping

000H–07FH Bank 0 —

DA Direct: 8-bit address indicated
by the RAM address (DA =
even number) and memory
bank selection

0 F80H–FFFH Bank 15 All 8-bit ad-
dressable pe-

ripherals

1 000H–FFFH SMB = 0, 1,
15

(SMB = 15)

@HL Indirect: the 8-bit address indi-
cated by the memory bank
selection and register HL; (the
4-bit L register value must be
an even number)

0 000H–0FFH Bank 0

1 000H–FFFH SMB = 0, 1,
15

+ + PROGRAMMING TIP — 8-Bit Addressing Modes

8-Bit Direct Addressing

1. If EMB = "0":

ADATA EQU 46H
BDATA EQU 8EH

SMB 15 ; Non-essential instruction, since EMB = "0"
LD EA,P4 ; E ← (P5), A ← (P4)
SMB 0
LD ADATA,EA ; (046H) ← A, (047H) ← E
LD BDATA,EA ; (F8EH) ← A, (F8FH) ← E

2. If EMB = "1":

ADATA EQU 46H
BDATA EQU 8EH

SMB 15
LD EA,P4 ; E ← (P5), A ← (P4)
SMB 0
LD ADATA,EA ; (046H) ← A, (047H) ← E
LD BDATA,EA ; (08EH) ← A, (08FH) ← E

KS57C5116/P5116 MICROCONTROLLER ADDRESSING MODES

3–13

+ + PROGRAMMING TIP — 8-Bit Addressing Modes (Continued)

8-Bit Indirect Addressing

1. If EMB = "0":

ADATA EQU 146H
SMB 1 ; Non-essential instruction, since EMB = "0"
LD HL,#ADATA
LD EA,@HL ; A ← (046H), E ← (047H)

2. If EMB = "1":

ADATA EQU 146H
SMB 1
LD HL,#ADATA
LD EA,@HL ; A ← (146H), E ← (147H)

ADDRESSING MODES KS57C5116/P5116 MICROCONTROLLER

3–14

NOTES

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–1

4 MEMORY MAP

OVERVIEW

To support program control of peripheral hardware, I/O addresses for peripherals are memory-mapped to bank
15 of the RAM. Memory mapping lets you use a mnemonic as the operand of an instruction in place of the
specific memory location.

Access to bank 15 is controlled by the select memory bank (SMB) instruction and by the enable memory bank
flag (EMB) setting. If the EMB flag is "0", bank 15 can be addressed using direct addressing, regardless of the
current SMB value. 1-bit direct and indirect addressing can be used for specific locations in bank 15, regardless
of the current EMB value.

I/O MAP FOR HARDWARE REGISTERS

Table 4–1 contains detailed information about I/O mapping for peripheral hardware in bank 15 (register loca-
tions F80H–FFFH). Use the I/O map as a quick-reference source when writing application programs. The I/O
map gives you the following information:

— Register address

— Register name (mnemonic for program addressing)

— Bit values (both addressable and non-manipulable)

— Read-only, write-only, or read and write addressability

— 1-bit, 4-bit, or 8-bit data manipulation characteristics

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–2

Table 4–1. I/O Map for Memory Bank 15

Memory Bank 15 Addressing Mode

Address Register Bit 3 Bit 2 Bit 1 Bit 0 R/W 1-Bit 4-Bit 8-Bit

F80H SP .3 .2 .1 "0" R/W No No Yes

F81H .7 .6 .5 .4

F82H – F84H are not mapped.

F85H BMOD .3 .2 .1 .0 W .3 Yes No

F86H BCNT R No No Yes

F87H

F88H WMOD "0" .2 .1 .0 W No No Yes

F89H .7 "0" .5 .4

F8AH – F8FH are not mapped.

F90H TMOD0 .3 .2 "0" "0" W .3 No Yes

F91H "0" .6 .5 .4

F92H TOE1 TOE0 BOE "0" R/W Yes Yes No

F93H "0" TOL1 TOL0 "0" R Yes Yes No

F94H TCNT0 R No No Yes

F95H

F96H TREF0 W No No Yes

F97H

F98H – F9FH are not mapped.

FA0H TMOD1 .3 .2 "0" "0" W .3 No Yes

FA1H "0" .6 .5 .4

FA2H – FA3H are not mapped.

FA4H TCNT1 R No No Yes

FA5H

FA6H – FA7H are not mapped.

FA8H TREF1 W No No Yes

FA9H

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–3

Table 4–1. I/O Map for Memory Bank 15 (Continued)

Memory Bank 15 Addressing Mode

Address Register Bit 3 Bit 2 Bit 1 Bit 0 R/W 1-Bit 4-Bit 8-Bit

FAAH – FAFH are not mapped.

FB0H PSW IS1 IS0 EMB ERB R/W Yes Yes Yes

FB1H C (1) SC2 SC1 SC0 R No No

FB2H IPR IME .2 .1 .0 W IME Yes No

FB3H PCON .3 .2 .1 .0 W No Yes No

FB4H IMOD0 .3 "0" .1 .0 W No Yes No

FB5H IMOD1 "0" "0" "0" .0 W

FB6H IMOD2 "0" "0" .1 .0 W

FB7H SCMOD .3 "0" "0" .0 W Yes No No

FB8H IE4 IRQ4 IEB IRQB R/W Yes Yes No

 FB9H is not mapped.

FBAH "0" "0" IEW IRQW R/W Yes Yes No

FBBH "0" "0" IET1 IRQT1

FBCH "0" "0" IET0 IRQT0

FBDH "0" "0" IES IRQS

FBEH IE1 IRQ1 IE0 IRQ0

FBFH "0" "0" IE2 IRQ2

FC0H DTMR "0" .2 .1 .0 W No No Yes

FC1H .7 .6 .5 .4

FC2H BSC2 R/W Yes Yes Yes

FC3H BSC3

FC4H – FCFH are not mapped.

FD0H CLMOD .3 "0" .1 .0 W No Yes No

FD1H – FDBH are not mapped.

FDCH PUMOD1 PUR3 PUR2 PUR1 PUR0 W No No Yes

FDDH PUR9 PUR8 PUR7 PUR6

FDEH PUMOD2 PUR13 PDR12 PUR11 PUR10 Yes

FDFH "0" "0" "0" "0"

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–4

Table 4–1. I/O Map for Memory Bank 15 (Concluded)

Memory Bank 15 Addressing Mode

Address Register Bit 3 Bit 2 Bit 1 Bit 0 R/W 1-Bit 4-Bit 8-Bit

FE0H SMOD .3 .2 .1 .0 W .3 No Yes

FE1H .7 .6 .5 "0"

FE2H

FE3H

FE4H SBUF R/W No No Yes

FE5H

FE6H

FE7H

FE8H PMG1 PM0.3 PM0.2 PM0.1 PM0.0 W No No Yes

FE9H PM7 "0" PM5 PM4

FEAH PMG2 PM2.3 PM2.2 PM2.1 PM2.0 Yes

FEBH PM3.3 PM3.2 PM3.1 PM3.0

FECH PMG3 PM6.3 PM6.2 PM6.1 PM6.0 Yes

FEDH PM8.3 PM8.2 PM8.1 PM8.0

FEEH PMG4 PM12.3 PM12.2 PM12.1 PM12.0 Yes

FEFH PM13 PM11 PM10 PM9

FF0H Port 0 .3 .2 .1 .0 R/W Yes Yes No

FF1H Port 1 .3 .2 .1 .0 R

FF2H Port 2 .3 .2 .1 .0 R/W No

FF3H Port 3 .3 .2 .1 .0 R/W

FF4H Port 4 .3 .2 .1 .0 R/W Yes

FF5H Port 5 .3 / .7 .2 / .6 .1 / .5 .0 / .4 R/W

FF6H Port 6 .3 .2 .1 .0 R/W Yes

FF7H Port 7 .3 / .7 .2 / .6 .1 / .5 .0 / .4 R/W

FF8H Port 8 .3 .2 .1 .0 R/W No

FF9H Port 9 .3 .2 .1 .0 R/W

FFAH Port 10 .3 .2 .1 .0 R/W Yes

FFBH Port 11 .3 / .7 .2 / .6 .1 / .5 .0 / .4 R/W

FFCH Port 12 .3 .2 .1 .0 R/W No

FFDH Port 13 .3 .2 .1 .0 R/W

FFEH

FFFH

NOTE: The carry flag can be read or written by specific bit manipulation instructions only.

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–5

REGISTER DESCRIPTIONS

In this section, register descriptions are presented in a consistent format to familiarize you with the memory-
mapped I/O locations in bank 15 of the RAM. Figure 4–1 describes features of the register description format.
Register descriptions are arranged in alphabetical order. Programmers can use this section as a quick-reference
source when writing application programs.

Counter registers, buffer registers, and reference registers, as well as the stack pointer and port I/O latches,
are not included in these descriptions. More detailed information about how these registers are used is included in
Part II of this manual, "Hardware Descriptions," in the context of the corresponding peripheral hardware module
descriptions.

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–6

CLMOD — Clock Output Mode Control Register FD0H

Bit
Identifier
RESET Value
Read/Write
Bit Addressing

.3

.2

.1 – .0

Enable/Disable Clock Output Control Bit

Bit 2

Clock Source and Frequency Selection Control Bits

W W W W

4

0 0 0 0

3 2 1 0

.3 .2 .1 .0

0

0

1

Disable clock output

Enable clock output

Always logic zero

Register ID Register name
Register location
in RAM bank 15

Bit number in
MSB to LSB order

Bit identifier used
for bit addressing

Bit value immediately
following a RESET

Type of addressing
that must be used to
address the bit (1-bit,
4-bit, or 8-bit)

=
=
=
=

R
W

R/W
'–'

Read-only
Write-only
Read/write
Not used

Bit identifiers used
for bit addressing

Description of the
effect of specific bit
settings

Name of individual
bit or related bits

4 4 4

0
0

1

1

0
1

0

1

Select CPU clock source

Select system clock fxx/8 (524 kHz at 4.19 MHz)
Select system clock fxx/16 (262 kHz at 4.19 MHz)

Select system clock fxx/64 (65.5 kHz at 4.19 MHz)

Figure 4–1. Register Description Format

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–7

BMOD — Basic Timer Mode Register BT F85H

Bit 3 2 1 0

Identifier .3 .2 .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 1/4 4 4 4

BMOD.3 Basic Timer Restart Bit

1 Restart basic timer, then clear IRQB flag, BCNT and BMOD.3 to logic zero

BMOD.2 – .0 Input Clock Frequency and Signal Stabilization Interval Control Bits

0 0 0 Input clock frequency:
Signal stabilization interval:

fxx / 212 (0.87 kHz)
220 / fxx (292.9 ms)

0 1 1 Input clock frequency:
Signal stabilization interval:

fxx / 29 (6.99 kHz)
217 / fxx (36.6 ms)

1 0 1 Input clock frequency:
Signal stabilization interval:

fxx / 27 (27.9 kHz)
215 / fxx (9.15 ms)

1 1 1 Input clock frequency:
Signal stabilization interval:

fxx / 25 (111.8 kHz)
213 / fxx (2.29 ms)

NOTES:
1. Signal stabilization interval is the time required to stabilize clock signal oscillation after stop mode is terminated by

an interrupt. The stabilization interval can also be interpreted as "Interrupt Interval Time".
2. When a RESET occurs, the oscillation stabilization time is 36.6 ms (217/fxx) at 3.579545 MHz.
3. 'fxx' is the system clock rate given a clock frequency of 3.579545 MHz.

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–8

CLMOD — Clock Output Mode Register CPU FD0H

Bit 3 2 1 0

Identifier .3 "0" .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

CLMOD.3 Enable/Disable Clock Output Control Bit

0 Disable clock output

1 Enable clock output

CLMOD.2 Bit 2

0 Always logic zero

CLMOD.1 – .0 Clock Source and Frequency Selection Control Bits

0 0 Select CPU clock source fxx/4, fxx/8, or fxx/64 (0.89 MHz, 447 kHz, or
55.9 kHz)

0 1 Select system clock fxx/8 (447.4 kHz)

1 0 Select system clock fxx/16 (223.7 kHz)

1 1 Select system clock fxx/64 (55.9 kHz)

NOTE: 'fxx' is the system clock, given a clock frequency of 3.579545 MHz.

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–9

DTMR — DTMF Mode Register DTMF FC1H, FC0H

Bit 3 2 1 0 3 2 1 0

Identifier .7 .6 .5 .4 — .2 .1 .0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

DTMR.7 – .4 DTMR Bit Values For Keyboard Inputs

0 0 0 0 Function key D

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 0

1 0 1 1 *
1 1 0 0 #
1 1 0 1 Function key A

1 1 1 0 Function key B

1 1 1 1 Function key C

DTMR.3 Bit 3

— Don't care

DTMR.2 – .1 Tone Selection Bits

0 0 Dual-tone enable

1 0 Dual-tone enable (alternate setting)

0 1 Single-column tone enable

1 1 Single-low tone enable

DTMR.0 DTMF Operation Enable/Disable Bit

0 Disable DTMF operation

1 Enable DTMF operation

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–10

IMOD0 — External Interrupt 0 (INT0) Mode Register CPU FB4H

Bit 3 2 1 0

Identifier .3 "0" .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

IMOD0.3 Interrupt Sampling Clock Selection Bit

0 Select CPU clock as a sampling clock

1 Select sampling clock frequency of the selected system clock (fxx/64)

IMOD0.2 Bit 2

0 Always logic zero

IMOD0.1 – .0 External Interrupt Mode Control Bits

0 0 Interrupt requests are triggered by a rising signal edge

0 1 Interrupt requests are triggered by a falling signal edge

1 0 Interrupt requests are triggered by both rising and falling signal edges

1 1 Interrupt request flag (IRQx) cannot be set to logic one

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–11

IMOD1 — External Interrupt 1 (INT1) Mode Register CPU FB5H

Bit 3 2 1 0

Identifier "0" "0" "0" .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

IMOD1.3 – .1 Bits 3–1

0 Always logic zero

IMOD1.0 External Interrupt 1 Edge Detection Control Bit

0 Rising edge detection

1 Falling edge detection

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–12

IMOD2 — External Interrupt 2 (INT2) Mode Register CPU FB6H

Bit 3 2 1 0

Identifier .3 .2 .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

IMOD2.3 – .2 Bits 3–2

0 Always logic zero

IMOD2.1 – .0 External Interrupt 2 Edge Detection Selection Bit

0 0 Interrupt request at INT2 pin triggered by rising edge

0 1 Interrupt request at KS4–KS7 triggered by falling edge

1 0 Interrupt request at KS2–KS7 triggered by falling edge

1 1 Interrupt request at KS0–KS7 triggered by falling edge

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–13

IE0, 1, IRQ0, 1 — INT0, 1 Interrupt Enable/Request Flags CPU FBEH

Bit 3 2 1 0

Identifier IE1 IRQ1 IE0 IRQ0

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

IE1 INT1 Interrupt Enable Flag

0 Disable interrupt requests at the INT1 pin

1 Enable interrupt requests at the INT1 pin

IRQ1 INT1 Interrupt Request Flag

– Generate INT1 interrupt (This bit is set and cleared by hardware when rising or
falling edge detected at INT1 pin.)

IE0 INT0 Interrupt Enable Flag

0 Disable interrupt requests at the INT0 pin

1 Enable interrupt requests at the INT0 pin

IRQ0 INT0 Interrupt Request Flag

– Generate INT0 interrupt (This bit is set and cleared automatically by hardware
when rising or falling edge detected at INT0 pin.)

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–14

IE2, IRQ2 — INT2 Interrupt Enable/Request Flags CPU FBFH

Bit 3 2 1 0

Identifier "0" "0" IE2 IRQ2

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3 – .2 Bits 3–2

0 Always logic zero

IE2 INT2 Interrupt Enable Flag

0 Disable INT2 interrupt requests at the INT2 pin or KS0–KS7 pins

1 Enable INT2 interrupt requests at the INT2 pin or KS0–KS7 pins

IRQ2 INT2 Interrupt Request Flag

– Generate INT2 quasi-interrupt (This bit is set and is not cleared automatically
by hardware when a rising edge is detected at INT2 or when a falling edge is
detected at one of the KS0–KS7 pins. Since INT2 is a quasi-interrupt, IRQ2
flag must be cleared by software.)

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–15

IE4, IRQ4 — INT4 Interrupt Enable/Request Flags CPU FB8H

IEB, IRQB — INTB Interrupt Enable/Request Flags CPU FB8H

Bit 3 2 1 0

Identifier IE4 IRQ4 IEB IRQB

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

IE4 INT4 Interrupt Enable Flag

0 Disable interrupt requests at the INT4 pin

1 Enable interrupt requests at the INT4 pin

IRQ4 INT4 Interrupt Request Flag

– Generate INT4 interrupt (This bit is set and cleared automatically by hardware
when rising and falling signal edge detected at INT4 pin.)

IEB INTB Interrupt Enable Flag

0 Disable INTB interrupt requests

1 Enable INTB interrupt requests

IRQB INTB Interrupt Request Flag

– Generate INTB interrupt (This bit is set and cleared automatically by hardware
when reference interval signal received from basic timer.)

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–16

IES, IRQS — INTS Interrupt Enable/Request Flags CPU FBDH

Bit 3 2 1 0

Identifier "0" "0" IES IRQS

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3 – .2 Bits 3–2

0 Always logic zero

IES INTS Interrupt Enable Flag

0 Disable INTS interrupt requests

1 Enable INTS interrupt requests

IRQS INTS Interrupt Request Flag

– Generate INTS interrupt (This bit is set and cleared automatically by hardware
when serial data transfer completion signal received from serial I/O interface.)

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–17

IET0, IRQT0 — INTT0 Interrupt Enable/Request Flags CPU FBCH

Bit 3 2 1 0

Identifier "0" "0" IET0 IRQT0

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3 – .2 Bits 3–2

0 Always logic zero

IET0 INTT0 Interrupt Enable Flag

0 Disable INTT0 interrupt requests

1 Enable INTT0 interrupt requests

IRQT0 INTT0 Interrupt Request Flag

– Generate INTT0 interrupt (This bit is set and cleared automatically by
hardware when contents of TCNT0 and TREF0 registers match.)

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–18

IET1, IRQT1 — INTT1 Interrupt Enable/Request Flags CPU FBBH

Bit 3 2 1 0

Identifier "0" "0" IET1 IRQT1

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.2–.3 Bits 2–3

0 Always logic 0

IET1 INTT1 Interrupt Enable Flag

0 Disable INTT1 interrupt requests

1 Enable INTT1 interrupt requests

IRQT1 INTT1 Interrupt Request Flag

– Generate INTT1 interrupt (This bit is set and cleared automatically by
hardware when contents of TCNT1 and TREF1 registers match.)

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–19

IEW, IRQW — INTW Interrupt Enable/Request Flags CPU FBAH

Bit 3 2 1 0

Identifier "0" "0" IEW IRQW

RESET Value 0 0 0 0

Read/Write R/W R/W R/W R/W

Bit Addressing 1/4 1/4 1/4 1/4

.3 – .2 Bits 3–2

0 Always logic zero

IEW INTW Interrupt Enable Flag

0 Disable INTW interrupt requests

1 Enable INTW interrupt requests

IRQW INTW Interrupt Request Flag

– Generate INTW interrupt (This bit is set when the timer interval is set to 0.5
seconds or 3.19 milliseconds at the watch timer frequency of 32.768 kHz.)

NOTE: Since INTW is a quasi-interrupt, the IRQW flag must be cleared by software.

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–20

IPR — Interrupt Priority Register CPU FB2H

Bit 3 2 1 0

Identifier IME .2 .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 1/4 4 4 4

IME Interrupt Master Enable Bit (MSB)

0 Disable all interrupt processing

1 Enable processing of all interrupt service requests

IPR.2 – .0 Interrupt Priority Assignment Bits

0 0 0 Normal interrupt processing according to default priority settings

0 0 1 Process INTB and INT4 interrupts at highest priority

0 1 0 Process INT0 interrupts at highest priority

0 1 1 Process INT1 interrupts at highest priority

1 0 0 Process INTS interrupts at highest priority

1 0 1 Process INTT0 interrupts at highest priority

1 1 0 Process INTT1 interrupts at highest priority

NOTE: During normal interrupt processing, interrupts are processed in the order in which they occur. If two or more
interrupts occur simultaneously, the processing order is determined by the default interrupt priority settings
shown below. Using the IPR settings, you can select specific interrupts for high-priority processing in the event of
contention. When the high-priority (IPR) interrupt has been processed, waiting interrupts are handled according
to their default priorities. The default priorities are as follows ('1' is highest priority; '6' is lowest priority):

INTB, INT4 1
INT0 2
INT1 3
INTS 4
INTT0 5
INTT1 6

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–21

PCON — Power Control Register CPU FB3H

Bit 3 2 1 0

Identifier .3 .2 .1 .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 4 4 4 4

PCON.3 – .2 CPU Operating Mode Control Bits

0 0 Enable normal CPU operating mode

0 1 Initiate idle power-down mode

1 0 Initiate stop power-down mode

PCON.1 – .0 CPU Clock Frequency Selection Bits

0 0 Select fxx/64

1 0 Select fxx/8

1 1 Select fxx/4

NOTE: 'fxx' is the system clock.

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–22

PSW — Program Status Word CPU FB1H, FB0H

Bit 7 6 5 4 3 2 1 0

Identifier C SC2 SC1 SC0 IS1 IS0 EMB ERB

RESET Value (NOTE 1) 0 0 0 0 0 0 0

Read/Write R/W R R R R/W R/W R/W R/W

Bit Addressing (NOTE 2) 8 8 8 1/4 1/4 1 1

C Carry Flag

0 No overflow or borrow condition exists

1 An overflow or borrow condition does exist

SC2 – SC0 Skip Condition Flags

0 No skip condition exists; no direct manipulation of these bits is allowed

1 A skip condition exists; no direct manipulation of these bits is allowed

IS1, IS0 Interrupt Status Flags

0 0 Service all interrupt requests

0 1 Service only the high-priority interrupt(s) as determined in the interrupt
priority register (IPR)

1 0 Do not service any more interrupt requests

1 1 Undefined

EMB Enable Data Memory Bank Flag

0 Restrict program access to data memory to bank 15 (F80H–FFFH) and to
the locations 000H–07FH in the bank 0 only

1 Enable full access to data memory banks 0, 1, and 15

ERB Enable Register Bank Flag

0 Select register bank 0 as working register area

1 Select register banks 0, 1, 2, or 3 as working register area in accordance with
the select register bank (SRB) instruction operand

NOTES:
1. The value of the carry flag after a RESET occurs during normal operation is undefined. If a RESET occurs during

power-down mode (IDLE or STOP), the current value of the carry flag is retained.
2. The carry flag can only be addressed by a specific set of 1-bit manipulation instructions. See Section 2 for

detailed information.

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–23

PMG1 — Port I/O Mode Flags (Group 1: Ports 0, 4, 5, 7) I/O FE9H, FE8H

Bit 7 6 5 4 3 2 1 0

Identifier PM7 "0" PM5 PM4 PM0.3 PM0.2 PM0.1 PM0.0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

PM7 Port 7 I/O Mode Selection Flag

0 Set port 7 to input mode

1 Set port 7 to output mode

.6 Bit 6

0 Always logic zero

PM5 Port 5 I/O Mode Selection Flag

0 Set port 5 to input mode

1 Set port 5 to output mode

PM4 Port 4 I/O Mode Selection Flag

0 Set port 4 to input mode

1 Set port 4 to output mode

PM0.3 P0.3 I/O Mode Selection Flag

0 Set P0.3 to input mode

1 Set P0.3 to output mode

PM0.2 P0.2 I/O Mode Selection Flag

0 Set P0.2 to input mode

1 Set P0.2 to output mode

PM0.1 P0.1 I/O Mode Selection Flag

0 Set P0.1 to input mode

1 Set P0.1 to output mode

PM0.0 P0.0 I/O Mode Selection Flag

0 Set P0.0 to input mode

1 Set P0.0 to output mode

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–24

PMG2 — Port I/O Mode Flags (Group 2: Ports 2, 3) I/O FEBH, FEAH

Bit 7 6 5 4 3 2 1 0

Identifier PM3.3 PM3.2 PM3.1 PM3.0 PM2.3 PM2.2 PM2.1 PM2.0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

PM3.3 P3.3 I/O Mode Selection Flag

0 Set P3.3 to input mode

1 Set P3.3 to output mode

PM3.2 P3.2 I/O Mode Selection Flag

0 Set P3.2 to input mode

1 Set P3.2 to output mode

PM3.1 P3.1 I/O Mode Selection Flag

0 Set P3.1 to input mode

1 Set P3.1 to output mode

PM3.0 P3.0 I/O Mode Selection Flag

0 Set P3.0 to input mode

1 Set P3.0 to output mode

PM2.3 P2.3 I/O Mode Selection Flag

0 Set P2.3 to input mode

1 Set P2.3 to output mode

PM2.2 P2.2 I/O Mode Selection Flag

0 Set P2.2 to input mode

1 Set P2.2 to output mode

PM2.1 P2.1 I/O Mode Selection Flag

0 Set P2.1 to input mode

1 Set P2.1 to output mode

PM2.0 P2.0 I/O Mode Selection Flag

0 Set P2.0 to input mode

1 Set P2.0 to output mode

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–25

PMG3 — Port I/O Mode Flags (Group 3: Ports 6 and 8) I/O FEDH, FECH

Bit 7 6 5 4 3 2 1 0

Identifier PM8.3 PM8.2 PM8.1 PM8.0 PM6.3 PM6.2 PM6.1 PM6.0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

PM8.3 P8.3 I/O Mode Selection Flag

0 Set P8.3 to input mode

1 Set P8.3 to output mode

PM8.2 P8.2 I/O Mode Selection Flag

0 Set P8.2 to input mode

1 Set P8.2 to output mode

PM8.1 P8.1 I/O Mode Selection Flag

0 Set P8.1 to input mode

1 Set P8.1 to output mode

PM8.0 P8.0 I/O Mode Selection Flag

0 Set P8.0 to input mode

1 Set P8.0 to output mode

PM6.3 P6.3 I/O Mode Selection Flag

0 Set P6.3 to input mode

1 Set P6.3 to output mode

PM6.2 P6.2 I/O Mode Selection Flag

0 Set P6.2 to input mode

1 Set P6.2 to output mode

PM6.1 P6.1 I/O Mode Selection Flag

0 Set P6.1 to input mode

1 Set P6.1 to output mode

PM6.0 P6.0 I/O Mode Selection Flag

0 Set P6.0 to input mode

1 Set P6.0 to output mode

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–26

PMG4 — Port I/O Mode Flags (Group 3: Ports 9, 10, 11, 12, 13) I/O FEFH, FEEH

Bit 7 6 5 4 3 2 1 0

Identifier PM13 PM11 PM10 PM9 PM12.3 PM12.2 PM12.1 PM12.0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

PM13 Port 13 I/O Mode Selection Flag

0 Set port 13 to input mode

1 Set port 13 to output mode

PM11 Port 11 I/O Mode Selection Flag

0 Set port 11 to input mode

1 Set port 11 to output mode

PM10 Port 10 I/O Mode Selection Flag

0 Set port 10 to input mode

1 Set port 10 to output mode

PM9 Port 9 I/O Mode Selection Flag

0 Set port 9 to input mode

1 Set port 9 to output mode

PM12.3 P12.3 I/O Mode Selection Flag

0 Set P12.3 to input mode

1 Set P12.3 to output mode

PM12.2 P12.2 I/O Mode Selection Flag

0 Set P12.2 to input mode

1 Set P12.2 to output mode

PM12.1 P12.1 I/O Mode Selection Flag

0 Set P12.1 to input mode

1 Set P12.1 to output mode

PM12.0 P12.0 I/O Mode Selection Flag

0 Set P12.0 to input mode

1 Set P12.0 to output mode

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–27

PUMOD1 — Pull-Up Resistor Mode Register 1 I/O FDDH, FDCH

Bit 7 6 5 4 3 2 1 0

Identifier PUR9 PUR8 PUR7 PUR6 PUR3 PUR2 PUR1 PUR0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

PUR9 Connect/Disconnect Port 9 Pull-Up Resistor Control Bit

0 Disconnect port 9 pull-up resistor

1 Connect port 9 pull-up resistor

PUR8 Connect/Disconnect Port 8 Pull-Up Resistor Control Bit

0 Disconnect port 8 pull-up resistor

1 Connect port 8 pull-up resistor

PUR7 Connect/Disconnect Port 7 Pull-Up Resistor Control Bit

0 Disconnect port 7 pull-up resistor

1 Connect port 7 pull-up resistor

PUR6 Connect/Disconnect Port 6 Pull-Up Resistor Control Bit

0 Disconnect port 6 pull-up resistor

1 Connect port 6 pull-up resistor

PUR3 Connect/Disconnect Port 3 Pull-Up Resistor Control Bit

0 Disconnect port 3 pull-up resistor

1 Connect port 3 pull-up resistor

PUR2 Connect/Disconnect Port 2 Pull-Up Resistor Control Bit

0 Disconnect port 2 pull-up resistor

1 Connect port 2 pull-up resistor

PUR1 Connect/Disconnect Port 1 Pull-Up Resistor Control Bit

0 Disconnect port 1 pull-up resistor

1 Connect port 1 pull-up resistor

PUR0 Connect/Disconnect Port 0 Pull-Up Resistor Control Bit

0 Disconnect port 0 pull-up resistor

1 Connect port 0 pull-up resistor

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–28

PUMOD2 — Pull-Up Resistor Mode Register 2 I/O FDFH, FDEH

Bit 7 6 5 4 3 2 1 0

Identifier "0" "0" "0" "0" PUR13 PDR12 PUR11 PUR10

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 8 8 8 8

.7– .3 Bits 7–3

0 Always cleared to logic zero

PUR13 Connect/Disconnect Port 13 Pull-Up Resistor Control Bit

0 Disconnect port 13 pull-up resistor

1 Connect port 13 pull-up resistor

PDR12 Connect/Disconnect Port 12 Pull-Down Resistor Control Bit

0 Disconnect port 12 pull-down resistor

1 Connect port 12 pull-down resistor

PUR11 Connect/Disconnect Port 11 Pull-Up Resistor Control Bit

0 Disconnect port 11 pull-up resistor

1 Connect port 11 pull-up resistor

PUR10 Connect/Disconnect Port 10 Pull-Up Resistor Control Bit

0 Disconnect port 10 pull-up resistor

1 Connect port 10 pull-up resistor

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–29

SCMOD — System Clock Mode Control Register CPU FB7H

Bit 3 2 1 0

Identifier .3 "0" "0" .0

RESET Value 0 0 0 0

Read/Write W W W W

Bit Addressing 1 1 1 1

SCMOD.2 – .1 Bits 2–1

0 Always logic zero

SCMOD.3 and .0 CPU Clock Selection and Main System Clock Oscillation Control Bits

0 0 Select main system clock (fx) and enable oscillation

0 1 Select subsystem clock (fxt); enable main system clock

1 1 Select subsystem clock (fxt); disable main system clock

NOTE: SCMOD bits 3 and 0 cannot be modified simultaneously by a 4-bit instruction; they can only be modified by
separate 1-bit instructions.

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–30

SMOD — Serial I/O Mode Register SIO FE1H, FE0H

Bit 7 6 5 4 3 2 1 0

Identifier .7 .6 .5 "0" .3 .2 .1 .0

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W R/W W W W

Bit Addressing 8 8 8 8 1 8 8 8

SMOD.7 – .5 Serial I/O Clock Selection and SBUF R/W Status Control Bits

0 0 0 Use an external clock at the SCK pin;
Enable SBUF when SIO operation is halted or when SCK goes high

0 0 1 Use the TOL0 clock from timer/counter 0;
Enable SBUF when SIO operation is halted or when SCK goes high

0 1 x Use the selected CPU clock (fxx/4, 8, or 64; 'fxx' is the system clock)
then, enable SBUF read/write operation. 'x' means 'don't care.'

1 0 0 3.49 kHz clock (fxx/210)

1 1 1 223.7 kHz clock (fxx/24); Note: You cannot select a fxx/24 clock fre-
quency if you have selected a CPU clock of fx/64

NOTE: All kHz frequency ratings assume a system clock of 3.579545 MHz.

SMOD.4 Bit 4

0 Always logic zero

SMOD.3 Initiate Serial I/O Operation Bit

1 Clear IRQS flag and 3-bit clock counter to logic zero; then initiate serial trans-
mission. When SIO transmission starts, this bit is cleared by hardware to logic 0.

SMOD.2 Enable/Disable SIO Data Shifter and Clock Counter Bit

0 Disable the data shifter and clock counter; the contents of IRQS flag is retained
when serial transmission is completed

1 Enable the data shifter and clock counter; The IRQS flag is set to logic one
when serial transmission is completed

SMOD.1 Serial I/O Transmission Mode Selection Bit

0 Receive-only mode

1 Transmit-and-receive mode

SMOD.0 LSB/MSB Transmission Mode Selection Bit

0 Transmit the most significant bit (MSB) first

1 Transmit the least significant bit (LSB) first

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–31

TMOD0 — Timer/Counter 0 Mode Register T/C0 F91H, F90H

Bit 3 2 1 0 3 2 1 0

Identifier "0" .6 .5 .4 .3 .2 "0" "0"

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 1 8 8 8

TMOD0.7 Bit 7

0 Always logic zero

TMOD0.6 – .4 Timer/Counter 0 Input Clock Selection Bits

0 0 0 External clock input at TCL0 pin on rising edge

0 0 1 External clock input at TCL0 pin on falling edge

1 0 0 Internal system clock (fxx) of 3.579545 MHz/210 (3.49 kHz)

1 0 1 Select clock: fxx/26 (55.93 kHz at 3.579545 MHz)

1 1 0 Select clock: fxx/24 (223.7 kHz at 3.579545 MHz)

1 1 1 Select clock: fxx (3.579545 MHz)

TMOD0.3 Clear Counter and Resume Counting Control Bit

1 Clear TCNT0, IRQT0, and TOL0 and resume counting immediately
(This bit is cleared automatically when counting starts.)

TMOD0.2 Enable/Disable Timer/Counter 0 Bit

0 Disable timer/counter 0; retain TCNT0 contents

1 Enable timer/counter 0

TMOD0.1 Bit 1

0 Always logic zero

TMOD0.0 Bit 0

0 Always logic zero

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–32

TMOD1 — Timer/Counter 1 Mode Register T/C1 F91H, F90H

Bit 3 2 1 0 3 2 1 0

Identifier "0" .6 .5 .4 .3 .2 "0" "0"

RESET Value 0 0 0 0 0 0 0 0

Read/Write W W W W W W W W

Bit Addressing 8 8 8 8 1 8 8 8

TMOD1.7 Bit 7

0 Always logic zero

TMOD1.6 – .4 Timer/Counter 0 Input Clock Selection Bits

0 0 0 External clock input at TCL1 pin on rising edge

0 0 1 External clock input at TCL1 pin on falling edge

1 0 0 Internal system clock (fxx) of 3.579545 MHz/212 (0.87 kHz)

1 0 1 Select clock: fxx/210 (3.49 kHz at 3.579545 MHz)

1 1 0 Select clock: fxx/28 (13.98 kHz at 3.579545 MHz)

1 1 1 Select clock: fxx/26 (55.93 kHz at 3.579545 MHz)

TMOD1.3 Clear Counter and Resume Counting Control Bit

1 Clear TCNT1, IRQT1, and TOL1 and resume counting immediately
(This bit is cleared automatically when counting starts.)

TMOD1.2 Enable/Disable Timer/Counter 0 Bit

0 Disable timer/counter 1; retain TCNT1 contents

1 Enable timer/counter 1

TMOD1.1 Bit 1

0 Always logic zero

TMOD1.0 Bit 0

0 Always logic zero

KS57C5116/P5116 MICROCONTROLLER MEMORY MAP

4–33

TOE — Timer Output Enable Flag Register T/C F92H

Bit 3 2 1 0

Identifier TOE1 TOE0 BOE "0"

RESET Value 0 0 0 0

Read/Write R/W R/W R/W W

Bit Addressing 1/4 1/4 1/4 1/4

TOE1 Timer/Counter 1 Output Enable Flag

0 Disable timer/counter 1 output to the TCLO1 pin

1 Enable timer/counter 1 output to the TCLO1 pin

TOE0 Timer/Counter 0 Output Enable Flag

0 Disable timer/counter 0 output at the TCLO0 pin

1 Enable timer/counter 0 output at the TCLO0 pin

BOE Basic Timer Output Enable Flag

0 Disable basic timer output at the BTCO pin

1 Enable basic timer output at the BTCO pin

.0 Bit 0

0 Always logic zero

MEMORY MAP KS57C5116/P5116 MICROCONTROLLER

4–34

WMOD — Watch Timer Mode Register WT F89H, F88H

Bit 3 2 1 0 3 2 1 0

Identifier .7 .6 .5 .4 .3 .2 .1 .0

RESET Value 0 0 0 0 (NOTE) 0 0 0

Read/Write W W W W R W W W

Bit Addressing 8 8 8 8 1 8 8 8

WMOD.7 Enable/Disable Buzzer Output Bit

0 Disable buzzer (BUZ) signal output

1 Enable buzzer (BUZ) signal output

WMOD.6 Bit 6

0 Always logic zero

WMOD.5 – .4 Output Buzzer Frequency Selection Bits

0 0 fw/16 buzzer (BUZ) signal output (2 kHz)

0 1 fw/8 buzzer (BUZ) signal output (4 kHz)

1 0 fw/4 buzzer (BUZ) signal output (8 kHz)

1 1 fw/2 buzzer (BUZ) signal output (16 kHz)

WMOD.3 XTin Input Level Control Bit

0 Input level to XTin pin is low; 1-bit read-only addressable for tests

1 Input level to XTin pin is high; 1-bit read-only addressable for tests

WMOD.2 Enable/Disable Watch Timer Bit

0 Disable watch timer and clear frequency dividing circuits

1 Enable watch timer

WMOD.1 Watch Timer Speed Control Bit

0 Normal speed; set IRQW to 0.5 seconds

1 High-speed operation; set IRQW to 3.91 ms

WMOD.0 Watch Timer Clock Selection Bit

0 Select main system clock (fxx)/128 as the watch timer clock (fw)

1 Select a subsystem clock as the watch timer clock (fw)

NOTES:
1. System clock of 4.19 MHz and typical subsystem clock of 32.768 kHz are assumed.
2. RESET sets WMOD.3 to the current input level of the subsystem clock, XTin. If the input level is high, WMOD.3 is

set to logic one; if low, WMOD.3 is cleared to zero along with all the other bits in the WMOD register.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–1

5 SAM47 INSTRUCTION SET

OVERVIEW

The SAM47 instruction set includes 1-bit, 4-bit, and 8-bit instructions for data manipulation, logical and
arithmetic operations, program control, and CPU control. I/O instructions for peripheral hardware devices are
flexible and easy to use. Symbolic hardware names can be substituted as the instruction operand in place of the
actual address. Other important features of the SAM47 instruction set include:

— 1-byte referencing of long instructions (REF instruction)

— Redundant instruction reduction (string effect)

— Skip feature for ADC and SBC instructions

Instruction operands conform to the operand format defined for each instruction. Several instructions have
multiple operand formats.

