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1 PRODUCT OVERVIEW

INTRODUCTION

Samsung’s KS32C6200 32-bit RISC microcontroller is a cost-effective and high-performance microcontroller 
solution for general-purpose applications or ink-jet printers. The KS32C6200 provides two-channel UART, two-
channel DMA, ROM/SRAM/DRAM controller, three-channel timer, parallel port interface, programmable I/O ports 
and peripherals for ink-jet printers.

An outstanding feature of the KS32C6200 is its CPU core, a 32-bit RISC processor (ARM7TDMI) designed by 
Advanced RISC Machines, Ltd. The ARM7TDMI core is a low-power, general-purpose, microprocessor macro-cell 
that was developed for use in application-specific and customer-specific integrated circuits. Its simple, elegant, and 
fully static design is particularly suitable for cost-sensitive and power-sensitive applications.

The KS32C6200 was developed using the ARM7TDMI core 0.5-µm CMOS standard cells, and a memory compiler. 
Most of the on-chip function blocks were designed using an HDL synthesizer. The KS32C6200 has been fully 
verified in Samsung’s MCU test environment.

By providing a complete set of common system peripherals, the KS32C6200 minimizes overall system costs and 
eliminates the need to configure additional components. 

The integrated on-chip functions that are described in this document include: 

• ROM/SRAM/ DRAM controller

• Two K-byte instruction/data cache and controller

• Derasterizer

• Shifter

• Two-channel DMA controller

• Two-channel UART (asynchronous serial I/O)

• Three 16-bit timers

• Tone generator

• Parallel port interface controller (PPIC)

• Watch-dog timer

• Interrupt controller

• Programmable I/O ports
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FEATURES

Architecture

• Completely integrated system for embedded 
applications

• Fully 16-bit/32-bit RISC architecture

• Efficient and powerful ARM7TDMI CPU core

• Cost-effective JTAG-based debugging solution

System Manager

• 32 M-byte address space

• 8-bit or 16-bit external bus support for ROM, 
SRAM, DRAM, and external I/Os

• Programmable memory access cycles and chip-
select logics

• Supports EDO DRAM and self-refresh mode 
DRAM 

• Supports asymmetric or symmetric address 
DRAM

• Cost-effective memory-to-peripheral interface 

Instruction/Data Cache

• Two way set associative cache with 2 K bytes
(512 instruction/data words)

• Pseudo LRU (Least Recently Used)

• Four depth write buffer

DMA (Direct Memory Access) Controller

• Two-channel general-purpose DMA controller

• Memory-to-memory, parallel port-to-memory, 
memory-to-parallel port, UART-to-memory, and 
memory-to-UART data transfers without CPU 
intervention

• Initiated by software or external DMA request

• Increments or decrements source or 8-bit, 16-bit 
and 32-bit data transfers

Derasterizer/Shifter

• 16-bit X 16-bit rotation by 90/270 degree for raster 
data rotation

• Reverses 16-bit data

• Left/right shifting/rotating 7 half words to the 
selective direction

Parallel Port Interface Controller

• DMA-based or interrupt-based operation

• Supports IEEE Standard 1284 communication 

modes (compatibility mode, nibble mode, byte 
mode, and ECP mode)

• Supports ECP protocol with or without run-length 
encoding (RLE)

• Automatic handshaking mode for any forward or 
reverse protocol with software enable/disable

UART (Serial I/O)

• Two-channel UART (serial I/O port) with DMA-
based or interrupt-based operation; supports 5-bit, 
6-bit, 7-bit, or 8-bit serial data transmit/receive

• Programmable baud rates

• Infra-red (IR) Tx/Rx support

Tone Generator

• Programmable square wave generator

Timers

• Three programmable 16-bit timers

• Interval mode operation

I/O Ports

• Five programmable I/O ports (GIOP)

• Six input ports (GIP)

• 13 output ports (GOP)

• 10 extra-output ports (EOPA, EOPB)

• Each port pin can be configured individually as 
input, output, or I/O for a dedicated signal

Watch-Dog Timer

• 16-bit watch-dog timer for periodic reset or 
interrupts

Interrupts

• 15 interrupt sources (including two external 
interrupt sources)

• Normal or fast interrupt modes (IRQ, FIQ)

Operating Voltage Range

• 4.75  to  5.25 volts

Operating Frequency

• Up to 33 MHz

Package Type

• 160-pin TQFP
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BLOCK DIAGRAM

Figure 1-1.  KS32C6200 Block Diagram
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PIN ASSIGNMENTS

Figure 1-2.  KS32C6200 Pin Assignments
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SIGNAL DESCRIPTIONS

Table 1-1.  KS32C6000 Signal Descriptions

Signal Pin 
Number

I/O Pin 
Type

Description

MCLK 132 I2 KS32C6200 master clock. It has a 50% duty cycle and a maximum 
operating frequency of 33 MHz. When the CLKSEL is “1”, the maximum 
MCLK frequency is 66 MHz.

CLKSEL 129 I2 Clock select. When CLKSEL is "0”, MCLK is used as the master clock. 
When CLKSEL is "1", the MCLK/2, internally divided by two, is used as 
the master clock.

nRESET 130 I4 Not reset. nRESET is the global reset input for the KS32C6200. For a 
system reset, nRESET must be held to Low level for at least 65 machine 
cycles.

nSLCTIN 49 I1 Not select information. This input signal is used by parallel port interface 
to request "on-line" status information.

nSTROBE 51 I1 Not strobe. The nSTROBE input indicates when valid data is present on 
the parallel port data bus, PPD[7:0].

nAUTOFD 50 I1 Not autofeed. The nAUTOFD input indicates whether data on the parallel 
port data bus, PPD[7:0], is an autofeed command. Otherwise, the bus 
signals are interpreted as data only.

nINIT 48 I1 Not parallel port initialization. The nINIT input signal initializes the parallel 
port’s input control.

nACK 46 O1 Not parallel port acknowledge. The nACK output signal is issued 
whenever a transfer on the parallel port data bus is completed.

BUSY 45 O1 Parallel port busy. The BUSY output signal indicates that the KS32C6200 
parallel port is currently busy.

SELECT 47 O1 Parallel port select. The SELECT output signal indicates whether the 
device connected to the KS32C6200 parallel port is "on-line" or "off-line".

PERROR 44 O1 Parallel port paper error. PERROR output indicates that a problem exists 
with the paper in the printer. It could indicate that the printer has a paper 
jam or that the printer is out of paper.

nFAULT 43 O1 Not parallel port fault. The nFAULT output indicates that an error 
condition exists with the printer. This signal can be used to indicate that 
the printer is out of ink or to inform the user that the printer is not turned 
on.

PPD[7:0] 53–60 I/O1 Parallel port data bus. This 8-bit, tri-state bus is used to exchange data 
between the KS32C6200 and an external host (peripheral).

245CLK 61 I/O4
(1) Output for the direction of transreceiver connected to PPD[7:0]

EECLK 147 O1 Clock line to the serial EEPROM. You can generate this signal by 
software.

EEDATA 146 I/O2 Data interface line with the serial EEPROM. You can generate this signal 
by software. 
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ADDR[21:0] 81–86
88–95

97–104

I/O3
(4) KS32C6200 address bus. The 22-bit address data bus, ADDR[21:0], 

covers the full 4 M half-word (16-bit) address range of each ROM/SRAM, 
DRAM, and external I/O bank. A byte access for the DRAM can be 
discriminated by CAS[1:0] and SRAM/ROM by WBE[1:0].

DATA[15:0] 63–70
72–79

I/O3 External bi-directional 16-bit data bus. 

nRAS[1:0] 109–110 O1 Not row address strobe for DRAM. The KS32C6200 supports up to two 
DRAM banks. Each nRAS output is corresponding to each bank. 

nCAS[1:0] 111–112 O1 Not column address strobe for DRAM. The two nCAS outputs indicate 
the byte selections whenever a DRAM bank is accessed.

nOE 113 I/O4
(1) Not output enable. Whenever a memory access occurs, the nOE output 

controls the output enable port of the specific memory device.

nWE 114 O1 Not write enable. Whenever a memory access occurs, the nWE output 
controls the write enable port of the specific memory device.

nWBE[1:0] 115–116 I/O2
(1) Not byte write enable.

RXD1/GIP[0] 123 I4 Receive data input for the UART0. RXD1 is the channel of UART0 input 
signal to receive a serial data. / General input port 0.

RXD2/GIP[1] 125 I4 Receive data input for the UART1. RXD2 is the channel of UART1 input 
signal to receive serial data. / General input port 1.

nEINT1/GIP[2] 136 I3 External interrupt request input. / General input port 2.

nEINT2/GIP[3] 137 I3 External interrupt request input. / General input port 3.

nXDREG/GIP[4] 138 I3 External DMA request. / General input port 4.

UCLK/GIP[5] 128 I1 The external UART clock input. MCLK can be used as the UART clock. 
You can use UCLK, with an appropriate divided by factor, if a very 
precious baud rate clock is required. / General input port 5. 

TXD1/GOP[0] 122 O1 Transmit data output for the UART0. TXD1 is the channel of UART0 
output to transmit a serial data. / General output port 0.

TXD2/GOP[1] 124 O1 Transmit data output for the UART1. TXD2 is the channel of UART1 
output to transfer a serial data.  / General output port 1.

nXDACK/GOP[2] 139 O1 DMA acknowledge. This active low output signal is generated whenever 
a DMA transfer operation is completed.  / General output port 2.

TONE/GOP[3] 149 O1 Tone generator output. / General output port 3.

nRSTO/GOP[4] 150 O3
(3) Reset-out from watch-dog timer. / General output port 4.

nIOWR1/GOP[5] 134 O1 Write strobe to the sub-region 1 of I/O bank 3. / General output port 5.

nIOWR2/GOP[6] 155 O1 Write strobe to the sub-region 2 of I/O bank 3. / General output port 6.

nIORD1/GOP[7] 156 O1 Read strobe from the sub-region 1 of I/O bank 3. / General output port 7.

nIORD2/GOP[8] 151 O1 Read strobe from the sub-region 2 of I/O bank 3. / General output port 8.

Table 1-1.  KS32C6000 Signal Descriptions

Signal Pin 
Number

I/O Pin 
Type

Description
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 NOTES
1. The pins are input only at the chip test mode.
2. The prefix “n” in the pin descriptions shows that the pins are active low signals.
3. O3 is open-drain output. Pull-up resistor must be installed.

CLKOUT/GOP[9] 152 O1 Clock for external chip. / General output port 9.

GOP[10] 153 O1 General output port 10

GOP[11] 154 O1 General output port 11

GOP[12] 30 O1 General output port 12

GIOP[4:0]/JTAG 37–41 I/O5 General-purpose input/output port. / JTAG test logic (TCK, TMS, TDI, 
nTRST, TDO)

EOPA[5:0] 140–145 O1 Extra output port A

EOPB[3:0] 31,33
34,36

O1 Extra output port B

TEST1 126 I2 Test 1 pin. This pin should be connected to GND for a normal operation.

TEST2 127 I2 Test 2 pin. This pin should be connected to GND for a normal operation.

nECS[3:0] 118–121 O1 Not external chip select. Four I/O banks are provided for external 
memory-mapped I/O operations. Each I/O bank contains up to 4 M half-
words. The nECS signals indicate that an external I/O bank is selected.

nRCS[2] 108 O2 Not ROM/SRAM chip select. The KS32C6200 can access up to three 
external ROM/SRAM banks. The nRCS[0] corresponds to the ROM/
SRAM bank 0, the nRCS[1] to bank 1, and nRCS[2] to bank 2. nRCS[1:0] 106–107 O1

VCC 20,42,62
,80,96,

117,135,
157

PWR System power provides the normal DC supply. Externally connected to 
the VCC board plane.

GND 11,29,52
,71,87,

105,131,
133,148

PWR System ground. Externally connected to the ground board plane.

Table 1-1.  KS32C6000 Signal Descriptions

Signal Pin 
Number

I/O Pin 
Type

Description
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PIN TYPE DESCRIPTION

Table 1-2.  I/O Type Description

Pin Type Description

I1 TTL schmitt trigger level input buffer

I2 TTL level input buffer

I3 TTL schmitt trigger level input buffer with pull-up resistor

I4 CMOS schmitt trigger level input

O1 Normal output buffer

O2 Tri-state output buffer

O3 Open-drain output buffer

I/O1 TTL shimitt trigger level input with pull-up resistor and tri-state output with medium slew-rate

I/O2 TTL level with pull-up resistor and tri-state output

I/O3 TTL schmitt trigger level input with pull-up resistor and tri-state output with medium slew-rate

I/O4 TTL schmitt trigger level input with pull-up resistor and tri-state output

I/O5 TTL level input and tri-state output
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KS32C6200 CPU CORE

OVERVIEW

The KS32C6200 microcontroller uses the ARM7TDMI processor, designed by Advanced RISC Machines, Ltd., as 
its CPU core. Samsung’s product design offers the advantages of small size, low power consumption, and low 
price for high-performance devices such as laser beam printers and ink-jet printers. 

The ARM7TDMI core is a fully static CMOS implementation. This implementation allows the system clock to be 
stopped in any part of the cycle with extremely low residual power consumption and no loss of state. The core’s 
architecture is based on Reduced Instruction Set Computer (RISC) principles. 

The instruction set and its related decode mechanism are, therefore, much simpler than microprogramming 
Complex Instruction Set Computer (CISC) systems. This results in a high instruction throughput and impressive 
real-time interrupt response. The ARM7TDMI has a 32-bit address bus.

Figure 1-3.  ARM7TDMI CPU Core Block Diagram
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INSTRUCTION SET

The KS32C6200 instruction set has eleven basic instruction types: 

• Two instruction types use the on-chip arithmetic logic unit, barrel shifter, and multiplier to perform high-speed 
operations on the data in a bank of 31registers, each 32-bit wide.

• Three types control data transfer between memory and the registers. One is optimized for flexibility of 
addressing, another for rapid context switching, and the third for swapping data.

• Three types control the flow and privilege level of program execution.

Three types are dedicated to the control of external coprocessors. These instructions extend the off-chip 
functionality of the instruction set in an open and uniform way.

The ARM instruction set is a good target for compilers of many different high-level languages. Where required for 
critical code segments, assembly code programming is also straightforward, unlike some RISC processors which 
depend on sophisticated compiler technology to manage complicated instruction interdependencies.

Pipelining is employed so that all parts of the processor and memory systems can operate continuously. Typically, 
while one instruction is being executed, its successor is being decoded, and a third instruction is being fetched from 
memory.

MEMORY INTERFACE

The CPU memory interface has been designed to allow the performance potential to be realized without incurring 
high costs in the memory system. Speed- critical control signals are pipelined to allow system control functions to 
be implemented in standard low-power logic, and these control signals facilitate the exploitation of the fast local 
access modes offered by industry standard dynamic RAMs.

OPERATING MODES

The CPU core supports a 32-bit data bus and a 32-bit address bus. The data types the processor supports are 
bytes (8 bits) and words (32 bits), where words must be aligned to four-byte boundaries. 

