1 # **PRODUCT OVERVIEW** ### SAM87RI PRODUCT FAMILY Samsung's SAM87RI family of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various mask-programmable ROM sizes. A dual address/data bus architecture and a large number of bit- or nibble-configurable I/O ports provide a flexible programming environment for applications with varied memory and I/O requirements. Timer/counters with selectable operating modes are included to support real-time operations. Many SAM87RI microcontrollers have an external interface that provides access to external memory and other peripheral devices. ## KS86C0004/P0004/C0104/P0104 MICROCONTROLLER The KS86C0004/P0004/C0104/P0104 single-chip 8-bit microcontroller is fabricated using an advanced CMOS process. It is built around the powerful SAM87RI CPU core. Stop and Idle power-down modes were implemented to reduce power consumption. To increase on-chip register space, the size of the internal register file was logically expanded. The KS86C0004/P0004/C0104/P0104 has 4 K bytes of program memory on-chip. Using the SAM87RI design approach, the following peripherals were integrated with the SAM87RI core: - Five configurable I/O ports (32 pins) - 12 bit-programmable pins for external interrupts - 8-bit timer/counter with three operating modes The KS86C0004/P0004/C0104/P0104 is a versatile microcontroller that can be used in a wide range of general purpose applications. It is especially suitable for use as a keyboard controller and is available in a 40-pin DIP and a 44-pin QFP package. ## **OTP** The KS86C0004/C0104 microcontroller is also available in OTP (One Time Programmable) version, KS86P0004/P0104. KS86P0004/P0104 microcontroller has an on-chip 8-Kbyte one-time-programmable EPROM instead of masked ROM. The KS86P0004/P0104 is comparable to KS86C0004/C0104, both in function and in pin configuration. 1-1 ## **FEATURES** #### **CPU** SAM87RI CPU core ## Memory - 4-Kbyte internal program memory (ROM) - 208-byte internal register file - 8-Kbyte external program memory - 8-Kbyte external data memory #### **Instruction Set** - 41 instructions - IDLE and STOP instructions added for powerdown modes #### **Instruction Execution Time** • 1.5 μs at 4 MHz f_{OSC} ## Interrupts - 14 interrupt sources with one vector, Each source has its pending bit - · One level, one vector interrupt structure ## **Oscillation Circuit Options** - 4 MHz RC oscillator with on chip capacitor for KS86C0004/P0004 (± 10% RC accuracy at V_{DD} ± 5% and Ta = 0°C - 70°C, using 1% external precision resistor) - RC oscillator for KS86C0004/P0004 - Crystal/ceramic oscillator for KS86C0104/P0104 ## General I/O - Five ports (32 pins total) - Three bit-programmable ports (20 pins total) - Two bit-programmable ports with external interrupts (12 pins total) #### Timer/Counter - One 8-bit basic timer for watchdog function and programmable oscillation stabilization interval generation function - One 8-bit timer/counter with PWM mode ## **Operating Temperature Range** • -40° C to $+85^{\circ}$ C ## **Operating Voltage Range** - 4.5 V to 5.5 V for KS86C0004/P0004 - 2.7 V to 5.5 V for KS86C0104/P0104 ## **Package Types** 40-pin DIP # **BLOCK DIAGRAM** Figure 1-1. Block Diagram # **PIN ASSIGNMENTS** Figure 1-2. Pin Assignment Diagram (40-Pin DIP Package) # **PIN DESCRIPTIONS** Table 1-1. KS86C0004/P0004/C0104/P0104 Pin Descriptions | Pin
Names | Pin
Type | Pin
Description | Circuit
Number | Pin
Numbers | Share