Predefined values or labels can be used as instruction operands when addressing immediate data. Many of
the symbols for specific registers and flags may also be substituted as labels for operations such DA, mema,
memb, b, and so on. Using instruction labels can greatly simplify program writing and debugging tasks.

INSTRUCTION SET FEATURES

In this section, the following SAM47 instruction set features are described in detail:

— Instruction reference area

— Instruction redundancy reduction

— Flexible bit manipulation

— ADC and SBC instruction skip condition

Instruction Reference Area

Using the 1-byte REF (REFerence) instruction, you can reference instructions stored in addresses 0020H–
007FH of program memory (the REF instruction look-up table). The location referenced by REF may contain
either two 1-byte instructions or a single 2-byte instruction. The starting address of the instruction being
referenced must always be an even number.

3-byte instructions such as JP or CALL may also be referenced using REF. To reference these 3-byte
instructions, the 2-byte pseudo commands TJP and TCALL must be written to the reference area instead of the
normal JP or CALL instruction.

The PC is not incremented when a REF instruction is executed. After it executes, the program's instruction ex-
ecution sequence resumes at the address immediately following the REF instruction. By using REF instructions
to execute instructions larger than one byte, as well as branches and subroutines, you can reduce the total
number of program steps. To summarize, the REF instruction can be used in three ways:

— Using the 1-byte REF instruction to execute one 2-byte or two 1-byte instructions;

— Branching to any location by referencing a branch address that is stored in the look-up table;

— Calling subroutines at any location by referencing a call address that is stored in the look-up table.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–2

Instruction Reference Area (Concluded)

If necessary, a REF instruction can be circumvented by means of a skip operation prior to the REF in the
execution sequence. In addition, the instruction immediately following a REF can also be skipped by using an
appropriate reference instruction or instructions.

Two-byte instructions which can be referenced using a REF instruction are limited to instructions with an
execution time of two machine cycles. (An exception to this rule is XCH A,DA.) In addition, when you use REF
to reference two 1-byte instructions stored in the reference area, specific combinations must be used for the first
and second 1-byte instruction. These combinations are described in Table 5–1.

Table 5–1. Valid 1-Byte Instruction Combinations for REF Look-Ups

NOTE: If the MSB value of the first one-byte instruction is "0", the instruction cannot be
referenced by a REF instruction.

First 1-Byte Instruction Second 1-Byte Instruction

Instruction Operand Instruction Operand

LD A,@HL INCS L
LD @HL,A DECS L
XCH A,@HL INCS H

DECS H
INCS HL

LD A,@WX INCS X
XCH A,@WX DECS X

INCS W
DECS W
INCS WX

LD A,@WL INCS L
XCH A,@WL DECS L

INCS W
DECS W

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–3

Reducing Instruction Redundancy

When redundant instructions such as LD A,#im and LD EA,#imm are used consecutively in a program se-
quence, only the first instruction is executed. The redundant instructions which follow are ignored, that is, they are
handled like a NOP instruction. When LD HL,#imm instructions are used consecutively, redundant instructions
are also ignored.

In the following example, only the 'LD A, #im' instruction will be executed. The 8-bit load instruction which
follows it is interpreted as redundant and is ignored:

LD A,#im ; Load 4-bit immediate data (#im) to accumulator
LD EA,#imm ; Load 8-bit immediate data (#imm) to extended accumulator

In this example, the statements 'LD A,#2H' and 'LD A,#3H' are ignored:

BITR EMB
LD A,#1H ; Execute instruction
LD A,#2H ; Ignore, redundant instruction
LD A,#3H ; Ignore, redundant instruction
LD 23H,A ; Execute instruction, 023H ← #1H

If consecutive LD HL, #imm instructions (load 8-bit immediate data to the 8-bit memory pointer pair, HL) are
detected, only the first LD is executed and the LDs which immediately follow are ignored. For example,

LD HL,#10H ; HL ← 10H
LD HL,#20H ; Ignore, redundant instruction
LD A,#3H ; A ← 3H
LD EA,#35H ; Ignore, redundant instruction
LD @HL,A ; (10H) ← 3H

If an instruction reference with a REF instruction has a redundancy effect, the following conditions apply:

— If the instruction preceding the REF has a redundancy effect, this effect is cancelled and the referenced in-
struction is not skipped.

— If the instruction following the REF has a redundancy effect, the instruction following the REF is skipped.

+ + PROGRAMMING TIP — Example of the Instruction Redundancy Effect

ORG 0020H
ABC LD EA,#30H ; Stored in REF instruction reference area

ORG 0080H
•
•
•

LD EA,#40H ; Redundancy effect is encountered
REF ABC ; No skip (EA ← #30H)

•
•
•

REF ABC ; EA ← #30H
LD EA,#50H ; Skip

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–4

Flexible Bit Manipulation

In addition to normal bit manipulation instructions like set and clear, the SAM47 instruction set can also
perform bit tests, bit transfers, and bit Boolean operations. Bits can also be addressed and manipulated by
special bit addressing modes. Three types of bit addressing are supported:

— mema.b

— memb.@L

— @H+DA.b

The parameters of these bit addressing modes are described in more detail in Table 5–2.

Table 5–2. Bit Addressing Modes and Parameters

Addressing Mode Addressable Peripherals Address Range

mema.b ERB, EMB, IS1, IS0, IEx, IRQx FB0H–FBFH

Ports 0–13 FF0H–FFFH

memb.@L Ports 0–13, and BSC FC0H–FFFH

@H+DA.b All bit-manipulable peripheral hardware All bits of the memory bank specified by
EMB and SMB that are bit-manipulable

Instructions Which Have Skip Conditions

The following instructions have a skip function when an overflow or borrow occurs:

XCHI INCS

XCHD DECS

LDI ADS

LDD SBS

If there is an overflow or borrow from the result of an increment or decrement, a skip signal is generated and a
skip is executed. However, the carry flag value is unaffected.

The instructions BTST, BTSF, and CPSE also generate a skip signal and execute a skip when they meet a
skip condition, and the carry flag value is also unaffected.

Instructions Which Affect the Carry Flag

The only instructions which do not generate a skip signal, but which do affect the carry flag are as follows:

ADC LDB C,(operand)

SBC BAND C,(operand)

SCF BOR C,(operand)

RCF BXO
R

C,(operand)

CCF

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–5

ADC and SBC Instruction Skip Conditions

The instructions 'ADC A,@HL' and 'SBC A,@HL' can generate a skip signal, and set or clear the carry flag,
when they are executed in combination with the instruction 'ADS A,#im'.

If an 'ADS A,#im' instruction immediately follows an 'ADC A,@HL' or 'SBC A,@HL' instruction in a program
sequence, the ADS instruction does not skip the instruction following ADS, even if it has a skip function. If,
however, an 'ADC A,@HL' or 'SBC A,@HL' instruction is immediately followed by an 'ADS A,#im' instruction,
the ADC (or SBC) skips on overflow (or if there is no borrow) to the instruction immediately following the ADS,
and program execution continues. Table 5–3 contains additional information and examples of the 'ADC A,@HL'
and 'SBC A,@HL' skip feature.

Table 5–3. Skip Conditions for ADC and SBC Instructions

Sample
Instruction Sequences

If the result of
instruction 1 is:

Then, the execution
sequence is:

Reason

ADC A,@HL
ADS A,#im

xxx
xxx

1
2
3
4

Overflow

No overflow

1, 3, 4

1, 2, 3, 4

ADS cannot skip instruc-
tion 3, even if it has a
skip function.

SBC A,@HL
ADS A,#im

xxx
xxx

1
2
3
4

Borrow

No borrow

1, 2, 3, 4

1, 3, 4

ADS cannot skip instruc-
tion 3, even if it has a
skip function.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–6

SYMBOLS AND CONVENTIONS

Table 5–4. Data Type Symbols

Symbol Data Type

d Immediate data

a Address data

b Bit data

r Register data

f Flag data

i Indirect addressing data

t memc × 0.5 immediate data

Table 5–5. Register Identifiers

Full Register Name ID

4-bit accumulator A

4-bit working registers E, L, H, X, W,
Z, Y

8-bit extended accumulator EA

8-bit memory pointer HL

8-bit working registers WX, YZ, WL

Select register bank 'n' SRB n

Select memory bank 'n' SMB n

Carry flag C

Program status word PSW

Port 'n' Pn

'm'-th bit of port 'n' Pn.m

Interrupt priority register IPR

Enable memory bank flag EMB

Enable register bank flag ERB

Table 5–6. Instruction Operand Notation

Symbol Definition

DA Direct address

@ Indirect address prefix

src Source operand

dst Destination operand

(R) Contents of register R

.b Bit location

im 4-bit immediate data (number)

imm 8-bit immediate data (number)

Immediate data prefix

ADR 000H–1FFFH immediate address

ADRn 'n' bit address

R A, E, L, H, X, W, Z, Y

Ra E, L, H, X, W, Z, Y

RR EA, HL, WX, YZ

RRa HL, WX, WL

RRb HL, WX, YZ

RRc WX, WL

mema FB0H–FBFH, FF0H–FFFH

memb FC0H–FFFH

memc Code direct addressing:
0020H–007FH

SB Select bank register (8 bits)

XOR Logical exclusive-OR

OR Logical OR

AND Logical AND

[(RR)] Contents addressed by RR

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–7

OPCODE DEFINITIONS

Table 5–7. Opcode Definitions (Direct)

Register r2 r1 r0

A 0 0 0

E 0 0 1

L 0 1 0

H 0 1 1

X 1 0 0

W 1 0 1

Z 1 1 0

Y 1 1 1

EA 0 0 0

HL 0 1 0

WX 1 0 0

YZ 1 1 0

r = Immediate data for register

Table 5–8. Opcode Definitions (Indirect)

Register i2 i1 i0

@HL 1 0 1

@WX 1 1 0

@WL 1 1 1

CALCULATING ADDITIONAL MACHINE CYCLES FOR SKIPS

A machine cycle is defined as one cycle of the selected CPU clock. Three different clock rates can be
selected using the PCON register.

In this document, the letter 'S' is used in tables when describing the number of additional machine cycles re-
quired for an instruction to execute, given that the instruction has a skip function ('S' = skip). The addition
number of machine cycles that will be required to perform the skip usually depends on the size of the instruction
being skipped — whether it is a 1-byte, 2-byte, or 3-byte instruction. A skip is also executed for SMB and SRB
instructions.

The values in additional machine cycles for 'S' for the three cases in which skip conditions occur are as
follows:

Case 1: No skip S = 0 cycles

Case 2: Skip is 1-byte or 2-byte instruction S = 1 cycle

Case 3: Skip is 3-byte instruction S = 2 cycles

NOTE: REF instructions are skipped in one machine cycle.

i = Immediate data for indirect addressing

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–8

HIGH-LEVEL SUMMARY

This section contains a high-level summary of the SAM47 instruction set in table format. The tables are
designed to familiarize you with the range of instructions that are available in each instruction category.

These tables are a useful quick-reference resource when writing application programs.
If you are reading this user's manual for the first time, however, you may want to scan this detailed information

briefly, and then return to it later on. The following information is provided for each instruction:

— Instruction name

— Operand(s)

— Brief operation description

— Number of bytes of the instruction and operand(s)

— Number of machine cycles required to execute the instruction

The tables in this section are arranged according to the following instruction categories:

— CPU control instructions

— Program control instructions

— Data transfer instructions

— Logic instructions

— Arithmetic instructions

— Bit manipulation instructions

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–9

Table 5–9. CPU Control Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

SCF Set carry flag to logic one 1 1

RCF Reset carry flag to logic zero 1 1

CCF Complement carry flag 1 1

EI Enable all interrupts 2 2

DI Disable all interrupts 2 2

IDLE Engage CPU idle mode 2 2

STOP Engage CPU stop mode 2 2

NOP No operation 1 1

SMB n Select memory bank 2 2

SRB n Select register bank 2 2

REF memc Reference code 1 3

VENTn EMB (0,1)
ERB (0,1)
ADR

Load enable memory bank flag (EMB) and the enable
register bank flag (ERB) and program counter to vector
address, then branch to the corresponding location

2 2

Table 5–10. Program Control Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

CPSE R,#im Compare and skip if register equals #im 2 2 + S

@HL,#im Compare and skip if indirect data memory equals #im 2 2 + S

A,R Compare and skip if A equals R 2 2 + S

A,@HL Compare and skip if A equals indirect data memory 1 1 + S

EA,@HL Compare and skip if EA equals indirect data memory 2 2 + S

EA,RR Compare and skip if EA equals RR 2 2 + S

JP ADR14 Jump to direct address (14 bits) 3 3

JPS ADR12 Jump direct in page (12 bits) 2 2

JR #im Jump to immediate address 1 2

@WX Branch relative to WX register 2 3

@EA Branch relative to EA 2 3

CALL ADR14 Call direct in page (14 bits) 3 4

CALLS ADR11 Call direct in page (11 bits) 2 3

RET — Return from subroutine 1 3

IRET — Return from interrupt 1 3

SRET — Return from subroutine and skip 1 3 + S

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–10

Table 5–11. Data Transfer Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

XCH A,DA Exchange A and direct data memory contents 2 2

A,Ra Exchange A and register (Ra) contents 1 1

A,@RRa Exchange A and indirect data memory 1 1

EA,DA Exchange EA and direct data memory contents 2 2

EA,RRb Exchange EA and register pair (RRb) contents 2 2

EA,@HL Exchange EA and indirect data memory contents 2 2

XCHI A,@HL Exchange A and indirect data memory contents;
increment contents of register L and skip on carry

1 2 + S

XCHD A,@HL Exchange A and indirect data memory contents;
decrement contents of register L and skip on carry

1 2 + S

LD A,#im Load 4-bit immediate data to A 1 1

A,@RRa Load indirect data memory contents to A 1 1

A,DA Load direct data memory contents to A 2 2

A,Ra Load register contents to A 2 2

Ra,#im Load 4-bit immediate data to register 2 2

RR,#imm Load 8-bit immediate data to register 2 2

DA,A Load contents of A to direct data memory 2 2

Ra,A Load contents of A to register 2 2

EA,@HL Load indirect data memory contents to EA 2 2

EA,DA Load direct data memory contents to EA 2 2

EA,RRb Load register contents to EA 2 2

@HL,A Load contents of A to indirect data memory 1 1

DA,EA Load contents of EA to data memory 2 2

RRb,EA Load contents of EA to register 2 2

@HL,EA Load contents of EA to indirect data memory 2 2

LDI A,@HL Load indirect data memory to A; increment register L
contents and skip on carry

1 2 + S

LDD A,@HL Load indirect data memory contents to A; decrement
register L contents and skip on carry

1 2 + S

LDC EA,@WX Load code byte from WX to EA 1 3

EA,@EA Load code byte from EA to EA 1 3

RRC A Rotate right through carry bit 1 1

PUSH RR Push register pair onto stack 1 1

SB Push SMB and SRB values onto stack 2 2

POP RR Pop to register pair from stack 1 1

SB Pop SMB and SRB values from stack 2 2

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–11

Table 5–12. Logic Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

AND A,#im Logical-AND A immediate data to A 2 2

A,@HL Logical-AND A indirect data memory to A 1 1

EA,RR Logical-AND register pair (RR) to EA 2 2

RRb,EA Logical-AND EA to register pair (RRb) 2 2

OR A, #im Logical-OR immediate data to A 2 2

A, @HL Logical-OR indirect data memory contents to A 1 1

EA,RR Logical-OR double register to EA 2 2

RRb,EA Logical-OR EA to double register 2 2

XOR A,#im Exclusive-OR immediate data to A 2 2

A,@HL Exclusive-OR indirect data memory to A 1 1

EA,RR Exclusive-OR register pair (RR) to EA 2 2

RRb,EA Exclusive-OR register pair (RRb) to EA 2 2

COM A Complement accumulator (A) 2 2

Table 5–13. Arithmetic Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

ADC A,@HL Add indirect data memory to A with carry 1 1

EA,RR Add register pair (RR) to EA with carry 2 2

RRb,EA Add EA to register pair (RRb) with carry 2 2

ADS A, #im Add 4-bit immediate data to A and skip on carry 1 1 + S

EA,#imm Add 8-bit immediate data to EA and skip on carry 2 2 + S

A,@HL Add indirect data memory to A and skip on carry 1 1 + S

EA,RR Add register pair (RR) contents to EA and skip on carry 2 2 + S

RRb,EA Add EA to register pair (RRb) and skip on carry 2 2 + S

SBC A,@HL Subtract indirect data memory from A with carry 1 1

EA,RR Subtract register pair (RR) from EA with carry 2 2

RRb,EA Subtract EA from register pair (RRb) with carry 2 2

SBS A,@HL Subtract indirect data memory from A; skip on borrow 1 1 + S

EA,RR Subtract register pair (RR) from EA; skip on borrow 2 2 + S

RRb,EA Subtract EA from register pair (RRb); skip on borrow 2 2 + S

DECS R Decrement register (R); skip on borrow 1 1 + S

RR Decrement register pair (RR); skip on borrow 2 2 + S

INCS R Increment register (R); skip on carry 1 1 + S

DA Increment direct data memory; skip on carry 2 2 + S

@HL Increment indirect data memory; skip on carry 2 2 + S

RRb Increment register pair (RRb); skip on carry 1 1 + S

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–12

Table 5–14. Bit Manipulation Instructions — High-Level Summary

Name Operand Operation Description Bytes Cycles

BTST C Test specified bit and skip if carry flag is set 1 1 + S

DA.b Test specified bit and skip if memory bit is set

mema.b

memb.@L

@H+DA.b

BTSF DA.b Test specified memory bit and skip if bit equals "0"

mema.b 2 2 + S

memb.@L

@H+DA.b

BTSTZ mema.b Test specified bit; skip and clear if memory bit is set

memb.@L

@H+DA.b

BITS DA.b Set specified memory bit

mema.b

memb.@L

@H+DA.b

BITR DA.b Clear specified memory bit to logic zero

mema.b

memb.@L

@H+DA.b

BAND C,mema.b Logical-AND carry flag with specified memory bit

C,memb.@L

C,@H+DA.b 2 2

BOR C,mema.b Logical-OR carry with specified memory bit

C,memb.@L

C,@H+DA.b

BXOR C,mema.b Exclusive-OR carry with specified memory bit

C,memb.@L

C,@H+DA.b

LDB mema.b,C Load carry bit to a specified memory bit

memb.@L,C Load carry bit to a specified indirect memory bit

@H+DA.b,C

C,mema.b Load specified memory bit to carry bit

C,memb.@L Load specified indirect memory bit to carry bit

C,@H+DA.b

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–13

BINARY CODE SUMMARY

This section contains binary code values and operation notation for each instruction in the SAM47 instruction
set in an easy-to-read, tabular format. It is intended to be used as a quick-reference source for programmers who
are experienced with the SAM47 instruction set. The same binary values and notation are also included in the
detailed descriptions of individual instructions later in Section 5.

If you are reading this user's manual for the first time, please just scan this very detailed information briefly.
Most of the general information you will need to write application programs can be found in the high-level sum-
mary tables in the previous section. The following information is provided for each instruction:

— Instruction name

— Operand(s)

— Binary values

— Operation notation

The tables in this section are arranged according to the following instruction categories:

— CPU control instructions

— Program control instructions

— Data transfer instructions

— Logic instructions

— Arithmetic instructions

— Bit manipulation instructions

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–14

Table 5–15. CPU Control Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

SCF 1 1 1 0 0 1 1 1 C ← 1

RCF 1 1 1 0 0 1 1 0 C ← 0

CCF 1 1 0 1 0 1 1 0 C ← C

EI 1 1 1 1 1 1 1 1 IME ← 1
1 0 1 1 0 0 1 0

DI 1 1 1 1 1 1 1 0 IME ← 0
1 0 1 1 0 0 1 0

IDLE 1 1 1 1 1 1 1 1 PCON.2 ← 1
1 0 1 0 0 0 1 1

STOP 1 1 1 1 1 1 1 1 PCON.3 ← 1
1 0 1 1 0 0 1 1

NOP 1 0 1 0 0 0 0 0 No operation

SMB n 1 1 0 1 1 1 0 1 SMB ← n (n = 0, 1, 15)

0 1 0 0 d3 d2 d1 d0

SRB n 1 1 0 1 1 1 0 1 SRB ← n (n = 0, 1, 2, 3)

0 1 0 1 0 0 d1 d0

REF memc t7 t6 t5 t4 t3 t2 t1 t0 PC13–0 = memc7–4, memc3–0 <1

VENTn EMB (0,1)
ERB (0,1)
ADR

E
M
B

E
R
B

a13 a12 a11 a10 a9 a8 ROM (2 x n) 7–6 ← EMB, ERB
ROM (2 x n) 5–4 ← 0, PC13, PC12
ROM (2 x n) 3–0 ← PC12–8
ROM (2 x n + 1) 7–0 ← PC7–0
(n = 0, 1, 2, 3, 4, 5, 6, 7)

a7 a6 a5 a4 a3 a2 a1 a0

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–15

Table 5–16. Program Control Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

CPSE R,#im 1 1 0 1 1 0 0 1 Skip if R = im

d3 d2 d1 d0 0 r2 r1 r0

@HL,#im 1 1 0 1 1 1 0 1 Skip if (HL) = im

0 1 1 1 d3 d2 d1 d0

A,R 1 1 0 1 1 1 0 1 Skip if A = R

0 1 1 0 1 r2 r1 r0

A,@HL 0 0 1 1 1 0 0 0 Skip if A = (HL)

EA,@HL 1 1 0 1 1 1 0 0 Skip if A = (HL), E = (HL+1)

0 0 0 0 1 0 0 1

EA,RR 1 1 0 1 1 1 0 0 Skip if EA = RR

1 1 1 0 1 r2 r1 0

JP ADR14 1 1 0 1 1 0 1 1 PC13–0 ← ADR14

0 0 a13 a12 a11 a10 a9 a8

a7 a6 a5 a4 a3 a2 a1 a0

JPS ADR12 1 0 0 1 a11 a10 a9 a8 PC13–0 ← PC13–12 + ADR11–0

a7 a6 a5 a4 a3 a2 a1 a0

JR #im * PC13–0 ← ADR (PC–15 to PC+16)

@WX 1 1 0 1 1 1 0 1 PC13–0 ← PC13–8 + (WX)

0 1 1 0 0 1 0 0

@EA 1 1 0 1 1 1 0 1 PC13–0 ← PC13–8 + (EA)

0 1 1 0 0 0 0 0

CALL ADR14 1 1 0 1 1 0 1 1 [(SP–1) (SP–2)] ← EMB, ERB

0 1 a13 a12 a11 a10 a9 a8 [(SP–3) (SP–4)] ← PC7–0

a7 a6 a5 a4 a3 a2 a1 a0 [(SP–5) (SP–6)] ← PC13–8

CALLS ADR11 1 1 1 0 1 a10 a9 a8 [(SP–1) (SP–2)] ← EMB, ERB

a7 a6 a5 a4 a3 a2 a1 a0 [(SP–3) (SP–4)] ← PC7–0
[(SP–5) (SP–6)] ← PC10–8

First Byte Condition

* JR #im 0 0 0 1 a3 a2 a1 a0 PC ← PC+2 to PC+16

0 0 0 0 a3 a2 a1 a0 PC ← PC–1 to PC–15

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–16

Table 5–16. Program Control Instructions — Binary Code Summary (Continued)

Name Operand Binary Code Operation Notation

RET – 1 1 0 0 0 1 0 1 PC13–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 2) (SP + 3)
EMB,ERB ← (SP + 5) (SP + 4)
SP ← SP + 6

IRET – 1 1 0 1 0 1 0 1 PC13–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 2) (SP + 3)
PSW ← (SP + 4) (SP + 5)
SP ← SP + 6

SRET – 1 1 1 0 0 1 0 1 PC13–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 3) (SP + 2)
EMB,ERB ← (SP + 5) (SP + 4)
SP ← SP + 6

Table 5–17. Data Transfer Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

XCH A,DA 0 1 1 1 1 0 0 1 A ↔ DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 0 1 1 0 1 r2 r1 r0 A ↔ Ra

A,@RRa 0 1 1 1 1 i2 i1 i0 A ↔ (RRa)

EA,DA 1 1 0 0 1 1 1 1 A ↔ DA,E ↔ DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ↔ RRb

1 1 1 0 0 r2 r1 0

EA,@HL 1 1 0 1 1 1 0 0 A ↔ (HL), E ↔ (HL + 1)

0 0 0 0 0 0 0 1

XCHI A,@HL 0 1 1 1 1 0 1 0 A ↔ (HL), then L ← L+1;
skip if L = 0H

XCHD A,@HL 0 1 1 1 1 0 1 1 A ↔ (HL), then L ← L-1;
skip if L = 0FH

LD A,#im 1 0 1 1 d3 d2 d1 d0 A ← im

A,@RRa 1 0 0 0 1 i2 i1 i0 A ← (RRa)

A,DA 1 0 0 0 1 1 0 0 A ← DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 1 1 0 1 1 1 0 1 A ← Ra

0 0 0 0 1 r2 r1 r0

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–17

Table 5–17. Data Transfer Instructions — Binary Code Summary (Continued)

Name Operand Binary Code Operation Notation

LD Ra,#im 1 1 0 1 1 0 0 1 Ra ← im
d3 d2 d1 d0 1 r2 r1 r0

RR,#imm 1 0 0 0 0 r2 r1 1 RR ← imm

d7 d6 d5 d4 d3 d2 d1 d0

DA,A 1 0 0 0 1 0 0 1 DA ← A
a7 a6 a5 a4 a3 a2 a1 a0

Ra,A 1 1 0 1 1 1 0 1 Ra ← A
0 0 0 0 0 r2 r1 r0

EA,@HL 1 1 0 1 1 1 0 0 A ← (HL), E ← (HL + 1)

0 0 0 0 1 0 0 0

EA,DA 1 1 0 0 1 1 1 0 A ← DA, E ← DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ← RRb

1 1 1 1 1 r2 r1 0

@HL,A 1 1 0 0 0 1 0 0 (HL) ← A

DA,EA 1 1 0 0 1 1 0 1 DA ← A, DA + 1 ← E
a7 a6 a5 a4 a3 a2 a1 a0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← EA

1 1 1 1 0 r2 r1 0

@HL,EA 1 1 0 1 1 1 0 0 (HL) ← A, (HL + 1) ← E
0 0 0 0 0 0 0 0

LDI A,@HL 1 0 0 0 1 0 1 0 A ← (HL), then L ← L+1;
skip if L = 0H

LDD A,@HL 1 0 0 0 1 0 1 1 A ← (HL), then L ← L–1;
skip if L = 0FH

LDC EA,@WX 1 1 0 0 1 1 0 0 EA ← [PC13–8 + (WX)]

EA,@EA 1 1 0 0 1 0 0 0 EA ← [PC13–8 + (EA)]

RRC A 1 0 0 0 1 0 0 0 C ← A.0, A3 ← C
A.n–1 ← A.n (n = 1, 2, 3)

PUSH RR 0 0 1 0 1 r2 r1 1 ((SP–1)) ((SP–2)) ← (RR),
(SP) ← (SP)–2

SB 1 1 0 1 1 1 0 1 ((SP–1)) ← (SMB), ((SP–2)) ← (SRB),
(SP) ← (SP)–2

0 1 1 0 0 1 1 1

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–18

Table 5–17. Data Transfer Instructions — Binary Code Summary (Concluded)

Name Operand Binary Code Operation Notation

POP RR 0 0 1 0 1 r2 r1 0 RRL ← (SP), RRH ← (SP + 1)
SP ← SP + 2

SB 1 1 0 1 1 1 0 1 (SRB) ← (SP), SMB ← (SP + 1),
SP ← SP + 2

0 1 1 0 0 1 1 0

Table 5–18. Logic Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

AND A,#im 1 1 0 1 1 1 0 1 A ← A AND im

0 0 0 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 0 1 A ← A AND (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA AND RR

0 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb AND EA

0 0 0 1 0 r2 r1 0

OR A, #im 1 1 0 1 1 1 0 1 A ← A OR im

0 0 1 0 d3 d2 d1 d0

A, @HL 0 0 1 1 1 0 1 0 A ← A OR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA OR RR

0 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb OR EA

0 0 1 0 0 r2 r1 0

XOR A,#im 1 1 0 1 1 1 0 1 A ← A XOR im

0 0 1 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 1 1 A ← A XOR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA XOR (RR)

0 0 1 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb XOR EA

0 0 1 1 0 r2 r1 0

COM A 1 1 0 1 1 1 0 1 A ← A
0 0 1 1 1 1 1 1

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–19

Table 5–19. Arithmetic Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

ADC A,@HL 0 0 1 1 1 1 1 0 C, A ← A + (HL) + C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA + RR + C

1 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C, RRb ← RRb + EA + C

1 0 1 0 0 r2 r1 0

ADS A, #im 1 0 1 0 d3 d2 d1 d0 A ← A + im; skip on carry

EA,#imm 1 1 0 0 1 0 0 1 EA ← EA + imm; skip on carry

d7 d6 d5 d4 d3 d2 d1 d0

A,@HL 0 0 1 1 1 1 1 1 A ← A + (HL); skip on carry

EA,RR 1 1 0 1 1 1 0 0 EA ← EA + RR; skip on carry

1 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb + EA; skip on carry

1 0 0 1 0 r2 r1 0

SBC A,@HL 0 0 1 1 1 1 0 0 C,A ← A – (HL) – C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA –RR – C

1 1 0 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C,RRb ← RRb – EA – C

1 1 0 0 0 r2 r1 0

SBS A,@HL 0 0 1 1 1 1 0 1 A ← A – (HL); skip on borrow

EA,RR 1 1 0 1 1 1 0 0 EA ← EA – RR; skip on borrow

1 0 1 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb – EA; skip on borrow

1 0 1 1 0 r2 r1 0

DECS R 0 1 0 0 1 r2 r1 r0 R ← R–1; skip on borrow

RR 1 1 0 1 1 1 0 0 RR ← RR–1; skip on borrow

1 1 0 1 1 r2 r1 0

INCS R 0 1 0 1 1 r2 r1 r0 R ← R + 1; skip on carry

DA 1 1 0 0 1 0 1 0 DA ← DA + 1; skip on carry

a7 a6 a5 a4 a3 a2 a1 a0

@HL 1 1 0 1 1 1 0 1 (HL) ← (HL) + 1; skip on carry

0 1 1 0 0 0 1 0

RRb 1 0 0 0 0 r2 r1 0 RRb ← RRb + 1; skip on carry

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–20

Table 5–20. Bit Manipulation Instructions — Binary Code Summary

Name Operand Binary Code Operation Notation

BTST C 1 1 0 1 0 1 1 1 Skip if C = 1

DA.b 1 1 b1 b0 0 0 1 1 Skip if DA.b = 1

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 1 Skip if mema.b = 1

memb.@L 1 1 1 1 1 0 0 1 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 1

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 0 0 1 Skip if [H + DA.3–0].b = 1

0 0 b1 b0 a3 a2 a1 a0

BTSF DA.b 1 1 b1 b0 0 0 1 0 Skip if DA.b = 0

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 0 Skip if mema.b = 0

memb.@L 1 1 1 1 1 0 0 0 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 0

0 1 0 0 a5 a4 a3 a2

@H DA.b 1 1 1 1 1 0 0 0 Skip if [H + DA.3–0].b = 0

0 0 b1 b0 a3 a2 a1 a0

BTSTZ mema.b * 1 1 1 1 1 1 0 1 Skip if mema.b = 1 and clear

memb.@L 1 1 1 1 1 1 0 1 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 1 and clear

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 0 1 Skip if [H + DA.3–0].b =1 and clear

0 0 b1 b0 a3 a2 a1 a0

BITS DA.b 1 1 b1 b0 0 0 0 1 DA.b ← 1
a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 1 mema.b ← 1

memb.@L 1 1 1 1 1 1 1 1 [memb.7–2 + L.3–2].b [L.1–0] ← 1
0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 1 [H + DA.3–0].b ← 1
0 0 b1 b0 a3 a2 a1 a0

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–21

Table 5–20. Bit Manipulation Instructions — Binary Code Summary (Continued)

Name Operand Binary Code Operation Notation

BITR DA.b 1 1 b1 b0 0 0 0 0 DA.b ← 0
a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 0 mema.b ← 0

memb.@L 1 1 1 1 1 1 1 0 [memb.7–2 + L3–2].[L.1–0] ← 0
0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 0 [H + DA.3–0].b ← 0
0 0 b1 b0 a3 a2 a1 a0

BAND C,mema.b * 1 1 1 1 0 1 0 1 C ← C AND mema.b

C,memb.@L 1 1 1 1 0 1 0 1 C ← C AND [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 1 C ← C AND [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

BOR C,mema.b * 1 1 1 1 0 1 1 0 C ← C OR mema.b

C,memb.@L 1 1 1 1 0 1 1 0 C ← C OR [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 0 C ← C OR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

BXOR C,mema.b * 1 1 1 1 0 1 1 1 C ← C XOR mema.b

C,memb.@L 1 1 1 1 0 1 1 1 C ← C XOR [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 1 C ← C XOR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–22

Table 5–20. Bit Manipulation Instructions — Binary Code Summary (Concluded)

Name Operand Binary Code Operation Notation

LDB mema.b,C * 1 1 1 1 1 1 0 0 mema.b ← C

memb.@L,C 1 1 1 1 1 1 0 0 memb.7–2 + [L.3–2]. [L.1–0] ← C
0 1 0 0 a5 a4 a3 a2

@H+DA.b,C 1 1 1 1 1 1 0 0 H + [DA.3–0].b ← (C)

0 b2 b1 b0 a3 a2 a1 a0

C,mema.b * 1 1 1 1 0 1 0 0 C ← mema.b

C,memb.@L 1 1 1 1 0 1 0 0 C ← memb.7–2 + [L.3–2] . [L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 0 C ← [H + DA.3–0].b

0 b2 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–23

INSTRUCTION DESCRIPTIONS

This section contains detailed information and programming examples for each instruction of the SAM47
instruction set. Information is arranged in a consistent format to improve readability and for use as a quick-
reference resource for application programmers.

If you are reading this user's manual for the first time, please just scan this very detailed information briefly in
order to acquaint yourself with the basic features of the instruction set. The information elements of the
instruction description format are as follows:

— Instruction name (mnemonic)

— Full instruction name

— Source/destination format of the instruction operand

— Operation overview (from the "High-Level Summary" table)

— Textual description of the instruction's effect

— Binary code overview (from the "Binary Code Summary" table)

— Programming example(s) to show how the instruction is used

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–24

ADC — Add with Carry

ADC dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Add indirect data memory to A with carry 1 1

EA,RR Add register pair (RR) to EA with carry 2 2

RRb,EA Add EA to register pair (RRb) with carry 2 2

Description: The source operand, along with the setting of the carry flag, is added to the destination operand
and the sum is stored in the destination. The contents of the source are unaffected. If there is an
overflow from the most significant bit of the result, the carry flag is set; otherwise, the carry flag
is cleared.