Instructions are exactly one word, and data operations such as ADD are only performed on word quantities. Loads 
and stores can transfer bytes or words. The CPU supports six operating modes, five of which are visible to the 
programmer: 

• User mode: the normal program execution state

• FIQ (Fast Interrupt Request) mode: designed to support a data transfer or channel process

• IRQ (Interrupt ReQuest) mode: used for general purpose interrupt handling

• Supervisor mode: a protected mode for the operating system

Undefined mode: entered when an undefined instruction is executed
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SPECIAL REGISTERS

Table 1-3.  Special Funcition Registers

Group Register Offset R/W Description Reset Value

System 
Manager

SYSCFG 0000h R/W System Register Access Configuration 
register

1001h

ROMCON 3000h R/W ROM control register 02003002h

SRAMCON0 3004h R/W SRAM control register 0 00000000h

SRAMCON1 3008h R/W SRAM control register 1 00000000h

DRAMCON0 301ch R/W DRAM control register 0 00000000h

DRAMCON1 3020h R/W DRAM control register 1 00000000h

REFCON 3024h R/W DRAM refresh control register 00000000h

EXTCON0 300ch R/W I/O bank 0 control register 00000000h

EXTCON1 3010h R/W I/O bank 1 control register 00000000h

EXTCON2 3014h R/W I/O bank 2 control register 00000000h

EXTCON3 3018h R/W I/O bank 3 control register 00000000h

Cache CACHNAB0 1000h R/W Non-cacheable area begin 0 register 00000000h

CACHNAE0 1800h R/W Non-cacheable area end 0 register 00000000h

CACHNAB1 2000h R/W Non-cacheable area begin 1 register 00000000h

CACHNAE1 2800h R/W Non-cacheable area end 1 register 00000000h

Derasterizer DRAST0 6000h R/W Derasterizer data register 0 xxxxh

DRAST1 6004h R/W Derasterizer data register 1 xxxxh

DRAST2 6008h R/W Derasterizer data register 2 xxxxh

DRAST3 600ch R/W Derasterizer data register 3 xxxxh

DRAST4 6010h R/W Derasterizer data register 4 xxxxh

DRAST5 6014h R/W Derasterizer data register 5 xxxxh

DRAST6 6018h R/W Derasterizer data register 6 xxxxh

DRAST7 601ch R/W Derasterizer data register 7 xxxxh

DRAST8 6020h R/W Derasterizer data register 8 xxxxh

DRAST9 6024h R/W Derasterizer data register 9 xxxxh

DRAST10 6028h R/W Derasterizer data register 10 xxxxh

DRAST11 602ch R/W Derasterizer data register 11 xxxxh

DRAST12 6030h R/W Derasterizer data register 12 xxxxh

DRAST13 6034h R/W Derasterizer data register 13 xxxxh

DRAST14 6038h R/W Derasterizer data register 14 xxxxh

DRAST15 603ch R/W Derasterizer data register 15 xxxxh
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Group Register Offset R/W Description Reset Value

Shift Control DATARVS 7000h R/W Data reverser 0000h

SFTCON 7004h R/W Shift control register 0h

SFTCNT 7008h R/W Shift count register 00h

SFTDATA0 700ch R/W Shift word data register 0 xxxxxxxxh

SFTDATA1 7010h R/W Shift word data register 1 xxxxxxxxh

SFTDATA2 7014h R/W Shift word data register 2 xxxxxxxxh

SFTDATA3 7018h R/W Shift word data register 3 xxxxxxxxh

SFTDATA4 701ch R/W Shift word data register 4 xxxxxxxxh

SFTDATA5 7020h R/W Shift word data register 5 xxxxxxxxh

SFTDATA6 7024h R/W Shift word data register 6 xxxxxxxxh

Timer TCON 5800h R/W System timer control register 000h

TBCNT0 5804h R/W Timer base/count register 0 xxxxh

TBCNT1 5808h R/W Timer base/count register 1 xxxxh

TBCNT2 581ch R/W Timer base/count register 2 xxxxh

DMA DMACON0 c000h R/W DMA0 control register 0000h

DMASRC0 c004h R/W DMA0 source address register xxxxxxxxh

DMADST0 c008h R/W DMA0 destination address register xxxxxxxxh

DMACNT0 c00ch R/W DMA0 transfer count register xxxxxxxxh

DMACON1 c800h R/W DMA1 control register 00000h

DMASRC1 c804h R/W DMA1 source address register xxxxxxxxh

DMADST1 c808h R/W DMA1 destination address register xxxxxxxxh

DMACNT1 c80ch R/W DMA1 transfer count register xxxxxxxxh

Parallel Port PPDATA b000h R/W Parallel port data register 000h

PPSTAT b004h R/W Parallel port status register 7e8h

PPACKWTH b008h R/W Parallel port acknowledge width register xxxh

PPCON b00ch R/W Parallel port control register 0000h

PPINTEN b010h R/W Parallel port enable interrupt event register 000h

PPINTPND b014h R/W Parallel port interrupt pending register 000h

UART ULCON0 e000h R/W UART channel 0 line control register 00h

ULCON1 e800h R/W UART Channel 1 line control register 00h

UCON0 e004h R/W UART channel 0 control register 00h

UCON1 e804h R/W UART channel 1 control register 00h

USTAT0 e008h R UART channel 0 status register c0h

Table 1-3.  Special Funcition Registers
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Group Register Offset R/W Description Reset Value

UART USTAT1 e808h R UART channel 1 status register c0h

UTXBUF0 e00ch W UART channel 0 transmit buffer register 00h

UTXBUF1 e80ch W UART channel 1 transmit buffer register 00h

URXBUF0 e010h R UART channel 0 receive buffer register 00h

URXBUF1 e810h R UART channel 1 receive buffer register 00h

UBRDIV0 e014h R/W Baud-rate divisor register 0 0001h

UBRDIV1 e814h R/W Baud-rate divisor register 1 0001h

Tone 
Generator

TONDATA f004h R/W Tone generator data and control register 00h

Watch-Dog
Timer

WTCNT f804h R/W Watch-dog timer count register 00000003h

WTCON f800h R/W Watch-dog timer control register 00000021h

I/O Ports IOPMOD 4808h R/W I/O port mode register 00000000h

IOPDATA 4804h R/W I/O port data register xxxxh

TSTCON 4800h R/W Test control register 00000600h

EERAMCON 5000h R/W EERAM control register 0000000xh

EOP 0x8004 R/W Extra-output port A register 000003c0h

EOPL 0x8000 R/W Extra-output port latch register 800h

EOPB 0x9010 R/W Extra-output port B register 0000cf0fh

Interrupt
Controller

INTMOD 4000h R/W Interrupt mode register 00000000h

INTPND 4004h R/W Interrupt pending register 00000000h

INTMSK 4008h R/W Interrupt mask register 00000000h

Table 1-3.  Special Funcition Registers
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2 Programmer’s Model

OVERVIEW

KS32C6200 was developed using the advanced ARM7TDMI core designed by Advanced RISC Machines, Ltd.

PROCESSOR OPERATING STATES

From the programmer’s point of view, the ARM7TDMI can be in one of two states:

• ARM state which executes 32-bit, word-aligned ARM instructions.

• THUMB statewhich operates with 16-bit, halfword-aligned THUMB instructions. In this state, the PC uses bit 1 
to select between alternate halfwords.

NOTE

Transition between these two states does not affect the processor mode or the contents of the registers.

SWITCHING STATE

Entering THUMB State 

Entry into THUMB state can be achieved by executing a BX instruction with the state bit (bit 0) set in the operand 
register.

Transition to THUMB state will also occur automatically on return from an exception (IRQ, FIQ, UNDEF, ABORT, 
SWI etc.), if the exception was entered with the processor in THUMB state.

Entering ARM State

Entry into ARM state happens:

1. On execution of the BX instruction with the state bit clear in the operand register.

2. On the processor taking an exception (IRQ, FIQ, RESET, UNDEF, ABORT, SWI etc.). In this case, the PC is 
placed in the exception mode’s link register, and execution commences at the exception’s vector address.

MEMORY FORMATS

ARM7TDMI views memory as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold the first 
stored word, bytes 4 to 7 the second and so on. ARM7TDMI can treat words in memory as being stored either in 
Big-Endian or Little-Endian format.

NOTE

The KS32C6200 is configured to the big-endian format.
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BIG-ENDIAN FORMAT

In Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least 
significant byte at the highest numbered byte. Byte 0 of the memory system is therefore connected to data lines 31 
through 24.

NOTE

The data locations in the external memory are different with Figure 2-1 in the KS32C6200. Please refer to 
the chapter 4, System Manager.

LITTLE-ENDIAN FORMAT

In Little-Endian format, the lowest numbered byte in a word is considered the word’s least significant byte, and the 
highest numbered byte the most significant. Byte 0 of the memory system is therefore connected to data lines 7 
through 0.  

INSTRUCTION LENGTH

Instructions are either 32 bits long (in ARM state) or 16 bits long (in THUMB state). 

Data Types

ARM7TDMI supports byte (8-bit), halfword (16-bit) and word (32-bit) data types. Words must be aligned to four-
byte boundaries and half words to two-byte boundaries.

Higher Address 31             
24

23               
16

15               8 7                0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address • Most significant byte is at lowest address
• Word is addressed by byte address of most significant byte

Figure 2-1. Big-Endian Addresses of Bytes within Words

Higher Address 31 
24

23 
16

15               8 7                0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address • Least significant byte is at lowest address
• Word is addressed by byte address of least significant byte

Figure 2-2. Little-Endian Addresses of Bytes within Words
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OPERATING MODES

ARM7TDMI supports seven modes of operation:

• User (usr): The normal ARM program execution state

• FIQ (fiq): Designed to support a data transfer or channel process

• IRQ (irq): Used for general-purpose interrupt handling 

• Supervisor (svc): Protected mode for the operating system 

• Abort mode (abt): Entered after a data or instruction prefetch abort 

• System (sys): A privileged user mode for the operating system

• Undefined (und): Entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by external interrupts or exception 
processing. Most application programs will execute in User mode. The non-user modes— known as privileged 
modes— are entered in order to service interrupts or exceptions, or to access protected resources.

REGISTERS

ARM7TDMI has a total of 37 registers - 31 general-purpose 32-bit registers and six status registers - but these 
cannot all be seen at once. The processor state and operating mode dictate which registers are available to the 
programmer.

The ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one time. In privileged (non-
User) modes, mode-specific banked registers are switched in. Figure 2-3 shows which registers are available in 
each mode: the banked registers are marked with a shaded triangle.

The ARM state register set contains 16 directly accessible registers: R0 to R15. All of these except R15 are 
general-purpose, and may be used to hold either data or address values. In addition to these, there is a 
seventeenth register used to store status information

Register 14 is used as the subroutine link register. This receives a copy of R15 when a Branch and 
Link (BL) instruction is executed. At all other times it may be treated as a general-
purpose register. The corresponding banked registers R14_svc, R14_irq, R14_fiq, 
R14_abt and R14_und are similarly used to hold the return values of R15 when 
interrupts and exceptions arise, or when Branch and Link instructions are executed 
within interrupt or exception routines.

Register 15 holds the Program Counter (PC). In ARM state, bits [1:0] of R15 are zero and bits [31:2] 
contain the PC. In THUMB state, bit [0] is zero and bits [31:1] contain the PC.

Register 16 is the CPSR (Current Program Status Register). This contains condition code flags and 
the current mode bits.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). In ARM state, many FIQ handlers do not 
need to save any registers. User, IRQ, Supervisor, Abort and Undefined each have two banked registers mapped 
to R13 and R14, allowing each of these modes to have a private stack pointer and link registers.
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Figure 2-3. Register Organization in ARM State
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The THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has direct access to eight general 
registers, R0-R7, as well as the Program Counter (PC), a stack pointer register (SP), a link register (LR), and the 
CPSR. There are banked Stack Pointers, Link Registers and Saved Process Status Registers (SPSRs) for each 
privileged mode. This is shown in Figure 2-4. 

Figure 2-4. Register Organization in THUMB State
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The relationship between ARM and THUMB state registers 

The THUMB state registers relate to the ARM state registers in the following way: 

• THUMB state R0-R7 and ARM state R0-R7 are identical

• THUMB state CPSR and SPSRs and ARM state CPSR and SPSRs are identical 

• THUMB state SP maps onto ARM state R13 

• THUMB state LR maps onto ARM state R14 

• The THUMB state Program Counter maps onto the ARM state Program Counter (R15)

This relationship is shown in Figure 2-5. 

Figure 2-5. Mapping of THUMB State Registers onto ARM State Registers
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Accessing Hi-Registers in THUMB State

In THUMB state, registers R8-R15 (the Hi registers) are not part of the standard register set. However, the assembly 
language programmer has limited access to them, and can use them for fast temporary storage.

A value may be transferred from a register in the range R0-R7 (a Lo register) to a Hi register, and from a Hi register 
to a Lo register, using special variants of the MOV instruction. Hi register values can also be compared against or 
added to Lo register values with the CMP and ADD instructions. For more information, refer to Figure 3-34.

THE PROGRAM STATUS REGISTERS 

The ARM7TDMI contains a Current Program Status Register (CPSR), plus five Saved Program Status Registers 
(SPSRs) for use by exception handlers. These register’s functions are:

• Hold information about the most recently performed ALU operation

• Control the enabling and disabling of interrupts

• Set the processor operating mode

The arrangement of bits is shown in Figure 2-6. 

Figure 2-6 . Program Status Register Format

0123456782728293031

M0M1M2M3M4. FIVCZN

Overflow
Carry / Borrow

Zero
Negative / Less Than

Mode bits

FIQ disable
IRQ disable

. .

condition code flags control bits

State bit

(reserved)

23

. .

24

T

25

.

26

.

/ Extend



PROGRAMMER’S MODEL KS32C6200 RISC MICROCONTROLER

2-8

The Condition Code Flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result of arithmetic and logical 
operations, and may be tested to determine whether an instruction should be executed.

In ARM state, all instructions may be executed conditionally: see Table 3-2 for details.

In THUMB state, only the Branch instruction is capable of conditional execution: see Figure 3-46 for details.

The Control Bits 

The bottom 8 bits of a PSR (incorporating I, F, T and M[4:0]) are known collectively as the control bits. These will 
change when an exception arises. If the processor is operating in a privileged mode, they can also be manipulated 
by software.

The T bit This reflects the operating state. When this bit is set, the processor is executing in 
THUMB state, otherwise it is executing in ARM state. This is reflected on the TBIT 
external signal.

Note that the software must never change the state of the TBIT in the CPSR. If this 
happens, the processor will enter an unpredictable state.

Interrupt disable bits The I and F bits are the interrupt disable bits. When set, these disable the IRQ and FIQ 
interrupts respectively.