Pins | |-------------------------------------|-------------|--|-------------------|----------------|----------------------------| | P0.0–P0.7 | I/O | Bit-programmable I/O port for Schmitt trigger input or open-drain output. Port0 can also be configured as external interface address lines A8–A12. | С | 36–29 | A8-A12 | | P1.0-P1.7 | I/O | Bit-programmable I/O port for Schmitt trigger input, push-pull, or open-drain output. Port1 can alternatively be used as external interface address/data lines AD0–AD7. | С | 23–16 | AD0-AD7 | | P2.0-P2.7 | I/O | Bit-programmable I/O port for Schmitt trigger input or push-pull output. Port2 can be individually configured as external interrupt inputs. Especially, P2.0–2.3 can be configured for external bus control signal. | D | 6–13 | INT, AS,
DS, R/W,
DM | | P3.0-P3.3 | I/O | Same general characteristics as Port1. Port3 are designed for to drive LED directly. P3.3 can be used to system clock output (CLO) port. | С | 1, 40–38 | P3.3/CLO | | P4.0-P4.3 | I/O | Bit-programmable I/O port. Input mode or n-channel open-drain output mode is software assignable. Port4 can be individually configured as external interrupt inputs. Pull-up resistors are also software assignable. Especially, P4.1 can be used TOCLK input and P4.3 also TOOUT for Timer 0. | D | 2–5 | INT,
TOCLK,
TOOUT | | X _{IN} , X _{OUT} | _ | System clock input and output pin (for RC oscillator, crystal/ceramic oscillator, or external clock source) | - | 27, 28 | _ | | INT | I | External interrupt for bit-programmable port2 and port4 pins when set to input mode. | _ | 2-13 | PORT2/
PORT4 | | RESET | _ | RESET signal input pin. Schmitt trigger input with internal pull-up resistor. | Α | 26 | _ | | EA | I | External Memory Access (EA) pin with 2 modes: 0V = Normal Operation Mode 5V = ROMLESS Operation Mode (Must be connected to V _{SS} during normal operation mode) | В | 24 | _ | | V_{DD} | _ | Power input pin | _ | 37 | _ | | V _{SS1} , V _{SS2} | _ | Vss1 is a ground power for CPU core. Vss2 is a ground power for I/O and OSC block | _ | 15, 25 | _ | | NC | _ | No connection (This pin would be better connecting to V _{SS}) | _ | 14 | _ | # **PIN CIRCUITS** Table 1-2. Pin Circuit Assignments for the KS86C0004/P0004/C0104/P0104 | Circuit Number | Circuit Type | KS86C0004/P0004/C0104/P0104 Assignment | | |----------------|--------------|--|--| | Α | 1 | RESET signal input | | | В | 1 | EA input | | | С | I/O | Ports 0, 1, and 3 | | | D | I/O | Ports 2 and 4 | | Figure 1-3. Pin Circuit Type A (RESET) Figure 1-4. Pin Circuit Type B (EA) Figure 1-5. Pin Circuit Type C (Ports 0, 1, and 3) Figure 1-6. Pin Circuit Type D (Ports 2 and 4) # **APPLICATION CIRCUIT** Figure 1-7. Keyboard Control Application Circuit Diagram # 12 ELECTRICAL DATA ## **OVERVIEW** In this section, the following KS86C0004/P0004/C0104/P0104 electrical characteristics are presented in tables and graphs: - Absolute maximum ratings - D.C. electrical characteristics - I/O capacitance - A.C. electrical characteristics - Input timing for RESET - Input timing for external interrupts (ports 2 and 4, RESET, and EA) - Oscillator characteristics - Oscillation stabilization time - Clock timing measurement points at X_{IN} - Data retention supply voltage in Stop mode - Stop mode release timing when initiated by a reset - Stop mode release timing when initiated by an external interrupt - External Memory timing characteristics (8 MHz) - External Memory Read and Write timing - Characteristic curves **Table 12-1. Absolute Maximum Ratings** $(T_A = 25^{\circ}C)$ | Parameter | Symbol | Conditions | Rating | Unit | |--------------------------|------------------|--|--------------------------|------| | Supply Voltage | V _{DD} | _ | - 0.3 to + 6.5 | V | | Input Voltage | V _{IN} | All input ports | -0.3 to $V_{DD} + 0.3$ | V | | Output Voltage | Vo | All output ports | -0.3 to $V_{DD} + 0.3$ | V | | Output Current | I _{OH} | One I/O pin active | – 18 | mA | | High | | All I/O pins active | - 60 | | | Output Current | I _{OL} | One I/O pin active | + 25 | mA | | Low | | Total pin current for ports 3 | + 100 | | | | | Total pin current for ports 0, 1, 2, 4 | + 100 | | | Operating