If 'ADC A,@HL' is followed by an 'ADS A,#im' instruction in a program, ADC skips the ADS
instruction if an overflow occurs. If there is no overflow, the ADS instruction is executed
normally. (This condition is valid only for 'ADC A,@HL' instructions. If an overflow occurs
following an 'ADS A,#im' instruction, the next instruction will not be skipped.)

Operand Binary Code Operation Notation

A,@HL 0 0 1 1 1 1 1 0 C, A ← A + (HL) + C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA + RR + C

1 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C, RRb ← RRb + EA + C

1 0 1 0 0 r2 r1 0

Examples: 1. The extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag is set to "1":

SCF ; C ← "1"
ADC EA,HL ; EA ← 0C3H + 0AAH + 1H = 6EH, C ← "1"
JPS XXX ; Jump to XXX; no skip after ADC

2. If the extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag is cleared to "0":

RCF ; C ← "0"
ADC EA,HL ; EA ← 0C3H + 0AAH + 0H = 6EH, C ← "1"
JPS XXX ; Jump to XXX; no skip after ADC

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–25

ADC — Add with Carry

ADC (Continued)

Examples: 3. If ADC A,@HL is followed by an ADS A,#im, the ADC skips on carry to the instruction
immediately after the ADS. An ADS instruction immediately after the ADC does not skip

even if an overflow occurs. This function is useful for decimal adjustment operations.

a. 8 + 9 decimal addition (the contents of the address specified by the HL register is 9H):

RCF ; C ← "0"
LD A,#8H ; A ← 8H
ADS A,#6H ; A ← 8H + 6H = 0EH
ADC A,@HL ; A ← 7H, C ← "1"
ADS A,#0AH ; Skip this instruction because C = "1" after ADC result
JPS XXX

b. 3 + 4 decimal addition (the contents of the address specified by the HL register is 4H):

RCF ; C ← "0"
LD A,#3H ; A ← 3H
ADS A,#6H ; A ← 3H + 6H = 9H
ADC A,@HL ; A ← 9H + 4H + C(0) = 0DH
ADS A,#0AH ; No skip. A ← 0DH + 0AH = 7H

; (The skip function for 'ADS A,#im' is inhibited after an
; 'ADC A,@HL' instruction even if an overflow occurs.)

JPS XXX

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–26

ADS — Add and Skip on Overflow

ADS dst,src

Operation: Operand Operation Summary Bytes Cycles

A, #im Add 4-bit immediate data to A and skip on overflow 1 1 + S

EA,#imm Add 8-bit immediate data to EA and skip on overflow 2 2 + S

A,@HL Add indirect data memory to A and skip on overflow 1 1 + S

EA,RR Add register pair (RR) contents to EA and skip on
overflow

2 2 + S

RRb,EA Add EA to register pair (RRb) and skip on overflow 2 2 + S

Description: The source operand is added to the destination operand and the sum is stored in the destination.
The contents of the source are unaffected. If there is an overflow from the most significant bit of
the result, the skip signal is generated and a skip is executed, but the carry flag value is
unaffected.

If 'ADS A,#im' follows an 'ADC A,@HL' instruction in a program, ADC skips the ADS instruction
if an overflow occurs. If there is no overflow, the ADS instruction is executed normally. This skip
condition is valid only for 'ADC A,@HL' instructions, however. If an overflow occurs following an
ADS instruction, the next instruction is not skipped.

Operand Binary Code Operation Notation

A, #im 1 0 1 0 d3 d2 d1 d0 A ← A + im; skip on overflow

EA,#imm 1 1 0 0 1 0 0 1 EA ← EA + imm; skip on overflow

d7 d6 d5 d4 d3 d2 d1 d0

A,@HL 0 0 1 1 1 1 1 1 A ← A + (HL); skip on overflow

EA,RR 1 1 0 1 1 1 0 0 EA ← EA + RR; skip on overflow

1 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb + EA; skip on overflow

1 0 0 1 0 r2 r1 0

Examples: 1. The extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag = "0":

ADS EA,HL ; EA ← 0C3H + 0AAH = 6DH, C ← "0"
; ADS skips on overflow, but carry flag value is not affected.

JPS XXX ; This instruction is skipped since ADS had an overflow.
JPS YYY ; Jump to YYY.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–27

ADS — Add and Skip on Overflow

ADS (Continued)

Examples: 2. If the extended accumulator contains the value 0C3H, register pair HL the value 12H, and
the carry flag = "0":

ADS EA,HL ; EA ← 0C3H + 12H = 0D5H, C ← "0"
JPS XXX ; Jump to XXX; no skip after ADS.

3. If 'ADC A,@HL' is followed by an 'ADS A,#im', the ADC skips on overflow to the instruction
immediately after the ADS. An 'ADS A,#im' instruction immediately after the 'ADC A,@HL'
does not skip even if overflow occurs. This function is useful for decimal adjustment
operations.

a. 8 + 9 decimal addition (the contents of the address specified by the HL register is 9H):

RCF ; C ← "0"
LD A,#8H ; A ← 8H
ADS A,#6H ; A ← 8H + 6H = 0EH
ADC A,@HL ; A ← 7H, C ← "1"
ADS A,#0AH ; Skip this instruction because C = "1" after ADC result.
JPS XXX

b. 3 + 4 decimal addition (the contents of the address specified by the HL register is 4H):

RCF ; C ← "0"
LD A,#3H ; A ← 3H
ADS A,#6H ; A ← 3H + 6H = 9H
ADC A,@HL ; A ← 9H + 4H + C(0) = 0DH
ADS A,#0AH ; No skip. A ← 0DH + 0AH = 7H

; (The skip function for 'ADS A,#im' is inhibited after an
; 'ADC A,@HL' instruction even if an overflow occurs.)

JPS XXX

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–28

AND — Logical AND

AND dst,src

Operation: Operand Operation Summary Bytes Cycles

A,#im Logical-AND A immediate data to A 2 2

A,@HL Logical-AND A indirect data memory to A 1 1

EA,RR Logical-AND register pair (RR) to EA 2 2

RRb,EA Logical-AND EA to register pair (RRb) 2 2

Description: The source operand is logically ANDed with the destination operand. The result is stored in the
destination. The logical AND operation results in a "1" bit being stored whenever the correspond-
ing bits in the two operands are both "1"; otherwise a "0" bit is stored. The contents of the source
are unaffected.

Operand Binary Code Operation Notation

A,#im 1 1 0 1 1 1 0 1 A ← A AND im

0 0 0 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 0 1 A ← A AND (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA AND RR

0 0 0 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb AND EA

0 0 0 1 0 r2 r1 0

Example: If the extended accumulator contains the value 0C3H (11000011B) and register pair HL the
value 55H (01010101B), the instruction

AND EA,HL

leaves the value 41H (01000001B) in the extended accumulator EA .

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–29

BAND — Bit Logical AND

BAND C,src.b

Operation: Operand Operation Summary Bytes Cycles

C,mema.b Logical-AND carry flag with memory bit 2 2

C,memb.@L 2 2

C,@H+DA.b 2 2

Description: The specified bit of the source is logically ANDed with the carry flag bit value. If the Boolean
value of the source bit is a logic zero, the carry flag is cleared to "0"; otherwise, the current carry
flag setting is left unaltered. The bit value of the source operand is not affected.

Operand Binary Code Operation Notation

C,mema.b * 1 1 1 1 0 1 0 1 C ← C AND mema.b

C,memb.@L 1 1 1 1 0 1 0 1 C ← C AND [memb.7–2 + L.3–
2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 1 C ← C AND [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. The following instructions set the carry flag if P1.0 (port 1.0) is equal to "1" (and assuming
the carry flag is already set to "1"):

SMB 15 ; C ← "1"
BAND C,P1.0 ; If P1.0 = "1", C ← "1"

; If P1.0 = "0", C ← "0"

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–30

BAND — Bit Logical AND

BAND (Continued)

Examples: 2. Assume the P1 address is FF1H and the value for register L is 9H (1001B). The address
(memb.7–2) is 111100B; (L.3–2) is 10B. The resulting address is 11110010B or FF2H,
specifying P2. The bit value for the BAND instruction, (L.1–0) is 01B which specifies bit 1.
Therefore, P1.@L = P2.1:

LD L,#9H
BAND C,P1.@L ; P1.@L is specified as P2.1

; C AND P2.1

3. Register H contains the value 2H and FLAG = 20H.3. The address of H is 0010B and
FLAG(3–0) is 0000B. The resulting address is 00100000B or 20H. The bit value for the
BAND instruction is 3. Therefore, @H+FLAG = 20H.3:

FLAG EQU 20H.3
LD H,#2H
BAND C,@H+FLAG ; C AND FLAG (20H.3)

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–31

BITR — Bit Reset

BITR dst.b

Operation: Operand Operation Summary Bytes Cycles

DA.b Clear specified memory bit to logic zero 2 2

mema.b 2 2

memb.@L 2 2

@H+DA.b 2 2

Description: A BITR instruction clears to logic zero (resets) the specified bit within the destination operand.
No other bits in the destination are affected.

Operand Binary Code Operation Notation

DA.b 1 1 b1 b0 0 0 0 0 DA.b ← 0

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 0 mema.b ← 0

memb.@L 1 1 1 1 1 1 1 0 [memb.7–2 + L3–2].[L.1–0] ← 0

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 0 [H + DA.3–0].b ← 0

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. Bit location 30H.2 in the RAM has a current value of logic one. The following instruction
clears the third bit in RAM location 30H (bit 2) to logic zero:

BITR 30H.2 ; 30H.2 ← "0"

2. You can use BITR in the same way to manipulate a port address bit:

BITR P2.0 ; P2.0 ← "0"

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–32

BITR — Bit Reset

BITR (Continued)

Examples: 3. Assuming that P2.2, P2.3, and P3.0–P3.3 are cleared to "0":

LD L,#0AH
BP2 BITR P0.@L ; First, P0.@0AH = P2.2

; (111100B) + 10B.10B = 0F2H.2
INCS L
JR BP2

4. If bank 0, location 0A0H.0 is cleared (and regardless of whether the EMB value is logic
zero), BITR has the following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BITR @H+FLAG ; Bank 0 (AH + 0H).0 = 0A0H.0 ← "0"

NOTE

Since the BITR instruction is used for output functions, the pin names used in the examples
above may change for different devices in the SAM47 product family.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–33

BITS — Bit Set

BITS dst.b

Operation: Operand Operation Summary Bytes Cycles

DA.b Set specified memory bit 2 2

mema.b 2 2

memb.@L 2 2

@H+DA.b 2 2

Description: This instruction sets the specified bit within the destination without affecting any other bits in the
destination. BITS can manipulate any bit that is addressable using direct or indirect addressing
modes.

Operand Binary Code Operation Notation

DA.b 1 1 b1 b0 0 0 0 1 DA.b ← 1

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 1 1 1 mema.b ← 1

memb.@L 1 1 1 1 1 1 1 1 [memb.7–2 + L.3–2].b [L.1–0] ← 1

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 1 1 [H + DA.3–0].b ← 1

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. Assuming that bit location 30H.2 in the RAM has a current value of "0", the following
instruction sets the second bit of location 30H to "1".

BITS 30H.2 ; 30H.2 ← "1"

2. You can use BITS in the same way to manipulate a port address bit:

BITS P2.0 ; P2.0 ← "1"

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–34

BITS — Bit Set

BITS (Continued)

Examples: 3. Given that P2.2, P2.3, and P3.0–P3.3 are set to "1":

LD L,#0AH
BP2 BITS P0.@L ; First, P0.@0AH = P2.2

; (111100B) + 10B.10B = 0F2H.2
INCS L
JR BP2

4. If bank 0, location 0A0H.0, is set to "1" and the EMB = "0", BITS has the following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BITS @H+FLAG ; Bank 0 (AH + 0H).0 = 0A0H.0 ← "1"

NOTE

Since the BITS instruction is used for output functions, pin names used in the examples above
may change for different devices in the SAM47 product family.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–35

BOR — Bit Logical OR

BOR C,src.b

Operation: Operand Operation Summary Bytes Cycles

C,mema.b Logical-OR carry with specified memory bit 2 2

C,memb.@L 2 2

C,@H+DA.b 2 2

Description: The specified bit of the source is logically ORed with the carry flag bit value. The value of the
source is unaffected.

Operand Binary Code Operation Notation

C,mema.b * 1 1 1 1 0 1 1 0 C ← C OR mema.b

C,memb.@L 1 1 1 1 0 1 1 0 C ← C OR [memb.7–2 + L.3–2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 0 C ← C OR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. The carry flag is logically ORed with the P1.0 value:

RCF ; C ← "0"
BOR C,P1.0 ; If P1.0 = "1", then C ← "1"; if P1.0 = "0", then C ← "0"

2. The P1 address is FF1H and register L contains the value 9H (1001B). The address
(memb.7–2) is 111100B and (L.3–2) = 10B. The resulting address is 11110010B or FF2H,
specifying P2. The bit value for the BOR instruction, (L.1–0) is 01B which specifies bit 1.
Therefore, P1.@L = P2.1:

LD L,#9H
BOR C,P1.@L ; P1.@L is specified as P2.1; C OR P2.1

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–36

BOR — Bit Logical OR

BOR (Continued)

Examples: 3. Register H contains the value 2H and FLAG = 20H.3. The address of H is 0010B and
FLAG(3–0) is 0000B. The resulting address is 00100000B or 20H. The bit value for the BOR
instruction is 3. Therefore, @H+FLAG = 20H.3:

FLAG EQU 20H.3
LD H,#2H
BOR C,@H+FLAG ; C OR FLAG (20H.3)

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–37

BTSF — Bit Test and Skip on False

BTSF dst.b

Operation: Operand Operation Summary Bytes Cycles

DA.b Test specified memory bit and skip if bit equals "0" 2 2 + S

mema.b 2 2 + S

memb.@L 2 2 + S

@H+DA.b 2 2 + S

Description: The specified bit within the destination operand is tested. If it is a "0", the BTSF instruction skips
the instruction which immediately follows it; otherwise the instruction following the BTSF is exe-
cuted. The destination bit value is not affected.

Operand Binary Code Operation Notation

DA.b 1 1 b1 b0 0 0 1 0 Skip if DA.b = 0

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 0 Skip if mema.b = 0

memb.@L 1 1 1 1 1 0 0 0 Skip if [memb.7–2 + L.3-2].
[L.1–0] = 0

0 1 0 0 a5 a4 a3 a2

@H + DA.b 1 1 1 1 1 0 0 0 Skip if [H + DA.3–0].b = 0

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. If RAM bit location 30H.2 is set to logic zero, the following instruction sequence will cause
the program to continue execution from the instruction identifed as LABEL2:

BTSF 30H.2 ; If 30H.2 = "0", then skip
RET ; If 30H.2 = "1", return
JP LABEL2

2. You can use BTSF in the same way to manipulate a port pin address bit:

BTSF P2.0 ; If P2.0 = "0", then skip
RET ; If P2.0 = "1", then return
JP LABEL3

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–38

BTSF — Bit Test and Skip on False

BTSF (Continued)

Examples: 3. P2.2, P2.3 and P3.0–P3.3 are tested:

LD L,#0AH
BP2 BTSF P0.@L ; First, P0.@0AH = P2.2

; (111100B) + 10B.10B = 0F2H.2
RET
INCS L
JR BP2

4. Bank 0, location 0A0H.0, is tested and (regardless of the current EMB value) BTSF has the
following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BTSF @H+FLAG ; If bank 0 (AH + 0H).0 = 0A0H.0 = "0", then skip
RET
•
•
•

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–39

BTST — Bit Test and Skip on True

BTST dst.b

Operation: Operand Operation Summary Bytes Cycles

C Test carry bit and skip if set (= "1") 1 1 + S

DA.b Test specified bit and skip if memory bit is set 2 2 + S

mema.b 2 2 + S

memb.@L 2 2 + S

@H+DA.b 2 2 + S

Description: The specified bit within the destination operand is tested. If it is "1", the instruction that immedi-
ately follows the BTST instruction is skipped; otherwise the instruction following the BTST in-
struction is executed. The destination bit value is not affected.

Operand Binary Code Operation Notation

C 1 1 0 1 0 1 1 1 Skip if C = 1

DA.b 1 1 b1 b0 0 0 1 1 Skip if DA.b = 1

a7 a6 a5 a4 a3 a2 a1 a0

mema.b * 1 1 1 1 1 0 0 1 Skip if mema.b = 1

memb.@L 1 1 1 1 1 0 0 1 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 1

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 0 0 1 Skip if [H + DA.3–0].b = 1

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. If RAM bit location 30H.2 is set to logic zero, the following instruction sequence will execute
the RET instruction:

BTST 30H.2 ; If 30H.2 = "1", then skip
RET ; If 30H.2 = "0", return
JP LABEL2

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–40

BTST — Bit Test and Skip on True

BTST (Continued)

Examples: 2. You can use BTST in the same way to manipulate a port pin address bit:

BTST P2.0 ; If P2.0 = "1", then skip
RET ; If P2.0 = "0", then return
JP LABEL3

3. Assume that P2.2, P2.3 and P3.0–P3.3 are cleared to "0":

LD L,#0AH
BP2 BTST P0.@L ; First, P0.@0AH = P2.2

; (111100B) + 10B.10B = 0F2H.2
RET
INCS L
JR BP2

4. Bank 0, location 0A0H.0, is tested and (regardless of the current EMB value) BTST has the
following effect:

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BTST @H+FLAG ; If bank 0 (AH + 0H).0 = 0A0H.0 = "1", then skip
RET
•
•
•

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–41

BTSTZ — Bit Test and Skip on True; Clear Bit

BTSTZ dst.b

Operation: Operand Operation Summary Bytes Cycles

mema.b Test specified bit; skip and clear if memory bit is set 2 2 + S

memb.@L 2 2 + S

@H+DA.b 2 2 + S

Description: The specified bit within the destination operand is tested. If it is a "1", the instruction immediately
following the BTSTZ instruction is skipped; otherwise the instruction following the BTSTZ is exe-
cuted. The destination bit value is cleared.

Operand Binary Code Operation Notation

mema.b * 1 1 1 1 1 1 0 1 Skip if mema.b = 1 and clear

memb.@L 1 1 1 1 1 1 0 1 Skip if [memb.7–2 + L.3–2].
[L.1–0] = 1 and clear

0 1 0 0 a5 a4 a3 a2

@H+DA.b 1 1 1 1 1 1 0 1 Skip if [H + DA.3–0].b =1 and clear

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. Port pin P2.0 is toggled by checking the P2.0 value (level):

BTSTZ P2.0 ; If P2.0 = "1", then P2.0 ← "0" and skip
BITS P2.0 ; If P2.0 = "0", then P2.0 ← "1"
JP LABEL3

2. Assume that port pins P2.2, P2.3 and P3.0–P3.3 are toggled:

LD L,#0AH
BP2 BTSTZ P0.@L ; First, P0.@0AH = P2.2

; (111100B) + 10B.10B = 0F2H.2
RET
INCS L
JR BP2

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–42

BTSTZ — Bit Test and Skip on True; Clear Bit

BTSTZ (Continued)

Examples: 3. Bank 0, location 0A0H.0, is tested and EMB = "0":

FLAG EQU 0A0H.0
•
•
•
BITR EMB
•
•
•
LD H,#0AH
BTSTZ @H+FLAG ; If bank 0 (AH + 0H).0 = 0A0H.0 = "1", clear and skip
BITS @H+FLAG ; If 0A0H.0 = "0", then 0A0H.0 ← "1"

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–43

BXOR — Bit Exclusive OR

BXOR C,src.b

Operation: Operand Operation Summary Bytes Cycles

C,mema.b Exclusive-OR carry with memory bit 2 2

C,memb.@L 2 2

C,@H+DA.b 2 2

Description: The specified bit of the source is logically XORed with the carry bit value. The resultant bit is
written to the carry flag. The source value is unaffected.

Operand Binary Code Operation Notation

C,mema.b * 1 1 1 1 0 1 1 1 C ← C XOR mema.b

C,memb.@L 1 1 1 1 0 1 1 1 C ← C XOR [memb.7–2 + L.3-2].
[L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 1 1 C ← C XOR [H + DA.3–0].b

0 0 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

Examples: 1. The carry flag is logically XORed with the P1.0 value:

RCF ; C ← "0"
BXOR C,P1.0 ; If P1.0 = "1", then C ← "1"; if P1.0 = "0", then C ← "0"

2. The P1 address is FF1H and register L contains the value 9H (1001B). The address
(memb.7–2) is 111100B and (L.3–2) = 10B. The resulting address is 11110010B or FF2H,
specifying P2. The bit value for the BXOR instruction, (L.1–0) is 01B which specifies bit 1.
Therefore, P1.@L = P2.1:

LD L,#9H
BXOR C,P1.@L ; P1.@L is specified as P2.1; C XOR P2.1

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–44

BXOR — Bit Exclusive OR

BXOR (Continued)

Examples: 3. Register H contains the value 2H and FLAG = 20H.3. The address of H is 0010B and
FLAG(3–0) is 0000B. The resulting address is 00100000B or 20H. The bit value for the BOR
instruction is 3. Therefore, @H+FLAG = 20H.3:

FLAG EQU 20H.3
LD H,#2H
BXOR C,@H+FLAG ; C XOR FLAG (20H.3)

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–45

CALL — Call Procedure

CALL dst

Operation: Operand Operation Summary Bytes Cycles

ADR14 Call direct in page (14 bits) 3 4

Description: CALL calls a subroutine located at the destination address. The instruction adds three to the pro-
gram counter to generate the return address and then pushes the result onto the stack, decre-
menting the stack pointer by six. The EMB and ERB are also pushed to the stack. Program exe-
cution continues with the instruction at this address. The subroutine may therefore begin any-
where in the full 16 K byte program memory address space.

Operand Binary Code Operation Notation

ADR14 1 1 0 1 1 0 1 1 [(SP–1) (SP–2)] ← EMB, ERB

0 1 a13 a12 a11 a10 a9 a8 [(SP–3) (SP–4)] ← PC7–0

a7 a6 a5 a4 a3 a2 a1 a0 [(SP–5) (SP–6)] ← PC13–8

Example: The stack pointer value is 00H and the label 'PLAY' is assigned to program memory location
0E3FH. Executing the instruction

CALL PLAY

at location 0123H will generate the following values:

SP = 0FAH
0FFH = 0H
0FEH = EMB, ERB
0FDH = 2H
0FCH = 6H
0FBH = 0H
0FAH = 1H
PC = 0E3FH

Data is written to stack locations 0FFH–0FAH as follows:

0FAH PC11 – PC8

0FBH 0 0 PC13 – PC12

0FCH PC3 – PC0

0FDH PC7 – PC4

0FEH 0 0 EMB ERB

0FFH 0 0 0 0

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–46

CALLS — Call Procedure (Short)

CALLS dst

Operation: Operand Operation Summary Bytes Cycles

ADR11 Call direct in page (11 bits) 2 3

Description: The CALLS instruction unconditionally calls a subroutine located at the indicated address. The
instruction increments the PC twice to obtain the address of the following instruction. Then, it
pushes the result onto the stack, decrementing the stack pointer six times. The higher bits of the
PC, with the exception of the lower 11 bits, are cleared. The subroutine call must therefore be lo-
cated within the 2 K byte block (0000H–07FFH) of program memory.

Operand Binary Code Operation Notation

ADR11 1 1 1 0 1 a10 a9 a8 [(SP–1) (SP–2)] ← EMB, ERB

a7 a6 a5 a4 a3 a2 a1 a0 [(SP–3) (SP–4)] ← PC7–0
[(SP–5) (SP–6)] ← PC10–8

Example: The stack pointer value is 00H and the label 'PLAY' is assigned to program memory location
0345H. Executing the instruction

CALLS PLAY

at location 0123H will generate the following values:

SP = 0FAH
0FFH = 0H
0FEH = EMB, ERB
0FDH = 2H
0FCH = 5H
0FBH = 0H
0FAH = 1H
PC = 0345H

Data is written to stack locations 0FFH–0FAH as follows:

0FAH 0 PC10 – PC8

0FBH 0 0 0 0

0FCH PC3 – PC0

0FDH PC7 – PC4

0FEH 0 0 EMB ERB

0FFH 0 0 0 0

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–47

CCF — Complement Carry Flag

CCF

Operation: Operand Operation Summary Bytes Cycles

— Complement carry flag 1 1

Description: The carry flag is complemented; if C = "1" it is changed to C = "0" and vice-versa.

Operand Binary Code Operation Notation

— 1 1 0 1 0 1 1 0 C ← C

Example: If the carry flag is logic zero, the instruction

CCF

changes the value to logic one.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–48

COM — Complement Accumulator

COM A

Operation: Operand Operation Summary Bytes Cycles

A Complement accumulator (A) 2 2

Description: The accumulator value is complemented; if the bit value of A is "1", it is changed to "0" and vice
versa.

Operand Binary Code Operation Notation

A 1 1 0 1 1 1 0 1 A ← A

0 0 1 1 1 1 1 1

Example: If the accumulator contains the value 4H (0100B), the instruction

COM A

leaves the value 0BH (1011B) in the accumulator.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–49

CPSE — Compare and Skip if Equal

CPSE dst,src

Operation: Operand Operation Summary Bytes Cycles

R,#im Compare and skip if register equals #im 2 2 + S

@HL,#im Compare and skip if indirect data memory equals #im 2 2 + S

A,R Compare and skip if A equals R 2 2 + S

A,@HL Compare and skip if A equals indirect data memory 1 1 + S

EA,@HL Compare and skip if EA equals indirect data memory 2 2 + S

EA,RR Compare and skip if EA equals RR 2 2 + S

Description: CPSE compares the source operand (subtracts it from) the destination operand, and skips the
next instruction if the values are equal. Neither operand is affected by the comparison.

Operand Binary Code Operation Notation

R,#im 1 1 0 1 1 0 0 1 Skip if R = im

d3 d2 d1 d0 0 r2 r1 r0

@HL,#im 1 1 0 1 1 1 0 1 Skip if (HL) = im

0 1 1 1 d3 d2 d1 d0

A,R 1 1 0 1 1 1 0 1 Skip if A = R

0 1 1 0 1 r2 r1 r0

A,@HL 0 0 1 1 1 0 0 0 Skip if A = (HL)

EA,@HL 1 1 0 1 1 1 0 0 Skip if A = (HL), E = (HL+1)

0 0 0 0 1 0 0 1

EA,RR 1 1 0 1 1 1 0 0 Skip if EA = RR

1 1 1 0 1 r2 r1 0

Example: The extended accumulator contains the value 34H and register pair HL contains 56H. The
second instruction (RET) in the instruction sequence

CPSE EA,HL
RET

is not skipped. That is, the subroutine returns since the result of the comparison is 'not equal.'

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–50

DECS — Decrement and Skip on Borrow

DECS dst

Operation: Operand Operation Summary Bytes Cycles

R Decrement register (R); skip on borrow 1 1 + S

RR Decrement register pair (RR); skip on borrow 2 2 + S

Description: The destination is decremented by one. An original value of 00H will underflow to 0FFH. If a bor-
row occurs, a skip is executed. The carry flag value is unaffected.

Operand Binary Code Operation Notation

R 0 1 0 0 1 r2 r1 r0 R ← R–1; skip on borrow

RR 1 1 0 1 1 1 0 0 RR ← RR–1; skip on borrow

1 1 0 1 1 r2 r1 0

Examples: 1. Register pair HL contains the value 7FH (01111111B). The following instruction leaves the
value 7EH in register pair HL:

DECS HL

2. Register A contains the value 0H. The following instruction sequence leaves the value 0FFH
in register A. Since a "borrow" occurs, the 'CALL PLAY1' instruction is skipped and the 'CALL
PLAY2' instruction is executed:

DECS A ; "Borrow" occurs
CALL PLAY1 ; Skipped
CALL PLAY2 ; Executed

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–51

DI — Disable Interrupts

DI

Operation: Operand Operation Summary Bytes Cycles

— Disable all interrupts 2 2

Description: Bit 3 of the interrupt priority register IPR, IME, is cleared to logic zero, disabling all interrupts.
Interrupts can still set their respective interrupt status latches, but the CPU will not directly
service them.

Operand Binary Code Operation Notation

— 1 1 1 1 1 1 1 0 IME ← 0

1 0 1 1 0 0 1 0

Example: If the IME bit (bit 3 of the IPR) is logic one (e.g., all instructions are enabled), the instruction

DI

sets the IME bit to logic zero, disabling all interrupts.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–52

EI — Enable Interrupts

EI

Operation: Operand Operation Summary Bytes Cycles

— Enable all interrupts 2 2

Description: Bit 3 of the interrupt priority register IPR (IME) is set to logic one. This allows all interrupts to be
serviced when they occur, assuming they are enabled. If an interrupt's status latch was
previously enabled by an interrupt, this interrupt can also be serviced.

Operand Binary Code Operation Notation

— 1 1 1 1 1 1 1 1 IME ← 1

1 0 1 1 0 0 1 0

Example: If the IME bit (bit 3 of the IPR) is logic zero (e.g., all instructions are disabled), the instruction

EI

sets the IME bit to logic one, enabling all interrupts.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–53

IDLE — Idle Operation

IDLE

Operation: Operand Operation Summary Bytes Cycles

— Engage CPU idle mode 2 2

Description: IDLE causes the CPU clock to stop while the system clock continues oscillating by setting bit 2 of
the power control register (PCON). After an IDLE instruction has been executed, peripheral hard-
ware remains operative.

In application programs, an IDLE instruction must be immediately followed by at least three NOP
instructions. This ensures an adequate time interval for the clock to stabilize before the next
instruction is executed. If three NOP instructions are not used after IDLE instruction, leakage
current could be flown because of the floating state in the internal bus.

Operand Binary Code Operation Notation

— 1 1 1 1 1 1 1 1 PCON.2 ← 1

1 0 1 0 0 0 1 1

Example: The instruction sequence

IDLE
NOP
NOP
NOP

sets bit 2 of the PCON register to logic one, stopping the CPU clock. The three NOP instructions
provide the necessary timing delay for clock stabilization before the next instruction in the
program sequence is executed.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–54

INCS — Increment And Skip On Carry

INCS dst

Operation: Operand Operation Summary Bytes Cycles

R Increment register (R); skip on carry 1 1 + S

DA Increment direct data memory; skip on carry 2 2 + S

@HL Increment indirect data memory; skip on carry 2 2 + S

RRb Increment register pair (RRb); skip on carry 1 1 + S

Description: The instruction INCS increments the value of the destination operand by one. An original value
of 0FH will, for example, overflow to 00H. If a carry occurs, the next instruction is skipped. The
carry flag value is unaffected.

Operand Binary Code Operation Notation

R 0 1 0 1 1 r2 r1 r0 R ← R + 1; skip on carry

DA 1 1 0 0 1 0 1 0 DA ← DA + 1; skip on carry

a7 a6 a5 a4 a3 a2 a1 a0

@HL 1 1 0 1 1 1 0 1 (HL) ← (HL) + 1; skip on carry

0 1 1 0 0 0 1 0

RRb 1 0 0 0 0 r2 r1 0 RRb ← RRb + 1; skip on carry

Example: Register pair HL contains the value 7EH (01111110B). RAM location 7EH contains 0FH. The in-
struction sequence

INCS @HL ; 7EH ← "0"
INCS HL ; Skip
INCS @HL ; 7EH ← "1"

leaves the register pair HL with the value 7EH and RAM location 7EH with the value 1H. Since a
carry occurred, the second instruction is skipped. The carry flag value remains unchanged.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–55

IRET — Return from Interrupt

IRET

Operation: Operand Operation Summary Bytes Cycles

— Return from interrupt 1 3

Description: IRET is used at the end of an interrupt service routine. It pops the PC values successively from
the stack and restores them to the program counter. The stack pointer is incremented by six and
the PSW, enable memory bank (EMB) bit, and enable register bank (ERB) bit are also
automatically restored to their pre-interrupt values. Program execution continues from the
resulting address, which is generally the instruction immediately after the point at which the
interrupt request was detected. If a lower-level or same-level interrupt was pending when the
IRET was executed, IRET will be executed before the pending interrupt is processed.

Since the 'a14' bit of an interrupt return address is not stored in the stack, this bit location is
always interpreted as a logic zero. The start address in the ROM must for this reason be 3FFFH.

Operand Binary Code Operation Notation

— 1 1 0 1 0 1 0 1 PC13–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 2) (SP + 3)
PSW ← (SP + 4) (SP + 5)
SP ← SP + 6

Example: The stack pointer contains the value 0FAH. An interrupt is detected in the instruction at location
0122H. RAM locations 0FDH, 0FCH, and 0FAH contain the values 2H, 3H, and 1H, respectively.
The instruction

IRET

leaves the stack pointer with the value 00H and the program returns to continue execution at lo-
cation 123H.

During a return from interrupt, data is popped from the stack to the program counter. The data in
stack locations 0FFH–0FAH is organized as follows:

0FAH PC11 – PC8

0FBH 0 0 PC13 – PC12

0FCH PC3 – PC0

0FDH PC7 – PC4

0FEH IS1 IS0 EMB ERB

0FFH C SC2 SC1 SC0

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–56

JP — Jump

JP dst

Operation: Operand Operation Summary Bytes Cycles

ADR14 Jump to direct address (14 bits) 3 3

Description: JP causes an unconditional branch to the indicated address by replacing the contents of the pro-
gram counter with the address specified in the destination operand. The destination can be any-
where in the 16 K byte program memory address space.

Operand Binary Code Operation Notation

ADR14 1 1 0 1 1 0 1 1 PC13–0 ← ADR14

0 0 a13 a12 a11 a10 a9 a8

a7 a6 a5 a4 a3 a2 a1 a0

Example: The label 'SYSCON' is assigned to the instruction at program location 07FFH. The instruction

JP SYSCON

at location 0123H will load the program counter with the value 07FFH.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–57

JPS — Jump (Short)

JPS dst

Operation: Operand Operation Summary Bytes Cycles

ADR12 Jump direct in page (12 bits) 2 2

Description: JPS causes an unconditional branch to the indicated address with the 4 K byte program memory
address space. Bits 0–11 of the program counter are replaced with the directly specified address.
The destination address for this jump is specified to the assembler by a label or by an actual ad-
dress in program memory.

Operand Binary Code Operation Notation

ADR12 1 0 0 1 a11 a10 a9 a8 PC13–0 ← PC13–12 + ADR11–
0

a7 a6 a5 a4 a3 a2 a1 a0

Example: The label 'SUB' is assigned to the instruction at program memory location 00FFH. The
instruction

JPS SUB

at location 0EABH will load the program counter with the value 00FFH. Normally, the JPS
instruction jumps to the address in the block in which the instruction is located. If the first byte of
the instruction code is located at address xFFEH or xFFFH, the instruction will jump to the next
block. If the instruction 'JPS SUB' were located instead at program memory address 0FFEH or
0FFFH, the instruction 'JPS SUB' would load the PC with the value 10FFH, causing a program
malfunction.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–58

JR — Jump Relative (Very Short)

JR dst

Operation: Operand Operation Summary Bytes Cycles

#im Branch to relative immediate address 1 2

@WX Branch relative to contents of WX register 2 3

@EA Branch relative to contents of EA 2 3

Description: JR causes the relative address to be added to the program counter and passes control to the in-
struction whose address is now in the PC. The range of the relative address is current PC – 15 to
current PC + 16. The destination address for this jump is specified to the assembler by a label,
an actual address, or by immediate data using a plus sign (+) or a minus sign (–).

For immediate addressing, the (+) range is from 2 to 16 and the (–) range is from –1 to –15. If
a 0, 1, or any other number that is outside these ranges are used, the assembler interprets it as
an error.

For JR @WX and JR @EA branch relative instructions, the valid range for the relative address is
0H–0FFH. The destination address for these jumps can be specified to the assembler by a label
that lies anywhere within the current 256-byte block.

Normally, the 'JR @WX' and 'JR @EA' instructions jump to the address in the page in which
the instruction is located. However, if the first byte of the instruction code is located at address
xxFEH or xxFFH, the instruction will jump to the next page.

Operand Binary Code Operation Notation

#im * PC13–0 ← ADR (PC–15 to
PC+16)

@WX 1 1 0 1 1 1 0 1 PC13–0 ← PC13–8 + (WX)

0 1 1 0 0 1 0 0

@EA 1 1 0 1 1 1 0 1 PC13–0 ← PC13–8 + (EA)

0 1 1 0 0 0 0 0

First Byte Condition

* JR #im 0 0 0 1 a3 a2 a1 a0 PC ← PC+2 to PC+16

0 0 0 0 a3 a2 a1 a0 PC ← PC–1 to PC–15

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–59

JR — Jump Relative (Very Short)

JR (Continued)

Examples: 1. A short form for a relative jump to label 'KK' is the instruction

JR KK

where 'KK' must be within the allowed range of current PC–15 to current PC+16. The JR in-
struction has in this case the effect of an unconditional JP instruction.

2. In the following instruction sequence, if the instruction 'LD WX, #02H' were to be executed in
place of 'LD WX,#00H', the program would jump to 1002H and 'JPS BBB' would be
executed. If 'LD EA,#04H' were to be executed, the jump would be to1004H and 'JPS CCC'
would be executed.