The mode bits The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These determine the 
processor’s operating mode, as shown in Table 2-1. Not all combinations of the mode 
bits define a valid processor mode. Only those explicitly described shall be used. The 
user should be aware that if any illegal value is programmed into the mode bits, M[4:0], 
then the processor will enter an unrecoverable state. If this occurs, reset should be 
applied.



KS32C6200 RISC MICROCONTROLLER PROGRAMMER’S MODEL

2-9

Table 2-1. PSR Mode Bit Values

Reserved bits The remaining bits in the PSRs are reserved. When changing a PSR’s flag or control 
bits, you must ensure that these unused bits are not altered. Also, your program should 
not rely on them containing specific values, since in future processors they may read as 
one or zero.

M[4:0] Mode Visible THUMB state 
registers

Visible ARM state
registers

10000 User R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR

10001 FIQ R7..R0,
LR_fiq, SP_fiq
PC, CPSR, SPSR_fiq

R7..R0,
R14_fiq..R8_fiq,
PC, CPSR, SPSR_fiq

10010 IRQ R7..R0,
LR_irq, SP_irq
PC, CPSR, SPSR_irq

R12..R0,
R14_irq..R13_irq,
PC, CPSR, SPSR_irq

10011 Supervisor R7..R0,
LR_svc, SP_svc,
PC, CPSR, SPSR_svc

R12..R0,
R14_svc..R13_svc,
PC, CPSR, SPSR_svc

10111 Abort R7..R0,
LR_abt, SP_abt,
PC, CPSR, SPSR_abt

R12..R0,
R14_abt..R13_abt,
PC, CPSR, SPSR_abt

11011 Undefined R7..R0
LR_und, SP_und,
PC, CPSR, 
SPSR_und

R12..R0,
R14_und..R13_und,
PC, CPSR

11111 System R7..R0,
LR, SP
PC, CPSR

R14..R0,
PC, CPSR
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EXCEPTIONS

Exceptions arise whenever the normal flow of a program has to be halted temporarily, for example to service an 
interrupt from a peripheral. Before an exception can be handled, the current processor state must be preserved so 
that the original program can resume when the handler routine has finished.

It is possible for several exceptions to arise at the same time. If this happens, they are dealt with in a fixed order. 
See Exception Priorities on page 2-14.

Action on Entering an Exception 

When handling an exception, the ARM7TDMI: 

1. Preserves the address of the next instruction in the appropriate Link Register. If the 
exception has been entered from ARM state, then the address of the next instruction is 
copied into the Link Register (that is, current PC + 4 or PC + 8 depending on the 
exception. See Table 2-2 on for details). If the exception has been entered from 
THUMB state, then the value written into the Link Register is the current PC offset by a 
value such that the program resumes from the correct place on return from the 
exception. This means that the exception handler need not determine which state the 
exception was entered from. For example, in the case of SWI, MOVS PC, R14_svc will 
always return to the next instruction regardless of whether the SWI was executed in 
ARM or THUMB state.

2. Copies the CPSR into the appropriate SPSR 

3. Forces the CPSR mode bits to a value which depends on the exception

4. Forces the PC to fetch the next instruction from the relevant exception vector

It may also set the interrupt disable flags to prevent otherwise unmanageable nestings of exceptions.

If the processor is in THUMB state when an exception occurs, it will automatically switch into ARM state when the 
PC is loaded with the exception vector address.

Action on Leaving an Exception 

On completion, the exception handler:

1. Moves the Link Register, minus an offset where appropriate, to the PC. (The offset will 
vary depending on the type of exception.)

2. Copies the SPSR back to the CPSR

3. Clears the interrupt disable flags, if they were set on entry

NOTE

An explicit switch back to THUMB state is never needed, since restoring the CPSR from the SPSR 
automatically sets the T bit to the value it held immediately prior to the exception.
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Exception Entry/Exit Summary

Table 2-2 summarises the PC value preserved in the relevant R14 on exception entry, and the recommended 
instruction for exiting the exception handler.

NOTES
1. Where PC is the address of the BL/SWI/Undefined Instruction fetch which had the prefetch abort.
2. Where PC is the address of the instruction which did not get executed since the FIQ or IRQ took priority.
3. Where PC is the address of the Load or Store instruction which generated the data abort.
4. The value saved in R14_svc upon reset is unpredictable.

FIQ 

The FIQ (Fast Interrupt Request) exception is designed to support a data transfer or channel process, and in ARM 
state has sufficient private registers to remove the need for register saving (thus minimising the overhead of context 
switching).

FIQ is externally generated by taking the nFIQ input LOW. This input can except either synchronous or 
asynchronous transitions, depending on the state of the ISYNC input signal. When ISYNC is LOW, nFIQ and nIRQ 
are considered asynchronous, and a cycle delay for synchronization is incurred before the interrupt can affect the 
processor flow.

Irrespective of whether the exception was entered from ARM or Thumb state, a FIQ handler should leave the 
interrupt by executing

SUBS PC,R14_fiq,#4

FIQ may be disabled by setting the CPSR’s F flag (but note that this is not possible from User mode). If the F flag is 
clear, ARM7TDMI checks for a LOW level on the output of the FIQ synchroniser at the end of each instruction.

Table 2-2. Exception Entry/Exit

Return Instruction Previous State Notes

ARM
R14_x

THUMB
R14_x

BL MOV PC, R14 PC + 4 PC + 2 1

SWI MOVS PC, R14_svc PC + 4 PC + 2 1

UDEF MOVS PC, R14_und PC + 4 PC + 2 1

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 2

IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4 1

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 3

RESET NA – – 4
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IRQ

The IRQ (Interrupt Request) exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has a 
lower priority than FIQ and is masked out when a FIQ sequence is entered. It may be disabled at any time by 
setting the I bit in the CPSR, though this can only be done from a privileged (non-User) mode.

Irrespective of whether the exception was entered from ARM or Thumb state, an IRQ handler should return from 
the interrupt by executing

SUBS PC,R14_irq,#4

Abort

An abort indicates that the current memory access cannot be completed. It can be signalled by the external 
ABORT input. ARM7TDMI checks for the abort exception during memory access cycles.

There are two types of abort:

• Prefetch abort: occurs during an instruction prefetch.

• Data abort: occurs during a data access.

If a prefetch abort occurs, the prefetched instruction is marked as invalid, but the exception will not be taken until 
the instruction reaches the head of the pipeline. If the instruction is not executed - for example because a branch 
occurs while it is in the pipeline - the abort does not take place.

If a data abort occurs, the action taken depends on the instruction type:

• Single data transfer instructions (LDR, STR) write back modified base registers: the Abort handler must be 
aware of this.

• The swap instruction (SWP) is aborted as though it had not been executed.

• Block data transfer instructions (LDM, STM) complete. If write-back is set, the base is updated. If the instruction 
would have overwritten the base with data (ie it has the base in the transfer list), the overwriting is prevented. 
All register overwriting is prevented after an abort is indicated, which means in particular that R15 (always the 
last register to be transferred) is preserved in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand paged virtual memory system. In such a system the 
processor is allowed to generate arbitrary addresses. When the data at an address is unavailable, the Memory 
Management Unit (MMU) signals an abort. The abort handler must then work out the cause of the abort, make the 
requested data available, and retry the aborted instruction. The application program needs no knowledge of the 
amount of memory available to it, nor is its state in any way affected by the abort.

After fixing the reason for the abort, the handler should execute the following irrespective of the state (ARM or 
Thumb):

SUBS PC,R14_abt,#4 ; for a prefetch abort, or
SUBS PC,R14_abt,#8 ; for a data abort

This restores both the PC and the CPSR, and retries the aborted instruction.
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Software Interrupt 

The software interrupt instruction (SWI) is used for entering Supervisor mode, usually to request a particular 
supervisor function. A SWI handler should return by executing the following irrespective of the state (ARM or 
Thumb):

MOV PC,R14_svc 

This restores the PC and CPSR, and returns to the instruction following the SWI.

NOTE

nFIQ, nIRQ, ISYNC, LOCK, BIGEND, and ABORT pins exist only in the ARM7TDMI CPU core. 

Undefined Instruction 

When ARM7TDMI comes across an instruction which it cannot handle, it takes the undefined instruction trap. This 
mechanism may be used to extend either the THUMB or ARM instruction set by software emulation. 

After emulating the failed instruction, the trap handler should execute the following irrespective of the state (ARM or 
Thumb):

MOVS PC,R14_und 

This restores the CPSR and returns to the instruction following the undefined instruction.

Exception Vectors 

The following table shows the exception vector addresses.  

Table 2-3. Exception Vectors

Address  Exception Mode on entry

0x00000000  Reset Supervisor

0x00000004  Undefined instruction Undefined

0x00000008  Software interrupt Supervisor 

0x0000000C  Abort (prefetch) Abort

0x00000010  Abort (data) Abort

0x00000014 Reserved Reserved

0x00000018  IRQ IRQ 

0x0000001C  FIQ FIQ
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Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they are 
handled: 

Highest priority:

1. Reset 

2. Data abort 

3. FIQ 

4. IRQ 

5. Prefetch abort 

Lowest priority:

6. Undefined Instruction, Software interrupt. 

Not All Exceptions Can Occur at Once:
Undefined Instruction and Software Interrupt are mutually exclusive, since they each correspond to particular (non-
overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR’s F flag is clear), ARM7TDMI 
enters the data abort handler and then immediately proceeds to the FIQ vector. A normal return from FIQ will cause 
the data abort handler to resume execution. Placing data abort at a higher priority than FIQ is necessary to ensure 
that the transfer error does not escape detection. The time for this exception entry should be added to worst-case 
FIQ latency calculations.

INTERRUPT LATENCIES

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can take to pass 
through the synchroniser (Tsyncmax if asynchronous), plus the time for the longest instruction to complete (Tldm, 
the longest instruction is an LDM which loads all the registers including the PC), plus the time for the data abort entry 
(Texc), plus the time for FIQ entry (Tfiq). At the end of this time ARM7TDMI will be executing the instruction at 0x1C. 

Tsyncmax is 3 processor cycles, Tldm is 20 cycles, Texc is 3 cycles, and Tfiq is 2 cycles. The total time is therefore 
28 processor cycles. This is just over 1.4 microseconds in a system which uses a continuous 20 MHz processor 
clock. The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher priority and 
could delay entry into the IRQ handling routine for an arbitrary length of time. The minimum latency for FIQ or IRQ 
consists of the shortest time the request can take through the synchroniser (Tsyncmin) plus Tfiq. This is 4 
processor cycles. 

RESET

When the nRESET signal goes LOW, ARM7TDMI abandons the executing instruction and then continues to fetch 
instructions from incrementing word addresses.

When nRESET goes HIGH again, ARM7TDMI: 

1. Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them. The value of 
the saved PC and SPSR is not defined.

2. Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR, and clears the CPSR’s T bit.

3. Forces the PC to fetch the next instruction from address 0x00.

4. Execution resumes in ARM state.
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3 Instruction set

INSTRUCTION SET SUMMAY

This chapter describes the ARM instruction set and the THUMB instruction set in the ARM7TDMI core.

FORMAT SUMMARY

The ARM instruction set formats are shown below.

NOTE

Some instruction codes are not defined but do not cause the Undefined instruction trap to be taken, for 
instance a Multiply instruction with bit 6 changed to a 1. These instructions should not be used, as their 
action may change in future ARM implementations.

Figure 3-1. ARM Instruction Set Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 0 I Opcode S Rn Rd Operand 2 Data Processing / 
PSR Transfer

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply

Cond 0 0 0 0 1 U A S RdHi RdLo Rn 1 0 0 1 Rm Multiply Long

Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Single Data Swap

Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn Branch and Exchange

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Data Tranfer:
register offset

Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset Halfword Data Transfer:
immediate offset

Cond 0 1 I P U B W L Rn Rd Offset Single Data Transfer

Cond 0 1 1 1 Undefined

Cond 1 0 0 P U S W L Rn Register List Block Data Transfer

Cond 1 0 1 L Offset Branch

Cond 1 1 0 P U N W L Rn CRd CP# Offset Coprocessor Data
Transfer

Cond 1 1 1 0 CP Opc CRn CRd CP# CP 0 CRm Coprocessor Data 
Operation

Cond 1 1 1 0 CP Opc L CRn Rd CP# CP 1 CRm Coprocessor Register
Transfer

Cond 1 1 1 1 Ignored by processor Software Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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INSTRUCTION SUMMARY

Table 3-1. The ARM Instruction Set

Mnemonic Instruction Action

ADC Add with carry Rd: = Rn + Op2 + Carry

ADD Add Rd: = Rn + Op2

AND AND Rd: = Rn AND Op2

B Branch R15: = address

BIC Bit Clear Rd: = Rn AND NOT Op2

BL Branch with Link R14: = R15, R15: = address

BX Branch and Exchange R15: = Rn,
T bit: = Rn[0]

CDP Coprocesor Data 
Processing

(Coprocessor-specific)

CMN Compare Negative CPSR flags: = Rn + Op2

CMP Compare CPSR flags: = Rn – Op2

EOR Exclusive OR Rd: = (Rn AND NOT Op2)
OR (op2 AND NOT Rn)

LDC Load coprocessor from 
memory

Coprocessor load

LDM Load multiple registers Stack manipulation (Pop)

LDR Load register from memory Rd: = (address)

MCR Move CPU register to
coprocessor register

cRn: = rRn {<op>cRm}

MLA Multiply Accumulate Rd: = (Rm * Rs) + Rn

MOV Move register or constant Rd: = Op2

MRC Move from coprocessor
register to CPU register

Rn: = cRn {<op>cRm}

MRS Move PSR status/flags to
register

Rn: = PSR

MSR Move register to PSR
status/flags

PSR: = Rm

MUL Multiply Rd: = Rm * Rs

MVN Move negative register Rd: = 0xFFFFFFFF EOR 
Op2

ORR OR Rd: = Rn OR Op2

RSB Reverse Subtract Rd: = Op2 – Rn

RSC Reverse Subtract with 
Carry

Rd: = Op2 – Rn – 1 + Carry
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SBC Subtract with Carry Rd: = Rn – Op2 - 1 + Carry

STC Store coprocessor register 
to memory

address: = CRn

STM Store Multiple Stack manipulation (Push)

STR Store register to memory <address>: = Rd

SUB Subtract Rd: = Rn – Op2

SWI Software Interrupt OS call

SWP Swap register with 
memory

Rd: = [Rn], [Rn] := Rm

TEQ Test bitwise equality CPSR flags: = Rn EOR Op2

TST Test bits CPSR flags: = Rn AND Op2

Table 3-1. The ARM Instruction Set (Continued)

Mnemonic Instruction Action
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THE CONDITION FIELD

In ARM state, all instructions are conditionally executed according to the state of the CPSR condition codes and the 
instruction’s condition field. This field (bits 31:28) determines the circumstances under which an instruction is to be 
executed. If the state of the C, N, Z and V flags fulfils the conditions encoded by the field, the instruction is 
executed, otherwise it is ignored.

There are sixteen possible conditions, each represented by a two-character suffix that can be appended to the 
instruction’s mnemonic. For example, a Branch (B in assembly language) becomes BEQ for "Branch if Equal", 
which means the Branch will only be taken if the Z flag is set.