Temperature | T _A | - | - 40 to + 85 | °C | | Storage
Temperature | T _{STG} | - | - 65 to + 150 | °C | # **Table 12-2. D.C. Electrical Characteristics** $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C, V_{DD} = 4.5 \text{ V to } 5.5 \text{ V }^{(1)})$ | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |--|-------------------|---|-----------------------|-----|---------------------|------| | Input High
Voltage | V _{IH1} | All inputs except V _{IH2} | 0.8 V _{DD} | _ | V _{DD} | V | | | V _{IH2} | X _{IN} | V _{DD} - 0.5 | | V _{DD} | | | Input Low Voltage | V _{IL1} | All inputs except V _{IL2} | | _ | 0.2 V _{DD} | V | | | V_{IL2} | X _{IN} | | | 0.4 | | | Output High
Voltage | V _{OH} | I _{OH} = - 200 μA
All outputs except P4.1,
P4.3, and port0 | V _{DD} – 1.0 | - | _ | V | | Output Low
Voltage | V _{OL} | I _{OL} = 2 mA
All outputs except port3 | _ | - | 0.4 | V | | Output Low
Current | I _{OL} | V _{OL} = 3 V
Port3 only | 8 | 15 | 23 | mA | | Input High I _{LIH1} Leakage Current | | $V_{IN} = V_{DD}$
All inputs except I _{LIH2} , P4.0
and P4.1 | - | - | 3 | μА | | | I _{LIH2} | $V_{IN} = V_{DD}$
X_{IN}, X_{OUT} | | | 20 | | Table 12-2. D.C. Electrical Characteristics (Continued) $$(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C, V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}^{(1)})$$ | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |--------------------------------|-------------------|---|-----|-----|------|------| | Input Low
Leakage Current | I _{LIL1} | V _{IN} = 0 V
All inputs except I _{LIL2} , P4.0 and
P4.1 | _ | _ | -3 | μА | | | I _{LIL2} | $V_{IN} = 0 V$
X_{OUT}, X_{IN} | | | - 20 | | | Output High
Leakage Current | I _{LOH} | $V_{OUT} = V_{DD}$
All outputs | ı | _ | 3 | μA | | Output Low
Leakage Current | I _{LOL} | V _{OUT} = 0 V
All outputs | _ | _ | - 3 | μΑ | | Pull-up Resistors | R_{L1} | V _{IN} = 0 V; Port 2 only | 30 | 60 | 90 | ΚΩ | | | R _{L2} | V _{IN} = 0 V; Port 4 only | 1.8 | 2.8 | 4.0 | | | | R _{L3} | V _{IN} = 0 V; RESET only | 50 | 90 | 150 | | | | | Normal operation mode
4 MHz CPU clock | _ | 4.5 | 10 | mA | | | I _{DD2} | Idle mode; 4 MHz oscillator | | 0.9 | 3 | mA | | | I _{DD3} | Stop mode | | 0.5 | 5 | μA | # NOTES: - The operating voltage range of KS86C0104/P0104 is from 2.7 V to 5.5 V according to oscillation frequency. Supply current does not include current drawn through internal pull-up resistors or external output current loads. # Table 12-3. Input/Output Capacitance $$(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C, V_{DD} = 0 \text{ V})$$ | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |-----------------------|------------------|---|-----|-----|-----|------| | Input
Capacitance | C _{IN} | f = 1 MHz; unmeasured pins are connected to V _{SS} | - | 1 | 10 | pF | | Output
Capacitance | C _{OUT} | | | | | | | I/O Capacitance | C _{IO} | | | | | | # **Table 12-4. A.C. Electrical Characteristics** $$(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C, V_{DD} = 4.5 \text{ V to } 5.5 \text{ V})$$ | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |------------------------------------|---------------------------------------|------------|-----|-------|-----|------| | Interrupt Input
High, Low Width | t _{INTH} , t _{INTL} | P2 and P4 | - | 200 | 1 | ns | | RESET Input Low Width | t _{RSL} | RESET | - | 1,000 | - | | Figure 12-1. Input Timing for RESET Figure 12-2. Input Timing Measurement Points for Port 2, Port 4, and RESET **Table 12-5. Oscillator Characteristics** $$(T_A = -40^{\circ}C + 85^{\circ}C, V_{DD} = 4.5 \text{ V to } 5.5 \text{ V})$$ | Oscillator | Clock Circuit | Clock Circuit Test Condition Min | | Тур | Max | Unit | |--|--|---|-----|-----|-----|------| | RC Oscillator (with Internal Capacitor; for KS86C0004/P0004) | R XIN XOUT | $V_{DD} = 4.75 \text{ to } 5.25 \text{ V}$ $TA = 0^{\circ}C + 70^{\circ}C$ Tolerance: $\pm 10\%$ (note) | _ | 4 | _ | MHz | | Crystal/Ceramic