ORG 1000H

JPS AAA
JPS BBB
JPS CCC
JPS DDD

LD WX,#00H ; WX ← 00H
LD EA,WX
ADS WX,EA ; WX ← (WX) + (WX)
JR @WX ; Current PC13–8 (10H) + WX (00H) = 1000H

; Jump to address 1000H and execute JPS AAA

3. Here is another example:

ORG 1100H

LD A,#0H
LD A,#1H
LD A,#2H
LD A,#3H
LD 30H,A ; Address 30H ← A
JPS YYY

XXX LD EA,#00H ; EA ← 00H
JR @EA ; Jump to address 1100H

; Address 30H ← 00H

If 'LD EA,#01H' were to be executed in place of 'LD EA,#00H', the program would jump to
1001H and address 30H would contain the value 1H. If 'LD EA,#02H' were to be executed,
the jump would be to 1002H and address 30H would contain the value 2H.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–60

LD — Load

LD dst,src

Operation: Operand Operation Summary Bytes Cycles

A,#im Load 4-bit immediate data to A 1 1

A,@RRa Load indirect data memory contents to A 1 1

A,DA Load direct data memory contents to A 2 2

A,Ra Load register contents to A 2 2

Ra,#im Load 4-bit immediate data to register 2 2

RR,#imm Load 8-bit immediate data to register 2 2

DA,A Load contents of A to direct data memory 2 2

Ra,A Load contents of A to register 2 2

EA,@HL Load indirect data memory contents to EA 2 2

EA,DA Load direct data memory contents to EA 2 2

EA,RRb Load register contents to EA 2 2

@HL,A Load contents of A to indirect data memory 1 1

DA,EA Load contents of EA to data memory 2 2

RRb,EA Load contents of EA to register 2 2

@HL,EA Load contents of EA to indirect data memory 2 2

Description: The contents of the source are loaded into the destination. The source's contents are unaffected.

If an instruction such as 'LD A,#im' (LD EA,#imm) or 'LD HL,#imm' is written more than two
times in succession, only the first LD will be executed; the other similar instructions that
immediately follow the first LD will be treated like a NOP. This is called the 'redundancy effect'
(see examples below).

Operand Binary Code Operation Notation

A,#im 1 0 1 1 d3 d2 d1 d0 A ← im

A,@RRa 1 0 0 0 1 i2 i1 i0 A ← (RRa)

A,DA 1 0 0 0 1 1 0 0 A ← DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 1 1 0 1 1 1 0 1 A ← Ra

0 0 0 0 1 r2 r1 r0

Ra,#im 1 1 0 1 1 0 0 1 Ra ← im

d3 d2 d1 d0 1 r2 r1 r0

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–61

LD — Load

LD (Continued)

Description:

Operand Binary Code Operation Notation

RR,#imm 1 0 0 0 0 r2 r1 1 RR ← imm

d7 d6 d5 d4 d3 d2 d1 d0

DA,A 1 0 0 0 1 0 0 1 DA ← A

a7 a6 a5 a4 a3 a2 a1 a0

Ra,A 1 1 0 1 1 1 0 1 Ra ← A

0 0 0 0 0 r2 r1 r0

EA,@HL 1 1 0 1 1 1 0 0 A ← (HL), E ← (HL + 1)

0 0 0 0 1 0 0 0

EA,DA 1 1 0 0 1 1 1 0 A ← DA, E ← DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ← RRb

1 1 1 1 1 r2 r1 0

@HL,A 1 1 0 0 0 1 0 0 (HL) ← A

DA,EA 1 1 0 0 1 1 0 1 DA ← A, DA + 1 ← E

a7 a6 a5 a4 a3 a2 a1 a0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← EA

1 1 1 1 0 r2 r1 0

@HL,EA 1 1 0 1 1 1 0 0 (HL) ← A, (HL + 1) ← E

0 0 0 0 0 0 0 0

Examples: 1. RAM location 30H contains the value 4H. The RAM location values are 40H, 41H and 0AH,
3H respectively. The following instruction sequence leaves the value 40H in point pair HL,
0AH in the accumulator and in RAM location 40H, and 3H in register E.

LD HL,#30H ; HL ← 30H
LD A,@HL ; A ← 4H
LD HL,#40H ; HL ← 40H
LD EA,@HL ; A ← 0AH, E ← 3H
LD @HL,A ; RAM (40H) ← 0AH

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–62

LD — Load

LD (Continued)

Examples: 2. If an instruction such as LD A,#im (LD EA,#imm) or LD HL,#imm is written more than two
times in succession, only the first LD is executed; the next instructions are treated as NOPs.
Here are two examples of this 'redundancy effect':

LD A,#1H ; A ← 1H
LD EA,#2H ; NOP
LD A,#3H ; NOP
LD 23H,A ; (23H) ← 1H

LD HL,#10H ; HL ← 10H
LD HL,#20H ; NOP
LD A,#3H ; A ← 3H
LD EA,#35 ; NOP
LD @HL,A ; (10H) ← 3H

The following table contains descriptions of special characteristics of the LD instruction when
used in different addressing modes:

Instruction Operation Description and Guidelines

LD A,#im Since the 'redundancy effect' occurs with instructions like LD EA,#imm, if this
instruction is used consecutively, the second and additional instructions of the
same type will be treated like NOPs.

LD A,@RRa Load the data memory contents pointed to by 8-bit RRa register pairs (HL, WX,
WL) to the A register.

LD A,DA Load direct data memory contents to the A register.

LD A,Ra Load 4-bit register Ra (E, L, H, X, W, Z, Y) to the A register.

LD Ra,#im Load 4-bit immediate data into the Ra register (E, L, H, X, W, Y, Z).

LD RR,#imm Load 8-bit immediate data into the Ra register (EA, HL, WX, YZ). There is a
redundancy effect if the operation addresses the HL or EA registers.

LD DA,A Load contents of register A to direct data memory address.

LD Ra,A Load contents of register A to 4-bit Ra register (E, L, H, X, W, Z, Y).

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–63

LD — Load

LD (Concluded)

Examples:

Instruction Operation Description and Guidelines

LD EA,@HL Load data memory contents pointed to by 8-bit register HL to the A register,
and the contents of HL+1 to the E register. The contents of register L must be
an even number. If the number is odd, the LSB of register L is recognized as a
logic zero (an even number), and it is not replaced with the true value. For ex-
ample, 'LD HL,#36H' loads immediate 36H to HL and the next instruction 'LD
EA,@HL' loads the contents of 36H to register A and the contents of 37H to
register E.

LD EA,DA Load direct data memory contents of DA to the A register, and the next direct
data memory contents of DA + 1 to the E register. The DA value must be an
even number. If it is an odd number, the LSB of DA is recognized as a logic
zero (an even number), and it is not replaced with the true value. For example,
'LD EA,37H' loads the contents of 36H to the A register and the contents of
37H to the E register.

LD EA,RRb Load 8-bit RRb register (HL, WX, YZ) to the EA register. H, W, and Y register
values are loaded into the E register, and the L, X, and Z values into the A
register.

LD @HL,A Load A register contents to data memory location pointed to by the 8-bit HL
register value.

LD DA,EA Load the A register contents to direct data memory and the E register contents
to the next direct data memory location. The DA value must be an even
number. If it is an odd number, the LSB of the DA value is recognized as logic
zero (an even number), and is not replaced with the true value.

LD RRb,EA Load contents of EA to the 8-bit RRb register (HL, WX, YZ). The E register is
loaded into the H, W, and Y register and the A register into the L, X, and Z
register.

LD @HL,EA Load the A register to data memory location pointed to by the 8-bit HL register,
and the E register contents to the next location, HL + 1. The contents of the L
register must be an even number. If the number is odd, the LSB of the L regis-
ter is recognized as logic zero (an even number), and is not replaced with the
true value. For example, 'LD HL,#36H' loads immediate 36H to register HL;
the instruction 'LD @HL,EA' loads the contents of A into address 36H and the
contents of E into address 37H.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–64

LDB — Load Bit

LDB dst,src.b
LDB dst.b,src

Operation: Operand Operation Summary Bytes Cycles

mema.b,C Load carry bit to a specified memory bit 2 2

memb.@L,C Load carry bit to a specified indirect memory bit 2 2

@H+DA.b,C 2 2

C,mema.b Load memory bit to a specified carry bit 2 2

C,memb.@L Load indirect memory bit to a specified carry bit 2 2

C,@H+DA.b 2 2

Description: The Boolean variable indicated by the first or second operand is copied into the location
specified by the second or first operand. One of the operands must be the carry flag; the other
may be any directly or indirectly addressable bit. The source is unaffected.

Operand Binary Code Operation Notation

mema.b,C * 1 1 1 1 1 1 0 0 mema.b ← C

memb.@L,C 1 1 1 1 1 1 0 0 memb.7–2 + [L.3–2]. [L.1–0] ← C

0 1 0 0 a5 a4 a3 a2

@H+DA.b,C 1 1 1 1 1 1 0 0 H + [DA.3–0].b ← (C)

0 b2 b1 b0 a3 a2 a1 a0

C,mema.b* 1 1 1 1 0 1 0 0 C ← mema.b

C,memb.@L 1 1 1 1 0 1 0 0 C ← memb.7–2 + [L.3–2] . [L.1–0]

0 1 0 0 a5 a4 a3 a2

C,@H+DA.b 1 1 1 1 0 1 0 0 C ← [H + DA.3–0].b

0 b2 b1 b0 a3 a2 a1 a0

Second Byte Bit Addresses

* mema.b 1 0 b1 b0 a3 a2 a1 a0 FB0H–FBFH

1 1 b1 b0 a3 a2 a1 a0 FF0H–FFFH

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–65

LDB — Load Bit

LDB (Continued)

Examples: 1. The carry flag is set and the data value at input pin P1.0 is logic zero. The following instruc-
tion clears the carry flag to logic zero.

LDB C,P1.0

2. The P1 address is FF1H and the L register contains the value 9H (1001B). The address
(memb.7–2) is 111100B and (L.3–2) is 10B. The resulting address is 11110010B or FF2H
and P2 is addressed. The bit value (L.1–0) is specified as 01B (bit 1).

LD L,#9H
LDB C,P1.@L ; P1.@L specifies P2.1 and C ← P2.1

3. The H register contains the value 2H and FLAG = 20H.3. The address for H is 0010B and for
FLAG(3–0) the address is 0000B. The resulting address is 00100000B or 20H. The bit value
is 3. Therefore, @H+FLAG = 20H.3.

FLAG EQU 20H.3
LD H,#2H
LDB C,@H+FLAG ; C ← FLAG (20H.3)

4. The following instruction sequence sets the carry flag and the loads the "1" data value to the
output pin P2.0, setting it to output mode:

SCF ; C ← "1"
LDB P2.0,C ; P2.0 ← "1"

5. The P1 address is FF1H and L = 9H (1001B). The address (memb.7–2) is 111100B and
(L.3–2) is 10B. The resulting address, 11110010B specifies P2. The bit value (L.1–0) is
specified as 01B (bit 1). Therefore, P1.@L = P2.1.

SCF ; C ← "1"
LD L,#9H
LDB P1.@L,C ; P1.@L specifies P2.1

; P2.1 ← "1"

6. In this example, H = 2H and FLAG = 20H.3 and the address 20H is specified. Since the bit
value is 3, @H+FLAG = 20H.3:

FLAG EQU 20H.3
RCF ; C ← "0"
LD H,#2H
LDB @H+FLAG,C ; FLAG(20H.3) ← "0"

NOTE

Port pin names used in examples 4 and 5 may vary with different SAM47 devices.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–66

LDC — Load Code Byte

LDC dst,src

Operation: Operand Operation Summary Bytes Cycles

EA,@WX Load code byte from WX to EA 1 3

EA,@EA Load code byte from EA to EA 1 3

Description: This instruction is used to load a byte from program memory into an extended accumulator. The
address of the byte fetched is the five highest bit values in the program counter and the contents
of an 8-bit working register (either WX or EA). The contents of the source are unaffected.

Operand Binary Code Operation Notation

EA,@WX 1 1 0 0 1 1 0 0 EA ← [PC13–8 + (WX)]

EA,@EA 1 1 0 0 1 0 0 0 EA ← [PC13–8 + (EA)]

Examples: 1. The following instructions will load one of four values defined by the define byte (DB)
directive to the extended accumulator:

LD EA,#00H
CALL DISPLAY
JPS MAIN

ORG 0500H

DB 66H
DB 77H
DB 88H
DB 99H
•
•
•

DISPLAY LDC EA,@EA ; EA ← address 0500H = 66H
RET

If the instruction 'LD EA,#01H' is executed in place of 'LD EA,#00H', The content of 0501H
(77H) is loaded to the EA register. If 'LD EA,#02H' is executed, the content of address 0502H
(88H) is loaded to EA.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–67

LDC — Load Code Byte

LDC (Continued)

Examples: 2. The following instructions will load one of four values defined by the define byte (DB)
directive to the extended accumulator:

ORG 0500

DB 66H
DB 77H
DB 88H
DB 99H
•
•
•

DISPLAY LD WX,#00H
LDC EA,@WX ; EA ← address 0500H = 66H
RET

If the instruction 'LD WX,#01H' is executed in place of 'LD WX,#00H', then
EA ← address 0501H = 77H.

If the instruction 'LD WX,#02H' is executed in place of 'LD WX,#00H', then
EA ← address 0502H = 88H.

3. Normally, the LDC EA, @EA and the LDC EA, @WX instructions reference the table data
on the page on which the instruction is located. If, however, the instruction is located at
address xxFFH, it will reference table data on the next page. In this example, the upper 4
bits of the address at location 0200H is loaded into register E and the lower 4 bits into
register A:

ORG 01FDH

01FDH LD WX,#00H
01FFH LDC EA,@WX ; E ← upper 4 bits of 0200H address

; A ← lower 4 bits of 0200H address

4. Here is another example of page referencing with the LDC instruction:

ORG 0100

DB 67H
SMB 0
LD HL,#30H ; Even number
LD WX,#00H
LDC EA,@WX ; E ← upper 4 bits of 0100H address

; A ← lower 4 bits of 0100H address
LD @HL,EA ; RAM (30H) ← 7, RAM (31H) ← 6

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–68

LDD — Load Data Memory and Decrement

LDD dst

Operation: Operand Operation Summary Bytes Cycles

A,@HL Load indirect data memory contents to A; decrement
register L contents and skip on borrow

1 2 + S

Description: The contents of a data memory location are loaded into the accumulator, and the contents of the
register L are decremented by one. If a "borrow" occurs (e.g., if the resulting value in register L is
0FH), the next instruction is skipped. The contents of data memory and the carry flag value are
not affected.

Operand Binary Code Operation Notation

A,@HL 1 0 0 0 1 0 1 1 A ← (HL), then L ← L–1;
skip if L = 0FH

Example: In this example, assume that register pair HL contains 20H and internal RAM location 20H
contains the value 0FH:

LD HL,#20H
LDD A,@HL ; A ← (HL) and L ← L–1
JPS XXX ; Skip
JPS YYY ; H ← 2H and L ← 0FH

The instruction 'JPS XXX' is skipped since a "borrow" occurred after the 'LDD A,@HL' and
instruction 'JPS YYY' is executed.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–69

LDI — Load Data Memory and Increment

LDI dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Load indirect data memory to A; increment register L
contents and skip on overflow

1 2 + S

Description: The contents of a data memory location are loaded into the accumulator, and the contents of the
register L are incremented by one. If an overflow occurs (e.g., if the resulting value in register L
is 0H), the next instruction is skipped. The contents of data memory and the carry flag value are
not affected.

Operand Binary Code Operation Notation

A,@HL 1 0 0 0 1 0 1 0 A ← (HL), then L ← L+1;
skip if L = 0H

Example: Assume that register pair HL contains the address 2FH and internal RAM location 2FH contains
the value 0FH:

LD HL,#2FH
LDI A,@HL ; A ← (HL) and L ← L+1
JPS XXX ; Skip
JPS YYY ; H ← 2H and L ← 0H

The instruction 'JPS XXX' is skipped since an overflow occurred after the 'LDI A,@HL' and the
instruction 'JPS YYY' is executed.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–70

NOP — No Operation

NOP

Operation: Operand Operation Summary Bytes Cycles

— No operation 1 1

Description: No operation is performed by a NOP instruction. It is typically used for timing delays.

One NOP causes a 1-cycle delay: with a 1 µs cycle time, five NOPs would therefore cause a 5
µs delay. Program execution continues with the instruction immediately following the NOP. Only
the PC is affected. At least three NOP instructions should follow a STOP or IDLE instruction.

Operand Binary Code Operation Notation

— 1 0 1 0 0 0 0 0 No operation

Example: Three NOP instructions follow the STOP instruction to provide a short interval for clock stabiliza-
tion before power-down mode is initiated:

STOP
NOP
NOP
NOP

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–71

OR — Logical OR

OR dst,src

Operation: Operand Operation Summary Bytes Cycles

A, #im Logical-OR immediate data to A 2 2

A, @HL Logical-OR indirect data memory contents to A 1 1

EA,RR Logical-OR double register to EA 2 2

RRb,EA Logical-OR EA to double register 2 2

Description: The source operand is logically ORed with the destination operand. The result is stored in the
destination. The contents of the source are unaffected.

Operand Binary Code Operation Notation

A, #im 1 1 0 1 1 1 0 1 A ← A OR im

0 0 1 0 d3 d2 d1 d0

A, @HL 0 0 1 1 1 0 1 0 A ← A OR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA OR RR

0 0 1 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb OR EA

0 0 1 0 0 r2 r1 0

Example: If the accumulator contains the value 0C3H (11000011B) and register pair HL the value 55H
(01010101B), the instruction

OR EA,@HL

leaves the value 0D7H (11010111B) in the accumulator .

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–72

POP — Pop From Stack

POP dst

Operation: Operand Operation Summary Bytes Cycles

RR Pop to register pair from stack 1 1

SB Pop SMB and SRB values from stack 2 2

Description: The contents of the RAM location addressed by the stack pointer is read, and the SP is incre-
mented by two. The value read is then transferred to the variable indicated by the destination
operand.

Operand Binary Code Operation Notation

RR 0 0 1 0 1 r2 r1 0 RRL ← (SP), RRH ← (SP+1)
SP ← SP+2

SB 1 1 0 1 1 1 0 1 (SRB) ← (SP), SMB ← (SP+1),
SP ← SP+2

0 1 1 0 0 1 1 0

Example: The SP value is equal to 0EDH, and RAM locations 0EFH through 0EDH contain the values 2H,
3H, and 4H, respectively. The instruction

POP HL

leaves the stack pointer set to 0EFH and the data pointer pair HL set to 34H.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–73

PUSH — Push Onto Stack

PUSH src

Operation: Operand Operation Summary Bytes Cycles

RR Push register pair onto stack 1 1

SB Push SMB and SRB values onto stack 2 2

Description: The SP is then decremented by two and the contents of the source operand are copied into the
RAM location addressed by the stack pointer, thereby adding a new element to the top of the
stack.

Operand Binary Code Operation Notation

RR 0 0 1 0 1 r2 r1 1 (SP–1) ← RRH, (SP–2) ← RRL
SP ← SP–2

SB 1 1 0 1 1 1 0 1 (SP–1) ← SMB, (SP–2) ← SRB;
(SP) ← SP–2

0 1 1 0 0 1 1 1

Example: As an interrupt service routine begins, the stack pointer contains the value 0FAH and the data
pointer register pair HL contains the value 20H. The instruction

PUSH HL

leaves the stack pointer set to 0F8H and stores the values 2H and 0H in RAM locations 0F9H
and 0F8H, respectively.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–74

RCF — Reset Carry Flag

RCF

Operation: Operand Operation Summary Bytes Cycles

— Reset carry flag to logic zero 1 1

Description: The carry flag is cleared to logic zero, regardless of its previous value.

Operand Binary Code Operation Notation

— 1 1 1 0 0 1 1 0 C ← 0

Example: Assuming the carry flag is set to logic one, the instruction

RCF

resets (clears) the carry flag to logic zero.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–75

REF — Reference Instruction

REF dst

Operation: Operand Operation Summary Bytes Cycles

memc Reference code 1 3 *

* The REF instruction for a 16K CALL instruction is 4 cycles.

Description: The REF instruction is used to rewrite into 1-byte form, arbitrary 2-byte or 3-byte instructions (or
two 1-byte instructions) stored in the REF instruction reference area in program memory. REF
reduces the number of program memory accesses for a program.

Operand Binary Code Operation Notation

memc t7 t6 t5 t4 t3 t2 t1 t0 PC13–0 = memc7–4, memc3–0 <1

TJP and TCALL are 2-byte pseudo-instructions that are used only to specify the reference area:

1. When the reference area is specified by the TJP instruction,
memc.7–6 = 00
P11–0 ← memc.3–0 + (memc + 1)

2. When the reference area is specified by the TCALL instruction,
memc.7–6 = 01
(SP–4) (SP–1) (SP–2) ← PC11–0
SP–3 ← EMB, ERB, 0, 0
PC11–0 ← memc.3–0 + (memc + 1)
SP ← SP–4

When the reference area is specified by any other instruction, the 'memc' and 'memc + 1'
instructions are executed.

Instructions referenced by REF occupy 2 bytes of memory space (for two 1-byte instructions or
one 2-byte instruction) and must be written as an even number from 0020H to 007FH in ROM. In
addition, the destination address of the TJP and TCALL instructions must be located with the
3FFFH address. TJP and TCALL are reference instructions for JP/JPS and CALL/CALLS.

If the instruction following a REF is subject to the 'redundancy effect', the redundant instruction is
skipped. If, however, the REF follows a redundant instruction, it is executed.

On the other hand, the binary code of a REF instruction is 1 byte. The upper 4 bits become the
higher address bits of the referenced instruction, and the lower 4 bits of the referenced instruc-
tion (x 1/2) becomes the lower address, producing a total of 8 bits or 1 byte (see Example 3 be-
low).

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–76

REF — Reference Instruction

REF (Continued)

Examples: 1. Instructions can be executed efficiently using REF, as shown in the following example:

ORG 0020H

AAA LD HL,#00H
BBB LD EA,#FFH
CCC TCALL SUB1
DDD TJP SUB2

•
•
•
ORG 0080H

REF AAA ; LD HL,#00H
REF BBB ; LD EA,#FFH
REF CCC ; CALL SUB1
REF DDD ; JP SUB2

2. The following example shows how the REF instruction is executed in relation to LD
instructions that have a 'redundancy effect':

ORG 0020H

AAA LD EA,#40H
•
•
•
ORG 0100H

LD EA,#30H
REF AAA ; Not skipped
•
•
•
REF AAA
LD EA,#50H ; Skipped
SRB 2

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–77

REF — Reference Instruction

REF (Concluded)

Examples: 3. In this example the binary code of 'REF A1' at locations 20H–21H is 20H, for 'REF A2' at
locations 22H–23H, it is 21H, and for 'REF A3' at 24H–25H, the binary code is 22H :

Opcode Symbol Instruction

ORG 0020H
;
83 00 A1 LD HL,#00H
83 03 A2 LD HL,#03H
83 05 A3 LD HL,#05H
83 10 A4 LD HL,#10H
83 26 A5 LD HL,#26H
83 08 A6 LD HL,#08H
83 0F A7 LD HL,#0FH
83 F0 A8 LD HL,#0F0H
83 67 A9 LD HL,#067H
41 0B A10 TCALL SUB1
01 0D A11 TJP SUB2

•
•
•
ORG 0100H

;
20 REF A1 ; LD HL,#00H
21 REF A2 ; LD HL,#03H
22 REF A3 ; LD HL,#05H
23 REF A4 ; LD HL,#10H
24 REF A5 ; LD HL,#26H
25 REF A6 ; LD HL,#08H
26 REF A7 ; LD HL,#0FH
27 REF A8 ; LD HL,#0F0H
30 REF A9 ; LD HL,#067H
31 REF A10 ; CALL SUB1
32 REF A11 ; JP SUB2

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–78

RET — Return From Subroutine

RET

Operation: Operand Operation Summary Bytes Cycles

— Return from subroutine 1 3

Description: RET pops the PC values successively from the stack, incrementing the stack pointer by six.
Program execution continues from the resulting address, generally the instruction immediately
following a CALL or CALLS.

Operand Binary Code Operation Notation

— 1 1 0 0 0 1 0 1 PC13–8 ← (SP+1) (SP)
PC7–0 ← (SP+2) (SP+3)
PSW ← EMB,ERB
SP ← SP+6

Example: The stack pointer contains the value 0FAH. RAM locations 0FAH, 0FBH, 0FCH, and and 0FDH
contain 1H, 0H, 5H, and 2H, respectively. The instruction

RET

leaves the stack pointer with the new value of 00H and program execution continues from
location 0125H.

During a return from subroutine, PC values are popped from stack locations as follows:

SP → PC11 – PC8

SP + 1 0 0 PC13 – PC12

SP + 2 PC3 – PC0

SP + 3 PC7 – PC4

SP + 4 0 0 EMB ERB

SP + 5 0 0 0 0

SP + 6

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–79

RRC — Rotate Accumulator Right through Carry

RRC A

Operation: Operand Operation Summary Bytes Cycles

A Rotate right through carry bit 1 1

Description: The four bits in the accumulator and the carry flag are together rotated one bit to the right. Bit 0
moves into the carry flag and the original carry value moves into the bit 3 accumulator position.

C

3 0

Operand Binary Code Operation Notation

A 1 0 0 0 1 0 0 0 C ← A.0, A3 ← C
A.n–1 ← A.n (n = 1, 2, 3)

Example: The accumulator contains the value 5H (0101B) and the carry flag is cleared to logic zero. The
instruction

RRC A

leaves the accumulator with the value 2H (0010B) and the carry flag set to logic one.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–80

SBC — Subtract With Carry

SBC dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Subtract indirect data memory from A with carry 1 1

EA,RR Subtract register pair (RR) from EA with carry 2 2

RRb,EA Subtract EA from register pair (RRb) with carry 2 2

Description: SBC subtracts the source and carry flag value from the destination operand, leaving the result in
the destination. SBC sets the carry flag if a borrow is needed for the most significant bit;
otherwise it clears the carry flag. The contents of the source are unaffected.

If the carry flag was set before the SBC instruction was executed, a borrow was needed for the
previous step in multiple precision subtraction. In this case, the carry bit is subtracted from the
destination along with the source operand.

Operand Binary Code Operation Notation

A,@HL 0 0 1 1 1 1 0 0 C,A ← A – (HL) – C

EA,RR 1 1 0 1 1 1 0 0 C, EA ← EA –RR – C

1 1 0 0 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 C,RRb ← RRb – EA – C

1 1 0 0 0 r2 r1 0

Examples: 1. The extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag is set to "1":

SCF ; C ← "1"
SBC EA,HL ; EA ← 0C3H – 0AAH – 1H, C ← "0"
JPS XXX ; Jump to XXX; no skip after SBC

2. If the extended accumulator contains the value 0C3H, register pair HL the value 0AAH, and
the carry flag is cleared to "0":

RCF ; C ← "0"
SBC EA,HL ; EA ← 0C3H – 0AAH – 0H = 19H, C ← "0"
JPS XXX ; Jump to XXX; no skip after SBC

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–81

SBC — Subtract With Carry

SBC (Continued)

Examples: 3. If SBC A,@HL is followed by an ADS A,#im, the SBC skips on 'no borrow' to the instruction
immediately after the ADS. An 'ADS A,#im' instruction immediately after the 'SBC A,@HL'
instruction does not skip even if an overflow occurs. This function is useful for decimal
adjustment operations.

a. 8 – 6 decimal addition (the contents of the address specified by the HL register is 6H):

RCF ; C ← "0"
LD A,#8H ; A ← 8H
SBC A,@HL ; A ← 8H – 6H – C(0) = 2H, C ← "0"
ADS A,#0AH ; Skip this instruction because no borrow after SBC result
JPS XXX

b. 3 – 4 decimal addition (the contents of the address specified by the HL register is 4H):

RCF ; C ← "0"
LD A,#3H ; A ← 3H
SBC A,@HL ; A ← 3H – 4H – C(0) = 0FH, C ← "1"
ADS A,#0AH ; No skip. A ← 0FH + 0AH = 9H

; (The skip function of 'ADS A,#im' is inhibited after a
; 'SBC A,@HL' instruction even if an overflow occurs.)

JPS XXX

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–82

SBS — Subtract

SBS dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Subtract indirect data memory from A; skip on borrow 1 1 + S

EA,RR Subtract register pair (RR) from EA; skip on borrow 2 2 + S

RRb,EA Subtract EA from register pair (RRb); skip on borrow 2 2 + S

Description: The source operand is subtracted from the destination operand and the result is stored in the
destination. The contents of the source are unaffected. A skip is executed if a borrow occurs.
The value of the carry flag is not affected.

Operand Binary Code Operation Notation

A,@HL 0 0 1 1 1 1 0 1 A ← A – (HL); skip on borrow

EA,RR 1 1 0 1 1 1 0 0 EA ← EA – RR; skip on borrow

1 0 1 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb – EA; skip on borrow

1 0 1 1 0 r2 r1 0

Examples: 1. The accumulator contains the value 0C3H, register pair HL contains the value 0C7H, and the
carry flag is cleared to logic zero:

RCF ; C ← "0"
SBS EA,HL ; EA ← 0C3H – 0C7H, C ← "0"

; SBS instruction skips on borrow,
; but carry flag value is not affected

JPS XXX ; Skip because a borrow occurred
JPS YYY ; Jump to YYY is executed

2. The accumulator contains the value 0AFH, register pair HL contains the value 0AAH, and
the carry flag is set to logic one:

SCF ; C ← "1"
SBS EA,HL ; EA ← 0AFH – 0AAH, C ← "1"
JPS XXX ; Jump to XXX

; JPS was not skipped since no "borrow" occurred after SBS

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–83

SCF — Set Carry Flag

SCF

Operation: Operand Operation Summary Bytes Cycles

— Set carry flag to logic one 1 1

Description: The SCF instruction sets the carry flag to logic one, regardless of its previous value.

Operand Binary Code Operation Notation

— 1 1 1 0 0 1 1 1 C ← 1

Example: If the carry flag is cleared to logic zero, the instruction

SCF

sets the carry flag to logic one.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–84

SMB — Select Memory Bank

SMB n

Operation: Operand Operation Summary Bytes Cycles

n Select memory bank 2 2

Description: The SMB instruction sets the upper four bits of a 12-bit data memory address to select a specific
memory bank. The constants 0, 1, and 15 are usually used as the SMB operand to select the
corresponding memory bank. All references to data memory addresses fall within the following
address ranges:

Please note that since data memory spaces differ for various devices in the SAM47 product
family, the 'n' value of the SMB instruction will also vary.

Addresses Register Areas Bank SMB

000H–01FH Working registers 0 0

020H–0FFH Stack and general-purpose registers

100H–1DFH General-purpose registers 1 1

1E0H–1FFH Display registers

F80H–FFFH I/O-mapped hardware registers 15 15

The enable memory bank (EMB) flag must always be set to "1" in order for the SMB instruction
to execute successfully for memory banks 0, 1, and 15.

Format Binary Code Operation Notation

n 1 1 0 1 1 1 0 1 SMB ← n (n = 0, 1, 15)

0 1 0 0 d3 d2 d1 d0

Example: If the EMB flag is set, the instruction

SMB 0

selects the data memory address range for bank 0 (000H–0FFH) as the working memory bank.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–85

SRB — Select Register Bank

SRB n

Operation: Operand Operation Summary Bytes Cycles

n Select register bank 2 2

Description: The SRB instruction selects one of four register banks in the working register memory area. The
constant value used with SRB is 0, 1, 2, or 3. The following table shows the effect of SRB
settings:

ERB Setting SRB Settings Selected Register Bank

3 2 1 0

0 0 0 x x Always set to bank 0

0 0 Bank 0

1 0 0 0 1 Bank 1

1 0 Bank 2

1 1 Bank 3

NOTE: 'x' means don't care.

The enable register bank flag (ERB) must always be set for the SRB instruction to execute suc-
cessfully for register banks 0, 1, 2, and 3. In addition, if the ERB value is logic zero, register bank
0 is always selected, regardless of the SRB value.

Operand Binary Code Operation Notation

n 1 1 0 1 1 1 0 1 SRB ← n (n = 0, 1, 2, 3)

0 1 0 1 0 0 d1 d0

Example: If the ERB flag is set, the instruction

SRB 3

selects register bank 3 (018H–01FH) as the working memory register bank.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–86

SRET — Return From Subroutine and Skip

SRET

Operation: Operand Operation Summary Bytes Cycles

— Return from subroutine and skip 1 3 + S

Description: SRET is normally used to return to the previously executing procedure at the end of a subroutine
that was initiated by a CALL or CALLS instruction. SRET skips the resulting address, which is
generally the instruction immediately after the point at which the subroutine was called. Then,
program execution continues from the resulting address and the contents of the location ad-
dressed by the stack pointer are popped into the program counter.

Operand Binary Code Operation Notation

— 1 1 1 0 0 1 0 1 PC13–8 ← (SP + 1) (SP)
PC7–0 ← (SP + 3) (SP + 2)
EMB,ERB ← (SP + 5) (SP + 4)
SP ← SP + 6

Example: If the stack pointer contains the value 0FAH and RAM locations 0FAH, 0FBH, 0FCH, and 0FDH
contain the values 1H, 0H, 5H, and 2H, respectively, the instruction

SRET

leaves the stack pointer with the value 00H and the program returns to continue execution at lo-
cation 0125H.

During a return from subroutine, data is popped from the stack to the PC as follows:

SP → PC11 – PC8

SP + 1 0 0 PC13 – PC12

SP + 2 PC3 – PC0

SP + 3 PC7 – PC4

SP + 4 0 0 EMB ERB

SP + 5 0 0 0 0

SP + 6

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–87

STOP — Stop Operation

STOP

Operation: Operand Operation Summary Bytes Cycles

— Engage CPU stop mode 2 2

Description: The STOP instruction stops the system clock by setting bit 3 of the power control register
(PCON) to logic one. When STOP executes, all system operations are halted with the exception
of some peripheral hardware with special power-down mode operating conditions.

In application programs, a STOP instruction must be immediately followed by at least three NOP
instructions. This ensures an adequate time interval for the clock to stabilize before the next
instruction is executed. If three NOP instructions are not used after STOP instruction, leakage
current could be flown because of the floating state in the internal bus.

Operand Binary Code Operation Notation

— 1 1 1 1 1 1 1 1 PCON.3 ← 1

1 0 1 1 0 0 1 1

Example: Given that bit 3 of the PCON register is cleared to logic zero, and all systems are operational,
the instruction sequence

STOP
NOP
NOP
NOP

sets bit 3 of the PCON register to logic one, stopping all controller operations (with the exception
of some peripheral hardware). The three NOP instructions provide the necessary timing delay for
clock stabilization before the next instruction in the program sequence is executed.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–88

VENT — Load EMB, ERB, and Vector Address

VENTn dst

Operation: Operand Operation Summary Bytes Cycles

EMB (0,1)
ERB (0,1)
ADR

Load enable memory bank flag (EMB) and the enable
register bank flag (ERB) and program counter to
vector address, then branch to the corresponding
location.

2 2

Description: The VENT instruction loads the contents of the enable memory bank flag (EMB) and enable
register bank flag (ERB) into the respective vector addresses. It then points the interrupt service
routine to the corresponding branching locations. The program counter is loaded automatically
with the respective vector addresses which indicate the starting address of the respective vector
interrupt service routines.

The EMB and ERB flags should be modified using VENT before the vector interrupts are ac-
knowledged. Then, when an interrupt is generated, the EMB and ERB values of the previous
routine are automatically pushed onto the stack and then popped back when the routine is com-
pleted.

After the return from interrupt (IRET) you do not need to set the EMB and ERB values again.
Instead, use BITR and BITS to clear these values in your program routine.

The starting addresses for vector interrupts and reset operations are pointed to by the VENTn in-
struction. These addresses must be stored in ROM locations 0000H–3FFFH. Generally, the
VENTn instructions are coded starting at location 0000H.

The format for VENT instructions is as follows:

VENTn d1,d2,ADDR

EMB ← d1 ("0" or "1")
ERB ← d2 ("0" or "1")
PC ← ADDR (address to branch
n = device-specific module address code (n = 0–n)

Operand Binary Code Operation Notation

EMB (0,1)
ERB (0,1)
ADR

E
M
B

E
R
B

a13 a12 a11 a10 a9 a8 ROM (2 x n) 7–6 ← EMB, ERB
ROM (2 x n) 5–4 ← 0, PC13,
 PC12
ROM (2 x n) 3–0 ← PC12–8
ROM (2 x n + 1) 7–0 ← PC7–0
(n = 0, 1, 2, 3, 4, 5, 6, 7)

a7 a6 a5 a4 a3 a2 a1 a0

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–89

VENT — Load EMB, ERB, and Vector Address

VENTn (Continued)

Example: The instruction sequence

ORG 0000H
VENT0 1,0,RESET
VENT1 0,1,INTB
VENT2 0,1,INT0
VENT3 0,1,INTS
VENT4 0,1,INTT0
VENT5 0,1,INTT1

causes the program sequence to branch to the RESET routine labeled 'RESET,' setting EMB to
"1" and ERB to "0" when RESET is activated. When a basic timer interrupt is generated, VENT1
causes the program to branch to the basic timer's interrupt service routine, INTB, and to set the
EMB value to "0" and the ERB value to "1". VENT2 then branches to INT0, VENT3 to INTS, and
so on, setting the appropriate EMB and ERB values.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–90

XCH — Exchange A or EA with Nibble or Byte

XCH dst,src

Operation: Operand Operation Summary Bytes Cycles

A,DA Exchange A and data memory contents 2 2

A,Ra Exchange A and register (Ra) contents 1 1

A,@RRa Exchange A and indirect data memory 1 1

EA,DA Exchange EA and direct data memory contents 2 2

EA,RRb Exchange EA and register pair (RRb) contents 2 2

EA,@HL Exchange EA and indirect data memory contents 2 2

Description: The instruction XCH loads the accumulator with the contents of the indicated destination variable
and writes the original contents of the accumulator to the source.