In practice, fifteen different conditions may be used: these are listed in Table 3-2. The sixteenth (1111) is reserved, 
and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always" (sufix AL). This means the 
instruction will always be executed regardless of the CPSR condition codes.

Table 3-2.  Condition Code Summary

Code Suffix Flags Meaning

0000 EQ Z set equal

0001 NE Z clear not equal

0010 CS C set unsigned higher or same

0011 CC C clear unsigned lower

0100 MI N set negative

0101 PL N clear positive or zero

0110 VS V set overflow

0111 VC V clear no overflow

1000 HI C set and Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same

1010 GE N equals V greater or equal

1011 LT N not equal to V less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) always
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BRANCH AND EXCHANGE (BX)

This instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.

This instruction performs a branch by copying the contents of a general register, Rn, into the program counter, PC. 
The branch causes a pipeline flush and refill from the address specified by Rn. This instruction also permits the 
instruction set to be exchanged. When the instruction is executed, the value of Rn[0] determines whether the 
instruction stream will be decoded as ARM or THUMB instructions.

INSTRUCTION CYCLE TIMES

The BX instruction takes 2S + 1N cycles to execute, where S and N are defined as sequential (S-cycle) and non-
sequencial (N-cycle), respectively.

ASSEMBLER SYNTAX

BX - branch and exchange.

BX {cond} Rn
{cond} Two character condition mnemonic. See Table 3-2.
Rn is an expression evaluating to a valid register number.

USING R15 AS AN OPERAND

If R15 is used as an operand, the behaviour is undefined.

Figure 3-2. Branch and Exchange Instructions

Cond 0 0 0 1 0 0 1 0   0 0 0 1   Rn

034781112151619202324272831

[3:0] Operand register
If bit 0 of Rn = 1, subsequent instructions decoded as THUMB instructions
If bit 0 of Rn = 0, subsequent instructions decoded as ARM instructions 

[31:28] Condition Field

1 1 1 1 1 1 1 1 1 1 1 1
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Examples

ADR R0, Into_THUMB + 1 ; Generate branch target address
; and set bit 0 high - hence
; arrive in THUMB state.

BX R0 ; Branch and change to THUMB 
; state.

CODE16 ; Assemble subsequent code as
Into_THUMB ; THUMB instructions
.
.
.
ADR R5, Back_to_ARM : Generate branch target to word aligned address 

; - hence bit 0 is low and so change back to ARM state.
BX R5 ; Branch and change back to ARM state.
.
.
.
ALIGN ; Word align
CODE32 ; Assemble subsequent code as ARM instructions
Back_to_ARM
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BRANCH AND BRANCH WITH LINK (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined Table 3-2. The instruction 
encoding is shown in Figure 3-3, below.

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended to 32 
bits, and added to the PC. The instruction can therefore specify a branch of +/- 32Mbytes. The branch offset must 
take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the current 
instruction.

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has been previously loaded into a 
register. In this case the PC should be manually saved in R14 if a Branch with Link type operation is required.

THE LINK BIT

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value written into 
R14 is adjusted to allow for the prefetch, and contains the address of the instruction following the branch and link 
instruction. Note that the CPSR is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or   LDM 
Rn!,{..PC} if the link register has been saved onto a stack pointed to by Rn. 

INSTRUCTION CYCLE TIMES

Branch and Branch with Link instructions take 2S + 1N incremental cycles, where S and N are defined as squential 
(S-cycle) and internal (I-cycle). 

Figure 3-3. Branch Instructions

31 28 27 25 24 23 0

Cond 101 L offset

[24] Link bit
0 = Branch 1 = Branch with link

[31:28] Condition field
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ASSEMBLER SYNTAX

Items in {} are optional. Items in <> must be present.

B{L}{cond} <expression> 

{L} Used to request the Branch with Link form of the instruction. If absent, R14 will not be 
affected by the instruction. 

{cond} A two-character mnemonic as shown in Table 3-2. If absent then AL (ALways) will be 
used.

<expression> The destination. The assembler calculates the offset. 

EXAMPLES

here BAL here ; Assembles to 0xEAFFFFFE (note effect of PC offset).
B there ; Always condition used as default.
CMP R1,#0 ; Compare R1 with zero and branch to fred

; if R1 was zero, otherwise continue.
BEQ fred ; Continue to next instruction.

BL sub+ROM ; Call subroutine at computed address.
ADDS R1,#1 ; Add 1 to register 1, setting CPSR flags

; on the result then call subroutine if
BLCC sub ; the C flag is clear, which will be the

; case unless R1 held 0xFFFFFFFF.
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DATA PROCESSING

The data processing instruction is only executed if the condition is true. The conditions are defined in Table 3-2. The 
instruction encoding is shown in Figure 3-4.

Figure 3-4. Data Processing Instructions

31 28 27 26 25 24 20 19 16 15 12 11 10 021

Cond 00 I OpCode S Rn Rd Operand 2

[15:12] Destination register
0 = Branch 1 = Branch with Link

[19:16] 1st operand register
0 = Branch 1 = Branch with Link

[20] Set condition codes
0 = Do not after condition codes 1 = Set condition codes

[24:21] Operation code
0000 = AND - Rd: = Op1 AND Op2
0001 = EOR - Rd: = Op1 EOR Op2
0010 = SUB - Rd: = Op1 - Op2
0011 = RSB - Rd: = Op2 - Op1
0100 = ADD - Rd: = Op1 + Op2
0101 = ADC - Rd: = Op1 + Op2 + C
0110 = SBC - Rd: = Op1 - Op2 + C - 1
0111 = RSC - Rd: = Op2 - Op1 + C - 1
1000 = TST - set condition codes on Op 1 AND Op2
1001 = TEO - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = SMN - set condition codes on Op1 + Op2
1100 = ORR - Rd: = Op1 OR Op2
1101 = MOV - Rd: = Op2
1110 = BIC - Rd: = Op1 AND NOT Op2
1111 = MVN - Rd: = NOT Op2

[25] Immediate operand
0 = Operand 2 is a register 1 = Operand 2 is an Immediate Value

[11:0] Operand 2 type selection
11 03

Shift Rm

4

[3:0] 2nd Operand Register [11:4] Shift Applied to Rm 

11 0

Imm

[7:0] Unsigned 8 bit immediate value [11:8] Shift applied to lmm

7

Rotate

8

[31:28] Condition field
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The instruction produces a result by performing a specified arithmetic or logical operation on one or two operands. 
The first operand is always a register (Rn). 

The second operand may be a shifted register (Rm) or a rotated 8 bit immediate value (Imm) according to the value 
of the I bit in the instruction. The condition codes in the CPSR may be preserved or updated as a result of this 
instruction, according to the value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used only to perform tests and to 
set the condition codes on the result and always have the S bit set. The instructions and their effects are listed in 
Table 3-3.
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CPSR FLAGS

The data processing operations may be classified as logical or arithmetic. The logical operations (AND, EOR, TST, 
TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or operands to 
produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will be unaffected, the C 
flag will be set to the carry out from the barrel shifter (or preserved when the shift operation is LSL #0), the Z flag will 
be set if and only if the result is all zeros, and the N flag will be set to the logical value of bit 31 of the result. 

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit integer 
(either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not R15) the V flag 
in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if the operands were 
considered unsigned, but warns of a possible error if the operands were 2's complement signed. The C flag will be 
set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the result was zero, and the N flag will be 
set to the value of bit 31 of the result (indicating a negative result if the operands are considered to be 2's 
complement signed).

Table 3-3. ARM Data Processing Instructions

Assembler 
Mnemonic

Op-Code Action

AND 0000 Operand1 AND operand2 

EOR 0001 Operand1 EOR operand2 

SUB 0010 Operand1 – operand2 

RSB 0011 Operand2 operand1

ADD 0100 Operand1 + operand2

ADC 0101 Operand1 + operand2 + carry

SBC 0110 Operand1 – operand2 + carry – 1

RSC 0111 Operand2 – operand1 + carry – 1

TST 1000 As AND, but result is not written

TEQ 1001 As EOR, but result is not written

CMP 1010 As SUB, but result is not written 

CMN 1011 As ADD, but result is not written 

ORR 1100 Operand1 OR operand2 

MOV 1101 Operand2 (operand1 is ignored)

BIC 1110 Operand1 AND NOT operand2 (Bit clear) 

MVN 1111 NOT operand2 (operand1 is ignored)
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SHIFTS

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled by the 
Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right, arithmetic right 
or rotate right). The amount by which the register should be shifted may be contained in an immediate field in the 
instruction, or in the bottom byte of another register (other than R15). The encoding for the different shift types is 
shown in Figure 3-5.

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value from 0 
to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount to a more 
significant position. The least significant bits of the result are filled with zeros, and the high bits of Rm which do not 
map into the result are discarded, except that the least significant discarded bit becomes the shifter carry output 
which may be latched into the C bit of the CPSR when the ALU operation is in the logical class (see above). For 
example, the effect of LSL #5 is shown in Figure 3-6.

NOTE

LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The contents of 
Rm are used directly as the second operand. A logical shift right (LSR) is similar, but the contents of Rm 
are moved to less significant positions in the result. LSR #5 has the effect shown in Figure 3-7.

Figure 3-5. ARM Shift Operations

Figure 3-6. Logical Shift Left

11 7 6 5 4

0

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:7] Shift amount
5 bit unsigned integer

[6:5] Shift type
00 = logical left 01 = logical right
10 = arithmetic right 11 = rotate right

[11:8] Shift register
Shift amount specified in
bottom-byte of Rs

11 7 6 5 4

1

8

0RS

31 27 26 0

carry out

00000

Contents of Rm

Value of operand 2
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.

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32, which has 
a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is the same as logical 
shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow LSR #32 to 
be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31 of Rm 
instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown in Figure 3-8. 

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm is 
again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is therefore all 
ones or all zeros, according to the value of bit 31 of Rm.

Figure 3-7. Logical Shift Right

Figure 3-8. Arithmetic Shift Right

0

carry out

00000

Contents of Rm

Value of operand 2

5 431

0

carry out

Contents of Rm

Value of operand 2

5 43031
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Rotate right (ROR) operations reuse the bits which “overshoot” in a logical shift right operation by reintroducing 
them at the high end of the result, in place of the zeros used to fill the high end in logical right operations. For 
example, ROR #5 is shown in Figure 3-9. The form of the shift field which might be expected to give ROR #0 is 

used to encode a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right by one bit 
position of the 33 bit quantity formed by appending the CPSR C flag to the most significant end of the contents of 
Rm as shown in Figure 3-10.

Figure 3-9. Rotate Right

Figure 3-10. Rotate Right Extended

0

carry out

Contents of Rm

Value of operand 2

5 431

0

Contents of Rm

Value of operand 2

31 1

C
in

carry out
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Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any general 
register other than R15. 

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of the 
CPSR C flag will be passed on as the shifter carry output. 

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified shift 
with the same value and shift operation. 

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above: 

1 LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2 LSL by more than 32 has result zero, carry out zero.

3 LSR by 32 has result zero, carry out equal to bit 31 of Rm. 

4 LSR by more than 32 has result zero, carry out zero. 

5 ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm. 

6 ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm. 

7 ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32; therefore 
repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

NOTE

The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit will cause 
the instruction to be a multiply or undefined instruction. 
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IMMEDIATE OPERAND ROTATES

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit 
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value in the 
rotate field. This enables many common constants to be generated, for example all powers of 2.

WRITING TO R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU flags as 
described above. 

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and the CPSR 
is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding to 
the current mode is moved to the CPSR. This allows state changes which atomically restore both PC and CPSR. 
This form of instruction should not be used in User mode. 

USING R15 AS AN OPERAND

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly. 

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the shift 
amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the shift amount 
the PC will be 12 bytes ahead.

TEQ, TST, CMP AND CMN OPCODES

NOTE

TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in the CPSR. An 
assembler should always set the S flag for these instructions even if this is not specified in the mnemonic. 

The TEQP form of the TEQ instruction used in earlier ARM processors must not be used: the PSR transfer 
operations should be used instead.

The action of TEQP in the ARM7TDMI is to move SPSR_<mode> to the CPSR if the processor is in a privileged 
mode and to do nothing if in User mode.

INSTRUCTION CYCLE TIMES

Data Processing instructions vary in the number of incremental cycles taken as follows:

NOTE: S, N and I are as defined sequential (S-cycle), non-sequencial (N-cycle), and internal (I-cycle) respectively.

Table 3-4. Incremental Cycle Times

Processing Type Cycles

Normal Data Processing 1S

Data Processing with register specified shift 1S + 1I

Data Processing with PC written 2S + 1N

Data Processing with register specified shift and PC 
written

2S + 1N + 1I
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ASSEMBLER SYNTAX

• MOV,MVN (single operand instructions).
<opcode>{cond}{S} Rd,<Op2> 

• CMP,CMN,TEQ,TST (instructions which do not produce a result). 
<opcode>{cond} Rn,<Op2> 

• AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

where:

<Op2> Rm{,<shift>} or,<#expression>

{cond} A two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present (implied for CMP, CMN, TEQ, TST). 

Rd, Rn and Rm Expressions evaluating to a register number. 

<#expression> If this is used, the assembler will attempt to generate a shifted immediate 8-bit field to 
match the expression. If this is impossible, it will give an error. 

<shift> <Shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with 
extend). 

<shiftname>s  ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same 
code.)

EXAMPLES

ADDEQ R2,R4,R5 ; If the Z flag is set make R2:=R4+R5
TEQS R4,#3 ; Test R4 for equality with 3.

; (The S is in fact redundant as the
; assembler inserts it automatically.)

SUB R4,R5,R7,LSR R2 ; Logical right shift R7 by the number in 
; the bottom byte of R2, subtract result    
; from R5, and put the answer into R4.

MOV PC,R14 ; Return from subroutine.
MOVS PC,R14 ; Return from exception and restore CPSR

; from SPSR_mode.
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PSR TRANSFER (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. 

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are implemented 
using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is shown in Figure 3-11.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of the 
CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a general 
register to be moved to the CPSR or SPSR_<mode> register. 

The MSR instruction also allows an immediate value or register contents to be transferred to the condition code 
flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top four bits of 
the specified register contents or 32 bit immediate value are written to the top four bits of the relevant PSR. 

OPERAND RESTRICTIONS

• In user mode, the control bits of the CPSR are protected from change, so only the condition code flags of the 
CPSR can be changed. In other (privileged) modes the entire CPSR can be changed. 

• Note that the software must never change the state of the T bit in the CPSR. If this happens, the processor will 
enter an unpredictable state.

• The SPSR register which is accessed depends on the mode at the time of execution. For example, only 
SPSR_fiq is accessible when the processor is in FIQ mode. 

• You must not specify R15 as the source or destination register.