Oscillator
(for KS86C0104/P0104) | X _{IN} X _{IN} X _{OUT} | Crystal/Ceramic oscillation frequency | 1.0 | - | 8.0 | | **NOTE**: The KS86C0004/P0004 provides an internal capacitor to accommodate an RC oscillator configuration. A 1% precision resistor must be used to achieve an oscillation frequency with an acceptable tolerance. Figure 12-3. Operating Voltage Range (KS86C0104/P0104) Table 12-6. Oscillation Stabilization Time $$(T_A = -40^{\circ}C + 85^{\circ}C, V_{DD} = 4.5 \text{ V to } 5.5 \text{ V})$$ | Oscillator | Test Condition | Min | Тур | Max | Unit | |--|---|-----|---------------------------------------|-----|------| | Main Crystal | f _{OSC} = 4 MHz | _ | _ | 10 | ms | | Main Ceramic | (Oscillation stabilization occurs when V_{DD} is equal to the minimum oscillator voltage range.) | | | | | | Oscillator
Stabilization Wait
Time | t _{WAIT} stop mode release time by a reset | | 2 ¹⁶ /
f _{OSC} | _ | | | | t _{WAIT} stop mode release time by an interrupt | _ | (note) | _ | | $\textbf{NOTE}: \quad \text{The oscillator stabilization wait time, } t_{WAIT}, \text{is determined by the setting in the basic timer control register, BTCON}.$ Figure 12-4. Clock Timing Measurement Points at $X_{\rm IN}$ Table 12-7. Data Retention Supply Voltage in Stop Mode $$(T_A = -40^{\circ}C + 85^{\circ}C)$$ | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |----------------------------------|-------------------|--------------------------------------|-----|-----|-----|------| | Data Retention
Supply Voltage | V_{DDDR} | Stop mode | 2.0 | _ | 6 | V | | Data Retention
Supply Current | I _{DDDR} | Stop mode; V _{DDDR} = 2.0 V | _ | _ | 5 | μA | Figure 12-5. Stop Mode Release Timing When Initiated by a Reset Figure 12-6. Stop Mode Release Timing When Initiated by an External Interrupt Table 12-8. External Memory Timing Characteristics (4 MHz) $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C, V_{DD} = 4.5 \text{ V to } 5.5 \text{ V})$ | Number | Symbol | Parameter | Normal T | iming (ns) | |--------|--------------------------|---|----------|------------| | | | | Min | Max | | 1 | t _{dA} (AS) | Address valid to AS ↑ delay | 10 | _ | | 2 | t _{dAS} (A) | AS ↑ to address float delay | 35 | _ | | 3 | t _{dAS} (DR) | AS ↑ to read data required valid | _ | 140 | | 4 | t _{wAS} | AS Low width | 88 | _ | | 5 | t _{dA} (DS) | Address float to DS \downarrow | 0 | _ | | 6a | t _{wDS} (read) | DS (read) Low width | 314 | _ | | 6b | t _{wDS} (write) | DS (write) Low width | 164 | _ | | 7 | t _{dDS} (DR) | DS ↓ to read data required valid | _ | 80 | | 8 | t _{hDS} (DR) | Read data to DS ↑ hold time | 0 | _ | | 9 | t _{dDS} (A) | DS ↑ to address active delay | 20 | _ | | 10 | t _{dDS} (AS) | DS ↑ to AS ↓ delay | 30 | _ | | 11 | t _{dDO} (DS) | Write data valid to DS (write) ↓ delay 10 | | _ | | 12 | t _{dRW} (AS) | R/W valid to AS ↑ delay 20 | | - | | 13 | t _{dDS} (DW) | DS ↑ to write data not valid delay 20 | | - | ## NOTES: - All times are in nano seconds (ns) and assume an 4 MHz input frequency. Wait states add 100 ns to the time of numbers 3, 6a, 6b, and 7. Figure 12-7. External Memory Read and Write Timing (See Table 12-8 for a description of each timing point.) # **CHARACTERISTIC CURVES** # NOTE The characteristic values shown in the following graphs are based on actual test measurements. They do not, however, represent guaranteed operating values. Figure 12-8. $I_{\rm DD1}$ vs. $V_{\rm DD}$ Figure 12-9. $I_{\rm DD2}$ vs. $V_{\rm DD}$ Figure 12-10. $\rm I_{DD3}$ vs. $\rm V_{DD}$ Figure 12-11. I_{OH} vs. V_{OH} Figure 12-12. V_{OL} vs. I_{OL} (Port 0, 1, 2, and 4) Figure 12-13. V_{OL} vs. I_{OL} (Port 3) # 13 MECHANICAL DATA # **OVERVIEW** The KS86C0004/P0004/C0104/P0104 is currently available in a 40-pin DIP package. Figure 13-1. 