Operand Binary Code Operation Notation

A,DA 0 1 1 1 1 0 0 1 A ↔ DA

a7 a6 a5 a4 a3 a2 a1 a0

A,Ra 0 1 1 0 1 r2 r1 r0 A ↔ Ra

A,@RRa 0 1 1 1 1 i2 i1 i0 A ↔ (RRa)

EA,DA 1 1 0 0 1 1 1 1 A ↔ DA,E ↔ DA + 1

a7 a6 a5 a4 a3 a2 a1 a0

EA,RRb 1 1 0 1 1 1 0 0 EA ↔ RRb

1 1 1 0 0 r2 r1 0

EA,@HL 1 1 0 1 1 1 0 0 A ↔ (HL), E ↔ (HL + 1)

0 0 0 0 0 0 0 1

Example: Double register HL contains the address 20H. The accumulator contains the value 3FH
(00111111B) and internal RAM location 20H the value 75H (01110101B). The instruction

XCH EA,@HL

leaves RAM location 20H with the value 3FH (00111111B) and the extended accumulator with
the value 75H (01110101B).

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–91

XCHD — Exchange and Decrement

XCHD dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Exchange A and data memory contents; decrement
contents of register L and skip on borrow

1 2 + S

Description: The instruction XCHD exchanges the contents of the accumulator with the RAM location ad-
dressed by register pair HL and then decrements the contents of register L. If the content of reg-
ister L is 0FH, the next instruction is skipped. The value of the carry flag is not affected.

Operand Binary Code Operation Notation

A,@HL 0 1 1 1 1 0 1 1 A ↔ (HL), then L ← L–1;
skip if L = 0FH

Example: Register pair HL contains the address 20H and internal RAM location 20H contains the value
0FH:

LD HL,#20H
LD A,#0H
XCHD A,@HL ; A ← 0FH and L ← L – 1, (HL) ← "0"
JPS XXX ; Skipped since a borrow occurred
JPS YYY ; H ← 2H, L ← 0FH

YYY XCHD A,@HL ; (2FH) ← 0FH, A ← (2FH), L ← L – 1 = 0EH
•
•
•

The 'JPS YYY' instruction is executed since a skip occurs after the XCHD instruction.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–92

XCHI — Exchange and Increment

XCHI dst,src

Operation: Operand Operation Summary Bytes Cycles

A,@HL Exchange A and data memory contents; increment
contents of register L and skip on overflow

1 2 + S

Description: The instruction XCHI exchanges the contents of the accumulator with the RAM location ad-
dressed by register pair HL and then increments the contents of register L. If the content of regis-
ter L is 0H, a skip is executed. The value of the carry flag is not affected.

Operand Binary Code Operation Notation

A,@HL 0 1 1 1 1 0 1 0 A ↔ (HL), then L ← L+1;
skip if L = 0H

Example: Register pair HL contains the address 2FH and internal RAM location 2FH contains 0FH:

LD HL,#2FH
LD A,#0H
XCHI A,@HL ; A ← 0FH and L ← L + 1 = 0, (HL) ← "0"
JPS XXX ; Skipped since an overflow occurred
JPS YYY ; H ← 2H, L ← 0H

YYY XCHI A,@HL ; (20H) ← 0FH, A ← (20H), L ← L + 1 = 1H
•
•
•

The 'JPS YYY' instruction is executed since a skip occurs after the XCHI instruction.

KS57C5116/P5116 MICROCONTROLLER SAM47 INSTRUCTION SET

5–93

XOR — Logical Exclusive OR

XOR dst,src

Operation: Operand Operation Summary Bytes Cycles

A,#im Exclusive-OR immediate data to A 2 2

A,@HL Exclusive-OR indirect data memory to A 1 1

EA,RR Exclusive-OR register pair (RR) to EA 2 2

RRb,EA Exclusive-OR register pair (RRb) to EA 2 2

Description: XOR performs a bitwise logical XOR operation between the source and destination variables and
stores the result in the destination. The source contents are unaffected.

Operand Binary Code Operation Notation

A,#im 1 1 0 1 1 1 0 1 A ← A XOR im

0 0 1 1 d3 d2 d1 d0

A,@HL 0 0 1 1 1 0 1 1 A ← A XOR (HL)

EA,RR 1 1 0 1 1 1 0 0 EA ← EA XOR (RR)

0 0 1 1 1 r2 r1 0

RRb,EA 1 1 0 1 1 1 0 0 RRb ← RRb XOR EA

0 0 1 1 0 r2 r1 0

Example: If the extended accumulator contains 0C3H (11000011B) and register pair HL contains 55H
(01010101B), the instruction

XOR EA,HL

leaves the value 96H (10010110B) in the extended accumulator.

SAM47 INSTRUCTION SET KS57C5116/P5116 MICROCONTROLLER

5–94

NOTES

Oscillator Circuits

Interrupts

Power-Down

RESET

I/O Ports

Timers and Timer/Counters

DTMF Generator

Serial I/O Interface

Electrical Data

Mechanical Data

KS57P5116 OTP

KS57C5116/P5116 MICROCONTROLLER OSCILLATOR CIRCUITS

6–1

6 OSCILLATOR CIRCUITS

OVERVIEW

The KS57C5116 microcontrollers have two oscillator circuits: a main system clock circuit, and a subsystem
clock circuit. The CPU and peripheral hardware operate on the system clock frequency supplied through these
circuits. Specifically, a clock pulse is required by the following peripheral modules:

— Basic timer

— Timer/counters 0 and 1

— Watch timer

— Serial I/O interface

— Clock output circuit

CPU Clock Notation

In this document, the following notation is used for descriptions of the CPU clock:

fx Main system clock

fxt Subsystem clock

fxx Selected system clock

Clock Control Registers

The power control register, PCON, is used to select normal CPU operating mode or one of two power-down
modes — stop or idle. Bits 3 and 2 of the PCON register can be manipulated by a STOP or IDLE instruction to
engage stop or idle power-down mode.

The system clock mode control register, SCMOD, lets you select the main system clock (fx) or a subsystem
clock (fxt) as the CPU clock and to start (or stop) main system clock oscillation. The resulting clock source, either
main system clock or subsystem clock, is referred to as the selected system clock (fxx).

The main system clock is selected and oscillation started when all SCMOD bits are cleared to logic zero. By
setting SCMOD.3 and SCMOD.0 to different values, you can select a subsystem clock source and start or stop
main system clock oscillation. Main system clock oscillation can be stopped by setting SCMOD.3 only when the
subsystem clock is operating. To stop main system clock oscillation (assuming the main system clock is
selected), you must use the STOP instruction instead of manipulating SCMOD.3.

The main system clock frequencies can be divided by 4, 8, or 64. By manipulating PCON bits 1 and 0, you
select one of the following frequencies as the selected system clock (fxx).

fx
4 ,

fx
8 ,

fx
64 ,

fxt
4

When the SCMOD and PCON registers are both cleared to zero after RESET, the normal CPU operating mode
is enabled, a main system clock of fx/64 is selected, and main system clock oscillation is initiated.

OSCILLATOR CIRCUITS KS57C5116/P5116 MICROCONTROLLER

6–2

XTin XTout

Oscillator
stop

CPU clock

Wait release signal

Internal RESET signal

Power down release signal

PCON.3, .2 clear

IDLE

STOP

fxtfx
Watch Timer

Basic Timer
Timer/Counters 0, 1
Serial I/O Interface
Watch Timer
Clock Output Circuit

fxx

CPU stop signal
(IDLE mode)

Xin Xout

 fx : Main-system clock
 fxt : Sub-system clock
 fxx : System clock

Sub-system
Oscillator

Circuit

1 / 4

Main-system
Oscillator

Circuit

Selector
SCMOD.3

SCMOD.0

PCON.0

PCON.1

PCON.2

PCON.3

Frequency
Dividing
Circuit

1/8 - 1/4096

Selector

1/2 1/16

Oscillator
Control
Circuit

Selector

fxtfx/1,2,16

DTMF GENERATOR

Figure 6–1. Clock Circuit Diagram

KS57C5116/P5116 MICROCONTROLLER OSCILLATOR CIRCUITS

6–3

SYSTEM OSCILLATOR CIRCUITS

Xin

Xout

Figure 6–2. Crystal/Ceramic Oscillator

Xin

Xout

R

Figure 6–4. RC Oscillator

Xin

Xout

Figure 6–3. External Oscillator

OSCILLATOR CIRCUITS KS57C5116/P5116 MICROCONTROLLER

6–4

POWER CONTROL REGISTER (PCON)

The power control register, PCON, is a 4-bit register that is used to select the CPU clock frequency and to
control CPU operating and power-down modes. PCON can be addressed directly by 4-bit write instructions or
indirectly by the instructions IDLE and STOP.

FB3H PCON.3 PCON.2 PCON.1 PCON.0

PCON bits 3 and 2 are addressed by the STOP and IDLE instructions, respectively, to engage the idle and
stop power-down modes. Idle and stop modes can be initiated by these instruction despite the current value of
the enable memory bank flag (EMB). PCON bits 1 and 0 are used to select a specific system clock frequency.
There are two basic choices:

— Main system clock (fx) or subsystem clock (fxt);

— Divided fx clock frequency of 4, 8, or 64.

PCON.1 and PCON.0 settings are also connected with the system clock mode control register, SCMOD. If
SCMOD.0 = "0" the main system clock is always selected by the PCON.1 and PCON.0 setting; if SCMOD.0 =
"1" the subsystem clock is selected.

RESET sets PCON register values (and SCMOD) to logic zero: SCMOD.3 and SCMOD.0 select the main sys-
tem clock (fx) and start clock oscillation; PCON.1 and PCON.0 divide the selected fx frequency by 64, and
PCON.3 and PCON.2 enable normal CPU operating mode.

Table 6–1. Power Control Register (PCON) Organization

+ + PROGRAMMING TIP — Setting the CPU Clock

To set the CPU clock to 0.89 MHz at 3.579545 MHz:

BITS EMB
SMB 15
LD A,#3H
LD PCON,A

PCON Bit Settings Resulting CPU Operating Mode

PCON.3 PCON.2

0 0 Normal CPU operating mode

0 1 Idle power-down mode

1 0 Stop power-down mode

PCON Bit Settings Resulting CPU Clock Frequency

PCON.1 PCON.0 If SCMOD.0 = "0" If SCMOD.0 = "1"

0 0 fx/64 

1 0 fx/8 

1 1 fx/4 fxt/4

KS57C5116/P5116 MICROCONTROLLER OSCILLATOR CIRCUITS

6–5

INSTRUCTION CYCLE TIMES

The unit of time that equals one machine cycle varies depending on whether the main system clock (fx) or a
subsystem clock (fxt) is used, and on how the oscillator clock signal is divided (by 4, 8, or 64). Table 6–2 shows
corresponding cycle times in microseconds.

Table 6–2. Instruction Cycle Times for CPU Clock Rates

Selected
CPU Clock

Resulting Frequency Oscillation
Source

Cycle Time (µsec)

fx/64 55.9 kHz 17.88

fx/8 447.4 kHz fx = 3.579545 MHz 2.23

fx/4 0.89 MHz 1.12

fxt/4 8.19 kHz fxt = 32.768 kHz 122.0

SYSTEM CLOCK MODE REGISTER (SCMOD)

The system clock mode register, SCMOD, is a 4-bit register that is used to select the CPU clock and to control
main system clock oscillation. RESET clears all SCMOD values to logic zero, selecting the main system clock (fx)
as the CPU clock and starting clock oscillation.

Only the least significant and most significant bits of the SCMOD register can be manipulated by 1-bit write
instructions. (In other words, SCMOD.0 and SCMOD.3 cannot be modified simultaneously by a 4-bit write.) Bits 2
and 1 are always logic zero.

FB7H SCMOD.3 "0" "0" SCMOD.0

A subsystem clock (fxt) can be selected as the system clock by manipulating the SCMOD.3 and SCMOD.0 bit
settings. If SCMOD.3 = "0" and SCMOD.0 = "1", the subsystem clock is selected and main system clock
oscillation continues. If SCMOD.3 = "1" and SCMOD.0 = "1", fxt is selected, but main system clock oscillation
stops.

Subsystem clock oscillation cannot, of course, be stopped internally. Also, if you have selected fx as the CPU
clock, setting SCMOD.3 to "1" will not stop main system clock oscillation. This can only be done by a STOP
instruction.

Table 6–3. System Clock Mode Register (SCMOD) Organization

SCMOD Register Bit Settings Resulting Clock Selection

SCMOD.3 SCMOD.0 CPU Clock fx Oscillation

0 0 fx On

0 1 fxt On

1 1 fxt Off

OSCILLATOR CIRCUITS KS57C5116/P5116 MICROCONTROLLER

6–6

SWITCHING THE CPU CLOCK

Together, bit settings in the power control register, PCON, and the system clock mode register, SCMOD, de-
termine whether a main system or a subsystem clock is selected as the CPU clock, and also how this frequency
is to be divided. This makes it possible to switch dynamically between main and subsystem clocks and to modify
operating frequencies.

SCMOD.3 and SCMOD.0 select the main system clock (fx) or a subsystem clock (fxt) and start or stop main
system clock oscillation. PCON.1 and PCON.0 control the frequency divider circuit, and divide the selected fx
clock by 4, 8, or 64.

NOTE

A clock switch operation does not go into effect immediately when you make the SCMOD and
PCON register modifications — the previously selected clock continues to run for a certain number
of machine cycles.

For example, you are using the default CPU clock (normal operating mode and a main system clock of fx/64)
and you want to switch from the fx clock to a subsystem clock and to stop the main system clock. To do this, you
first need to set SCMOD.0 to "1". This switches the clock from fx to fxt but allows main system clock oscillation
to continue. Before the switch actually goes into effect, a certain number of machine cycles must elapse. After
this time interval, you can then disable main system clock oscillation by setting SCMOD.3 to "1".

This same 'stepped' approach must be taken to switch from a subsystem clock to the main system clock: first,
clear SCMOD.3 to "0" to enable main system clock oscillation. Then, after a certain number of machine cycles
has elapsed, select the main system clock by clearing all SCMOD values to logic zero.

Following a RESET, CPU operation starts with the lowest main system clock frequency of 15.3 µsec at 4.19
MHz after the standard oscillation stabilization interval of 31.3 ms has elapsed. Table 6–4 details the number of
machine cycles that must elapse before a CPU clock switch modification goes into effect.

Table 6–4. Elapsed Machine Cycles During CPU Clock Switch

AFTER SCMOD.0 = 0 SCMOD.0 = 1

BEFORE PCON.1 = 0 PCON.0 = 0 PCON.1 = 1 PCON.0 = 0 PCON.1 = 1 PCON.0 = 1

PCON.1 = 0 N/A 1 MACHINE CYCLE 1 MACHINE CYCLE N/A

PCON.0 = 0

SCMOD.0 = 0 PCON.1 = 1 8 MACHINE CYCLES N/A 8 MACHINE CYCLES N/A

PCON.0 = 0

PCON.1 = 1 16 MACHINE CYCLES 16 MACHINE CYCLES N/A fx / 4fxt

PCON.0 = 1

SCMOD.0 = 1 N/A N/A fx / 4fxt (M/C) N/A

NOTES:
1. Even if oscillation is stopped by setting SCMOD.3 during main system clock operation, the stop mode is not entered.
2. Since the Xin input is connected internally to VSS to avoid current leakage due to the crystal oscillator in stop mode, do

not set SCMOD.3 to "1" when an external clock is used as the main system clock.
3. When the system clock is switched to the subsystem clock, it is necessary to disable any interrupts which may occur

during the time intervals shown in Table 6–4.
4. 'N/A' means 'not available'.

KS57C5116/P5116 MICROCONTROLLER OSCILLATOR CIRCUITS

6–7

+ + PROGRAMMING TIP — Switching Between Main System and Subsystem Clock

1. Switch from the main system clock to the subsystem clock:

MA2SUB BITS SCMOD.0 ; Switches to subsystem clock
CALL DLY80 ; Delay 80 machine cycles
BITS SCMOD.3 ; Stop the main system clock
RET

DLY80 LD A,#0FH
DEL1 NOP

NOP
DECS A
JR DEL1
RET

2. Switch from the subsystem clock to the main system clock:

SUB2MA BITR SCMOD.3 ; Start main system clock oscillation
CALL DLY80 ; Delay 80 machine cycles
BITR SCMOD.0 ; Switch to main system clock
RET

OSCILLATOR CIRCUITS KS57C5116/P5116 MICROCONTROLLER

6–8

CLOCK OUTPUT MODE REGISTER (CLMOD)

The clock output mode register, CLMOD, is a 4-bit register that is used to enable or disable clock output to the
CLO pin and to select the CPU clock source and frequency. CLMOD is addressable by 4-bit write instructions
only.

FD0H CLMOD.3 "0" CLMOD.1 CLMOD.0

RESET clears CLMOD to logic zero, which automatically selects the CPU clock as the clock source (without
initiating clock oscillation), and disables clock output.

CLMOD.3 is the enable/disable clock output control bit; CLMOD.1 and CLMOD.0 are used to select one of
four possible clock sources and frequencies: normal CPU clock, fxx/8, fxx/16, or fxx/64.

Table 6–5. Clock Output Mode Register (CLMOD) Organization

CLMOD Bit Settings Resulting Clock Output

CLMOD.1 CLMOD.0 Clock Source Frequency

0 0 CPU clock (fxx/4, fxx/8, fxx/64) 0.89 MHz, 447.4 kHz, 55.9 kHz

0 1 fxx/8 447.4 kHz

1 0 fxx/16 223.7 kHz

1 1 fxx/64 55.9 kHz

CLMOD.3 Result of CLMOD.3 Setting

0 Clock output is disabled

1 Clock output is enabled

NOTE: Frequencies assume that fxx = 3.579545 MHz.

KS57C5116/P5116 MICROCONTROLLER OSCILLATOR CIRCUITS

6–9

CLOCK OUTPUT CIRCUIT

The clock output circuit, used to output clock pulses to the CLO pin, has the following components:

— 4-bit clock output mode register (CLMOD)

— Clock selector

— Output latch

— Port mode flag

— CLO output pin (P2.2)

PM2.2P2.2 OUTPUT LATCH

CLOCLMOD.3

CLMOD.2

CLMOD.1

CLMOD.0

CLOCK
SELECTOR

CLOCKS

4

(fxx/8, fxx/16, fxx/64, CPU clock)

Figure 6–5. CLO Output Pin Circuit Diagram

CLOCK OUTPUT PROCEDURE

The procedure for outputting clock pulses to the CLO pin may be summarized as follows:

1. Disable clock output by clearing CLMOD.3 to logic zero.

2. Set the clock output frequency (CLMOD.1, CLMOD.0).

3. Load a "0" to the output latch of the CLO pin (P2.2).

4. Set the P2.2 mode flag (PM2.2) to output mode.

5. Enable clock output by setting CLMOD.3 to logic one.

OSCILLATOR CIRCUITS KS57C5116/P5116 MICROCONTROLLER

6–10

+ + PROGRAMMING TIP — CPU Clock Output to the CLO Pin

To output the CPU clock to the CLO pin:

BITS EMB
SMB 15
LD EA,#04H
LD PMG2,EA ; P2.2 ← Output mode
BITR P2.2 ; Clear P2.2 output latch
LD A,#8H
LD CLMOD,A

KS57C5116/P5116 MICROCONTROLLER INTERRUPTS

7–1

7 INTERRUPTS

OVERVIEW

The KS57C5116's interrupt control circuit has five functional components:

— Interrupt enable flags (IEx)

— Interrupt request flags (IRQx)

— Interrupt mask enable register (IME)

— Interrupt priority register (IPR)

— Power-down release signal circuit

Three kinds of interrupts are supported:

— Internal interrupts generated by on-chip processes

— External interrupts generated by external peripheral devices

— Quasi-interrupts used for edge detection and as clock sources

Table 7–1. Interrupt Types and Corresponding Port Pin(s)

Interrupt Type Interrupt Name Corresponding Port Pin

External interrupts INT0, INT1, INT4 P1.0, P1.1, P1.3

Internal interrupts INTB, INTT0, INTT1, INTS Not applicable

Quasi-interrupts INT2 P1.2, Ports 6 and 7 (KS0–KS7)

INTW Not applicable

INTERRUPTS KS57C5116/P5116 MICROCONTROLLER

7–2

Vectored Interrupts

Interrupt requests may be processed as vectored interrupts in hardware, or they can be generated by program
software. A vectored interrupt is generated when the following flags and register settings, corresponding to the
specific interrupt (INTn) are set to logic one:

— Interrupt enable flag (IEx)

— Interrupt master enable flag (IME)

— Interrupt request flag (IRQx)

— Interrupt status flags (IS0, IS1)

— Interrupt priority register (IPR)

If all conditions are satisfied for the execution of a requested service routine, the start address of the interrupt
is loaded into the program counter and the program starts executing the service routine from this address.

EMB and ERB flags for RAM memory banks and registers are stored in the vector address area of the ROM
during interrupt service routines. The flags are stored at the beginning of the program with the VENT instruction.
The initial flag values determine the vectors for resets and interrupts. Enable flag values are saved during the
main routine, as well as during service routines. Any changes that are made to enable flag values during a
service routine are not stored in the vector address.

When an interrupt occurs, the enable flag values before the interrupt is initiated are saved along with the pro-
gram status word (PSW), and the enable flag values for the interrupt is fetched from the respective vector
address. Then, if necessary, you can modify the enable flags during the interrupt service routine. When the
interrupt service routine is returned to the main routine by the IRET instruction, the original values saved in the
stack are restored and the main program continues program execution with these values.

Software-Generated Interrupts

To generate an interrupt request from software, the program manipulates the appropriate IRQx flag. When the
interrupt request flag value is set, it is retained until all other conditions for the vectored interrupt have been met,
and the service routine can be initiated.

Multiple Interrupts

By manipulating the two interrupt status flags (IS0 and IS1), you can control service routine initialization and
thereby process multiple interrupts simultaneously.

If more than four interrupts are being processed at one time, you can avoid possible loss of working register
data by using the PUSH RR instruction to save register contents to the stack before the service routines are exe-
cuted in the same register bank. When the routines have executed successfully, you can restore the register con-
tents from the stack to working memory using the POP instruction.

Power-Down Mode Release

An interrupt (with the exception of INT0) can be used to release power-down mode (stop or idle). Interrupts for
power-down mode release are initiated by setting the corresponding interrupt enable flag. Even if the IME flag is
cleared to zero, power-down mode will be released by an interrupt request signal when the interrupt enable flag
has been set. In such cases, the interrupt routine will not be executed since IME = "0".

KS57C5116/P5116 MICROCONTROLLER INTERRUPTS

7–3

Request flag (IRQx) <-- 1

IEx = 1?

Interrupt is generated (INT xx)

Retain value until IEx = 1

Generate corresponding vector interrupt
and release power-down mode

Retain value until IME = 1

High-priority interrupt?

IME = 1?

IS1,0 = 0,0?

IS1,0 = 0,1 ?

Are both interrupt sources
of shared vector address used?

Store contents of PC and PSW in the stack area;
set PC contents to corresponding vector address

IS1,0 = 0,1

Reset corresponding IRQx flag

IRQx flag value remains 1

Jump to interrupt start address
Verify interrupt source and

clear IRQx with a BTSTZ instruction

Retain value until interrupt
service routine is completed

Jump to interrupt start address

IS1,0 = 1,0

NO

NO

NO

NO

YES

YES

YES

YES

YES

YES

NO

NO

Figure 7–1. Interrupt Execution Flowchart

INTERRUPTS KS57C5116/P5116 MICROCONTROLLER

7–4

IRQB

IRQ4

IRQ0

IRQ1

IRQS

IRQT0

IRQT1

IRQW

IRQ2

IET1 IET0 IES IE1 IE0 IE4 IEBIMOD1 IMOD0

INTB

INT4

INT0

INT1

INTS

INTT0

INTT1

INTW

@

@

POWER-DOWN
MODE

RELEASE SIGNAL

IME IPR

IS1 IS0

INTERRUPT CONTROL UNIT

VECTOR INTERRUPT
GENERATOR

= Noise filtering circuit
@ = Edge detection circuit

SELECTOR

IMOD2

INT2

KS0–KS7

IEWIE2

Figure 7–2. Interrupt Control Circuit Diagram

KS57C5116/P5116 MICROCONTROLLER INTERRUPTS

7–5

MULTIPLE INTERRUPTS

The interrupt controller can service multiple interrupts in two ways: as two-level interrupts, where either all
interrupt requests or only those of highest priority are serviced, or as multi-level interrupts, when the interrupt
service routine for a lower-priority request is accepted during the execution of a higher priority routine.

Two-Level Interrupt Handling

Two-level interrupt handling is the standard method for processing multiple interrupts. When the IS1 and IS0
bits of the PSW (FB0H.3 and FB0H.2, respectively) are both logic zero, program execution mode is normal and
all interrupt requests are serviced (see Figure 7–3).

Whenever an interrupt request is accepted, IS1 and IS0 are incremented by one ("0" → "1" or "1" → "0"), and
the values are stored in the stack along with the other PSW bits. After the interrupt routine has been serviced,
the modified IS1 and IS0 values are automatically restored from the stack by an IRET instruction.

IS0 and IS1 can be manipulated directly by 1-bit write instructions, regardless of the current value of the
enable memory bank flag (EMB). Before you can modify an interrupt status flag, however, you must first disable
interrupt processing with a DI instruction.

When IS1 = "0" and IS0 = "1", all interrupt service routines are inhibited except for the highest priority interrupt
currently defined by the interrupt priority register (IPR).

INT DISABLE

SET IPR

INT ENABLE

LOW OR
HIGH LEVEL
INTERRUPT

GENERATED

NORMAL PROGRAM
PROCESSING
(STATUS 0)

HIGH-LEVEL
INTERRUPT
GENERATED

HIGH OR LOW LEVEL
INTERRUPT PROCESSING

(STATUS 1)
HIGH LEVEL INTERRUPT

PROCESSING
(STATUS 2)

Figure 7–3. Two-Level Interrupt Handling

INTERRUPTS KS57C5116/P5116 MICROCONTROLLER

7–6

Multi-Level Interrupt Handling

With multi-level interrupt handling, a lower-priority interrupt request can be executed while a high-priority inter-
rupt is being serviced. This is done by manipulating the interrupt status flags, IS0 and IS1 (see Table 7–2).

When an interrupt is requested during normal program execution, interrupt status flags IS0 and IS1 are set to
"1" and "0", respectively. This setting allows only highest-priority interrupts to be serviced. When a high-priority
request is accepted, both interrupt status flags are then cleared to "0" by software so that a request of any priority
level can be serviced. In this way, the high- and low-priority requests can be serviced in parallel (see Figure 7–4).

Table 7–2. IS1 and IS0 Bit Manipulation for Multi-Level Interrupt Handling

Process Status Before INT Effect of ISx Bit Setting After INT ACK

IS1 IS0 IS1 IS0

0 0 0 All interrupt requests are serviced. 0 1

1 0 1 Only high-priority interrupts as determined by the
current settings in the IPR register are serviced.

1 0

2 1 0 No additional interrupt requests will be serviced. — —

— 1 1 Value undefined — —

INT DISABLE

SET IPR

INT ENABLE

LOW OR
HIGH LEVEL
INTERRUPT

GENERATED

NORMAL PROGRAM
PROCESSING
(STATUS 0)

LOW OR HIGH
LEVEL

INTERRUPT
GENERATED

SINGLE
INTERRUPT

2-LEVEL
INTERRUPT

STATUS 1

STATUS 1

STATUS 0

STATUS 0

INT ENABLE
MODIFY STATUS

INT DISABLE

HIGH-LEVEL
INTERRUPT
GENERATED

STATUS 2

3-LEVEL
INTERRUPT

Figure 7–4. Multi-Level Interrupt Handling

KS57C5116/P5116 MICROCONTROLLER INTERRUPTS

7–7

INTERRUPT PRIORITY REGISTER (IPR)

The 4-bit interrupt priority register (IPR) is used to control multi-level interrupt handling. Its reset value is logic
zero. Before the IPR can be modified by 4-bit write instructions, all interrupts must first be disabled by a DI
instruction.

FB2H IME IPR.2 IPR.1 IPR.0

By manipulating the IPR settings, you can choose to process all interrupt requests with the same priority level,
or you can select one type of interrupt for high-priority processing. A low-priority interrupt can itself be interrupted
by a high-priority interrupt, but not by another low-priority interrupt. A high-priority interrupt cannot be interrupted
by any other interrupt source.

Table 7–3. Standard Interrupt Priorities

The MSB of the IPR, the interrupt master enable flag (IME), enables and disables all interrupt processing.
Even if an interrupt request flag and its corresponding enable flag are set, a service routine cannot be executed
until the IME flag is set to logic one. The IME flag can be directly manipulated by EI and DI instructions,
regardless of the current enable memory bank (EMB) value.

Table 7–4. Interrupt Priority Register Settings

NOTE: During normal interrupt processing, interrupts are processed in the order in which they occur. If two or more
interrupts occur simultaneously, the processing order is determined by the default interrupt priority settings shown
in Table 7–3. Using the IPR settings, you can select specific interrupts for high-priority processing in the event of
contention. When the high-priority (IPR) interrupt has been processed, waiting interrupts are handled according to
their default priorities.

Interrupt Default Priority

INTB, INT4 1

INT0 2

INT1 3

INTS 4

INTT0 5

INTT1 6

IPR.2 IPR.1 IPR.0 Result of IPR Bit Setting

0 0 0 Normal interrupt handling according to default priority settings

0 0 1 Process INTB and INT4 interrupts at highest priority

0 1 0 Process INT0 interrupts at highest priority

0 1 1 Process INT1 interrupts at highest priority

1 0 0 Process INTS interrupts at highest priority

1 0 1 Process INTT0 interrupts at highest priority

1 1 0 Process INTT1 interrupts at highest priority

INTERRUPTS KS57C5116/P5116 MICROCONTROLLER

7–8

+ + PROGRAMMING TIP — Setting the INT Interrupt Priority

The following instruction sequence sets the INT1 interrupt to high priority:

BITS EMB
SMB 15
DI ; IPR.3 (IME) ← 0
LD A,#3H
LD IPR,A
EI ; IPR.3 (IME) ← 1

EXTERNAL INTERRUPT 0 and 1 MODE REGISTERS (IMOD0, IMOD1)

The following components are used to process external interrupts at the INT0 and INT1 pin:

— Noise filtering circuit for INT0

— Edge detection circuit

— Two mode registers, IMOD0 and IMOD1

The mode registers are used to control the triggering edge of the input signal. IMOD0 and IMOD1 settings let
you choose either the rising or falling edge of the incoming signal as the interrupt request trigger. The INT4
interrupt is an exception since its input signal generates an interrupt request on both rising and falling edges.

FB4H IMOD0.3 "0" IMOD0.1 IMOD0.0

FB5H "0" "0" "0" IMOD1.0

IMOD0 and IMOD1 bits are addressable by 4-bit write instructions. RESET clears all IMOD values to logic
zero, selecting rising edges as the trigger for incoming interrupt requests.

Table 7–5. IMOD0 and IMOD1 Register Organization

IMOD0 IMOD0.3 0 IMOD0.1 IMOD0.0 Effect of IMOD0 Settings

0 Select CPU clock for sampling

1 Select fxx/64 sampling clock

0 0 Rising edge detection

0 1 Falling edge detection

1 0 Both rising and falling edge detection

1 1 IRQ0 flag cannot be set to "1"

IMOD1 0 0 0 IMOD1.0 Effect of IMOD1 Settings

0 Rising edge detection

1 Falling edge detection

KS57C5116/P5116 MICROCONTROLLER INTERRUPTS

7–9

EXTERNAL INTERRUPT 0 and 1 MODE REGISTERS (Continued)

When a sampling clock rate of fx/64 is used for INT0, an interrupt request flag must be cleared before 16 ma-
chine cycles have elapsed. Since the INT0 pin has a clock-driven noise filtering circuit built into it, please take
the following precautions when you use it:

— To trigger an interrupt, the input signal width at INT0 must be at least two times wider than the pulse width
of the clock selected by IMOD0. This is true even when the INT0 pin is used for general-purpose input.

— Since the INT0 input sampling clock does not operate during stop or idle mode, you cannot use INT0 to re-
lease power-down mode.

INT0

CPU clock fxx/64

INT1

NOISE FILTER EDGE DETECTION IRQ0

IMOD0 IMOD1

CLOCK
SELECTOR

P1.1 P1.0

EDGE DETECTION

IRQ1

Figure 7–5. Circuit Diagram for INT0 and INT1 Pins

When modifying the IMOD0 and IMOD1 registers, it is possible to accidentally set an interrupt request flag. To
avoid unwanted interrupts, take these precautions when writing your programs:

1. Disable all interrupts with a DI instruction.

2. Modify the IMOD0 or IMOD1 register.

3. Clear all relevant interrupt request flags.

4. Enable the interrupt by setting the appropriate IEx flag.

5. Enable all interrupts with an EI instructions.

INTERRUPTS KS57C5116/P5116 MICROCONTROLLER

7–10

EXTERNAL INTERRUPT 2 MODE REGISTER (IMOD2)

The mode register for external interrupts at the INT2 pin, IMOD2 is addressable only by 4-bit write instructions.
RESET clears all IMOD2 bits to logic zero.

FB6H "0" "0" IMOD2.
1

IMOD2.
0

When IMOD2 is cleared to logic zero, INT2 uses the rising edge of an incoming signal as the interrupt request
trigger. If a rising edge is detected at the INT2 pin, or when a falling edge is detected at any one of the pins KS0–
KS7, the IRQ2 flag is set to logic one and a release signal for power-down mode is generated.

Table 7–6. IMOD2 Register Bit Settings

IMOD2 0 0 IMOD2.1 IMOD2.0 Effect of IMOD2 Settings

0 0 Select rising edge at INT2 pin

0 1 Select falling edge at KS4–KS7

1 0 Select falling edge at KS2–KS7

1 1 Select falling edge at KS0–KS7

KS57C5116/P5116 MICROCONTROLLER INTERRUPTS

7–11

INT2

P7.3/KS7

P7.2/KS6

P7.1/KS5

P7.0/KS4

P6.3/KS3

P6.2/KS2

P6.1/KS1

P6.0/KS0

RISING EDGE
DETECTION CIRCUIT

FALLING
EDGE

DETECTION
CIRCUIT

IMOD2

CLOCK
SELECTOR

IRQ2

To generate a key interrupt on a falling edge at KS0–KS7, all KS0–KS7 pins must be
configured to input mode. KS4–KS7, in particular, must always be configured to input
mode.

NOTE:

Figure 7–6. Circuit Diagram for INT2 and KS0–KS7 Pins

INTERRUPTS KS57C5116/P5116 MICROCONTROLLER

7–12

+ + PROGRAMMING TIP — Using INT2 as a Key Input Interrupt

When the INT2 interrupt is used as a key interrupt, the selected key interrupt source pin must be set to input:

1. When KS0–KS7 are selected (eight pins):

BITS EMB
SMB 15
LD A,#3H
LD IMOD2,A ; (IMOD2) ← #3H, KS0–KS7 falling edge select
LD EA,#0FH
LD PMG1,EA ; P7 ← input mode
LD EA,#00H
LD PMG3,EA ; P6 ← input mode
LD EA,#30H
LD PUMOD1,EA ; Enable P6 and P7 pull-up resistors

2. When KS2–KS7 are selected (six pins):

BITS EMB
SMB 15
LD A,#2H
LD IMOD2,A ; (IMOD2) ← #2H, KS2–KS7 falling edge select
LD EA,#0FH
LD PMG1,EA ; P7 ← input mode
LD EA,#0CH
LD PMG3,EA ; P6.2–P6.3 ← input mode
LD EA,#30H
LD PUMOD1,EA ; Enable P6 and P7 pull-up resistors

3. When KS4–KS7 are selected (four pins), P7 must be specified as a key strobe signal input:

BITS EMB
SMB 15
LD A,#1H
LD IMOD2,A ; (IMOD2) ← #1H, KS4–KS7 falling edge select
LD EA,#0FH
LD PMG1,EA ; P7 ← input mode
LD EA,#20H
LD PUMOD1,EA ; Enable P7 pull-up resistor

KS57C5116/P5116 MICROCONTROLLER INTERRUPTS

7–13

INTERRUPT FLAGS

There are three types of interrupt flags: interrupt request and interrupt enable flags that correspond to each in-
terrupt, the interrupt master enable flag, which enables or disables all interrupt processing.