• Also, do not attempt to access an SPSR in User mode, since no such register exists.
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Figure 3-11. PSR Transfer

31 28 27 23 22 16 15 12 11 021

Cond 00010 Ps 001111 Rd 000000000000

MRS (transfer PSR contents to a register)

[15:12] Destination register

[22] Source PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition field

31 28 27 23 22 12 11 021

Cond 00010 Pd 1010011111 00000000

MRS (transfer register contents to PSR)

4 3

Rm

[3:0] Source register

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[31:28] Condition field

31 28 27 22 12 11 021

Cond 00 Pd 1010001111 Source operand

MRS (transfer register contents or immdiate value to PSR flag bits only)
26 25 24 23

10I

[22] Destination PSR
0 = CPSR 1 = SPSR_<current mode>

[25] Immediate Operand
0 = Source operand is a register
1 = SPSR_<current mode>

[11:0] Source operand
11 03

00000000 Rm

4

[3:0] Source register
[11:4] Source operand is an immediate value 

11 0

Imm

[7:0] Unsigned 8 bit immediate value
[11:8] Shift applied to lmm

7

Rotate

8

[31:28] Condition field
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RESERVED BITS

Only twelve bits of the PSR are defined in ARM7TDMI (N,Z,C,V,I,F, T & M[4:0]); the remaining bits are reserved for 
use in future versions of the processor. Refer to Figure 2-6 for a full description of the PSR bits.

To ensure the maximum compatibility between ARM7TDMI programs and future processors, the following rules 
should be observed: 

• The reserved bits should be preserved when changing the value in a PSR. 

• Programs should not rely on specific values from the reserved bits when checking the PSR status, since they 
may read as one or zero in future processors. 

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register; this 
involves transferring the appropriate PSR register to a general register using the MRS instruction, changing only 
the relevant bits and then transferring the modified value back to the PSR register using the MSR instruction. 

EXAMPLES

The following sequence performs a mode change: 

MRS R0,CPSR ; Take a copy of the CPSR.
BIC R0,R0,#0x1F ; Clear the mode bits.
ORR R0,R0,#new_mode ; Select new mode
MSR CPSR,R0 ; Write back the modified CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the flag bits 
without disturbing the control bits. The following instruction sets the N,Z,C and V flags: 

MSR CPSR_flg,#0xF0000000 ; Set all the flags egardless of their previous state 
; (does not affect any control bits).

No attempt should be made to write an 8 bit immediate value into the whole PSR since such an operation cannot 
preserve the reserved bits.

INSTRUCTION CYCLE TIMES

PSR transfers take 1S incremental cycles, where S is defined as Sequential (S-cycle).
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ASSEMBLER SYNTAX

• MRS - transfer PSR contents to a register 
MRS{cond} Rd,<psr> 

• MSR - transfer register contents to PSR 
MSR{cond} <psr>,Rm

• MSR - transfer register contents to PSR flag bits only 
MSR{cond} <psrf>,Rm 

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively. 

• MSR - transfer immediate value to PSR flag bits only 
MSR{cond} <psrf>,<#expression> 

The expression should symbolise a 32 bit value of which the most significant four bits are written to the N,Z,C and 
V flags respectively.

Key:

{cond} Two-character condition mnemonic. See Table 3-2..

Rd and Rm Expressions evaluating to a register number other than R15

<psr> CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are 
SPSR and SPSR_all) 

<psrf> CPSR_flg or SPSR_flg 

<#expression> Where this is used, the assembler will attempt to generate a shifted immediate 8-bit 
field to match the expression. If this is impossible, it will give an error.

EXAMPLES

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]     
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA (set N,C; clear Z,V)
MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0] 

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0]  <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5 (set Z,V; clear N,C)
MSR SPSR_all,Rm ; SPSR_<mode>[31:0]<- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC (set N,Z; clear C,V)
MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]
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MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The 
instruction encoding is shown in Figure 3-12.

The multiply and multiply-accumulate instructions use an 8 bit Booth's algorithm to perform integer multiplication. 

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be set to zero for compatibility with 
possible future upgrades to the instruction set.The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can 
save an explicit ADD instruction in some circumstances. Both forms of the instruction work on operands which may 
be considered as signed (2’s complement) or unsigned integers.

The results of a signed multiply and of an unsigned multiply of 32 bit operands differ only in the upper 32 bits— the 
low 32 bits of the signed and unsigned results are identical. As these instructions only produce the low 32 bits of a 
multiply, they can be used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:
Operand A Operand B Result
0xFFFFFFF6 0x0000001 0xFFFFFF38

If the Operands Are Interpreted as Signed

Operand A has the value -10, operand B has the value 20, and the result is -200 which is correctly represented as 
0xFFFFFF38.

If the Operands Are Interpreted as Unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is 85899345720, which is 
represented as 0x13FFFFFF38, so the least significant 32 bits are 0xFFFFFF38.

Operand Restrictions

The destination register Rd must not be the same as the operand register Rm. R15 must not be used as an operand 
or as the destination register. 

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when required. 

Figure 3-12. Multiply Instructions

Cond 0 0 0 0 0 0 A S   Rd Rn   Rs 1 0 0 1   Rm

034781112151619202122272831

[15:12][11:8][3:0] Operand registers
[19:16] Destination register

[21] Set condition set

[21] Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

[31:28] Condition Field
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CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z (Zero) 
flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if the result is 
zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected. 

INSTRUCTION CYCLE TIMES

MUL takes 1S + mI and MLA 1S + (m+1)I cycles to execute, where S and I are defined as sequential (S-cycle) and 
internal (I-cycle), respectively.

m The number of 8 bit multiplier array cycles is required to complete the multiply, which is 
controlled by the value of the multiplier operand specified by Rs. Its possible values are 
as follows

1 If bits [32:8] of the multiplier operand are all zero or all one.

2 If bits [32:16] of the multiplier operand are all zero or all one.

3 If bits [32:24] of the multiplier operand are all zero or all one.

4 In all other cases.

ASSEMBLER SYNTAX

MUL{cond}{S} Rd,Rm,Rs 
MLA{cond}{S} Rd,Rm,Rs,Rn 

{cond} Two-character condition mnemonic. See Table 3-2..

{S} Set condition codes if S present 

Rd, Rm, Rs and Rn Expressions evaluating to a register number other than R15.

EXAMPLES

MUL R1,R2,R3 ; R1:=R2*R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1:=R2*R3+R4, Setting condition codes.
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MULTIPLY LONG AND MULTIPLY-ACCUMULATE LONG (MULL,MLAL)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The 
instruction encoding is shown in Figure 3-13.

The multiply long instructions perform integer multiplication on two 32 bit operands and produce 64 bit results. 
Signed and unsigned multiplication each with optional accumulate give rise to four variations.

The multiply forms (UMULL and SMULL) take two 32 bit numbers and multiply them to produce a 64 bit result of the 
form RdHi,RdLo := Rm * Rs. The lower 32 bits of the 64 bit result are written to RdLo, the upper 32 bits of the result 
are written to RdHi. 

The multiply-accumulate forms (UMLAL and SMLAL) take two 32 bit numbers, multiply them and add a 64 bit 
number to produce a 64 bit result of the form RdHi,RdLo := Rm * Rs + RdHi,RdLo. The lower 32 bits of the 64 bit 
number to add is read from RdLo. The upper 32 bits of the 64 bit number to add is read from RdHi. The lower 32 
bits of the 64 bit result are written to RdLo. The upper 32 bits of the 64 bit result are written to RdHi.

The UMULL and UMLAL instructions treat all of their operands as unsigned binary numbers and write an unsigned 
64 bit result. The SMULL and SMLAL instructions treat all of their operands as two's-complement signed numbers 
and write a two's-complement signed 64 bit result.

OPERAND RESTRICTIONS

• R15 must not be used as an operand or as a destination register.

• RdHi, RdLo, and Rm must all specify different registers.

CPSR FLAGS

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are set 
correctly on the result (N is equal to bit 63 of the result, Z is set if and only if all 64 bits of the result are zero). Both 
the C and V flags are set to meaningless values.

Figure 3-13. Multiply Long Instructions

Cond 0 0 0 0 1 U A S  RdHi RdLo   Rs 1 0 0 1   Rm

03478111215161920212223272831

[11:8][3:0] Operand registers
[19:16][15:12] Source destination registers

[20] Set condition code

[21] Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

0 = unsigned
1 = signed

[31:28] Condition Field

[22] Unsigned
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INSTRUCTION CYCLE TIMES

MULL takes 1S + (m+1)I and MLAL 1S + (m+2)I cycles to execute, where m is the number of 8 bit multiplier array 
cycles required to complete the multiply, which is controlled by the value of the multiplier operand specified by Rs.

Its possible values are as follows:

For Signed Instructions SMULL, SMLAL:

• If bits [31:8] of the multiplier operand are all zero or all one.

• If bits [31:16] of the multiplier operand are all zero or all one.

• If bits [31:24] of the multiplier operand are all zero or all one.

• In all other cases.

For Unsigned Instructions UMULL, UMLAL:

• If bits [31:8] of the multiplier operand are all zero.

• If bits [31:16] of the multiplier operand are all zero.

• If bits [31:24] of the multiplier operand are all zero.

• In all other cases.

S and I are defined as sequential (S-cycle) and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

where:

{cond} Two-character condition mnemonic. See Table 3-2.

{S} Set condition codes if S present 

RdLo, RdHi, Rm, Rs Expressions evaluating to a register number other than R15.

EXAMPLES

UMULL R1,R4,R2,R3 ; R4,R1:=R2*R3
UMLALS R1,R5,R2,R3 ; R5,R1:=R2*R3+R5,R1 also setting condition codes 

Table 3-5. Assembler Syntax Descriptions

Mnemonic Description Purpose

UMULL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply Long 32 x 32 = 64

UMLAL{cond}{S} RdLo,RdHi,Rm,Rs Unsigned Multiply & Accumulate Long 32 x 32 + 64 = 64

SMULL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply Long 32 x 32 = 64

SMLAL{cond}{S} RdLo,RdHi,Rm,Rs Signed Multiply & Accumulate Long 32 x 32 + 64 = 64
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SINGLE DATA TRANSFER (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The 
instruction encoding is shown in Figure 3-14.

The single data transfer instructions are used to load or store single bytes or words of data. The memory address 
used in the transfer is calculated by adding an offset to or subtracting an offset from a base register. 

The result of this calculation may be written back into the base register if auto-indexing is required.

Figure 3-14. Single Data Transfer Instructions

31 28 27 26 25 24 20 19 16 15 12 11 10 021

Cond 01 I L Rn Rd Offset

[15:12] Source/Destination register

[19:16] Base register

[20] Load/Store bit
0 = Store to memory
1 = Load from memory

[21] Write-back bit
0 = No write-back
1 = Write address into base

[22] Byte/Word bit
0 = Transfer word quantity
1 = Transfer byte quantity

[23] Up/Down bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post indexing bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[25] Immediate offset
0 = Offset is an immediate value

[11:0] Offset
11 0

Immediate offset

[11:0] Unsigned 12 bit immediate offset

11 0

[3:0] Offset register[11:4] Shift applied to Rm 

34

[31:28] Condition field

Shift Rm

23 22

P U B W
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OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a second 
register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from (U=0) the base 
register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0) 
the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be 
written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed addressing, 
the write back bit is redundant and is always set to zero, since the old base value can be retained by setting the 
offset to zero. Therefore post-indexed data transfers always write back the modified base. The only use of the W bit 
in a post-indexed data transfer is in privileged mode code, where setting the W bit forces non-privileged mode for 
the transfer, allowing the operating system to generate a user address in a system where the memory management 
hardware makes suitable use of this hardware.

SHIFTED REGISTER OFFSET

The 8 shift control bits are described in the data processing instructions section. However, the register specified 
shift amounts are not available in this instruction class. See Figure 3-5.

BYTES AND WORDS

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM7TDMI register and 
memory. 

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control signal of ARM7TDMI core. The 
two possible configurations are described below. 

NOTE

The KS32C6200 is configured to the big-endian format. 

Little-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word boundary, 
on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte is placed in the 
bottom 8 bits of the destination register, and the remaining bits of the register are filled with zeros. Please see 
Figure 2-2. 

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31 through 
0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word boundary will 
cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. This means that half-
words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of the 
register. Two shift operations are then required to clear or to sign extend the upper 16 bits.

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if 
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31.
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Big-Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word boundary, 
on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected byte is placed in the 
bottom 8 bits of the destination register and the remaining bits of the register are filled with zeros. Please see Figure 
2-1.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31 through 
0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or 2 from a word boundary will 
cause the data to be rotated into the register so that the addressed byte occupies bits 31 through 24. This means 
that half-words accessed at these offsets will be correctly loaded into bits 16 through 31 of the register. A shift 
operation is then required to move (and optionally sign extend) the data into the bottom 16 bits. An address offset 
of 1 or 3 from a word boundary will cause the data to be rotated into the register so that the addressed byte 
occupies bits 15 through 8. 

A word store (STR) should generate a word aligned address. The word presented to the data bus is not affected if 
the address is not word aligned. That is, bit 31 of the register being stored always appears on data bus output 31. 

Figure 3-15. Little-Endian Offset Addressing
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USE OF R15

Write-back must not be specified if R15 is specified as the base register (Rn). When using R15 as the base register 
you must remember it contains an address 8 bytes on from the address of the current instruction. 

R15 must not be specified as the register offset (Rm). 

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address of the 
instruction plus 12. 

RESTRICTION ON THE USE OF BASE REGISTER

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn, gets 
updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register, Rn, gets updated before the 
abort handler starts. Sometimes it may be impossible to calculate the initial value.

Example:
LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should not be used. 

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a 
system which uses virtual memory the required data may be absent from main memory. The memory manager can 
signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It is up 
to the system software to resolve the cause of the problem, then the instruction can be restarted and the original 
program continued. 

INSTRUCTION CYCLE TIMES

Normal LDR instructions take 1S + 1N + 1I and LDR PC take 2S + 2N +1I incremental cycles, where S,N and I are 
defined as squential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STR instructions take 
2N incremental cycles to execute.
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ASSEMBLER SYNTAX

<LDR|STR>{cond}{B}{T} Rd,<Address>

where:

LDR Load from memory into a register 

STR Store from a register into memory 

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer 

{T} If T is present the W bit will be set in a post-indexed instruction, forcing non-privileged 
mode for the transfer cycle. T is not allowed when a pre-indexed addressing mode is 
specified or implied.

Rd  An expression evaluating to a valid register number. 

Rn and Rm Expressions evaluating to a register number. If Rn is R15 then the assembler will 
subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this case base 
write-back should not be specified. 

<Address>can be: 
1 An expression which generates an address: 

The assembler will attempt to generate an instruction using the PC as a base and a 
corrected immediate offset to address the location given by evaluating the expression. 
This will be a PC relative, pre-indexed address. If the address is out of range, an error 
will be generated. 

2 A pre-indexed addressing specification: 
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted

by <shift>

3 A post-indexed addressing specification: 
[Rn],<#expression> offset of <expression> bytes 
[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register, 

shifted as by <shift>.

<shift> General shift operation (see data processing instructions) but you cannot specify the 
shift amount by a register. 