40-Pin DIP Package Mechanical Data (40-DIP-600B) # **NOTES** 14 # KS86P0004/P0104 OTP #### **OVERVIEW** The KS86P0004/P0104 single-chip CMOS microcontroller is the OTP (One Time Programmable) version of the KS86C0004/C0104 microcontroller. It has an on-chip OTP ROM instead of masked ROM. The EPROM is accessed by serial data format. The KS86P0004/P0104 is fully compatible with the KS86C0004/C0104, both in function and in pin configuration. Because of its simple programming requirements, the KS86P0004/P0104 is ideal for use as an evaluation chip for the KS86C0004/C0104. Figure 14-1. KS86P0004/P0104 Pin Assignments (40-DIP Package) 14-1 Table 14-1. Descriptions of Pins Used to Read/Write the EPROM | Main Chip | | During Programming | | | | | | |------------------------------------|-----------------------------------|--------------------|-----|---|--|--|--| | Pin Name | Pin Name | Pin No. | I/O | Function | | | | | P0.1 | SDAT | 35 | I/O | Serial data pin (output when reading, Input when writing) Input and push-pull output port can be assigned | | | | | P0.0 | SCLK | 36 | I/O | Serial clock pin (input only pin) | | | | | EA | V _{PP} | 24 | I | Power supply pin for EPROM cell writing (indicates that OTP enters into the writing mode). When 12.5 V is applied, OTP is in writing mode and when 5 V is applied, OTP is in reading mode. (Option) | | | | | RESET | RESET | 26 | I | Chip Initialization | | | | | V _{DD} / V _{SS1} | V _{DD} / V _{SS} | 37 / 15 | _ | Logic Power Supply Pin. | | | | Table 14-2. Comparison of KS86P0004/P0104 and KS86C0004/C0104 Features | Characteristic | KS86P0004/P0104 | KS86C0004/C0104 | | |--|--|---------------------------|--| | Program Memory | 4-Kbyte EPROM | 4-Kbyte mask ROM | | | Operating Voltage (V _{DD}) ^(note) | 4.5 V to 5.5 V | 4.5 V to 5.5 V | | | OTP Programming Mode | V _{DD} = 5 V, V _{PP} (EA) = 12.5 V | _ | | | Pin Configuration | 40 DIP | 40 DIP | | | EPROM Programmability | User Program 1 time | Programmed at the factory | | NOTE: The operating voltage range of KS86C0104/P0104 is from 2.7 V to 5.5 V according to oscillation frequency. ## **OPERATING MODE CHARACTERISTICS** When 12.5 V is supplied to the VPP (EA) pin of the KS86P0004/P0104, the EPROM programming mode is entered. The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in Table 14-3 below. **Table 14-3. Operating Mode Selection Criteria** | V _{DD} | VPP
(EA) | REG/
MEM | ADDRESS
(A15-A0) | R/W | MODE | |-----------------|-------------|-------------|---------------------|-----|-----------------------| | 5 V | 5 V | 0 | 0000H | 1 | EPROM read | | | 12.5 V | 0 | 0000H | 0 | EPROM program | | | 12.5 V | 0 | 0000H | 1 | EPROM verify | | | 12.5 V | 1 | 0E3FH | 0 | EPROM read protection | NOTE: "0" means Low level; "1" means High level. Figure 14-2. OTP Programming Algorithm # **Table 14-4. D.C. Electrical Characteristics** $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C, V_{DD} = 4.5 \text{ V to } 5.5 \text{ V} ^{(1)})$ | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |--------------------|------------------|---|-----|-----|-----|------| | Supply Current (2) | I _{DD1} | Normal operation mode;
4 MHz CPU clock | _ | 4.5 | 10 | mA | | | I _{DD2} | Idle mode;
4 MHz oscillator | | 0.9 | 3 | | | | I _{DD3} | Stop mode | | 0.5 | 5 | μΑ | ## NOTES: - The operating voltage range of KS86C0104/P0104 is from 2.7 V to 5.5 V according to oscillation frequency. Supply current does not include current drawn through internal pull-up resistors or external output current loads.