Interrupt Master Enable Flag (IME)

The interrupt master enable flag, IME, enables or disables all interrupt processing. Therefore, even when an
IRQx flag is set and its corresponding IEx flag is enabled, the interrupt service routine is not executed until the
IME flag is set to logic one.

The IME flag is located in the IPR register (IPR.3). It can be directly be manipulated by EI and DI instructions,
regardless of the current value of the enable memory bank flag (EMB).

Interrupt Enable Flags (IEx)

IEx flags, when set to logical one, enable specific interrupt requests to be serviced. When the interrupt request
flag is set to logic one, an interrupt will not be serviced until its corresponding IEx flag is also enabled.

Interrupt enable flags can be read, written, or tested directly by 1-bit instructions (BITS and BITR) or 4-bit
instructions. IEx flags can be addressed directly at their specific RAM addresses, despite the current value of the
enable memory bank (EMB) flag.

NOTES:
1. IEx refers generically to all interrupt enable flags.
2. IRQx refers generically to all interrupt request flags.
3. IEx = 0 is interrupt disable mode.
4. IEx = 1 is interrupt enable mode.

IME IPR.2 IPR.1 IPR.0 Effect of Bit Settings

0 Inhibit all interrupts

1 Enable all interrupts

Table 7–7. Interrupt Enable and Interrupt Request Flag Addresses

Address Bit 3 Bit 2 Bit 1 Bit 0

FB8H IE4 IRQ4 IEB IRQB

FBAH 0 0 IEW IRQW

FBBH 0 0 IET1 IRQT1

FBCH 0 0 IET0 IRQT0

FBDH 0 0 IES IRQS

FBEH IE1 IRQ1 IE0 IRQ0

FBFH 0 0 IE2 IRQ2

INTERRUPTS KS57C5116/P5116 MICROCONTROLLER

7–14

Interrupt Request Flags (IRQx)

Interrupt request flags, are read/write addressable by 1-bit or 4-bit instructions.IRQx flags can be addressed
directly at their specific RAM addresses, regardless of the current value of the enable memory bank (EMB) flag.

When a specific IRQx flag is set to logic one, the corresponding interrupt request is generated. The flag is
then automatically cleared to logic zero when the interrupt has been serviced. Exceptions are the watch timer
interrupt request flags, IRQW, and the external interrupt 2 flag IRQ2, which must be cleared by software after the
interrupt service routine has executed. IRQx flags are also used to execute interrupt requests from software. In
summary, follow these guidelines for using IRQx flags:

1. IRQx is set to request an interrupt when an interrupt meets the set condition for interrupt generation.

2. IRQx is set to "1" by hardware and then cleared by hardware when the interrupt has been serviced (with
the exception of IRQW and IRQ2).

3. If IRQx is set to "1" by software, an interrupt is also generated.

When two interrupts share the same service routine start address, interrupt processing may occur in one of
two ways:

— When only one interrupt is enabled, the IRQx flag is cleared automatically when the interrupt has been
serviced.

— When two interrupts are enabled, the request flag is not automatically cleared so that the user has an
opportunity to locate the source of the interrupt request. In this case, the IRQx setting must be cleared
manually using a BTSTZ instruction.

Table 7–8. Interrupt Request Flag Conditions and Priorities

Interrupt
Source

Internal /
External

Pre-condition for IRQx Flag Setting Interrupt
Priority

IRQ Flag
Name

INTB I Reference time interval signal from basic
timer

1 IRQB

INT4 E Both rising and falling edges detected at INT4 1 IRQ4

INT0 E Rising or falling edge detected at INT0 pin 2 IRQ0

INT1 E Rising or falling edge detected at INT1 pin 3 IRQ1

INTS I Completion signal for serial transmit-and-re-
ceive or receive-only operation

4 IRQS

INTT0 I Signals for TCNT0 and TREF0 registers
match

5 IRQT0

INTT1 I Signals for TCNT1 and TREF1 registers
match

6 IRQT1

INT2 * E Rising edge detected at INT2 or else a falling
edge is detected at any of the KS0–KS7 pins

— IRQ2

INTW I Time interval of 0.5 secs or 3.19 msecs — IRQW

* The quasi-interrupt INT2 is only used for testing incoming signals.

KS57C5116/P5116 MICROCONTROLLER INTERRUPTS

7–15

+ + PROGRAMMING TIP — Enabling the INTB and INT4 Interrupts

To simultaneously enable INTB and INT4 interrupts:

INTB DI
BTSTZ IRQB ; IRQB = 1 ?
JR INT4 ; If no, INT4 interrupt; if yes, INTB interrupt is processed
•
•
•
EI
IRET

;
INT4 BITR IRQ4 ; INT4 is processed

•
•
•
EI
IRET

INTERRUPTS KS57C5116/P5116 MICROCONTROLLER

7–16

NOTES

KS57C5116/P5116 MICROCONTROLLER POWER-DOWN

8–1

8 POWER-DOWN

OVERVIEW

The KS57C5116 microcontroller has two power-down modes to reduce power consumption: idle and stop. Idle
mode is initiated by the IDLE instruction and stop mode by the instruction STOP. (Several NOP instructions must
always follow an IDLE or STOP instruction in a program.) In idle mode, the CPU clock stops while peripherals
and the oscillation source continue to operate normally.

When RESET occurs during normal operation or during a power-down mode, a reset operation is initiated and
the CPU enters idle mode. When the standard oscillation stabilization time interval (31.3 ms at 4.19 MHz) has
elapsed, normal CPU operation resumes.

In stop mode, main system clock oscillation is halted (assuming it is currently operating), and peripheral hard-
ware components are powered-down. The effect of stop mode on specific peripheral hardware components —
CPU, basic timer, serial I/O, timer/counters, and watch timer — and on external interrupt requests, is detailed in
Table 8–1.

NOTE

Do not use stop mode if you are using an external clock source because Xin input must be
restricted internally to VSS to reduce current leakage.

Idle or stop modes are terminated either by a RESET, or by an interrupt with the exception of INT0, which are
enabled by the corresponding interrupt enable flag, IEx. When power-down mode is terminated by RESET input,
a normal reset operation is executed. Assuming that both the interrupt enable flag and the interrupt request flag
are set to "1", power-down mode is released immediately upon entering power-down mode.

When an interrupt is used to release power-down mode, the operation differs depending on the value of the
interrupt master enable flag (IME):

— If the IME flag = "0", program execution is started immediately after the instruction which issues the
request to enter power-down mode. The interrupt request flag remains set to logic one.

— If the IME flag = "1", two instructions are executed after the power-down mode release. Then, the vectored
interrupt is initiated. However, when the release signal is caused by INT2 or INTW, the operation is
identical to the IME = 0 condition. That is, a vector interrupt is not generated.

POWER-DOWN KS57C5116/P5116 MICROCONTROLLER

8–2

Table 8–1. Hardware Operation During Power-Down Modes

Operation Stop Mode (STOP) Idle Mode (IDLE)

Clock oscillator System clock oscillation stops CPU clock oscillation stops (system
clock oscillation continues)

Basic timer Basic timer stops Basic timer operates (with IRQB set at
each reference interval)

Serial interface Operates only if external SCK input is
selected as the serial I/O clock

Operates if a clock other than the CPU
clock is selected as the serial I/O clock

Timer/counter 0 Operates only if TCL0 is selected as the
counter clock

Timer/counter 0 operates

Timer/counter 1 Operates only if TCL1 is selected as the
counter clock

Timer/counter 1 operates

Watch timer Watch timer operation is stopped Watch timer operates

External interrupts INT0, INT1, INT2, and INT4 are
acknowledged

INT1, INT2, and INT4 are acknowledged;
INT0 is not serviced

CPU All CPU operations are disabled All CPU operations are disabled

Power-down mode
release signal

Interrupt request signals (except INT0)
are enabled by an interrupt enable flag or
by RESET input

Interrupt request signals (except INT0)
are enabled by an interrupt enable flag or
by RESET input

KS57C5116/P5116 MICROCONTROLLER POWER-DOWN

8–3

IDLE MODE TIMING DIAGRAMS

CLOCK
SIGNAL

IDLE
INSTRUCTION

OSCILLATION
STABILIZATION

(36.6 ms / 3.58 MHz)

NORMAL MODE IDLE MODE NORMAL MODE

NORMAL OSCILLATION

RESET

Figure 8–1. Timing When Idle Mode is Released by RESET

NORMAL MODE IDLE MODE NORMAL MODE

NORMAL OSCILLATION

MODE
RELEASE
SIGNAL

IDLE
INSTRUCTION

CLOCK
SIGNAL

INTERRUPT ACKNOWLEDGE (IME = 1)

Figure 8–2. Timing When Idle Mode is Released by an Interrupt

POWER-DOWN KS57C5116/P5116 MICROCONTROLLER

8–4

STOP MODE TIMING DIAGRAMS

CLOCK
SIGNAL

STOP
INSTRUCTION

OSCILLATION
STABILIZATION

(36.6 ms / 3.58 MHz)

NORMAL MODE IDLE MODE NORMAL MODE

OSCILLATION RESUMES

STOP MODE

OSCILLATION
STOPS

RESET

Figure 8–3. Timing When Stop Mode is Released by RESET

OSCILLATION
STABILIZATION

(BMOD SETTING)

NORMAL MODE IDLE MODE NORMAL MODE

OSCILLATION RESUMES

STOP MODE

OSCILLATION
STOPS

MODE
RELEASE
SIGNAL

STOP
INSTRUCTION

CLOCK
SIGNAL

INT ACK (IME = 1)

Figure 8–4. Timing When Stop Mode is Release by an Interrupt

KS57C5116/P5116 MICROCONTROLLER POWER-DOWN

8–5

+ + PROGRAMMING TIP — Reducing Power Consumption for Key Input Interrupt Processing

The following code shows interrupt processing for key inputs to reduce power consumption. In this example,
the system clock source is switched from the main system clock to a subsystem clock:

KEYCLK DI
CALL MA2SUB ; Main system clock → subsystem clock switch subroutine
SMB 15
LD EA,#00H
LD P4,EA ; All key strobe outputs to low level
LD A,#3H
LD IMOD2,A ; Select KS0–KS7 enable
SMB 0
BITR IRQ2
BITS IE2

CLKS1 BTSTZ IRQ2
JR CIDLE
CALL SUB2MA ; Subsystem clock → main system clock switch subroutine
EI
RET

CIDLE IDLE ; Engage idle mode
NOP
NOP
NOP
JPS CLKS1

POWER-DOWN KS57C5116/P5116 MICROCONTROLLER

8–6

PORT PIN CONFIGURATION FOR POWER-DOWN

The following method describes how to configure I/O port pins to reduce power consumption during power-
down modes (stop, idle):

Condition 1: If the microcontroller is not configured to an external device:

1. Connect unused port pins according to the information in Table 8–2.

2. Disable all pull-up resistors for output pins by making the appropriate modifications to the pull-up resistor
mode register, PUMOD. Reason: If output goes low when the pull-up resistor is enabled, there may be un-
expected surges of current through the pull-up.

3. Disable pull-up resistors for input pins configured to VDD or VSS levels in order to check the current input
option. Reason: If the input level of a port pin is set to VSS when a pull-up resistor is enabled, it will draw
an unnecessarily large current.

Condition 2: If the microcontroller is configured to an external device and the external device's VDD source
is turned off in power-down mode.

1. Connect unused port pins according to the information in Table 8–2.

2. Disable the pull-up resistors of output pins by making the appropriate modifications to the pull-up resistor
mode register, PUMOD. Reason: If output goes low when the pull-up resistor is enabled, there may be un-
expected surges of current through the pull-up.

3. Disable pull-up resistors for input pins configured to VDD or VSS levels in order to check the current input
option. Reason: If the input level of a port pin is set to VSS when a pull-up resistor is enabled, it will draw
an unnecessarily large current.

4. Disable the pull-up resistors of input pins connected to the external device by making the necessary modi-
fications to the PUMOD register.

5. Configure the output pins that are connected to the external device to low level. Reason: When the exter-
nal device's VDD source is turned off, and if the microcontroller's output pins are set to high level, VDD –
0.7 V is supplied to the VDD of the external device through its input pin. This causes the device to operate
at the level VDD – 0.7 V. In this case, total current consumption would not be reduced.

6. Determine the correct output pin state necessary to block current pass in according with the external tran-
sistors (PNP, NPN).

KS57C5116/P5116 MICROCONTROLLER POWER-DOWN

8–7

RECOMMENDED CONNECTIONS FOR UNUSED PINS

To reduce overall power consumption, please configure unused pins according to the guidelines described in
Table 8–2.

Table 8–2. Unused Pin Connections for Reduced Power Consumption

Pin/Share Pin Names Recommended Connection

P0.0 / SCK
P0.1 / SO
P0.2 / SI
P0.3 / BTCO

Input mode: Connect to VDD
Output mode: No connection

P1.0 / INT0–P1.2 / INT2 Connect to VDD

P1.3 / INT4 Connect to VSS

P2.0 / TCLO0
P2.1 / TCLO1
P2.2 / CLO
P2.3 / BUZ
P3.0 / TCL0
P3.1 / TCL1
P3.2
P3.3
P4.0–P4.3
P5.0–P5.3
P6.0 / KS0–P6.3 / KS3
P7.0 / KS4–P7.3 / KS7
P8.0–P8.3
P9.0–P9.3
P10.0–P10.3
P11.0–P11.3
P13.0–P13.2

Input mode: Connect to VDD
Output mode: No connection

P12.0–P12.3 Input mode: Connect to VSS
Output mode: No connection

DTMF No connection

NC Connect to VSS

POWER-DOWN KS57C5116/P5116 MICROCONTROLLER

8–8

NOTES

KS57C5116/P5116 MICROCONTROLLER RESET

9–1

9 RESET

OVERVIEW

When a RESET signal is input during normal operation or power-down mode, a hardware RESET operation is
initiated and the CPU enters idle mode. Then, when the standard oscillation stabilization interval of 36.6 ms at
3.579545 MHz has elapsed, normal system operation resumes.

Regardless of when the RESET occurs — during normal operating mode or during a power-down mode —
most hardware register values are set to the RESET values described in Table 9–1 below. The current status of
several register values is, however, always retained when a RESET occurs during idle or stop mode; If a RESET
occurs during normal operating mode, their values are undefined. Current values that are retained in this case
are as follows:

— Carry flag

— General-purpose registers E, A, L, H, X, W, Z, and Y

— Serial I/O buffer register (SBUF)

OSCILLATION
STABILIZATION

(36.6 ms / 3.58 MHz)

IDLE MODE OPERATING MODE

RESET

INPUT

RESET OPERATION

NORMAL MODE
OR

POWER-DOWN
MODE

Figure 9–1. Timing for Oscillation Stabilization After RESET

HARDWARE RESET VALUES AFTER RESET

Table 9–1 gives you detailed information about hardware register values after a RESET occurs during power-
down mode or during normal operation.

RESET KS57C5116/P5116 MICROCONTROLLER

9–2

Table 9–1. Hardware Register Values After RESET

Hardware Component
or Subcomponent

If RESET Occurs During
Power-Down Mode

If RESET Occurs During
Normal Operation

Program counter (PC) Lower six bits of address 0000H
are transferred to PC12–8, and
the contents of 0001H to PC7–0.

Lower six bits of address 0000H
are transferred to PC12–8, and
the contents of 0001H to PC7–0.

Program Status Word (PSW):

Carry flag (C) Values retained Undefined

Skip flag (SC0–SC2) 0 0

Interrupt status flags (IS0, IS1) 0 0

Bank enable flags (EMB, ERB) Bit 6 of address 0000H in
program memory is transferred to
the ERB flag, and bit 7 of the
address to the EMB flag.

Bit 6 of address 0000H in
program memory is transferred to
the ERB flag, and bit 7 of the
address to the EMB flag.

Stack pointer (SP) Undefined Undefined

Data Memory (RAM):

General registers E, A, L, H, X, W, Z, Y Values retained Undefined

General-purpose registers Values retained (note) Undefined

Bank selection registers (SMB, SRB) 0, 0 0, 0

Clocks:

Power control register (PCON) 0 0

Clock output mode register (CLMOD) 0 0

System clock mode register (SCMOD) 0 0

Interrupts:

Interrupt request flags (IRQx) 0 0

Interrupt enable flags (IEx) 0 0

Interrupt priority flag (IPR) 0 0

Interrupt master enable flag (IME) 0 0

INT0 mode register (IMOD0) 0 0

INT1 mode register (IMOD1) 0 0

INT2 mode register (IMOD2) 0 0

INTK mode register (IMODK) 0 0

NOTE: The values of the 0F8H – 0FDH are not retained when a RESET signal is input.

KS57C5116/P5116 MICROCONTROLLER RESET

9–3

Table 9–1. Hardware Register Values After RESET (Continued)

Hardware Component
or Subcomponent

If RESET Occurs During
Power-Down Mode

If RESET Occurs During
Normal Operation

I/O Ports:

Output buffers Off Off

Output latches 0 0

Port mode flags (PM) 0 0

Pull-up resistor mode reg (PUMOD1/2) 0 0

Basic Timer:

Count register (BCNT) Undefined Undefined

Mode register (BMOD) 0 0

Mode register (WDMOD) A5H A5H

Counter clear flag (WDTCF) 0 0

Timer/Counters 0 and 1:

Count registers (TCNT0/1) 0 0

Reference registers (TREF0) FFH,FFFFH FFH,FFFFH

Output enable flags (TOE0) 0 0

Watch Timer:

Watch timer mode register (WMOD) 0 0

LCD Driver/Controller:

LCD mode register (LMOD) 0 0

LCD control register (LCON)

Display data memory Values retained Undefined

Output buffers Off Off

N-Channel Open-Drain Mode Register:

PNE1 0 0

RESET KS57C5116/P5116 MICROCONTROLLER

9–4

NOTES

KS57C5116/P5116 MICROCONTROLLER I/O PORTS

10–1

10 I/O PORTS

OVERVIEW

The KS57C5116 has one input port and 13 I/O ports. Pin addresses for all I/O ports are mapped in bank 15 of
the RAM. The contents of I/O port pin latches can be read, written, or tested at the corresponding address using
bit manipulation instructions.

There are total of four input pins and 51 configurable I/O pin for a maximum number of 55 I/O pins.

Port Mode Flags

Port mode flags (PM) are used to configure I/O ports 0, 4, 5, and 7 (port mode group 1), ports 2 and 3 (port
mode group 2), ports 6 and 8 (port mode group 3), and ports 9, 10, 11, 12, and 13 (port mode group 4) to input or
output mode by setting or clearing the corresponding I/O buffer. PM flags are grouped in four 8-bit registers, and
are addressable by 8-bit write instructions only.

PUMOD Control Register

The pull-up mode registers (PUMOD1 and 2) are 8-bit registers used to assign internal pull-up resistors by
software to specific I/O ports and pull-down resistors to port 12.

When configurable I/O ports 0, 2, 3, 6, 8, 9 10,11,12, and 13 serves as an output pin, its assigned pull-
up/down resistor is automatically disabled, even though the pin's pull-up/down resistor is enabled by a
corresponding bit setting in the pull-up resistor mode register (PUMOD).

PUMOD1 and 2 are addressable by 8-bit write instructions only. RESET clears PUMOD register values to logic
zero, automatically disconnecting all software-assignable port pull-up/down resistors.

Table 10–1. I/O Port Overview

Port I/O Pins Pin Names Address Function Description

0 I/O 4 P0.0–P0.3 FF0H 4-bit I/O port.
1-bit and 4-bit read/write and test is possible.
Individual pins are software configurable as in-
put or output.
4-bit pull-up resistors are assignable by
software.; pull-up resistors are automatically
disabled for output pins.

1 I 4 P1.0–P1.3 FF1H 4-bit input port.
1-bit and 4-bit read and test is possible.
3-bit pull-up resistors are software assignable
to pins P1.0, P1.1, and P1.2.

2 I/O 4 P2.0–P2.3 FF2H Same as port 0.

3 I/O 4 P3.0–P3.3 FF3H Same as port 0.

I/O PORTS KS57C5116/P5116 MICROCONTROLLER

10–2

Table 10–1. I/O Port Overview (Continued)

Port I/O Pins Pin Names Address Function Description

4, 5 I/O 8 P4.0–P4.3
P5.0–P5.3

FF4H
FF5H

4-bit I/O ports.
N-channel open-drain output up to 9 volts.
1-bit and 4-bit read/write/test is possible.
Ports 4 and 5 can be paired to support 8-bit
data transfer.
8-bit unit pull-up resistors are assignable by
mask option.

6, 7 I/O 8 P6.0–P6.3
P7.0–P7.3

FF6H
FF7H

4-bit I/O ports.
1-bit and 4-bit read/write/test is possible.
Port 6 pins are individually software
configurable as input or output.
4-bit pull-up resistors are software assignable;
pull-up resistors are automatically disabled for
output pins (port 6 only).
Ports 6 and 7 can be paired for 8-bit data
transfer.

8 I/O 4 P8.0–P8.3 FF8H Same as port 0.

9 I/O 4 P9.0–P9.3 FF9H 4-bit I/O port.
1-bit and 4-bit read/write and test is possible.
4-bit pull-up resistors are assignable by
software.; pull-up resistors are automatically
disabled for output pins.

10, 11 I/O 4 P10.0–P10.3 FFAH
FFBH

Same as port 9.
Ports 10 and 11 can be paired to support 8-bit
data transfer.

12 I/O 4 P12.0–P12.3 FFCH 4-bit I/O port.
1-bit and 4-bit read/write and test is possible.
Individual pins are software configurable as in-
put or output.
4-bit pull-down resistors are assignable by
software.; pull-down resistors are
automatically disabled for output pins.

13 I/O 4 P13.0–P13.2 FFDH 3-bit I/O port.
1-bit and 4-bit read/write and test is possible.
3-bit pull-up resistors are assignable by
software.; pull-up resistors are automatically
disabled for output pins.

KS57C5116/P5116 MICROCONTROLLER I/O PORTS

10–3

Table 10–2. Port Pin Status During Instruction Execution

Instruction Type Example Input Mode Status Output Mode Status

1-bit test
1-bit input
4-bit input
8-bit input

BTST
LDB
LD
LD

P0.1
C,P1.3
A,P7
EA,P4

Input or test data at each pin Input or test data at output latch

1-bit output BITR P2.3 Output latch contents undefined Output pin status is modified

4-bit output
8-bit output

LD
LD

P2,A
P6,EA

Transfer accumulator data to the
output latch

Transfer accumulator data to the
output pin

PORT MODE FLAGS (PM FLAGS)

Port mode flags (PM) are used to configure I/O ports 0 and 2–13 to input or output mode by setting or clearing
the corresponding I/O buffer.

For convenient program reference, PM flags are organized into four groups — PMG1, PMG2, PMG3, and
PMG4 as shown in Table n. PM flags are addressable by 8-bit write instructions only.

When a PM flag is "0", the port is set to input mode; when it is "1", the port is enabled for output. RESET clears
all port mode flags to logic zero, automatically configuring the corresponding I/O ports to input mode.

Table 10–3. Port Mode Group Flags

PM Group ID Address Bit 3 Bit 2 Bit 1 Bit 0

PMG1 FE8H PM0.3 PM0.2 PM0.1 PM0.0

FE9H PM7 "0" PM5 PM4

PMG2 FEAH PM2.3 PM2.2 PM2.1 PM2.0

FEBH PM3.3 PM3.2 PM3.1 PM3.0

PMG3 FECH PM6.3 PM6.2 PM6.1 PM6.0

FEDH PM8.3 PM8.2 PM8.1 PM8.0

PMG4 FEEH PM12.3 PM12.2 PM12.1 PM12.0

FEFH PM13 PM11 PM10 PM9

NOTE: If bit = "0", the corresponding I/O pin is set to input mode. If bit = "1", the pin is set to output mode: PM0.0 for
P0.0 PM4 for port 4 and so on.. All flags are cleared to "0" following RESET.

I/O PORTS KS57C5116/P5116 MICROCONTROLLER

10–4

+ + PROGRAMMING TIP — Configuring I/O Ports to Input or Output

Configure P0.3 and P2 as an output port and the other ports as input ports:

BITS EMB
SMB 15
LD EA,#08H
LD PMG1,EA ; P0.3 ← Output, P0.0–0.2, P4, P5, P7 ← Input
LD EA,#0FH
LD PMG2,EA ; P2 ← Output, P3 ← Input
LD EA,#00H
LD PMG3,EA ; P6, P8 ← Input
LD PMG4,EA ; P9, P10, P11, P12, P13 ← Input

KS57C5116/P5116 MICROCONTROLLER I/O PORTS

10–5

PULL-UP RESISTOR MODE REGISTER (PUMOD)

The pull-up resistor mode registers (PUMOD1 and 2) are 8-bit registers used to assign internal pull-up
resistors by software to specific I/O ports and pull-down resistor to port 12. I/O ports 4 and 5 are an exception,
since these port pins may only be assigned internal pull-up resistors via mask option.

When configurable I/O ports 0, 2, 3, 6, 8, and 12 are used as an output pin, its assigned pull-up or pull-down
resistor is automatically disabled, even though the pin's pull-up or pull-down is enabled by a corresponding
PUMOD bit setting.

PUMOD1 and PUMOD2 are addressable by 8-bit write instructions only. RESET clears PUMOD register values
to logic zero, automatically disconnecting all software-assignable port pull-up and down resistors.

Table 10–4. Pull-Up Resistor Mode Register (PUMOD) Organization

PUMOD ID Address Bit 3 Bit 2 Bit 1 Bit 0

PUMOD1 FDCH PUR3 PUR2 PUR1 PUR0

FDDH PUR9 PUR8 PUR7 PUR6

PUMOD2 FDEH PUR13 PDR12 PUR11 PUR10

FDFH "0" "0" "0" "0"

NOTE: When bit = "1", pull-up resistors are assigned to the corresponding I/O port: PUR3 for port 3, PUR2 for port 2, and
so on. If bit PDR12 is set to 1, pull-down resistors are assigned to port 12.

+ + PROGRAMMING TIP — Enabling and Disabling I/O Port Pull-Up Resistors

P6–P9 enable pull-up resistors, P0–P3 disable pull-up resistors.

BITS EMB
SMB 15
LD EA,#0F0H
LD PUMOD1,EA ; P6–P9 enable

I/O PORTS KS57C5116/P5116 MICROCONTROLLER

10–6

PORT 0 CIRCUIT DIAGRAM

SCK

SCK

SI
BTCO

PM0.2

PM0.3

PM0.1

PM0.0

VDD

PUR0

When a port pin acts as an output, its pull-up resistor is automatically disabled,
even though the port's pull-up resistor is enabled by bit settings to the pull-up resistor
mode register (PUMOD).

NOTE:

SO
P0.2

LATCH
P0.1

LATCH
P0.0

LATCH
P0.3

LATCH

P0.1/SO

P0.2/SI

P0.3/BTCO

P0.0 / SCK

Figure 10–1. Port 0 Circuit Diagram

KS57C5116/P5116 MICROCONTROLLER I/O PORTS

10–7

PORT 1 CIRCUIT DIAGRAM

INT0 INT1 INT2 INT4

P1.0 / INT0

PUR1

P1.1 / INT1

P1.2 / INT2

P1.3 / INT4

VDD VDD VDD

N/R
CIRCUIT

N/R = NOISE REDUCTION

IMOD0

Figure 10–2. Port 1 Circuit Diagram

I/O PORTS KS57C5116/P5116 MICROCONTROLLER

10–8

PORT 2, 3, 6 CIRCUIT DIAGRAM

Px.0

Px.1

Px.2

Px.3

OUTPUT
LATCH

M

U

X

1, 4, 8

1, 4, 8

PMx.2

PMx.3

PMx.1

PMx.0

VDD

PURx

PURx

PURx

PURx

x = port number
(2, 3, 6, 8)

When a port pin acts as an output, its pull-up resistor is automatically disabled,
even though the port's pull-up resistor is enabled by bit settings to the pull-up
resistor mode register (PUMOD).

NOTE:

Figure 10–3. Port 2, 3, 6, and 8 Circuit Diagram

KS57C5116/P5116 MICROCONTROLLER I/O PORTS

10–9

PORT 4, 5 CIRCUIT DIAGRAM

Px.0

Px.1

Px.2

Px.3

VDD V DD VDD

PMx

VDD

MASK
OPTION

N-CHANNEL
OPEN-DRAIN

 8

x = 4 and 5 (port 4 and port 5)

1, 4, 8

1, 4, 8

OUTPUT
LATCH

M

U

X

Figure 10–4. Port 4 and 5 Circuit Diagram

I/O PORTS KS57C5116/P5116 MICROCONTROLLER

10–10

PORT 7 CIRCUIT DIAGRAM

 8

1, 4, 8

1, 4, 8

VDD VDDVDD VDD

M

U

X

P7.0

P7.1

P7.2

P7.3

PM7

OUTPUT
LATCH

PUR7

Figure 10–5. Port 7 Circuit Diagram

KS57C5116/P5116 MICROCONTROLLER I/O PORTS

10–11

PORT 9, 10, 11, 13 CIRCUIT DIAGRAM

 8

1, 4, 8

1, 4, 8

V VV VDD DDDD DD

M

U

X

Px.0

Px.1

Px.2

Px.3

PMx

OUTPUT
LATCH

PUR.x

(x = 9,10,11,13)

FIGURE 10–6. PORT 9, 10, 11, AND 13 CIRCUIT DIAGRAM

I/O PORTS KS57C5116/P5116 MICROCONTROLLER

10–12

PORT 12 CIRCUIT DIAGRAM

 8

1, 4

1, 4

P12.b

PM12.b

OUTPUT
LATCH

M

U

X

When a port pin acts as an output, its pull-down resistor is automatically disabled,
even though the port's pull-down resistor is enabled by bit settings to the PUMOD
register.

NOTE:

PDR12

(b = 0, 1, 2, 3)

Figure 10–7. Port 12 Circuit Diagram

KS57C5116/P5116 MICROCONTROLLER TIMERS and TIMER/COUNTERS

 11–1

11 TIMERS and TIMER/COUNTERS

OVERVIEW

The KS57C5116 microcontroller has four timer and timer/counter modules:

— 8-bit basic timer (BT)

— 8-bit timer/counters (TC0, 1)

— Watch timer (WT)

The 8-bit basic timer (BT) is the microcontroller's main interval timer. It generates an interrupt request at a
fixed time interval when the appropriate modification is made to its mode register. When the contents of the
basic timer counter register BCNT overflows, a pulse is output to the basic timer output pin, BTCO. The basic
timer also functions as a 'watchdog' timer and is used to determine clock oscillation stabilization time when stop
mode is released by an interrupt and after a RESET.

The 8-bit timer/counters (TC0, 1) are programmable timer/counters that are used primarily for event counting
and for clock frequency modification and output. In addition, TC0 generates a clock signal that can be used by
the serial I/O interface.

The watch timer (WT) module consists of an 8-bit watch timer mode register, a clock selector, and a frequency
divider circuit. Watch timer functions include real-time and watch-time measurement, system clock interval
timing, buzzer output generation.

TIMERS and TIMER/COUNTERS KS57C5116/P5116 MICROCONTROLLER

11–2

BASIC TIMER (BT)

OVERVIEW

The 8-bit basic timer (BT) has four functional components:

— Clock selector logic

— 4-bit mode register (BMOD)

— 8-bit counter register (BCNT)

— Output enable flag (BOE)

The basic timer generates interrupt requests at precise intervals, based on the frequency of the system clock.
Timer pulses are output from the basic timer's counter register BCNT to the output pin BTCO when an overflow
occurs in the counter register BCNT. You can use the basic timer as a "watchdog" timer for monitoring system
events or use BT output to stabilize clock oscillation when stop mode is released by an interrupt and following
RESET. Bit settings in the basic timer mode register BMOD turns the BT module on and off, selects the input
clock frequency, and controls interrupt or stabilization intervals.

Interval Timer Function

The basic timer's primary function is to measure elapsed time intervals. The standard time interval is equal to
256 basic timer clock pulses.

To restart the basic timer, one bit setting is required: bit 3 of the mode register BMOD is set to logic one. The
input clock frequency and the interrupt and stabilization interval are selected by loading the appropriate bit
values to BMOD.2–BMOD.0.

The 8-bit counter register, BCNT, is incremented each time a clock signal is detected that corresponds to the
frequency selected by BMOD. BCNT continues incrementing as it counts BT clocks until an overflow occurs (³
255). An overflow causes the BT interrupt request flag (IRQB) to be set to logic one to signal that the designated
time interval has elapsed. An interrupt request is then generated, BCNT is cleared to logic zero, and counting
continues from 00H.

Watchdog Timer Function

The basic timer can also be used as a "watchdog" timer to signal the occurrence of specific system events.
Each time BCNT overflows, an overflow signal is sent to the basic timer clock output pin, BTCO. The sequence
of the BTCO output operation is as follows:

— Set the BOE flag to logic one

— Set the output latch for pin P0.3 to logic zero

— Set the port mode flag for P0.3 (PM0.3) to logic one

When the IRQB flag is set and the interrupt is requested, the BCNT overflow signal is sent to the P0.3 latch to
be output through the BTCO pin.

Oscillation Stabilization Interval Control

Bits 2–0 of the BMOD register are used to select the input clock frequency for the basic timer. This setting also
determines the time interval (also referred to as 'wait time') required to stabilize clock signal oscillation when stop
mode is released by an interrupt. When a RESET signal is input, the standard stabilization interval for system clock
oscillation following the RESET is 36.6 ms at 3.579545 MHz.

KS57C5116/P5116 MICROCONTROLLER TIMERS and TIMER/COUNTERS

 11–3

Table 11–1. Basic Timer Register Overview

Register
Name

Type Description Size RAM
Address

Addressing
Mode

Reset
Value

BMOD Control Controls the clock frequency
(mode) of the basic timer; also, the
oscillation stabilization interval after
stop mode release or RESET

4-bit F85H 4-bit write-
only;

BMOD.3: 1-bit
writeable

"0"

BCNT Counter Counts clock pulses matching the
BMOD frequency setting

8-bit F86H–F87H 8-bit
read-only

U *

BOE Flag Controls output of basic timer out-
put latch to the BTCO pin

1-bit F92H.1 1-bit
read/write

"0"

* 'U' means the value is undetermined after a RESET.

"CLEAR" SIGNAL

BITS
INSTRUCTION

BMOD.3

BMOD.2

BMOD.1

BMOD.0

CLOCK

SELECTOR
BCNT IRQB

INTERRUPT
REQUESTOVERFLOW

CPU CLOCK
START SIGNAL
(POWER-DOWN RELEASE)

1-BIT R/W

CLOCK INPUT

CLEAR
IRQB

4

CLEAR
BCNT

BOE

BTCO / P0.3

P0.3 LATCH

8

Figure 11–1. Basic Timer Circuit Diagram

TIMERS and TIMER/COUNTERS KS57C5116/P5116 MICROCONTROLLER

11–4

BASIC TIMER MODE REGISTER (BMOD)

The basic timer mode register, BMOD, is a 4-bit write-only register. Bit 3, the basic timer start control bit, is
also 1-bit addressable. All BMOD values are set to logic zero following RESET and interrupt request signal
generation is set to the longest interval. (BT counter operation cannot be stopped.) BMOD settings have the
following effects:

— Restart the basic timer;

— Control the frequency of clock signal input to the basic timer;

— Determine time interval required for clock oscillation to stabilize following the release of stop mode by an
interrupt.

By loading different values into the BMOD register, you can dynamically modify the basic timer clock
frequency during program execution. Four BT frequencies, ranging from fxx/212 to fxx/25, are selectable. Since
BMOD's reset value is logic zero, the default clock frequency setting is fxx/212.

The most significant bit of the BMOD register, BMOD.3, is used to restart the basic timer. When BMOD.3 is
set to logic one by a 1-bit write instruction, the contents of the BT counter register (BCNT) and the BT interrupt
request flag (IRQB) are both cleared to logic zero, and timer operation is restarted.

The combination of bit settings in the remaining three registers — BMOD.2, BMOD.1, and BMOD.0 —
determine the clock input frequency and oscillation stabilization interval.

Table 11–2. Basic Timer Mode Register (BMOD) Organization

BMOD.3 Basic Timer Start Control Bit

1 Start basic timer; clear IRQB, BCNT, and BMOD.3 to "0"

BMOD.2 BMOD.1 BMOD.0 Basic Timer Input Clock Oscillation Stabilization

0 0 0 fxx/212 (0.87 kHz) 220/fxx (292.9 ms)

0 1 1 fxx/29 (6.99 kHz) 217/fxx (36.6 ms)

1 0 1 fxx/27 (27.9 kHz) 215/fxx (9.15 ms)

1 1 1 fxx/25 (111.8 kHz) 213/fxx (2.29 ms)

NOTES:
1. Clock frequencies and oscillation stabilization assume a system oscillator clock frequency (fxx) of 3.579545 MHz.
2. fxx = system clock frequency.
3. Oscillation stabilization time is the time required to stabilize clock signal oscillation after stop mode is released. The

data in the table column 'Oscillation Stabilization' can also be interpreted as "Interrupt Interval Time."
4. The standard stabilization time for system clock oscillation following a RESET is 36.6 ms at 3.579545 MHz.