{!} Writes back the base register (set the W bit) if! is present. 
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EXAMPLES 

STR R1,[R2,R4]! ; Store R1 at R2+R4 (both of which are registers) 
; and write back address to R2.

STR R1,[R2],R4 ; Store R1 at R2 and write back R2+R4 to R2.
LDR R1,[R2,#16] ; Load R1 from contents of R2+16, but don't write back.
LDR R1,[R2,R3,LSL#2] ; Load R1 from contents of R2+R3*4.
LDREQB R1,[R6,#5] ; Conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31 with zeros.
STR R1,PLACE ; Generate PC relative offset to address PLACE.
PLACE 
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HALFWORD AND SIGNED DATA TRANSFER (LDRH/STRH/LDRSB/LDRSH)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The 
instruction encoding is shown in Figure 3-16.

These instructions are used to load or store half-words of data and also load sign-extended bytes or half-words of 
data. The memory address used in the transfer is calculated by adding an offset to or subtracting an offset from a 
base register. The result of this calculation may be written back into the base register if auto-indexing is required.

Figure 3-16. Halfword and Signed Data Transfer with Register Offset

31 28 27 22 20 19 16 15 021

[3:0] Offset register

[6] [5] S H
 0    0 = SWP instruction
 0    1 = Unsigned halfwords
 1    0 = Signed byte
 1    1 = Signed halfwords

[15:12] Source/Destination register

[19:16] Base register

[20] Load/Store 
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down 
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post indexing 
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset before transfer

[31:28] Condition field

Cond 000 W L Rn Rm

2325 24

P U 0

12 11 8 7

Rd 0000

6 5 4 3

1 S H 1
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OFFSETS AND AUTO-INDEXING

The offset from the base may be either a 8-bit unsigned binary immediate value in the instruction, or a second 
register. The 8-bit offset is formed by concatenating bits 11 to 8 and bits 3 to 0 of the instruction word, such that bit 
11 becomes the MSB and bit 0 becomes the LSB. The offset may be added to (U=1) or subtracted from (U=0) the 
base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after (post-indexed, 
P=0) the base register is used as the transfer address. 

The W bit gives optional auto-increment and decrement addressing modes. The modified base value may be 
written back into the base (W=1), or the old base may be kept (W=0). In the case of post-indexed addressing, the 
write back bit is redundant and is always set to zero, since the old base value can be retained if necessary by 
setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. 

The Write-back bit should not be set high (W=1) when post-indexed addressing is selected. 

Figure 3-17. Halfword and Signed Data Transfer with Immediate Offset and Auto-Indexing

31 28 27 22 20 19 16 15 021

[3:0] Immediate Offset (Low nibble)

[6] [5] S H
 0   0 = SWP instruction
 0   1 = Unsigned halfwords
 1   0 = Signed byte
 1   1 = Signed halfwords

[11:8] Immediate Offset (High nibble)

[15:12] Source/Destination register

[19:16] Base register

[20] Load/Store 
0 = Store to memory
1 = Load from memory

[21] Write-back
0 = No write-back
1 = Write address into base

[23] Up/Down 
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post indexing 
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset before transfer

[31:28] Condition field

Cond 000 W L Rn Offset

2325 24

P U 1

12 11 8 7

Rd Offset

6 5 4 3

1 S H 1
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HALFWORD LOAD AND STORES

Setting S=0 and H=1 may be used to transfer unsigned Half-words between an ARM7TDMI register and memory. 

The action of LDRH and STRH instructions is influenced by the BIGEND control signal. The two possible 
configurations are described in the section below.

SIGNED BYTE AND HALFWORD LOADS

The S bit controls the loading of sign-extended data. When S=1 the H bit selects between Bytes (H=0) and Half-
words (H=1). The L bit should not be set low (Store) when Signed (S=1) operations have been selected. 

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination register and bits 31 to 8 of the 
destination register are set to the value of bit 7, the sign bit. 

The LDRSH instruction loads the selected Half-word into bits 15 to 0 of the destination register and bits 31 to 16 of 
the destination register are set to the value of bit 15, the sign bit. 

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control signal. The two possible 
configurations are described in the following section.

ENDIANNESS AND BYTE/HALFWORD SELECTION

Little-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the supplied address is on a word 
boundary, on data bus inputs 15 through to 8 if it is a word address plus one byte, and so on. The selected byte is 
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign bit, 
bit 7 of the byte. Please see Figure 2-2.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if the supplied address is on a 
word boundary and on data bus inputs 31 through to 16 if it is a halfword boundary, (A[1]=1).The supplied address 
should always be on a halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI will load an 
unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register. For unsigned 
half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words (LDRSH) the top 16 
bits are filled with the sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31 
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data. 
Note that the address must be halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable 
behaviour. 
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Big-Endian Configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the supplied address is on a word 
boundary, on data bus inputs 23 through to 16 if it is a word address plus one byte, and so on. The selected byte is 
placed in the bottom 8 bit of the destination register, and the remaining bits of the register are filled with the sign bit, 
bit 7 of the byte. Please see Figure 2-1.

A halfword load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16 if the supplied address is on a 
word boundary and on data bus inputs 15 through to 0 if it is a halfword boundary, (A[1]=1). The supplied address 
should always be on a halfword boundary. If bit 0 of the supplied address is HIGH then the ARM7TDMI will load an 
unpredictable value. The selected halfword is placed in the bottom 16 bits of the destination register. For unsigned 
half-words (LDRH), the top 16 bits of the register are filled with zeros and for signed half-words (LDRSH) the top 16 
bits are filled with the sign bit, bit 15 of the halfword. 

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across the data bus outputs 31 
through to 0. The external memory system should activate the appropriate halfword subsystem to store the data. 
Note that the address must be halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable 
behaviour.

NOTE

The KS32C6200 is configured to the big-endian format.

USE OF R15

Write-back should not be specified if R15 is specified as the base register (Rn). When using R15 as the base 
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a Half-word store (STRH) instruction, the stored address will be address of 
the instruction plus 12.

DATA ABORTS

A transfer to or from a legal address may cause problems for a memory management system. For instance, in a 
system which uses virtual memory the required data may be absent from the main memory. The memory manager 
can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It is 
up to the system software to resolve the cause of the problem, then the instruction can be restarted and the original 
program continued. 

INSTRUCTION CYCLE TIMES

Normal LDR(H,SH,SB) instructions take 1S + 1N + 1I. LDR(H,SH,SB) PC take 2S + 2N + 1I incremental cycles. 
S,N and I are defined as squential (S-cycle), non-squential (N-cycle), and internal (I-cycle), respectively. STRH 
instructions take 2N incremental cycles to execute.
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ASSEMBLER SYNTAX

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR Load from memory into a register

STR Store from a register into memory

{cond} Two-character condition mnemonic. See Table 3-2..

H Transfer halfword quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended halfword (Only valid for LDR)

Rd An expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a 
corrected immediate offset to address the location given by evaluating the expression. 
This will be a PC relative, pre-indexed address. If the address is out of range, an error 
will be generated.

2 A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>]{!} offset of <expression> bytes
[Rn,{+/-}Rm]{!} offset of +/- contents of index register

3 A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
[Rn],{+/-}Rm  offset of +/- contents of index register.

4 Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the 
assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining. In this 
case base write-back should not be specified.

{!} Writes back the base register (set the W bit) if ! is present.
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EXAMPLES

LDRH R1,[R2,-R3]! ; Load R1 from the contents of the halfword address
; contained in R2-R3 (both of which are registers) 
; and write back address to R2

STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14 but don't write back.
LDRSB R8,[R2],#-223 ; Load R8 with the sign extended contents of the byte

; address contained in R2 and write back R2-223 to R2.
LDRNESH R11,[R0] ; Conditionally load R11 with the sign extended contents of 

; the halfword address contained in R0.
HERE ; Generate PC relative offset to address FRED.
STRH R5, [PC,#(FRED-HERE-8)]; Store the halfword in R5 at address FRED
FRED
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BLOCK DATA TRANSFER (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The 
instruction encoding is shown in Figure 3-18.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible registers. 
They support all possible stacking modes, maintaining full or empty stacks which can grow up or down memory, 
and are very efficient instructions for saving or restoring context, or for moving large blocks of data around main 
memory. 

THE REGISTER LIST

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can also 
transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction, with each bit 
corresponding to a register. A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to be 
transferred; similarly bit 1 controls the transfer of R1, and so on. 

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list should 
not be empty. 

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

Figure 3-18. Block Data Transfer Instructions

31 28 27 22 20 19 16 15 021

[19:16] Base register

[20] Load/Store bit
0 = Store to memory
1 = Load from memory

[21] Write-back bit
0 = No write-back
1 = Write address into base

[[22] PSR & force user bit
0 = Do not load PSR or force user mode
1 = Load PSR or force user mode

[23] Up/Down bit
0 = Down; subtrack offset from base
1 = Up; add offset to base

[24] Pre/Post indexing bit
0 = Post; add offset after transfer
1 = Pre; add offset before transfer

[31:28] Condition field

Cond 100 W L Rn Register list

2325 24

P U S
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ADDRESSING MODES

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the up/
down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will always be 
transferred last. The lowest register also gets transferred to/from the lowest memory address. By way of illustration, 
consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and write back of the modified base is 
required (W=1). Figure 3.19–22 show the sequence of register transfers, the addresses used, and the value of Rn 
after the instruction has completed. 

In all cases, had write back of the modified base not been required (W=0), Rn would have retained its initial value of 
0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would have been 
overwritten with the loaded value. 

ADDRESS ALIGNMENT

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the 
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by the 
memory system. 

Figure 3-19. Post-Increment Addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7
R5

R1
R5

Rn
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Figure 3-20. Pre-Increment Addressing

Figure 3-21. Post-Decrement Addressing
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USE OF THE S BIT

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer list and 
on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged mode. 

LDM with R15 in Transfer List and S Bit Set (Mode Changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in Transfer List and S Bit Set (User Bank Transfer)

The registers transferred are taken from the User bank rather than the bank corresponding to the current mode. 
This is useful for saving the user state on process switches. Base write-back should not be used when this 
mechanism is employed. 

R15 not in List and S Bit Set (User Bank Transfer)

For both LDM and STM instructions, the User bank registers are transferred rather than the register bank 
corresponding to the current mode. This is useful for saving the user state on process switches. Base write-back 
should not be used when this mechanism is employed. 

When the instruction is LDM, care must be taken not to read from a banked register during the following cycle 
(inserting a dummy instruction such as MOV R0, R0 after the LDM will ensure safety). 

USE OF R15 AS THE BASE

R15 should not be used as the base register in any LDM or STM instruction. 

Figure 3-22. Pre-Decrement Addressing
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INCLUSION OF THE BASE IN THE REGISTER LIST

When write-back is specified, the base is written back at the end of the second cycle of the instruction. During a 
STM, the first register is written out at the start of the second cycle. A STM which includes storing the base, with the 
base as the first register to be stored, will therefore store the unchanged value, whereas with the base second or 
later in the transfer order, will store the modified value. A LDM will always overwrite the updated base if the base is 
in the list. 

DATA ABORTS

Some legal addresses may be unacceptable to a memory management system, and the memory manager can 
indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any transfer during a 
multiple register load or store, and must be recoverable if ARM7TDMI is to be used in a virtual memory system. 

Aborts during STM Instructions

If the abort occurs during a store multiple instruction, ARM7TDMI takes little action until the instruction completes, 
whereupon it enters the data abort trap. The memory manager is responsible for preventing erroneous writes to the 
memory. The only change to the internal state of the processor will be the modification of the base register if write-
back was specified, and this must be reversed by software (and the cause of the abort resolved) before the 
instruction may be retried. 

Aborts during LDM Instructions

When ARM7TDMI detects a data abort during a load multiple instruction, it modifies the operation of the instruction 
to ensure that recovery is possible.

• Overwriting of registers stops when the abort happens. The aborting load will not take place but earlier ones 
may have overwritten registers. The PC is always the last register to be written and so will always be 
preserved. 

• The base register is restored, to its modified value if write-back was requested. This ensures recoverability in 
the case where the base register is also in the transfer list, and may have been overwritten before the abort 
occurred. 

The data abort trap is taken when the load multiple has completed, and the system software must undo any base 
modification (and resolve the cause of the abort) before restarting the instruction. 

INSTRUCTION CYCLE TIMES

Normal LDM instructions take nS + 1N + 1I and LDM PC takes (n+1)S + 2N + 1I incremental cycles, where S,N and 
I are defined as squential (S-cycle), non-sequential (N-cycle), and internal (I-cycle), respectively. STM instructions 
take (n-1)S + 2N incremental cycles to execute, where n is the number of words transferred.
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ASSEMBLER SYNTAX

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^} 

where:

{cond} Two character condition mnemonic. See Table 3-2.

Rn An expression evaluating to a valid register number 

<Rlist> A list of registers and register ranges enclosed in {} (e.g. {R0,R2-R7,R10}). 

{!} If present requests write-back (W=1), otherwise W=0. 

{^} If present set S bit to load the CPSR along with the PC, or force transfer of user bank 
when in privileged mode. 

Addressing Mode Names

There are different assembler mnemonics for each of the addressing modes, depending on whether the instruction 
is being used to support stacks or for other purposes. The equivalence between the names and the values of the 
bits in the instruction are shown in the following table 3-6. 

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required. The F and 
E refer to a “full” or “empty” stack, i.e. whether a pre-index has to be done (full) before storing to the stack. The A 
and D refer to whether the stack is ascending or descending. If ascending, a STM will go up and LDM down, if 
descending, vice-versa. 

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment After, 
Increment Before, Decrement After, Decrement Before. 

Table 3-6. Addressing Mode Names

Name Stack Other L bit P bit U bit

Pre-Increment Load LDMED LDMIB 1 1 1

Post-Increment Load LDMFD LDMIA 1 0 1

Pre-Dcrement Load LDMEA LDMDB 1 1 0

Post-Decrement Load LDMFA LDMDA 1 0 0

Pre-Increment Store STMFA STMIB 0 1 1

Post-Increment Store STMEA STMIA 0 0 1

Pre-Decrement Store STMFD STMDB 0 1 0

Post-Decrement Store STMED STMDA 0 0 0
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EXAMPLES

LDMFD SP!,{R0,R1,R2} ; Unstack 3 registers.
STMIA R0,{R0-R15} ; Save all registers.
LDMFD SP!,{R15} ; R15 <- (SP), CPSR unchanged.
LDMFD SP!,{R15}^ ; R15 <- (SP), CPSR <- SPSR_mode

; (allowed only in privileged modes).
STMFD R13,{R0-R14}^ ; Save user mode regs on stack 

; (allowed only in privileged modes). 

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling 
routine:

STMED SP!,{R0-R3,R14} ; Save R0 to R3 to use as workspace
; and R14 for returning. 

BL somewhere ; This nested call will overwrite R14
LDMED SP!,{R0-R3,R15} ; Restore workspace and return.
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SINGLE DATA SWAP (SWP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The 
instruction encoding is shown in Figure 3-23.

The data swap instruction is used to swap a byte or word quantity between a register and external memory. This 
instruction is implemented as a memory read followed by a memory write which are “locked” together (the 
processor cannot be interrupted until both operations have completed, and the memory manager is warned to treat 
them as inseparable). This class of instruction is particularly useful for implementing software semaphores. 

The swap address is determined by the contents of the base register (Rn). The processor first reads the contents of 
the swap address. Then it writes the contents of the source register (Rm) to the swap address, and stores the old 
memory contents in the destination register (Rd). The same register may be specified as both the source and 
destination. 

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external memory 
manager that they are locked together, and should be allowed to complete without interruption. This is important in 
multi-processor systems where the swap instruction is the only indivisible instruction which may be used to 
implement semaphores; control of the memory must not be removed from a processor while it is performing a 
locked operation. 

BYTES AND WORDS

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an ARM7TDMI register and 
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as described 
in the section on single data transfers. In particular, the description of Big and Little Endian configuration applies to 
the SWP instruction. 

USE OF R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction. 

Figure 3-23. Swap Instruction

31 28 27 23 22 20 19 16 15 12 11 8 7 4 3 021

Cond 00010 B 00 Rn Rd 0000 1001 Rm

[3:0] Source register

[15:12] Destination register

[19:16] Base register

[22] Byte/Word bit
0 = Swap word quantity
1 = Swap word quantity

[31:28] Condition field
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DATA ABORTS

If the address used for the swap is unacceptable to a memory management system, the memory manager can flag 
the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or both), and in either 
case, the Data Abort trap will be taken. It is up to the system software to resolve the cause of the problem, then the 
instruction can be restarted and the original program continued. 

INSTRUCTION CYCLE TIMES

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S,N and I are defined as squential (S-
cycle), non-squential, and internal (I-cycle), respectively.

ASSEMBLER SYNTAX

<SWP>{cond}{B} Rd,Rm,[Rn] 

{cond} Two-character condition mnemonic. See Table 3-2.

{B} If B is present then byte transfer, otherwise word transfer 

Rd,Rm,Rn Expressions evaluating to valid register numbers 

EXAMPLES 

SWP R0,R1,[R2] ; Load R0 with the word addressed by R2, and 
; store R1 at R2.

SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.

SWPEQ R0,R0,[R1] ; Conditionally swap the contents of the
; word addressed by R1 with R0.
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SOFTWARE INTERRUPT (SWI)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The 
instruction encoding is shown in Figure 3-24, below.

The software interrupt instruction is used to enter Supervisor mode in a controlled manner. The instruction causes 
the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a fixed value 
(0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by external memory 
management hardware) from modification by the user, a fully protected operating system may be constructed. 

RETURN FROM THE SUPERVISOR

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the word 
after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts within 
itself it must first save a copy of the return address and SPSR. 

COMMENT FIELD

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate information to 
the supervisor code. For instance, the supervisor may look at this field and use it to index into an array of entry 
points for routines which perform the various supervisor functions. 

INSTRUCTION CYCLE TIMES

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S and N are defined as squential 
(S-cycle) and non-squential (N-cycle).

Figure 3-24. Software Interrupt Instruction

[31:28] Condition field

31 28 27 23 0

Cond 1111 Comment field (ignored by Processor)

24
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ASSEMBLER SYNTAX

SWI{cond} <expression> 

{cond} Two character condition mnemonic, Table 3-2.

<expression> Evaluated and placed in the comment field (which is ignored by ARM7TDMI).

EXAMPLES 

SWI ReadC ; Get next character from read stream.
SWI WriteI+”k” ; Output a “k” to the write stream.
SWINE 0 ; Conditionally call supervisor with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point
EntryTable             ; Addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn
 . . .

Zero EQU  0 
ReadC EQU  256 
WriteI EQU  512

Supervisor ; SWI has routine required in bits 8-23 and data (if any) in 
; bits 0–7. Assumes R13_svc points to a suitable stack 

STMFD R13,{R0-R2,R14} ; Save work registers and return address.
LDR R0,[R14,#-4] ; Get SWI instruction.
BIC R0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table. 
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.
WriteIRtn ; Enter with character in R0 bits 0–7.
 .  .  .  .  .  .
LDMFD R13,{R0-R2,R15}^ ; Restore workspace and return, 

; restoring processor mode and flags. 
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COPROCESSOR DATA OPERATIONS (CDP)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The 
instruction encoding is shown in Figure 3-25.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is communicated 
back to ARM7TDMI, and it will not wait for the operation to complete. The coprocessor could contain a queue of 
such instructions awaiting execution, and their execution can overlap other activity, allowing the coprocessor and 
ARM7TDMI to perform independent tasks in parallel.

COPROCESSOR INSTRUCTIONS

The KS32C6200, unlike some other ARM-based processors, does not have an external coprocessor interface. It 
does not have a on-chip coprocessor also. 

So then all coprocessor instructions will cause the undefinded instruction trap to be taken on the KS32C6200. 
These coprocessor instructions can be emulated by the undefined trap handler. Even though external coprocessor 
can not be connected to the KS32C6200, the coprocessor instructions are still described here in full for 
completeness. (Remember that any external coprocessor described in this section is a software emulation.)

THE COPROCESSOR FIELDS

Only bit 4 and bits 24 to 31 are significant to ARM7TDMI. The remaining bits are used by coprocessors. The above 
field names are used by convention, and particular coprocessors may redefine the use of all fields except CP# as 
appropriate. The CP# field is used to contain an identifying number (in the range 0 to 15) for each coprocessor, and 
a coprocessor will ignore any instruction which does not contain its number in the CP# field. 

The conventional interpretation of the instruction is that the coprocessor should perform an operation specified in 
the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the result in CRd.

Figure 3-25. Coprocessor Data Operation Instruction

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

[3:0] Coprocessor operand register

[7:5] Coprocessor information

[11:8] Coprocessor number

[15:12] Coprocessor destination register

[19:16] Coprocessor operand register

[23:20] Coprocessor operation code

[31:28] Condition field

Cond 1110 CP Opc CRn CRd CP# CP 0 CRm
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INSTRUCTION CYCLE TIMES

Coprocessor data operations take 1S + bI incremental cycles to execute, where b is the number of cycles spent in 
the coprocessor busy-wait loop. 

S and I are defined as squential (S-cycle) and internal (I-cycle).

ASSEMBLER SYNTAX

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>} 

{cond} Two character condition mnemonic. See Table 3-2.

p# The unique number of the required coprocessor 

<expression1> Evaluated to a constant and placed in the CP Opc field 

cd, cn and cm Evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively

<expression2> Where present is evaluated to a constant and placed in the CP field 

EXAMPLES

CDP p1,10,c1,c2,c3 ; Request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1.

CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coproc 2 to do operation 5 (type 2)
; on CR2 and CR3, and put the result in CR1. 
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COPROCESSOR DATA TRANSFERS (LDC, STC)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The 
instruction encoding is shown in Figure 3-26. 

This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessors’s registers directly to 
memory. ARM7TDMI is responsible for supplying the memory address, and the coprocessor supplies or accepts 
the data and controls the number of words transferred.

THE COPROCESSOR FIELDS

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a coprocessor 
will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different ways by 
different coprocessors, but by convention CRd is the register to be transferred (or the first register where more than 
one is to be transferred), and the N bit is used to choose one of two transfer length options. For instance N=0 could 
select the transfer of a single register, and N=1 could select the transfer of all the registers for context switching. 

Figure 3-26. Coprocessor Data Transfer Instructions

31 28 27 22 20 19 16 15 021

[7:0] Unsigned 8 bit immediate offset

[11:8] Coprocessor number

[15:12] Coprocessor source/destination register

[19:16] Base register

[20] Load/Store bit
0 = Store to memory
1 = Load from memory

[21] Write-back bit
0 = No write-back
1 = Write address into base

[22] Transfer length

[23] Up/Down bit
0 = Down: subtract offset from base
1 = Up: add offset to base

[24] Pre/Post indexing bit
0 = Post: add offset after transfer
1 = Pre: add offset before transfer

[31:28] Condition field

Cond 110 W L Rn Offset

2325 24

P U N

12 11 8 7

CRd CP#
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ADDRESSING MODES

ARM7TDMI is responsible for providing the address used by the memory system for the transfer, and the 
addressing modes available are a subset of those used in single data transfer instructions. Note, however, that the 
immediate offsets are 8 bits wide and specify word offsets for coprocessor data transfers, whereas they are 12 bits 
wide and specify byte offsets for single data transfers. 

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or subtracted from (U=0) the 
base register (Rn); this calculation may be performed either before (P=1) or after (P=0) the base is used as the 
transfer address. The modified base value may be overwritten back into the base register (if W=1), or the old value 
of the base may be preserved (W=0). Note that post-indexed addressing modes require explicit setting of the W bit, 
unlike LDR and STR which always write-back when post-indexed. 

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for the 
transfer of the first word. The second word (if more than one is transferred) will go to or come from an address one 
word (4 bytes) higher than the first transfer, and the address will be incremented by one word for each subsequent 
transfer. 

ADDRESS ALIGNMENT

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear on A[1:0] 
and might be interpreted by the memory system.

USE OF R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 must not be 
specified. 

DATA ABORTS

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-back of 
the modified base will take place, but all other processor state will be preserved. The coprocessor is partly 
responsible for ensuring that the data transfer can be restarted after the cause of the abort has been resolved, and 
must ensure that any subsequent actions it undertakes can be repeated when the instruction is retried. 

INSTRUCTION CYCLE TIMES

Coprocessor data transfer instructions take (n-1)S + 2N + bI incremental cycles to execute, where:

n The number of words transferred.

b The number of cycles spent in the coprocessor busy-wait loop. 

S, N and I are defined as squential (S-cycle), non-squential (N-cycle), and internal (I-cycle), respectively.
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ASSEMBLER SYNTAX

<LDC|STC>{cond}{L} p#,cd,<Address> 

LDC Load from memory to coprocessor 

STC Store from coprocessor to memory 

{L} When present perform long transfer (N=1), otherwise perform short transfer (N=0) 

{cond} Two character condition mnemonic. See Table 3-2..

p# The unique number of the required coprocessor 

cd An expression evaluating to a valid coprocessor register number that is placed in the 
CRd field

<Address> can be: 

1 An expression which generates an address:
The assembler will attempt to generate an instruction using the PC as a base and a 
corrected immediate offset to address the location given by evaluating the expression. 
This will be a PC relative, pre-indexed address. If the address is out of range, an error 
will be generated

2 A pre-indexed addressing specification:
[Rn] offset of zero 
[Rn,<#expression>]{!} offset of <expression> bytes 

3 A post-indexed addressing specification:
Rn],<#expression  offset of <expression> bytes 
{!} write back the base register (set the W bit)

if! is present 
Rn is an expression evaluating to a valid

ARM7TDMI register number.

NOTE

If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM7TDMI pipelining. 

EXAMPLES

LDC p1,c2,table ; Load c2 of coproc 1 from address
; table, using a PC relative address.

STCEQL p2,c3,[R5,#24]! ; Conditionally store c3 of coproc 2
; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to store multiple words).

NOTE

Although the address offset is expressed in bytes, the instruction offset field is in words. The assembler will 
adjust the offset appropriately.
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COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2.. The 
instruction encoding is shown in Figure 3-27.

This class of instruction is used to communicate information directly between ARM7TDMI and a coprocessor. An 
example of a coprocessor to ARM7TDMI register transfer (MRC) instruction would be a FIX of a floating point value 
held in a coprocessor, where the floating point number is converted into a 32 bit integer within the coprocessor, and 
the result is then transferred to ARM7TDMI register. A FLOAT of a 32 bit value in ARM7TDMI register into a 
floating point value within the coprocessor illustrates the use of ARM7TDMI register to coprocessor transfer (MCR). 

An important use of this instruction is to communicate control information directly from the coprocessor into the 
ARM7TDMI CPSR flags. As an example, the result of a comparison of two floating point values within a 
coprocessor can be moved to the CPSR to control the subsequent flow of execution.

THE COPROCESSOR FIELDS

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon. 

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented here is 
derived from convention only. Other interpretations are allowed where the coprocessor functionality is incompatible 
with this one. The conventional interpretation is that the CP Opc and CP fields specify the operation the 
coprocessor is required to perform, CRn is the coprocessor register which is the source or destination of the 
transferred information, and CRm is a second coprocessor register which may be involved in some way which 
depends on the particular operation specified. 

Figure 3-27. Coprocesspr Register Transfer Instructions

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

[3:0] Coprocessor operand register

[7:5] Coprocessor information

[11:8] Coprocessor number

[15:12] ARM source/destination register

[19:16] Coprocessor source/destination register

[20] Load/Store bit
0 = Store to Co-Processor
1 = Load from Co-Processor

[23:21] Coprocessor operation mode

[31:28] Condition field

Cond 1110 CP Opc CRn Rd CP# CP 1 CRm

21

L
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TRANSFERS TO R15

When a coprocessor register transfer to ARM7TDMI has R15 as the destination, bits 31, 30, 29 and 28 of the 
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word are 
ignored, and the PC and other CPSR bits are unaffected by the transfer.

TRANSFERS FROM R15

A coprocessor register transfer from ARM7TDMI with R15 as the source register will store the PC+12.

INSTRUCTION CYCLE TIMES

MRC instructions take 1S + (b+1)I +1C incremental cycles to execute, where S, I and C are defined as squential (S-
cycle), internal (I-cycle), and coprocessor register transfer (C-cycle), respectively. MCR instructions take 1S + bI 
+1C incremental cycles to execute, where b is the number of cycles spent in the coprocessor busy-wait loop. 

ASSEMBLER SYNTAX

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>} 

MRC Move from coprocessor to ARM7TDMI register (L=1) 

MCR Move from ARM7TDMI register to coprocessor (L=0) 

{cond} Two character condition mnemonic. See Table 3-2

p# The unique number of the required coprocessor 

 <expression1> Evaluated to a constant and placed in the CP Opc field 

Rd An expression evaluating to a valid ARM7TDMI register number 

cn and cm Expressions evaluating to the valid coprocessor register numbers CRn and CRm 
respectively

<expression2> Where present is evaluated to a constant and placed in the CP field 

EXAMPLES

MRC p2,5,R3,c5,c6 ; Request coproc 2 to perform operation 5 
; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coproc 6 to perform operation 0
; on R4 and place the result in c6.

MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3.
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UNDEFINED INSTRUCTION

The instruction is only executed if the condition is true. The various conditions are defined in Table 3-2. The 
instruction format is shown in Figure 3-28.

If the condition is true, the undefined instruction trap will be taken. 

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which may be 
present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH. 

INSTRUCTION CYCLE TIMES

This instruction takes 2S + 1I + 1N cycles, where S, N and I are defined as squential (S-cycle), non-sequential (N-
cycle), and internal (I-cycle).