KS57C5116/P5116 MICROCONTROLLER TIMERS and TIMER/COUNTERS

 11–5

BASIC TIMER COUNTER (BCNT)

BCNT is an 8-bit counter for the basic timer. It can be addressed by 8-bit read instructions. RESET leaves the
BCNT counter value undetermined. BCNT is automatically cleared to logic zero whenever the BMOD register
control bit (BMOD.3) is set to "1" to restart the basic timer. It is incremented each time a clock pulse of the
frequency determined by the current BMOD bit settings is detected.

When BCNT has incremented to hexadecimal 'FFH' (³ 255 clock pulses), it is cleared to '00H' and an overflow
is generated. The overflow causes the interrupt request flag, IRQB, to be set to logic one. When the interrupt
request is generated, BCNT immediately resumes counting incoming clock signals.

NOTE

Always execute a BCNT read operation twice to eliminate the possibility of reading unstable data
while the counter is incrementing. If, after two consecutive reads, the BCNT values match, you can
select the latter value as valid data. Until the results of the consecutive reads match, however, the
read operation must be repeated until the validation condition is met.

BASIC TIMER OUTPUT ENABLE FLAG (BOE)

The basic timer output enable flag (BOE) enables and disables basic timer output to the BTCO pin at I/O port
0 (P0.3). When BOE is logic zero, basic timer output to the BTCO pin is disabled; when it is logic one, BT output
to the BTCO pin is enabled. A RESET clears the BOE flag to "0", disabling basic timer output to the BTCO pin.
When the BOE flag is set to "1" and the BCNT register overflows, the overflow signal is sent to the BTCO pin.
BOE can be addressed by 1-bit read and write instructions.

Bit 3 Bit 2 Bit 1 Bit 0

F92H TOE1 TOE0 BOE 0

BASIC TIMER OPERATION SEQUENCE

The basic timer's sequence of operations may be summarized as follows:

1. Set BMOD.3 to logic one to restart the basic timer

2. BCNT is then incremented by one after each clock pulse corresponding to BMOD selection

3. BCNT overflows if BCNT ³ 255 (BCNT = FFH)

4. When an overflow occurs, the IRQB flag is set by hardware to logic one

5. The interrupt request is generated

6. BCNT is then cleared by hardware to logic zero

7. Basic timer resumes counting clock pulses

TIMERS and TIMER/COUNTERS KS57C5116/P5116 MICROCONTROLLER

11–6

+ + PROGRAMMING TIP — Using the Basic Timer

1. To read the basic timer count register (BCNT):

BITS EMB
SMB 15

BCNTR LD EA,BCNT
LD YZ,EA
LD EA,BCNT
CPSE EA,YZ
JR BCNTR

2. When stop mode is released by an interrupt, set the oscillation stabilization interval to 36.6 ms:

BITS EMB
SMB 15
LD A,#0BH
LD BMOD,A ; Wait time is 36.6 ms
STOP ; Set stop power-down mode
NOP
NOP
NOP

NORMAL
OPERATING MODE STOP MODE IDLE MODE

(36.6 ms)

CPU
OPERATION

STOP
INSTRUCTION

STOP MODE IS
RELEASED BY

INTERRUPT

NORMAL
OPERATING MODE

3. To set the basic timer interrupt interval time to 2.29 ms (at 3.579545 MHz):

BITS EMB
SMB 15
LD A,#0FH
LD BMOD,A
EI
BITS IEB ; Basic timer interrupt enable flag is set to "1"

4. Clear BCNT and the IRQB flag and restart the basic timer:

BITS EMB
SMB 15
BITS BMOD.3

KS57C5116/P5116 MICROCONTROLLER TIMERS and TIMER/COUNTERS

 11–7

8-BIT TIMER/COUNTERS 0 AND 1 (TC0, 1)

OVERVIEW

The KS57C5116's TC0 and TC1 are identical except that they have different counter clock sources, which are
controlled by the TMODn register. Timer/counters 0 and 1 (TC0, 1) are used to count system 'events' by
identifying the transition (high-to-low or low-to-high) of incoming square wave signals. To indicate that an event
has occurred, or that a specified time interval has elapsed, TC generates an interrupt request. By counting signal
transitions and comparing the current counter value with the reference register value, TC can be used to
measure specific time intervals.

TC has a reloadable counter that consists of two parts: an 8-bit reference register, TREFn (n = 0, 1) into which
you write the counter reference value, and an 8-bit counter register ,TCNTn (n = 0, 1) whose value is
automatically incremented by counter logic.

8-bit mode register, TMODn (n = 0, 1), is used to activate the timer/counter and to select the basic clock
frequency to be used for timer/counter operations. To dynamically modify the basic frequency, new values can
be loaded into the TMODn register during program execution.

TC FUNCTION SUMMARY

8-bit programmable timer Generates interrupts at specific time intervals based on the selected clock fre-
quency.

External event counter Counts various system "events" based on edge detection of external clock sig-
nals at the TC input pin, TCLn (n = 0, 1).

Arbitrary frequency output Outputs clock frequencies to the TC output pin, TCLOn (n = 0, 1).

External signal divider Divides the frequency of an incoming external clock signal according to a
modifiable reference value (TREFn), and outputs the modified frequency to the
TCLOn pin.

Serial I/O clock source TC0 can output a modifiable clock signal for use as the SCK clock source.

TIMERS and TIMER/COUNTERS KS57C5116/P5116 MICROCONTROLLER

11–8

TC COMPONENT SUMMARY

Mode register (TMODn) Activates the timer/counter and selects the internal clock frequency or the
external clock source at the TCLn pin.

Reference register (TREFn) Stores the reference value for the desired number of clock pulses between in-
terrupt requests.

Counter register (TCNTn) Counts internal or external clock pulses based on the bit settings in TMODn
and TREFn.

Clock selector circuit Together with the mode register (TMODn), lets you select one of four internal
clock frequencies or an external clock.

8-bit comparator Determines when to generate an interrupt by comparing the current value of
the counter register (TCNTn) with the reference value previously programmed
into the reference register (TREFn).

Output latch (TOLn) Where a TC clock pulse is stored pending output to the serial I/O circuit or to
the TC output pin, TCLOn.

When the contents of the TCNTn and TREFn registers coincide, the
timer/counter interrupt request flag (IRQTn) is set to "1", the status of TOLn is
inverted, and an interrupt is generated.

Output enable flag (TOEn) Must be set to logic one before the contents of the TOLn latch can be output to
TCLOn.

Interrupt request flag (IRQTn) Cleared when TC operation starts and the TC interrupt service routine is
executed and set to one whenever the counter value and reference value
coincide.

Interrupt enable flag (IETn) Must be set to logic one before the interrupt requests generated by
timer/counters can be processed.

Table 11–3. TC Register Overview

Register
Name

Type Description Size RAM
Address

Addressing
Mode

Reset
Value

TMOD0
TMOD1

Control Controls TC0 and 1 enable/disable
(bit 2); clears and resumes counting
operation (bit 3); sets input clock
and clock frequency (bits 6–4)

8-bit F90H–F91H
FA0H–FA1H

8-bit write-
only;

(TMODn.3 is
also 1-bit
writeable)

"0"

TCNT0
TCNT1

Counter Counts clock pulses matching the
TMODn frequency setting

8-bit F94H–F95H
FA4H–FA5H

8-bit
read-only

"0"

TREF0
TREF1

Referenc
e

Stores reference value for the
timer/counters interval setting

8-bit F96H–F97H
FA8H–FA9H

8-bit
write-only

FFH

TOE0
TOE1

Flag Controls timer/counters output to
the TCLOn pin

1-bit F92H.2
F92H.3

1-bit
write-only

"0"

KS57C5116/P5116 MICROCONTROLLER TIMERS and TIMER/COUNTERS

 11–9

TCLn

TCLOn

SERIAL
I/O

CLOCK
SELECTOR

TCNTn
8-BIT

COMPARATOR

TOLn

P2.n LATCH TOEn

IRQTn

PM2.n

TMODn.7

TMODn.6

TMODn.5

TMODn.4

TMODn.3

TMODn.2

TMODn.1

TMODn.0

TREFn

CLEAR

INVERTED

CLEAR

SETCLEAR

8
8

8

CLOCKS

4

Figure 11–2. TC Circuit Diagram

TC ENABLE/DISABLE PROCEDURE

Enable Timer/Counter

— Set TMODn.2 to logic one

— Set the TC interrupt enable flag IETn to logic one

— Set TMODn.3 to logic one

TCNTn, IRQTn, and TOLn are cleared to logic zero, and timer/counter operation starts.

Disable Timer/Counter

— Set TMODn.2 to logic zero

Clock signal input to the counter register TCNTn is halted. The current TCNTn value is retained and can be
read if necessary.

TIMERS and TIMER/COUNTERS KS57C5116/P5116 MICROCONTROLLER

11–10

TC PROGRAMMABLE TIMER/COUNTER FUNCTION

Timer/counters can be programmed to generate interrupt requests at various intervals based on the selected
system clock frequency. Its 8-bit TC mode register TMODn is used to activate the timer/counter and to select the
clock frequency. The reference register TREFn stores the value for the number of clock pulses to be generated
between interrupt requests. The counter register, TCNTn, counts the incoming clock pulses, which are compared
to the TREFn value as TCNTn is incremented. When there is a match (TREFn = TCNTn), an interrupt request is
generated.

To program timer/counter to generate interrupt requests at specific intervals, choose one of four internal clock
frequencies (divisions of the system clock, fxx) and load a counter reference value into the reference register.
The count register is incremented each time an internal counter pulse is detected with the reference clock
frequency specified by TMODn.4–TMODn.6 settings. To generate an interrupt request, the TC interrupt request
flag (IRQTn) is set to logic one, the status of TOLn is inverted, and the interrupt is generated. The content of the
counter register is then cleared to 00H and TC continues counting. The interrupt request mechanism for TC
includes an interrupt enable flag (IETn) and an interrupt request flag (IRQTn).

TC OPERATION SEQUENCE

The general sequence of operations for using TC can be summarized as follows:

1. Set TMODn.2 to "1" to enable TC0 and 1

2. Set TMODn.6 to "1" to enable the system clock (fxx) input

3. Set TMODn.5 and TMODn.4 bits to desired internal frequency (fxx/2n)

4. Load a value to TREFn to specify the interval between interrupt requests

5. Set the TC interrupt enable flag (IETn) to "1"

6. Set TMODn.3 bit to "1" to clear TCNTn, IRQTn, and TOLn, and start counting

7. TCNTn increments with each internal clock pulse

8. When the comparator shows TCNTn = TREFn, the IRQTn flag is set to "1"

9. Output latch (TOLn) logic toggles high or low

10. Interrupt request is generated

11. TCNTn is cleared to 00H and counting resumes

12. Programmable timer/counter operation continues until TMODn.2 is cleared to "0".

KS57C5116/P5116 MICROCONTROLLER TIMERS and TIMER/COUNTERS

 11–11

TC EVENT COUNTER FUNCTION

Timer/counters can monitor or detect system 'events' by using the external clock input at the TCLn pin as the
counter source. The TC mode register selects rising or falling edge detection for incoming clock signals. The
counter register is incremented each time the selected state transition of the external clock signal occurs.

With the exception of the different TMODn.4–TMODn.6 settings, the operation sequence for TC's event
counter function is identical to its programmable timer/counter function. To activate the TC event counter
function,

— Set TMODn.2 to "1" to enable TC;

— Clear TMODn.6 to "0" to select the external clock source at the TCLn pin;

— Select TCLn edge detection for rising or falling signal edges by loading the appropriate values to
TMODn.5 and TMODn.4.

— P3.0 and P3.1 must be set to input mode.

Table 11–4. TMODn Settings for TCLn Edge Detection

TMODn.5 TMODn.4 TCLn Edge Detection

0 0 Rising edges

0 1 Falling edges

TIMERS and TIMER/COUNTERS KS57C5116/P5116 MICROCONTROLLER

11–12

TC CLOCK FREQUENCY OUTPUT

Using timer/counters, a modifiable clock frequency can be output to the TC clock output pin, TCLOn. To select
the clock frequency, load the appropriate values to the TC mode register, TMODn. The clock interval is selected
by loading the desired reference value into the reference register TREFn. In summary, the operational sequence
required to output a TC-generated clock signal to the TCLOn pin is as follows:

1. Load a reference value to TREFn.

2. Set the internal clock frequency in TMODn.

3. Initiate TCn clock output to TCLOn (TMODn.2 = "1").

4. Set port 2 mode flag (PM2.0 and PM 2.1) to "1".

5. Set P2.0 and P2.1 output latches to "0".

6. Set TOEn flag to "1".

Each time TCNTn overflows and an interrupt request is generated, the state of the output latch TOLn is in-
verted and the TC-generated clock signal is output to the TCLOn pin.

+ + PROGRAMMING TIP — TC0 Signal Output to the TCLO0 Pin

Output a 30 ms pulse width signal to the TCLO0 pin:

BITS EMB
SMB 15
LD EA,#68H
LD TREF0,EA
LD EA,#4CH
LD TMOD0,EA
LD EA,#01H
LD PMG2,EA ; P2.0 ← output mode
BITR P2.0 ; P2.0 clear
BITS TOE0

KS57C5116/P5116 MICROCONTROLLER TIMERS and TIMER/COUNTERS

 11–13

TC0 SERIAL I/O CLOCK GENERATION

Timer/counter 0 can supply a clock signal to the clock selector circuit of the serial I/O interface for data shifter
and clock counter operations. (These internal SIO operations are controlled in turn by the SIO mode register,
SMOD). This clock generation function enables you to adjust data transmission rates across the serial interface.

Use TMOD0 and TREF0 register settings to select the frequency and interval of the TC0 clock signals to be
used as SCK input to the serial interface. The generated clock signal is then sent directly to the serial I/O clock
selector circuit — not through the port 2.0 latch and TCLO0 pin (the TOE0 flag may be disabled).

TC EXTERNAL INPUT SIGNAL DIVIDER

By selecting an external clock source and loading a reference value into the TC reference register, TREFn,
you can divide the incoming clock signal by the TREFn value and then output this modified clock frequency to
the TCLOn pin. The sequence of operations used to divide external clock input can be summarized as follows:

1. Load a signal divider value to the TREFn register

2. Clear TMODn.6 to "0" to enable external clock input at the TCLn pin

3. Set TMODn.5 and TMODn.4 to desired TCLn signal edge detection

4. Set port 2 mode flag (PM2.0, PM2.1) to output ("1")

5. Set P2.0 and P2.1 output latches to "0"

6. Set TOEn flag to "1" to enable output of the divided frequency to the TCLOn pin

+ + PROGRAMMING TIP — External TCL0 Clock Output to the TCLO0 Pin

Output external TCL0 clock pulse to the TCLO0 pin (divide by four):

BITS EMB
SMB 15
LD EA,#01H
LD TREF0,EA
LD EA,#0CH
LD TMOD0,EA
LD EA,#01H
LD PMG2,EA ; P2.0 ← output mode
BITR P2.0 ; P2.0 clear
BITS TOE0

EXTERNAL (TCL0)
CLOCK PULSE

TCLO0
OUTPUT

PULSE

TIMERS and TIMER/COUNTERS KS57C5116/P5116 MICROCONTROLLER

11–14

TC MODE REGISTER (TMODn)

TMODn are the 8-bit mode control registers for timer/counter 0 and 1. They are addressable by 8-bit write
instructions. One bit, TMODn.3, is also 1-bit writeable. RESET clears all TMODn bits to logic zero and disables
TC operations.

F90H TMOD0.3 TMOD0.2 "0" "0" TMOD0

F91H "0" TMOD0.6 TMOD0.5 TMOD0.4

FA0H TMOD1.3 TMOD1.2 "0" "0" TMOD1

FA1H "0" TMOD1.6 TMOD1.5 TMOD1.4

TMODn.2 is the enable/disable bit for timer/counter 0 and 1. When TMODn.3 is set to "1", the contents of
TCNTn, IRQTn, and TOLn are cleared, counting starts from 00H, and TMODn.3 is automatically reset to "0" for
normal TC operation. When TC operation stops (TMODn.2 = "0"), the contents of the counter register TCNTn are
retained until TC is re-enabled.

The TMODn.6, TMODn.5, and TMODn.4 bit settings are used together to select the TC clock source. This
selection involves two variables:

— Synchronization of timer/counter operations with either the rising edge or the falling edge of the clock sig-
nal input at the TCLn pin, and

— Selection of one of four frequencies, based on division of the incoming system clock frequency, for use in
internal TC operation.

Table 11–5. TC Mode Register (TMODn) Organization

Bit Name Setting Resulting TC0 Function Address

TMODn.7 0 Always logic zero F91H (TMOD0)

TMODn.6 FA1H (TMOD1)

TMODn.5 0,1 Specify input clock edge and internal frequency

TMODn.4

TMODn.3 1 Clear TCNTn, IRQTn, and TOLn and resume counting
immediately (This bit is automatically cleared to logic zero
immediately after counting resumes.)

F90H (TMOD0)
FA0H (TMOD1)

TMODn.2 0 Disable timer/counter; retain TCNTn contents

1 Enable timer/counter

TMODn.1 0 Always logic zero

TMODn.0 0 Always logic zero

KS57C5116/P5116 MICROCONTROLLER TIMERS and TIMER/COUNTERS

 11–15

Table 11–6. TMODn.6, TMODn.5, and TMODn.4 Bit Settings

TMODn.6 TMODn.5 TMODn.4 TC0 Counter Source TC1 Counter Source

0 0 0 External clock input (TCL0) on
rising edges

External clock input (TCL1) on
rising edges

0 0 1 External clock input (TCL0) on
falling edges

External clock input (TCL1) on
falling edges

1 0 0 fxx/210 (3.49 kHz) fxx/212 (0.87 kHz)

1 0 1 fxx /26 (55.93 kHz) fxx /210 (3.49 kHz)

1 1 0 fxx/24 (223.7 kHz) fxx/28 (13.98 kHz)

1 1 1 fxx = 3.58 MHz fxx/26 (55.93 kHz)

NOTE: 'fxx' = system clock of 3.579545 MHz.

+ + PROGRAMMING TIP — Restarting TC0 Counting Operation

1. Set TC0 timer interval to 3.49 kHz:

BITS EMB
SMB 15
LD EA,#4CH
LD TMOD0,EA
EI
BITS IET0

2. Clear TCNT0, IRQT0, and TOL0 and restart TC0 counting operation:

BITS EMB
SMB 15
BITS TMOD0.3

TIMERS and TIMER/COUNTERS KS57C5116/P5116 MICROCONTROLLER

11–16

TC COUNTER REGISTER (TCNTn)

The 8-bit counter register for TC, TCNTn, is read-only and can be addressed by 8-bit RAM control instructions.
RESET sets all counter register values to logic zero (00H).

Whenever TMODn.3 is enabled, TCNTn is cleared to logic zero and counting resumes. The TCNTn register
value is incremented each time an incoming clock signal is detected that matches the signal edge and frequency
setting of the TMODn register (specifically, TMODn.6–TMODn.4).

Each time TCNTn is incremented, the new value is compared to the reference value stored in the reference
register, TREFn. When TCNTn = TREFn, an overflow occurs in the counter register, the interrupt request flag,
IRQTn, is set to logic one, and an interrupt request is generated to indicate that the specified timer/counter
interval has elapsed.

COUNT
CLOCK

TCNTn

TOLn

TIMER START INSTRUCTION
(TMODn.3 IS SET)

TREFn REFERENCE VALUE = n

0 1 2 n-1 n 0 1 2 n-1 0 1 2n n

INTERVAL TIME

IRQTn SET IRQTn SET

n

MATCH MATCH

3

Figure 11–3. TC Timing Diagram

KS57C5116/P5116 MICROCONTROLLER TIMERS and TIMER/COUNTERS

 11–17

TC REFERENCE REGISTER (TREFn)

The TC reference register TREFn is an 8-bit write-only register that is RESET initializes the TREFn value to
'FFH'.

TREFn is used to store a reference value to be compared to the incrementing TCNTn register in order to iden-
tify an elapsed time interval. Reference values will differ depending upon the specific function that TC is being
used to perform — as a programmable timer/counter, event counter, clock signal divider, or arbitrary frequency
output source.

During timer/counter operation, the value loaded into the reference register is compared to the counter value.
When TCNTn = TREFn, the TC output latch (TOLn) is inverted and an interrupt request is generated to signal
the interval or event. The TREFn value, together with the TMODn clock frequency selection, determines the
specific TC timer interval. Use the following formula to calculate the correct value to load to the TREFn
reference register:

TC timer interval = (TREFn value + 1) ×
1

TMODn frequency setting

(assuming a TREFn value _ 0)

TC OUTPUT ENABLE FLAG (TOEn)

The 1-bit timer/counter output enable flag TOEn controls output from timer/counter to the TCLOn pin. TOEn is
addressable by 1-bit read and write instructions.

Bit 3 Bit 2 Bit 1 Bit 0

F92H TOE1 TOE0 BOE 0

When you set the TOEn flag to "1", the contents of TOLn can be output to the TCLOn pin. Whenever a RESET
occurs, TOEn is automatically set to logic zero, disabling all TC output. Even when the TOE0 flag is disabled,
timer/counter 0 can continue to output an internally-generated clock frequency, via TOL0, to the serial I/O clock
selector circuit.

TC OUTPUT LATCH (TOLn)

TOLn is the output latch for timer/counter 0 and 1. When the 8-bit comparator detects a correspondence
between the value of the counter register TCNTn and the reference value stored in the TREFn register, the TOLn
value is inverted — the latch toggles high-to-low or low-to-high. Whenever the state of TOLn is switched, the TC
signal is output. TC output may be directed to the TCLOn pin. TC0 signal can also be output directly to the serial
I/O clock selector circuit as the SCK signal.

Assuming TC is enabled, when bit 3 of the TMODn register is set to "1", the TOLn latch is cleared to logic
zero, along with the counter register and the interrupt request flag, IRQTn, and counting resumes immediately.
When TCn is disabled (TMODn.2 = "0"), the contents of the TOLn latch are retained and can be read, if
necessary.

TIMERS and TIMER/COUNTERS KS57C5116/P5116 MICROCONTROLLER

11–18

+ + PROGRAMMING TIP — Setting a TC0 Timer Interval

To set a 30 ms timer interval for TC0, given fxx = 3.579545 MHz, follow these steps.

1. Select the timer/counter 0 mode register with a maximum setup time of 73.3 ms (assume the TC0 counter
clock = fxx/210, and TREF0 is set to FFH):

2. Calculate the TREF0 value:

30 ms =
TREF0 value + 1

3.49 kHz

TREF0 + 1 =
30 ms
286 µs = 104.8 = 69H

TREF0 value = 69H – 1 = 68H

3. Load the value 68H to the TREF0 register:

BITS EMB
SMB 15
LD EA,#68H
LD TREF0,EA
LD EA,#4CH
LD TMOD0,EA

KS57C5116/P5116 MICROCONTROLLER TIMERS and TIMER/COUNTERS

 11–19

WATCH TIMER

OVERVIEW

The watch timer is a multi-purpose timer consisting of three basic components:

— 8-bit watch timer mode register (WMOD)

— Clock selector

— Frequency divider circuit

Watch timer functions include real-time and watch-time measurement and interval timing for the system clock.
It is also used as a clock source for generating buzzer output.

Real-Time and Watch-Time Measurement

To start watch timer operation, set bit 2 of the watch timer mode register, WMOD.2, to logic one. The watch
timer starts, the interrupt request flag IRQW is automatically set to logic one, and interrupt requests commence
in 0.5-second intervals.

Since the watch timer functions as a quasi-interrupt instead of a vectored interrupt, the IRQW flag should be
cleared to logic zero by program software as soon as a requested interrupt service routine has been executed.

 Using a System Clock Source

The watch timer can generate interrupts based on the main system clock frequency or on the subsystem
clock. When the zero bit of the WMOD register is set to "1", the watch timer uses the subsystem clock signal (fxt)
as its source; if WMOD.0 = "0", the main system clock (fx) is used as the signal source, according to the
following formula:

This feature is useful for controlling timer-related operations during stop mode. When stop mode is engaged,
the main system clock (fx) is halted, but the subsystem clock continues to oscillate. By using the subsystem clock
as the oscillation source during stop mode, the watch timer can set the interrupt request flag IRQW to "1",
thereby releasing stop mode.

Buzzer Output Frequency Generator

The watch timer can generate a steady 2 kHz, 4 kHz, 8 kHz, or 16 kHz signal at 4.19 MHz to the BUZ pin. To
select the BUZ frequency you want, load the appropriate value to the WMOD register. This output can then be
used to actuate an external buzzer sound. To generate a BUZ signal, three conditions must be met:

— The WMOD.7 register bit is set to "1"

— The output latch for I/O port 2.3 is cleared to "0"

— The port 2.3 output mode flag (PM2.3) set to 'output' mode

Watch timer clock (fw) =
Main system clock (fx)

128 = 32.768

kHz

(assuming fxx = 4.19 MHz)

TIMERS and TIMER/COUNTERS KS57C5116/P5116 MICROCONTROLLER

11–20

Timing Tests in High-Speed Mode

By setting WMOD.1 to "1", the watch timer will function in high-speed mode, generating an interrupt every
3.91 ms at 4.19 MHz. At its normal speed (WMOD.1 = '0'), the watch timer generates an interrupt request every
0.5 seconds. High-speed mode is useful for timing events for program debugging sequences.

Check Subsystem Clock Level Feature

The watch timer can also check the input level of the subsystem clock by testing WMOD.3. If WMOD.3 is "1",
the input level at the XTin pin is high; if WMOD.3 is "0", the input level at the XTin pin is low.

fx = Main system clock
fxt = Subsystem clock
fw = Watch timer frequency

WMOD.7

WMOD.6

WMOD.5

WMOD.4

WMOD.3

WMOD.2

WMOD.1

WMOD.0

8

P2.3 LATCH PM2.3

FREQUENCY
DIVIDING
CIRCUIT

SELECTOR
CIRCUIT IRQW

fxt fx/128

fw
32.768 kHz

BUZ

MUX

fw/27 fw/2 (2 Hz)14

ENABLE / DISABLE

CLOCK
SELECTOR

fw/16 (2 kHz)

fw/8 (4 kHz)

fw/4 (8 kHz)

fw/2 (16 kHz)

Figure 11–4. Watch Timer Circuit Diagram

KS57C5116/P5116 MICROCONTROLLER TIMERS and TIMER/COUNTERS

 11–21

WATCH TIMER MODE REGISTER (WMOD)

The watch timer mode register WMOD is used to select specific watch timer operations. It is 8-bit write-only
addressable. An exception is WMOD bit 3 (the XTin input level control bit) which is 1-bit read-only addressable. A
RESET automatically sets WMOD.3 to the current input level of the subsystem clock, XTin (high, if logic one; low,
if logic zero), and all other WMOD bits to logic zero.

F88H WMOD.3 WMOD.2 WMOD.1 WMOD.0

F89H WMOD.7 "0" WMOD.5 WMOD.4

In summary, WMOD settings control the following watch timer functions:

— Watch timer clock selection (WMOD.0)

— Watch timer speed control (WMOD.1)

— Enable/disable watch timer (WMOD.2)

— XTin input level control (WMOD.3)

— Buzzer frequency selection (WMOD.4 and WMOD.5)

— Enable/disable buzzer output (WMOD.7)

Table 11–7. Watch Timer Mode Register (WMOD) Organization

Bit Name Values Function Address

WMOD.7 0 Disable buzzer (BUZ) signal output

1 Enable buzzer (BUZ) signal output

WMOD.6 0 Always logic zero

0 Always logic zero F89H

WMOD.5 – .4 0 0 fw/16 buzzer (BUZ) signal output (2 kHz)

0 1 fw/8 buzzer (BUZ) signal output (4 kHz)

1 0 fw/4 buzzer (BUZ) signal output (8 kHz)

1 1 fw/2 buzzer (BUZ) signal output (16 kHz)

WMOD.3 0 Input level to XTin pin is low

1 Input level to XTin pin is high

WMOD.2 0 Disable watch timer; clear frequency dividing circuits

1 Enable watch timer F88H

WMOD.1 0 Normal mode; sets IRQW to 0.5 seconds

1 High-speed mode; sets IRQW to 3.91 ms

WMOD.0 0 Select (fx/128) as the watch timer clock (fw)

1 Select subsystem clock as watch timer clock (fw)

NOTE: Main system clock frequency (fx) is assumed to be 4.19 MHz; subsystem clock frequency is assumed to be 32.768
kHz. 'fw' = watch timer clock frequency.

TIMERS and TIMER/COUNTERS KS57C5116/P5116 MICROCONTROLLER

11–22

+ + PROGRAMMING TIP — Using the Watch Timer

1. Select a 0.5 second interrupt, and 2 kHz buzzer enable:

BITS EMB
SMB 15
LD EA,#08H
LD PMG2,EA ; P2.3 ← output mode
BITR P2.3 ; Clear P2.3 output latch
LD EA,#84H
LD WMOD,EA
BITS IEW

2. Sample real-time clock processing method:

CLOCK BTSTZ IRQW ; 0.5 second check
RET ; No, return
• ; Yes, 0.5 second interrupt generation
•
• ; Increment HOUR, MINUTE, SECOND

KS57C5116/P5116 MICROCONTROLLER DTMF GENERATOR

12–1

12 DTMF GENERATOR

OVERVIEW

The dual-tone multi-frequency (DTMF) output circuit is used to generate 16 dual-tone multiple frequency
signals for tone dialing. This function is controlled by the DTMF mode register. By writing the contents of the
output latch for DTMF circuit with output instructions, 16 dual or single tones can be output to the DTMF output
pin. The tone output frequency is selected by the DTMF mode register. Figure 12–1 shows the DTMF block
diagram. A frequency of 3.579545 MHz is used for DTMF generator. Clock output is inhibited when DTMR.0
(DTMF Enable Bit) goes low.

The decoder receives data from the data latch and outputs the result to the row and column tone counter. The
row and column tone counter are incremented until new data is latched. When DTMR.0 is logic one, data is
latched, and the tone output is changed. Table 12–1 shows the 16 available keyboard frequencies.

DTMF MODE
REGISTER

MODE
DECORDER SHIFT COUNTER

D/A CONVERTER
TONE

OUTPUTfSYCLK
3.579545 MHz

CLOCK SYNC
CIRCUIT

ROW COUNTER

TONE MODE
CONTROL

COLUMN
COUNTER

INTERNAL BUS

SHIFT COUNTER

SINE WAVE SYNTHESIZER

Figure 12–1. Block Diagram of DTMF Generator

DTMF GENERATOR KS57C5116/P5116 MICROCONTROLLER

12–2

Table 12–1. Keyboard Arrangement

Table 12-2. Tone Output Frequencies

DTMF MODE REGISTER

DTMF output is controlled by the DTMF mode register. Bit position DTMR.0 enables or disables DTMF
operation. If DTMR.0 = 1, DTMF operation is enabled.

Programmers should write zeros or ones to bit positions DTMR.4–DTMR.7 according to the keyboard input
specification. Writing the data in a look-up table is useful for program efficiency. The DTMR register is a write-
only register, and is manipulated using 8-bit RAM control instructions.

1 2 3 A ROW1

4 5 6 B ROW2

7 8 9 C ROW3

* 0 # D ROW4

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4

Input Specified Frequency (Hz) Actual Frequency (Hz) % Error

Row1 697 699.1 + 0.31

Row2 770 766.2 – 0.49

Row3 852 847.4 – 0.54

Row4 941 948.0 + 0.74

Column 1 1209 1215.7 + 0.57

Column 2 1336 1331.7 – 0.32

Column 3 1477 1471.7 – 0.35

Column 4 1633 1645.0 + 0.73

KS57C5116/P5116 MICROCONTROLLER DTMF GENERATOR

12–3

Table 12–3. DTMF Mode Register (DTMR) Organization

Bit Name Setting Resulting DTMF Function Address

DTMR.7–.4 0,1 Specify according to keyboard FC1H

DTMR.3 — Don't care FC0H

DTMR.2–.1 0 0 Dual-tone enable

1 0

0 1 Single-column tone enable

1 1 Single-low tone enable

DTMR.0 0 Disable DTMF operation

1 Enable DTMF operation

Table 12–4. DTMR.7–DTMR.4 key Input Control Settings

DTMR.7 DTMR.6 DTMR.5 DTMR.4 Keyboard

0 0 0 0 D

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 0

1 0 1 1 *
1 1 0 0 #

1 1 0 1 A

1 1 1 0 B

1 1 1 1 C

DTMF GENERATOR KS57C5116/P5116 MICROCONTROLLER

12–4

NOTES

KS57C5116/P5116 MICROCONTROLLER SERIAL I/O INTERFACE

13–1

13 SERIAL I/O INTERFACE

OVERVIEW

The serial I/O interface (SIO) has the following functional components:

— 8-bit mode register (SMOD)

— Clock selector circuit

— 8-bit buffer register (SBUF)

— 3-bit serial clock counter

Using the serial I/O interface, 8-bit data can be exchanged with an external device. You control the
transmission frequency by the appropriate bit settings to the SMOD register.

The serial interface can run off an internal or an external clock source, or the TOL0 signal that is generated by
the 8-bit timer/counter 0, TC0. If you use the TOL0 clock signal, you can modify its frequency to adjust the serial
data transmission rate.

SERIAL I/O OPERATION SEQUENCE

The general sequence of operations for the serial I/O interface may be summarized as follows:

1. Set SIO mode to transmit-and-receive or to receive-only.

2. Select MSB-first or LSB-first transmission mode.

3. Set the SCK clock signal in the mode register, SMOD.

4. Set SIO interrupt enable flag (IES) to "1".

5. Initiate SIO transmission by setting bit 3 of the SMOD to "1".

6. When the SIO operation is completed, IRQS flag is set and an interrupt is generated.

SERIAL I/O INTERFACE KS57C5116/P5116 MICROCONTROLLER

13–2

* Instruction Execution
fxx: System Clock

INTERNAL BUS

LSB or MSB first

SBUF (8-BIT)SI

CLOCK
SELECTOR

R
Q D

TOL0

CPU CLK

fxx/210

fxx/24

R

S
Q

SO

SMOD.7 SMOD.6 SMOD.5 – SMOD.3 SMOD.2 SMOD.1 SMOD.0

Q0 Q1 Q2

3-BIT COUNTER

CLEAR

OVERFLOW

P0.0/SCK

IRQS
CK

8

INTERNAL BUS

BITS*

8

Figure 13–1. Serial I/O Interface Circuit Diagram

KS57C5116/P5116 MICROCONTROLLER SERIAL I/O INTERFACE

13–3

SERIAL I/O MODE REGISTER (SMOD)

The serial I/O mode register, SMOD, is an 8-bit register that specifies the operation mode of the serial
interface. Its reset value is logic zero. SMOD is organized in two 4-bit registers, as follows:

FE0H SMOD.3 SMOD.2 SMOD.1 SMOD.0

FE1H SMOD.7 SMOD.6 SMOD.5 0

SMOD register settings enable you to select either MSB-first or LSB-first serial transmission, and to operate in
transmit-and-receive mode or receive-only mode.

SMOD is a write-only register and can be addressed only by 8-bit RAM control instructions. One exception to
this is SMOD.3, which can be written by a 1-bit RAM control instruction. When SMOD.3 is set to 1, the contents
of the serial interface interrupt request flag, IRQS, and the 3-bit serial clock counter are cleared, and SIO
operations are initiated. When the SIO transmission starts, SMOD.3 is cleared to logic zero.

Table 13–1. SIO Mode Register (SMOD) Organization

SMOD.0 0 Most significant bit (MSB) is transmitted first

1 Least significant bit (LSB) is transmitted first

SMOD.1 0 Receive-only mode; output buffer is off

1 Transmit-and-receive mode

SMOD.2 0 Disable the data shifter and clock counter; retain contents of IRQS flag
when serial transmission is halted

1 Enable the data shifter and clock counter; set IRQS flag to "1" when serial
transmission is halted

SMOD.3 1 Clear IRQS flag and 3-bit clock counter to "0"; initiate transmission and then
reset this bit to logic zero

SMOD.4 0 Bit not used; value is always "0"

SMOD.7 SMOD.6 SMOD.5 Clock Selection R/W Status of SBUF

0 0 0 External clock at SCK pin SBUF is enabled when SIO
operation is halted or when
SCK goes high.

0 0 1 Use TOL0 clock from TC0

0 1 x CPU clock: fxx/4, fxx/8,
fxx/64

Enable SBUF read/write

1 0 0 3.49 kHz clock: fxx/210 SBUF is enabled when SIO
operation is halted or when
SCK goes high.

1 1 1 223.7 kHz clock: fxx/24

NOTES:
1. 'fxx' = system clock; 'x' means 'don't care.'
2. kHz frequency ratings assume a system clock (fxx) running at 3.579545 MHz.
3. The SIO clock selector circuit cannot select a fxx/24 clock if the CPU clock is fxx/64.
4. When a internal clock is selected as a clock source for the serial I/O interface (by setting other values than "000" in

SMOD.7–SMOD.5), the clock can be output from SCK pin.

SERIAL I/O INTERFACE KS57C5116/P5116 MICROCONTROLLER

13–4

SERIAL I/O TIMING DIAGRAMS

SCK

SI

SO

IRQS

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

TRANSMIT
COMPLETE

SET SMOD.3

Figure 13–2. SIO Timing in Transmit/Receive Mode

SCK

SI

SO

IRQS

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

TRANSMIT
COMPLETE

SET SMOD.3

HIGH IMPEDANCE

Figure 13–3. SIO Timing in Receive-Only Mode

KS57C5116/P5116 MICROCONTROLLER SERIAL I/O INTERFACE

13–5

SERIAL I/O BUFFER REGISTER (SBUF)

When the serial interface operates in transmit-and-receive mode (SMOD.1 = "1"), transmit data in the SIO
buffer register are output to the SO pin at the rate of one bit for each falling edge of the SIO clock. Receive data
is simultaneously input from the SI pin to SBUF at the rate of one bit for each rising edge of the SIO clock.

When receive-only mode is used, incoming data is input to the SIO buffer at the rate of one bit for each rising
edge of the SIO clock.

SBUF can be read or written using 8-bit RAM control instructions. Following a RESET, the value of SBUF is
undetermined.

+ + PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O

1. Transmit the data value 48H through the serial I/O interface using an internal clock frequency of fxx/24

and in MSB-first mode:

BITS EMB
SMB 15
LD EA,#03H
LD PMG1,EA ; P0.0 / SCK and P0.1 / SO ← Output
LD EA,#48H ;
LD SBUF,EA ;
LD EA,#0EEH
LD SMOD,EA ; SIO data transfer

KS57C5116

EXTERNAL
DEVICE

 SCK / P0.0

SO / P0.1

2. Use CPU clock to transfer and receive serial data at high speed:

BITR EMB
LD EA,#03H
LD PMG1,EA ; P0.0 / SCK and P0.1 / SO ← Output, P0.2 / SI ← Input
LD EA,TDATA ; TDATA address = Bank0 (20H-7FH)
LD SBUF,EA
LD EA,#4FH
LD SMOD,EA ; SIO start
BITR IES ; SIO Interrupt Enable

 STEST BTSTZ IRQS
JR STEST
LD EA,SBUF
LD RDATA,EA ; RDATA address = Bank0 (20H-7FH)

SERIAL I/O INTERFACE KS57C5116/P5116 MICROCONTROLLER

13–6

+ + PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O (Continued)

3. Transmit and receive an internal clock frequency of 3.49 kHz (at 3.579545 MHz) in LSB-first mode:

BITS EMB
LD EA,#03H

LDPMG1,EA ; P0.0 / SCK and P0.1 / SO ← Output, P0.2/SI ← Input
LD EA,TDATA ; TDATA address = Bank0 (20H-7FH)
LD SBUF,EA
LD EA,#8FH
LD SMOD,EA ; SIO start
EI
BITS IES ; SIO Interrupt Enable
•
•
•

 INTS PUSH SB ; Store SMB, SRB
PUSH EA ; Store EA
BITR EMB
LD EA,TDATA ; EA ← Receive data

; TDATA address = Bank0 (20H-7FH)
XCH EA,SBUF ; Transmit data ↔ Receive data
LD RDATA,EA ; RDATA address = Bank0 (20H-7FH)
BITS SMOD.3 ; SIO start
POP EA
POP SB
IRET

KS57C5116

EXTERNAL
DEVICE

SCK / P0.0

SO / P0.1

SI / P0.2

KS57C5116/P5116 MICROCONTROLLER SERIAL I/O INTERFACE

13–7

+ + PROGRAMMING TIP — Setting Transmit/Receive Modes for Serial I/O (Continued)

4. Transmit and receive an external clock in LSB-first mode:

BITR EMB
LD EA,#02H
LD PMG,EA ; P0.1 / SO ← Output, P0.0 / SCK and P0.2 / SI ← Input
LD EA,TDATA ; TDATA address = Bank0 (20H-7FH)
LD SBUF,EA
LD EA,#0FH
LD SMOD,EA ; SIO start
EI
BITS IES ; SIO Interrupt Enable
•
•
•

 INTS PUSH SB ; Store SMB, SRB
PUSH EA ; Store EA
BITR EMB
LD EA,TDATA ; EA ← Transmit data

; TDATA address = Bank0 (20H-7FH)
XCH EA,SBUF ; Transmit data ↔ Receive data
LD RDATA,EA ; RDATA address = Bank0 (20H-7FH)
BITS SMOD.3 ; SIO start
POP EA
POP SB
IRET

EXTERNAL
DEVICE

SCK / P0.0

SO / P0.1

SI / P0.2

KS57C5116

High Speed SIO Transmission

SERIAL I/O INTERFACE KS57C5116/P5116 MICROCONTROLLER

13–8

NOTES

KS57C5116/P5116 MICROCONTROLLER ELECTRICAL DATA

14–1

14 ELECTRICAL DATA

In this section, information on KS57C5116 electrical characteristics is presented as tables and graphics. The
information is arranged in the following order:

Standard Electrical Characteristics

— Absolute maximum ratings

— D.C. electrical characteristics

— System clock oscillator characteristics

— I/O capacitance

— A.C. electrical characteristics

— Operating voltage range

Miscellaneous Timing Waveforms

— A.C timing measurement point

— Clock timing measurement at Xin and Xout

— TCL timing

— Input timing for RESET

— Input timing for external interrupts

— Serial data transfer timing

Stop Mode Characteristics and Timing Waveforms

— RAM data retention supply voltage in stop mode

— Stop mode release timing when initiated by RESET

— Stop mode release timing when initiated by an interrupt request

ELECTRICAL DATA KS57C5116/P5116 MICROCONTROLLER

14–2

Table 14–1. Absolute Maximum Ratings

(TA = 25 °C)

Parameter Symbol Conditions Rating Units

Supply Voltage VDD – -0.3 to 6.5 V

Input Voltage VI1 All I/O ports - 0.3 to VDD + 0.3 V

Output Voltage VO – - 0.3 to VDD + 0.3 V

Output Current High IOH One I/O port active - 15 mA

All I/O ports active - 30

Output Current Low IOL One I/O port active + 30 (Peak value) mA

+ 15 *
All I/O ports, total + 100 (Peak value)

+ 60 *
Operating Temperature TA – - 40 to + 85 °C

Storage Temperature Tstg – - 65 to + 150 °C

* The values for Output Current Low (IOL) are calculated as Peak Value × Duty .

Table 14–2. D.C. Electrical Characteristics

(TA = – 40 °C to + 85 °C, VDD = 2.0 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Input High
Voltage

VIH1 All input pins except those specified
below for VIH2 - VIH4

0.7VDD – VDD V

VIH2 Ports 0, 1, 3, 6, 7, and RESET 0.8VDD VDD

VIH3 Ports 4 and 5 with pull-up resistors
assigned

0.7VDD VDD

Ports 4 and 5 are open-drain 0.7VDD VDD

VIH4 Xin,Xout and XTin VDD - 0.1 VDD

Input Low
Voltage

VIL1 All input pins except those specified
below for VIL2 - VIL3

– – 0.3VDD V

VIL2 Ports 0, 1, 3, 6, 7, and RESET 0.2VDD

VIL3 Xin ,Xout and XTin 0.1

KS57C5116/P5116 MICROCONTROLLER ELECTRICAL DATA

14–3

Table 14–2. D.C. Electrical Characteristics (Continued)

(TA = – 40 °C to + 85 °C, VDD = 2.0 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Output High
Voltage

VOH IOH = - 1 mA Ports except 1,4 and 5 VDD -1.0 – – V

Output Low
Voltage

VOL1 VDD = 4.5 V to 5.5 V
IOL = 15 mA Ports 4,5 only

– – 2 V

VDD = 2.0 to 5.5 V IOL = 1.6mA – 0.4 V

VOL2 VDD = 4.5 V to 5.5 V
IOL = 4mA all out Ports except ports 4,5

2 V

VDD = 2.0 to 5.5 V IOL = 1.6mA 0.4 V

Input High
Leakage
Current

ILIH1 VI = VDD
All input pins except those specified
below for ILIH2

– – 3 µA

ILIH2 VI = VDD
Xin, Xout and XTin

20

Input Low
Leakage
Current

ILIL1 VI = 0 V

All input pins except below and RESET
– – - 3 µA

ILIL2 VI = 0 V
Xin, Xout and XTin

- 20

Output High
Leakage
Current

ILOH VO= VDD

All output pins
– – 3 µA

Output Low
Leakage
Current

ILOL VO = 0 V

All output pins
– – - 3

Pull-Up
Resistor

RL1 VDD = 5 V ; VI = 0 V

except RESET and P4.5
25 47 100 kΩ

VDD = 3 V 50 95 200

RL2 VO=VDD-2V, VDD=5V
Ports 4 and 5 only

15 47 70

VDD=3V 10 45 60

RL3 VDD = 5 V ; VI = 0 V; RESET 100 220 400

VDD = 3 V 200 450 800

Pull-Down
Resistor

RL4 VDD = 5 V ; VI = VDD; Port 12 25 47 100

VDD = 3 V 50 95 200

ELECTRICAL DATA KS57C5116/P5116 MICROCONTROLLER

14–4

Table 14–2. D.C. Electrical Characteristics (Concluded)

(TA = – 40 °C to + 85 °C, VDD = 2.0 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Supply
Current (1)

IDD1
(DTMF ON)

Run mode; VDD=5.0V± 10%
3.58MHz Crystal oscillator;

C1=C2=22pF

– 2.2 5.0 mA

VDD = 3 V ± 10% 1.2 3.0

IDD2 Run mode; VDD=5.0V± 10% 6.0 MHz 3.9 8.0

(DTMF OFF) Crystal oscillator; C1=C2=22pF 3.58 MHz 2.0 4.0

VDD = 3 V ± 10% 6.0 MHz 1.8 4.0

3.58 MHz 0.8 2.3

IDD3 Idle mode; VDD = 5 V ± 10% 6.0 MHz 1.3 2.5

3.58 MHz 0.6 1.8

VDD = 3 V ± 10% 6.0 MHz 0.5 1.5

3.58 MHz 0.4 1.0

IDD4 Run mode; VDD=3.0V± 10%
32 kHz Crystal oscillator

15.3 30 µA

IDD5 Idle mode; VDD=3.0V± 10%
32 kHz Crystal oscillator

6.4 15

IDD6 Stop mode; VDD=5.0V± 10% 2.5 5

VDD=3.0V± 10% 0.5 3

Row Tone
Level

VROW RL=5kΩ, Temp=20 °C to 30 °C -16 -14 -12 dBV

Ratio of
Column to
Row Tone

dBCR RL=5kΩ, Temp=20 °C to 30 °C 1 2 3 dB

Distortion
(Dual tone)

THD RL=5kΩ, Temp=20 °C to 30 °C, 1 MHz band – – 5 %

NOTES:
1. D.C. electrical values for Supply Current (IDD1 to IDD3) do not include current drawn through internal pull-up resistors.
2. For D.C. electrical values, the power control register (PCON) must be set to 0011B.

KS57C5116/P5116 MICROCONTROLLER ELECTRICAL DATA

14–5

Table 14–3. Main System Clock Oscillator Characteristics

(TA = – 40 °C + 85 °C, VDD = 2.0 V to 5.5 V)

Oscillato
r

Clock
Configuration

Parameter Test Condition Min Typ Max Units

Ceramic
Oscillator

Xin Xout

C1 C2

Oscillation frequency
(1)

VDD = 2.7 V to 5.5 V 0.4 – 6.0 MHz

VDD = 2.0 V to 5.5 V 0.4 – 4.2

Stabilization time (2) VDD = 3V – – 4 ms

Crystal
Oscillator

Xin Xout

C1 C2

Oscillation frequency
(1)

VDD = 2.7 V to 5.5V 0.4 – 6.0 MHz

VDD = 2.0 V to 5.5V 0.4 – 4.2

Stabilization time (2) VDD = 3 V – – 10 ms

External
Clock

Xin Xout Xin input frequency (1) VDD = 2.7 V to 5.5V 0.4 – 6.0 MHz

VDD = 2.0 V to 5.5V 0.4 – 4.2

Xin input high and low
level width (tXH, tXL)

– 83.3 – 1250 ns

NOTES:
1. Oscillation frequency and Xin input frequency data are for oscillator characteristics only.
2. Stabilization time is the interval required for oscillating stabilization after a power-on occurs, or when stop mode is

terminated.

ELECTRICAL DATA KS57C5116/P5116 MICROCONTROLLER

14–6

Table 14–4. Subsystem Clock Oscillator Characteristics

(TA = – 40 °C + 85 °C, VDD = 2.0 V to 5.5 V)

Oscillator Clock
Configuration

Parameter Test Condition Min Typ Max Units

Crystal
Oscillator

XTin XTout

C1 C2

Oscillation frequency
(1)

– 32 32.768 35 kHz

Stabilization time (2) VDD=2.7V to 5.5V – 1.0 2 s

VDD=2.0V to 5.5V – – 10 s

External
Clock

XTin XTout XTin input frequency
(1)

– 32 – 100 kHz

XTin input high and
low level width (tXH,
tXL)

– 5 – 15 µs

NOTES:
1. Oscillation frequency and XTin input frequency data are for oscillator characteristics only.
2. Stabilization time is the interval required for oscillating stabilization after a power-on occurs or when stop mode is

terminated.

Table 14–5. Input/Output Capacitance

(TA = 25 °C, VDD = 0 V)

Parameter Symbol Condition Min Typ Max Units

Input
Capacitance

CIN f = 1 MHz; Unmeasured pins
are returned to VSS

– – 15 pF

Output
Capacitance

COUT – – 15 pF

I/O Capacitance CIO – – 15 pF

KS57C5116/P5116 MICROCONTROLLER ELECTRICAL DATA

14–7

Table 14–6. A.C. Electrical Characteristics

(TA = – 40 °C to + 85 °C, VDD = 2.0 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Instruction Cycle
Time (1)

tCY VDD = 2.7 V to 5.5 V 0.67 – 64 µs

VDD = 2.0 V to 5.5 V 0.95

TCL0, TCL1 Input
Frequency

fTI0, fTI1 VDD = 2.7 V to 5.5 V 0 – 1.5 MHz

VDD = 2.0 V to 5.5 V 1 MHz

TCL0, TCL1 Input
High, Low Width

tTIH0, tTIL0
tTIH1, tTIL1

VDD = 2.7 V to 5.5 V 0.48 – – µs

VDD = 2.0 V to 5.5 V 1.8

SCK Cycle Time tKCY VDD = 2.7 V to 5.5 V
External SCK source

800 – – ns

Internal SCK source 670

VDD = 2.0 V to 5.5 V
External SCK source

3200

Internal SCK source 3800

SCK High, Low
Width

tKH, tKL VDD = 2.7 V to 5.5 V
External SCK source

335 – – ns

Internal SCK source tKCY–
250

VDD = 2.0 V to 5.5 V
External SCK source

1600

Internal SCK source tKCY –
2150

SI Setup Time to
SCK High

tSIK VDD = 2.7 V to 5.5 V
External SCK source

100 – – ns

Internal SCK source 150

VDD = 2.0 V to 5.5 V
External SCK source

150

Internal SCK source 500

SI Hold Time to
SCK High

tKSI VDD = 2.7 V to 5.5 V
External SCK source

400 – – ns

Internal SCK source 400

VDD = 2.0 V to 5.5 V
External SCK source

600

Internal SCK source 500

ELECTRICAL DATA KS57C5116/P5116 MICROCONTROLLER

14–8

Table 14–6. A.C. Electrical Characteristics (Continued)

(TA = – 40 °C to + 85 °C, VDD = 2.0 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Output Delay for
SCK to SO

tKSO(NOTE) VDD = 2.7 V to 5.5 V
External SCK source

– – 300 ns

Internal SCK source 250

VDD = 2.0 V to 5.5 V
External SCK source

1000

Internal SCK source 1000

Interrupt Input
High, Low Width

tINTH,
tINTL

INT0, INT1, INT2, INT4,
KS0–KS7

10 – – µs

RESET Input Low
Width

tRSL Input 10 – – µs

NOTE: R (1 kΩ) and C (100 pF) are the load resistance and load capacitance of the SO output line.

CPU CLOCK = oscillator frequency x 1/n (n = 4, 8, 64)

 SUPPLY VOLTAGE (V)

1.05 MHz

1.5 MHz

15.625 kHz

CPU CLOCK

1 2 3 4 5 6 7

6 MHz

4.2 MHz

400 kHz

2.7 V

Main Osc. Freq. (Divided by 4)

Figure 14–1. Standard Operating Voltage Range

KS57C5116/P5116 MICROCONTROLLER ELECTRICAL DATA

14–9

Table 14–7. RAM Data Retention Supply Voltage in Stop Mode

(TA = – 40 °C to + 85 °C)

Parameter Symbol Conditions Min Typ Max Unit

Data retention supply voltage VDDDR – 1.5 – 5.5 V

Data retention supply current IDDDR VDDDR = 1.5 V – 0.1 10 µA

Release signal set time tSREL – 0 – – µs

Oscillator stabilization wait
time (1)

tWAIT Released by RESET – 217 / fx – ms

Released by interrupt – (2) – ms

NOTES:
1. During oscillator stabilization wait time, all CPU operations must be stopped to avoid instability during oscillator start-
up.
2. Use the basic timer mode register (BMOD) interval timer to delay execution of CPU instructions during the wait time.

ELECTRICAL DATA KS57C5116/P5116 MICROCONTROLLER

14–10

TIMING WAVEFORMS

tSREL

tWAIT

VDD

RESET

EXECUTION OF
STOP INSTRUCTION

VDDDR

DATA RETENTION MODE

STOP MODE

INTERNAL RESET
OPERATION

IDLE MODE

OPERATING
MODE

Figure 14–2. Stop Mode Release Timing When Initiated By RESET

VDD

EXECUTION OF
STOP INSTRUCTION

VDDDR

DATA RETENTION MODE

STOP MODE

tWAIT

tSREL

IDLE MODE
NORMAL
OPERATING
MODE

POWER-DOWN MODE TERMINATING SIGNAL
(INTERRUPT REQUEST)

Figure 14–3. Stop Mode Release Timing When Initiated By Interrupt Request

KS57C5116/P5116 MICROCONTROLLER ELECTRICAL DATA

14–11

MEASUREMENT
POINTS

0.8 VDD 0.8 VDD

0.2 VDD 0.2 VDD

Figure 14–4. A.C. Timing Measurement Points (Except for Xin and XTin)

Xin

tXL tXH

1 / f x

VDD – 0.1 V

0.1 V

Figure 14–5. Clock Timing Measurement at Xin (XTin)

TCL

tTIL tTIH

1 / fTI

0.8 VDD
0.2 VDD

Figure 14–6. TCL0/1 Timing

ELECTRICAL DATA KS57C5116/P5116 MICROCONTROLLER

14–12

RESET

tRSL

0.2 VDD

Figure 14–7. Input Timing for RESET Signal

INT0, 1, 2, 4
KS0 to KS7

tINTL tINTH

0.2 VDD

0.8 VDD

Figure 14–8. Input Timing for External Interrupts and Quasi-Interrupts

KS57C5116/P5116 MICROCONTROLLER ELECTRICAL DATA

14–13

SCK

tKL tKH

tKCY

INPUT DATA

OUTPUT DATA

SI

SO

tSIK tKSI

tKSO

0.2 VDD
0.8 VDD

0.2 VDD

0.8 VDD

Figure 14–9. Serial Data Transfer Timing

ELECTRICAL DATA KS57C5116/P5116 MICROCONTROLLER

14–14

NOTES

KS57C5116/P5116 MICROCONTROLLER MECHANICAL DATA

15–1

15 MECHANICAL DATA

This section contains the following information about the device package:

— Package dimensions in millimeters

— Pad diagram

— Pad/pin coordinate data table

64-QFP-1420A

2.45 MAX

1.00 TYP 0.40 ± 0.1

25.00 ± 0.3

20.00 TYP

14.00 TYP 19.00 ± 0.3

1.20 ± 0.2

0.10
+ 0.1
– 0.05

0.15
+ 0.1
– 0.05

NOTE: Typical dimensions are in millimeters.

Figure 15–1. 64-QFP-1420A Package Dimensions

MECHANICAL DATA KS57C5116/P5116 MICROCONTROLLER

15–2

64-QFP-1420C

3.00 MAX

0.80 ± 0.2

0.15 ± 0.1

NOTE: Typical dimensions are in millimeters.

17
.2

0
±

0.
3

14
.0

0

23.20 ± 0.3

20.00

0.40 ± 0.1

(1
.0

0)

64

(1.00)

#1

1.00

0.
80

 ±
 0

.2

2.65 ± 0.1

0.15

0.15
+ 0.1
– 0.05

Figure 15–2 64-QFP-1420C Package Dimensions

KS57C5116/P5116 MICROCONTROLLER MECHANICAL DATA

15–3

64-SDIP-750

57.80 ± 0.2

17.00 ± 0.2

1.00 ± 0.1

0.51 MIN1.778 TYP 0.45 ± 0.1

5.08 MAX

3.30 ± 0.3

0 ~ 15 °

19.05 TYP

0.25
+0.1
– 0.05

NOTE: Typical dimensions are in millimeters.

Figure 15–3. 64-SDIP-750 Package Dimensions

MECHANICAL DATA KS57C5116/P5116 MICROCONTROLLER

15–4

NOTES

KS57C5116/P5116 MICROCONTROLLER KS57P5116 OTP

16-1

16 KS57P5116 OTP

OVERVIEW

The KS57P5116 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the
KS57C5116 microcontroller. It has an on-chip OTP ROM instead of masked ROM. The EPROM is accessed by
serial data format.

The KS57P5116 is fully compatible with the KS57C5116, both in function and in pin configuration. Because of its
simple programming requirements, the KS57P5116 is ideal for use as an evaluation chip for the KS57C5116.

VSS / VSS
P9.0
P9.1
P9.2
P9.3
P8.0
P8.1
P8.2
P8.3
P7.0 / KS4
P7.1 / KS5
P7.2 / KS6
P7.3 / KS7
P6.0 / KS0
P6.1 / KS1
P6.2 / KS2
P6.3 / KS3
XTout
XTin
Xin
Xout
RESET / RESET
P5.0
P5.1
P5.2
P5.3
P4.0
P4.1
P4.2
P4.3
P3.0 / TCL0
P3.1 / TCL1

P1.3 / INT4
P1.2 / INT2
P1.1 / INT1
P1.0 / INT0

P13.2
P13.1
P13.0

P2.3 / BUZ
P2.2 / CLO

P2.1 / TCLO1
P2.0 / TCLO0
P0.3 / BTCO

P0.2 / SI
P0.1 / SO

P0.0 / SCK
P10.3
P10.2
P10.1
P10.0
P11.3
P11.2
P11.1
P11.0
P12.3
P12.2
P12.1
P12.0

SDAT / P3.3
SCLK / P3.2
VPP / TEST

DTMF
VDD / VDD

K
S

57P
5116

(64-S
D

IP
-750)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

NOTE: The bolds indicate a OTP pin name.

Figure 16-1. KS57P5116 Pin Assignments (64-SDIP)

KS57P5116 OTP KS57C5116/P5116 MICROCONTROLLER

16-2

P5.3
P4.0
P4.1
P4.2
P4.3
P3.0 / TCL0
P3.1 / TCL1
VDD / VDD
DTMF
TEST / VPP
P3.2 / SCLK
P3.3 / SDAT
P12.0

P8.0
P9.3
P9.2
P9.1
P9.0

VSS / VSS
P1.3 / INT4
P1.2 / INT2
P1.1 / INT1
P1.0 / INT0

P13.2
P13.1
P13.0

P
2.

3
/ B

U
Z

P

2.
2

/ C
LO

P

2.
1

/ T
C

LO
1

P
2.

0
/ T

C
LO

0
P

0.
3

/ B
T

C
O

P

0.
2

/ S
I

P
0.

1
/ S

O

P
0.

0
/ S

C
K

P

10
.3

P

10
.2

P

10
.1

P

10
.0

P

11
.3

P

11
.2

P

11
.1

P

11
.0

P

12
.3

P

12
.2

P

12
.1

KS57P5116

(64-QFP-1420F)

51

50

49

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

32
31
30
29
28
27
26
25
24
23
22
21
20

52
53
54
55
56
57
58
59
60
61
62
63
64

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

P
8.

1
P

8.
2

P
8.

3
P

7.
0

/ K
S

4
P

7.
1

/ K
S

5
P

7.
2

/ K
S

6
P

7.
3

/ K
S

7
P

6.
0

/ K
S

0
P

6.
1

/ K
S

1
P

6.
2

/ K
S

2
P

6.
3

/ K
S

3
X

T
ou

t
X

T
in

X

in

X
ou

t
R

E
S

E
T

 /
R

E
S

E
T

P

5.
0

P
5.

1
P

5.
2

NOTE: The bolds indicate a OTP pin name.

Figure 16-2. KS57P5116 Pin Assignments (64-QFP)

KS57C5116/P5116 MICROCONTROLLER KS57P5116 OTP

16-3

Table 16-1. Descriptions of Pins Used to Read/Write the EPROM

Pin Name During Programming

Pin No. I/O Function

SDAT 28 (21) I/O Serial data pin. Output port when reading and input port when
writing. Can be assigned as a Input / push-pull output port.

SCLK 29 (22) I Serial clock pin. Input only pin.

Vpp(TEST) 30 (23) I Power supply pin for EPROM cell writing (indicates that OTP
enters into the writing mode). When 12.5 V is applied, OTP is
in writing mode and when 5 V is applied, OTP is in reading
mode. (Option)

RESET 43 (36) I Chip initialization

VDD / VSS 32 (25) /
 64 (57)

I Logic power supply pin. VDD should be tied to +5 V during
programming.

NOTE: Parentheses indicate pin number for 64 QFP package.

Table 16-2. Comparison of KS57P5116 and KS57C5116 Features

Characteristic KS57P5116 KS57C5116

Program Memory 16 K byte EPROM 2 K byte mask ROM

Operating Voltage (VDD) 2.0 V to 5.5 V 2.0 V to 5.5 V

OTP Programming Mode VDD = 5 V, Vpp(TEST)=12.5V

Pin Configuration 64SDIP / QFP 64SDIP / QFP

EPROM Programmability User Program 1 time Programmed at the factory

OPERATING MODE CHARACTERISTICS

When 12.5 V is supplied to the Vpp(TEST) pin of the KS57P5116, the EPROM programming mode is entered.
The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in
Table 14-3 below.

Table 16-3. Operating Mode Selection Criteria

VDD VPP

(TEST)

REG/
MEM

ADDRESS

(A15-A0)

R/W MODE

5 V 5 V 0 0000H 1 EPROM read

12.5V 0 0000H 0 EPROM program

12.5V 0 0000H 1 EPROM verify

12.5V 1 0E3FH 0 EPROM read protection

NOTE: "0" means Low level; "1" means High level.

KS57P5116 OTP KS57C5116/P5116 MICROCONTROLLER

16-4

Table 16–4. D.C. Electrical Characteristics

(TA = – 40°C to + 85°C, VDD = 2.0 V to 5.5 V)

Parameter Symbol Conditions Min Typ Max Units

Supply
Current
(1,2)

IDD1
(DTMF ON)

Run mode; VDD=5.0V± 10%
3.58MHz Crystal oscillator;

 C1=C2=22pF

– 2.2 5.0 mA

VDD = 3 V ± 10% 1.2 3.0

IDD2 Run mode; VDD=5.0V± 10% 6.0 MHz 3.9 8.0

(DTMF OFF) Crystal oscillator; C1=C2=22pF 3.58 MHz 2.0 4.0

VDD = 3 V ± 10% 6.0 MHz 1.8 4.0

3.58 MHz 0.8 2.3

IDD3 Idle mode; VDD = 5 V ± 10% 6.0 MHz 1.3 2.5

3.58 MHz 0.6 1.8

VDD = 3 V ± 10% 6.0 MHz 0.5 1.5

3.58 MHz 0.4 1.0

IDD4 Run mode; VDD=3.0V± 10%
32 kHz Crystal oscillator

15.3 30 µA

IDD5 Idle mode; VDD=3.0V± 10%
32 kHz Crystal oscillator

6.4 15

IDD6 Stop mode; VDD=5.0V± 10% 2.5 5

VDD=3.0V± 10% 0.5 3

NOTES:
1. D.C. electrical values for Supply Current (IDD1 to IDD3) do not include current drawn through internal pull-up resistors.
2. For D.C. electrical values, the power control register (PCON) must be set to 0011B.

KS57C5116/P5116 MICROCONTROLLER KS57P5116 OTP

16-5

CPU CLOCK = oscillator frequency x 1/n (n = 4, 8, 64)

 SUPPLY VOLTAGE (V)

1.05 MHz

1.5 MHz

15.625 kHz

CPU CLOCK

1 2 3 4 5 6 7

6 MHz

4.2 MHz

400 kHz

2.7 V

Main Osc. Freq. (Divided by 4)

Figure 16–3. Standard Operating Voltage Range

KS57P5116 OTP KS57C5116/P5116 MICROCONTROLLER

16-6

START

Address= First Location

VDD=5V, VPP=12.5V

x = 0

Program One 1ms Pulse

Increment X

x = 10

Verify 1 Byte

Last Address

VDD = VPP= 5 V

Compare All Byte

Device Passed

Increment Address

Verify Byte

Device Failed

PASS

FAIL

NO

FAIL

YES

FAIL

NO

Figure 16-4. OTP Programming Algorithm

KS57C5116/P5116 MICROCONTROLLER KS57P5116 OTP

16-7

KS57C5116/P5116 MICROCONTROLLER DEVELOPMENT TOOLS

17–1

17 Development Tools

OVERVIEW

Samsung provides a powerful and easy-to-use development support system in turnkey form. The development
support system is configured with a host system, debugging tools, and support software. For the host system, any
standard computer that operates with MS-DOS as its operating system can be used. One type of debugging tool
including hardware and software is provided: the sophisticated and powerful in-circuit emulator, SMDS2+, for
KS57, KS86, KS88 families of microcontrollers. The SMDS2+ is a new and improved version of SMDS2.
Samsung also offers support software that includes debugger, assembler, and a program for setting options.

SHINE

Samsung Host Interface for In-Circuit Emulator, SHINE, is a multi-window based debugger for SMDS2+. SHINE
provides pull-down and pop-up menus, mouse support, function/hot keys, and context-sensitive hyper-linked
help. It has an advanced, multiple-windowed user interface that emphasizes ease of use. Each window can be
sized, moved, scrolled, highlighted, added, or removed completely.

SAMA ASSEMBLER

The Samsung Arrangeable Microcontroller (SAM) Assembler, SAMA, is a universal assembler, and generates
object code in standard hexadecimal format. Assembled program code includes the object code that is used for
ROM data and required SMDS program control data. To assemble programs, SAMA requires a source file and
an auxiliary definition (DEF) file with device specific information.

SASM57

The SASM57 is an relocatable assembler for Samsung's KS57-series microcontrollers. The SASM57 takes a
source file containing assembly language statements and translates into a corresponding source code, object
code and comments. The SASM57 supports macros and conditional assembly. It runs on the MS-DOS operating
system. It produces the relocatable object code only, so the user should link object file. Object files can be linked
with other object files and loaded into memory.

HEX2ROM

HEX2ROM file generates ROM code from HEX file which has been produced by assembler. ROM code must be
needed to fabricate a microcontroller which has a mask ROM. When generating the ROM code (.OBJ file) by
HEX2ROM, the value 'FF' is filled into the unused ROM area upto the maximum ROM size of the target device
automatically.

TARGET BOARDS

Target boards are available for all KS57-series microcontrollers. All required target system cables and adapters
are included with the device-specific target board.

OTPs

One time programmable microcontroller (OTP) for the KS57C5116 microcontroller and OTP programmer (Gang)
are now available.

DEVELOPMENT TOOLS KS57C5116/P5116 MICROCONTROLLER

17–2

RAM BREAK/ DISPLAY UNIT

TARGET
APPLICATION

SYSTEM

PROBE
ADAPTER

TB575016A
TB575116A
TARGET
BOARD

PROM/MTP WRITER UNIT

TRACE/TIMER UNIT

SAM4 BASE UNIT

POWER SUPPLY UNIT

POD

RS-232C

IBM-PC AT or Compatible
B

U
S

SMDS2+

EVA
CHIP

Figure 17–1. SMDS Product Configuration (SMDS2+)

KS57C5116/P5116 MICROCONTROLLER DEVELOPMENT TOOLS

17–3

TB575016A/TB575116A TARGET BOARD

The TB575016A/TB575116A target board is used for the KS57C5116/P5116 microcontroller. It is supported by
the SMDS2+ development system.

SM1252A

TB575016A
TB575116A

144 QFP
KS57E5000
EVA CHIP

1

25

EXTERNAL
TRIGGERS

CH1

CH2

OFF ON

To User_Vcc

RESET

10
0-

P
IN

 C
O

N
N

E
C

T
O

R

1 36

64
-P

IN
 C

O
N

N
E

C
T

O
R

64 1

33 32

J101

74HC11 R
A

1

P
4.

0
P

4.
1

P
4.

2
P

4.
3

P
5.

0
P

5.
1

P
5.

2
P

5.
3

S
W

1

MDS XTAL

XTI

Figure 17–2. TB575016A/TB575116A Target Board Configuration

DEVELOPMENT TOOLS KS57C5116/P5116 MICROCONTROLLER

17–4

Table 17–1. Power Selection Settings for TB575016A/TB575116A

'To User_Vcc' Settings Operating Mode Comments

To User_Vcc

ONOFF

VCC

TB575016A
TB575116A TARGET

SYSTEM

SMDS2/SMDS2+

VSS

VCC

The SMDS2/SMDS2+
supplies VCC to the target
board (evaluation chip) and
the target system.

To User_Vcc

ONOFF TARGET
SYSTEM

External
VCC

SMDS2/SMDS2+

VCC

VSS

TB575016A
TB575116A

The SMDS2/SMDS2+
supplies VCC only to the
target board (evaluation chip).
The target system must have
its own power supply.

Table 17–2. Clock Selection Settings for TB575016A/TB575116A

Sub Clock Setting Operating Mode Comments

XTI

XTALMDS

XTIN

SMDS2/SMDS2+

EVA CHIP
KS57E5000

XTOUT

No connection
100 pin connector

Set the XTI switch to “MDS”
when the target board is
connected to the
SMDS2/SMDS2+.

XTI

XTALMDS

XTIN

TARGET BOARD

EVA CHIP
KS57E5000

XTOUT

XTAL

Set the XTI switch to “XTAL”
when the target board is used
as a standalone unit, and is
not connected to the
SMDS2/SMDS2+.

KS57C5116/P5116 MICROCONTROLLER DEVELOPMENT TOOLS

17–5

Table 17–3. Using Single Header Pins as the Input Path for External Trigger Sources

Target Board Part Comments

EXTERNAL
TRIGGERS

CH1

CH2

Connector from
external trigger
sources of the
application system

You can connect an external trigger source to one of the two external
trigger channels (CH1 or CH2) for the SMDS2+ breakpoint and trace
functions.

IDLE LED

This LED is ON when the evaluation chip (KS57E5000) is in idle mode.

STOP LED

This LED is ON when the evaluation chip (KS57E5000) is in stop mode.

DEVELOPMENT TOOLS KS57C5116/P5116 MICROCONTROLLER

17–6

J101

64-P
IN

 D
IP

 C
O

N
N

E
C

T
O

R

VSS
P9.0
P9.1
P9.2
P9.3
P8.0
P8.1
P8.2
P8.3

P7.0/KS4
P7.1/KS5
P7.2/KS6
P7.3/KS7
P6.0/KS0
P6.1/KS1
P6.2KS2
P6.3/KS3

XTout
XTin
Xin

Xout
RESET

P5.0
P5.1
P5.2
P5.3
P4.0
P4.1
P4.2
P4.3

P3.0/TCL0
P3.1/TCL1

P1.3/INT4
P1.2/INT2
P1.1/INT1
P1.0/INT0
P13.2
P13.1
P13.0
P2.3/BUZ
P2.2/CLO
P2.1/TCLO1
P2.0/TCLO0
P0.3/BTCO
P0.2/SI
P0.1/SO
P0.0/SCK
P10.3
P10.2
P10.1
P10.0
P11.3
P11.2
P11.1
P11.0
P12.3
P12.2
P12.1
P12.0
P3.3/SDAT
P3.2/SCLK
TEST
DTMF
VDD

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Figure 17–3. 64-Pin Connector for TB575016A/TB575116A

KS57C5116/P5116 MICROCONTROLLER DEVELOPMENT TOOLS

17–7

64
-P

IN
 D

IP
 C

O
N

N
E

C
T

O
R

TARGET BOARD TARGET SYSTEM

Target Cable for 64 SDIP Package
Part Name: AS64SD
Order Code: SM6101

J101

1 64

32 33

Figure 17–4. TB575016A/TB575116A Adapter Cable (KS57C5116/P5116)

DEVELOPMENT TOOLS KS57C5116/P5116 MICROCONTROLLER

17–8

NOTES