ASSEMBLER SYNTAX

The assembler has no mnemonics for generating this instruction. If it is adopted in the future for some specified 
use, suitable mnemonics will be added to the assembler. Until such time, this instruction must not be used.

Figure 3-28. Undefined Instruction

31 28 27 24 5 4 3 0

Cond 011 1 xxxxxxxxxxxxxxxxxxxxxxxx

25
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INSTRUCTION SET EXAMPLES

The following examples show ways in which the basic ARM7TDMI instructions can combine to give efficient code. 
None of these methods saves a great deal of execution time (although they may save some), mostly they just save 
code. 

USING THE CONDITIONAL INSTRUCTIONS

Using Conditionals for Logical OR 

CMP Rn,#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label
CMP Rm,#q
BEQ Label

This can be replaced by 

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try other test.
BEQ Label

Absolute Value 

TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary.

Multiplication by 4, 5 or 6 (Run Time) 

MOV Rc,Ra,LSL#2 ; Multiply by 4,
CMP Rb,#5 ; Test value,
ADDCS Rc,Rc,Ra ; Complete multiply by 5,
ADDHI Rc,Rc,Ra ; Complete multiply by 6.

Combining Discrete and Range Tests 

TEQ Rc,#127 ; Discrete test,
CMPNE Rc,#” ”-1 ; Range test
MOVLS Rc,#”.” ; IF Rc<=” ” OR Rc=ASCII(127)

; THEN Rc:=”.” 
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Division and Remainder 

A number of divide routines for specific applications are provided in source form as part of the ANSI C library 
provided with the ARM Cross Development Toolkit, available from your supplier. A short general purpose divide 
routine follows.

; Enter with numbers in Ra and Rb.
MOV Rcnt,#1 ; Bit to control the division.

Div1 CMP Rb,#0x80000000 ; Move Rb until greater than Ra.
CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0 

Div2 CMP Ra,Rb ; Test for possible subtraction.
SUBCS Ra,Ra,Rb ; Subtract if ok,
ADDCS Rc,Rc,Rcnt ; Put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; Shift control bit
MOVNE Rb,Rb,LSR#1 ; Halve unless finished.
BNE Div2 ; Divide result in Rc, remainder in Ra.

Overflow Eetection in the ARM7TDMI

1. Overflow in unsigned multiply with a 32-bit result
UMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

2. Overflow in signed multiply with a 32-bit result

SMULL Rd,Rt,Rm,Rn ; 3 to 6 cycles
TEQ Rt,Rd ASR#31 ; +1 cycle and a register
BNE overflow

3. Overflow in unsigned multiply accumulate with a 32 bit result

UMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,#0 ; +1 cycle and a register
BNE overflow

4. Overflow in signed multiply accumulate with a 32 bit result

SMLAL Rd,Rt,Rm,Rn ; 4 to 7 cycles
TEQ Rt,Rd, ASR#31 ; +1 cycle and a register
BNE overflow
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5. Overflow in unsigned multiply accumulate with a 64 bit result

UMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BCS overflow ; 1 cycle and 2 registers

6. Overflow in signed multiply accumulate with a 64 bit result

SMULL Rl,Rh,Rm,Rn ; 3 to 6 cycles
ADDS Rl,Rl,Ra1 ; Lower accumulate
ADC Rh,Rh,Ra2 ; Upper accumulate
BVS overflow ; 1 cycle and 2 registers

NOTE

Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit result, since overflow 
does not occur in such calculations.

PSEUDO-RANDOM BINARY SEQUENCE GENERATOR

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on shift 
generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately the 
sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles before 
repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is newbit:=bit 33 
eor bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is performed for all the newbits 
needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits), 
; Rb (1 bit in Rb lsb), uses Rc. 

TST Rb,Rb,LSR#1 ; Top bit into carry   
MOVS Rc,Ra,RRX ; 33 bit rotate right 
ADC Rb,Rb,Rb ; Carry into lsb of Rb 
EOR Rc,Rc,Ra,LSL#12 ; (involved!)          
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!) new seed in Ra, Rb as before 

MULTIPLICATION BY CONSTANT USING THE BARREL SHIFTER

Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

Multiplication by 2^n+1 (3,5,9,17..) 

ADD Ra,Ra,Ra,LSL #n 

Multiplication by 2^n-1 (3,7,15..)
RSB Ra,Ra,Ra,LSL #n



ARM INSTRUCTION SET KS32C6200 RISC MICROCONTROLER

3-60

Multiplication by 6
ADD Ra,Ra,Ra,LSL #1 ; Multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

Multiply by 10 and add in extra number 
ADD Ra,Ra,Ra,LSL#2 ; Multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; Multiply by 2 and add in next digit

General recursive method for Rb := Ra*C, C a constant: 

1. If C even, say C = 2^n*D, D odd:

D=1: MOV   Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}
MOV Rb,Rb,LSL #n

2. If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD   Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
ADD Rb,Ra,Rb,LSL #n

3. If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB   Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}
RSB Rb,Ra,Rb,LSL #n 

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; Multiply by 3 
RSB Rb,Ra,Rb,LSL#2 ; Multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2 ; Multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; Multiply by 9      
ADD Rb,Rb,Rb,LSL#2 ; Multiply by 5*9 = 45
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LOADING A WORD FROM AN UNKNOWN ALIGNMENT

; Enter with address in Ra (32 bits) uses 
; Rb, Rc result in Rd. Note d must be less than c e.g. 0,1

BIC Rb,Ra,#3 ; Get word aligned address
LDMIA Rb,{Rd,Rc} ; Get 64 bits containing answer
AND Rb,Ra,#3 ; Correction factor in bytes
MOVS Rb,Rb,LSL#3 ;  ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; Produce bottom of result word (if not aligned)
RSBNE Rb,Rb,#32 ; Get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; Combine two halves to get result
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NOTES
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THUMB INSTRUCTION SET FORMAT

The thumb instruction sets are 16-bit versions of ARM instruction sets (32-bit format). The ARM instructions are 
reduced to 16-bit versions, Thumb instructions, at the cost of versatile functions of the ARM instruction sets. The 
thumb instructions are decompressed to the ARM instructions by the Thumb decompressor inside the ARM7TDMI 
core. 

As the Thumb instructions are compressed ARM instructions, the Thumb instructions have the 16-bit format 
instructions and have some restrictions. The restrictions by 16-bit format is fully notified for using the Thumb 
instructions. 

FORMAT SUMMARY

The THUMB instruction set formats are shown in the following figure.

Figure 3-29. THUMB Instruction Set Formats

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 Op Offset5 Rs Rd Move shifted register

2 0 0 0 1 1 I Op Rn/offset3 Rs Rd Add/subtract

3 0 0 1 Op Rd Offset8 Move/compare/add
/subtract immediate

4 0 1 0 0 0 0 Op Rs Rd ALU operations

5 0 1 0 0 0 1 Op H1 H2 Rs/Hs Rd/Hd Hi register operations
/branch exchange

6 0 1 0 0 1 Rd Word8 PC-relative load

7 0 1 0 1 L B 0 Ro Rb Rd Load/store with register
offset

8 0 1 0 1 H S 1 Ro Rb Rd Load/store sign-extended
byte/halfword

9 0 1 1 B L Offset5 Rb Rd Load/store with immediate
offset

10 1 0 0 0 L Offset5 Rb Rd Load/store halfword

11 1 0 0 1 L Rd Word8 SP-relative load/store

12 1 0 1 0 SP Rd Word8 Load address

13 1 0 1 1 0 0 0 0 S SWord7 Add offset to stack pointer

14 1 0 1 1 L 1 0 R Rlist Push/pop registers

15 1 1 0 0 L Rb Rlist Multiple load/store

16 1 1 0 1 Cond Soffset8 Conditional branch

17 1 1 0 1 1 1 1 1 Value8 Software Interrupt

18 1 1 1 0 0 Offset11 Unconditional branch

19 1 1 1 1 H Offset Long branch with link

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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OPCODE SUMMARY

The following table summarizes the THUMB instruction set. For further information about a particular instruction 
please refer to the sections listed in the right-most column.

Table 3-7. THUMB Instruction Set Opcodes

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition 
Codes Set

ADC Add with Carry 4 – 4

ADD Add 4 4 4(1)

AND AND 4 – 4

ASR Arithmetic Shift 
Right

4 – 4

B Unconditional 
branch

4 – –

Bxx Conditional branch 4 – –

BIC Bit Clear 4 – 4

BL Branch and Link – – –

BX Branch and 
Exchange

4 4 –

CMN Compare Negative 4 – 4

CMP Compare 4 4 4

EOR EOR 4 – 4

LDMIA Load multiple 4 – –

LDR Load word 4 – –

LDRB Load byte 4 – –

LDRH Load halfword 4 – –

LSL Logical Shift Left 4 – 4

LDSB Load sign-extended 
byte

4 – –

LDSH Load sign-extended 
halfword

4 – –

LSR Logical Shift Right 4 – 4

MOV Move register 4 4 4(2)

MUL Multiply 4 – 4

MVN Move Negative 
register

4 – 4

NEG Negate 4 – 4

ORR OR 4 – 4
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NOTES
1. The condition codes are unaffected by the format 5, 12 and 13 versions of this instruction.
2. The condition codes are unaffected by the format 5 version of this instruction.

POP Pop registers 4 – –

PUSH Push registers 4 – –

ROR Rotate Right 4 – 4

SBC Subtract with Carry 4 – 4

STMIA Store Multiple 4 – –

STR Store word 4 – –

STRB Store byte 4 – –

STRH Store halfword 4 – –

SWI Software Interrupt – – –

SUB Subtract 4 – 4

TST Test bits 4 – 4

Table 3-7. THUMB Instruction Set Opcodes (Continued)

Mnemonic Instruction Lo-Register
Operand

Hi-Register
Operand

Condition 
Codes Set
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FORMAT 1: MOVE SHIFTED REGISTER

OPERATION

These instructions move a shifted value between Lo registers. The THUMB assembler syntax is shown in 
Table 3-8.

NOTE

All instructions in this group set the CPSR condition codes.

Figure 3-30. Format 1

Table 3-8. Summary of Format 1 Instructions 

OP THUMB assembler ARM equivalent Action

00 LSL Rd, Rs, #Offset5 MOVS Rd, Rs, LSL 
#Offset5

Shift Rs left by a 5-bit immediate 
value and store the result in Rd.

01 LSR Rd, Rs, #Offset5 MOVS Rd, Rs, LSR 
#Offset5

Perform logical shift right on Rs by a 
5-bit immediate value and store the 
result in Rd.

10 ASR Rd, Rs, #Offset5 MOVS Rd, Rs, ASR 
#Offset5

Perform arithmetic shift right on Rs 
by a 5-bit immediate value and store 
the result in Rd.

15 14 13 12 11 10 6 5 3 2 0

[2:0] Destination register

[5:3] Source register

[10:6] Immediate value

[12:11] Opcode
0 = LSL
1 = LSR
2 = ASR

Offset50 0 0 Op Rs Rd
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INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-8. The instruction cycle times 
for the THUMB instruction are identical to that of the equivalent ARM instruction. 

EXAMPLES

LSR R2, R5, #27 ; Logical shift right the contents
; of R5 by 27 and store the result in R2.
; Set condition codes on the result.
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FORMAT 2: ADD/SUBTRACT

OPERATION

These instructions allow the contents of a Lo register or a 3-bit immediate value to be added to or subtracted from 
a Lo register. The THUMB assembler syntax is shown in Table 3-9.

NOTE

All instructions in this group set the CPSR condition codes.

Figure 3-31. Format 2

Table 3-9. Summary of Format 2 Instructions 

Op I THUMB assembler ARM equivalent Action

0 0 ADD Rd, Rs, Rn ADDS Rd, Rs, Rn Add contents of Rn to contents of Rs. 
Place result in Rd.

0 1 ADD Rd, Rs, #Offset3 ADDS Rd, Rs, 
#Offset3

Add 3-bit immediate value to contents of 
Rs. Place result in Rd.

1 0 SUB Rd, Rs, Rn SUBS Rd, Rs, Rn Subtract contents of Rn from contents of 
Rs. Place result in Rd.

1 1 SUB Rd, Rs, #Offset3 SUBS Rd, Rs, 
#Offset3

Subtract 3-bit immediate value from 
contents of Rs. Place result in Rd.

15 14 13 12 11 10 9 8 6 5 3 2 0

[2:0] Destination register

[5:3] Source register

[8:6] Register/Immediate value

[9] Opcode
0 = Add
1 = SUB

[10] Immediate flag
0 = Register operand
1 = Immediate operand

Rn/Offset30 0 0 Op1 1 I Rs Rd
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INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-9. The instruction cycle times 
for the THUMB instruction are identical to that of the equivalent ARM instruction. 

EXAMPLES

ADD R0, R3, R4 ; R0 := R3 + R4 and set condition codes on the result.
SUB R6, R2, #6 ; R6 := R2 – 6 and set condition codes.
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FORMAT 3: MOVE/COMPARE/ADD/SUBTRACT IMMEDIATE

OPERATIONS

The instructions in this group perform operations between a Lo register and an 8-bit immediate value. The THUMB 
assembler syntax is shown in Table 3-10.

NOTE

All instructions in this group set the CPSR condition codes.

Figure 3-32. Format 3

Table 3-10. Summary of Format 3 Instructions

Op THUMB assembler ARM equivalent Action

00 MOV Rd, #Offset8 MOVS Rd, #Offset8 Move 8-bit immediate value into Rd.

01 CMP Rd, #Offset8 CMP Rd, #Offset8 Compare contents of Rd with 8-bit 
immediate value.

10 ADD Rd, #Offset8 ADDS Rd, Rd, 
#Offset8

Add 8-bit immediate value to contents of 
Rd and place the result in Rd.

11 SUB Rd, #Offset8 SUBS Rd, Rd, 
#Offset8

Subtract 8-bit immediate value from 
contents of Rd and place the result in 
Rd.

15 14 13 12 11 10 8 0

[7:0] Immediate value

[10:8] Source/Destination register

[12:11] Opcode
0 = MOV
1 = CMP
2 = ADD
3 = SUB

0 0 1 Op Offset8Rd

7
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INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-10. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

MOV R0, #128 ; R0 := 128 and set condition codes
CMP R2, #62 ; Set condition codes on R2 – 62
ADD R1, #255 ; R1 := R1 + 255 and set condition codes
SUB R6, #145 ; R6 := R6 – 145 and set condition codes
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FORMAT 4: ALU OPERATIONS

OPERATION

The following instructions perform ALU operations on a Lo register pair.

NOTE

All instructions in this group set the CPSR condition codes.

Figure 3-33. Format 4

Table 3-11. Summary of Format 4 Instructions 

OP THUMB assembler ARM equivalent Action

0000 AND Rd, Rs ANDS Rd, Rd, Rs Rd:= Rd AND Rs

0001 EOR Rd, Rs EORS Rd, Rd, Rs Rd:= Rd EOR Rs

0010 LSL Rd, Rs MOVS Rd, Rd, LSL Rs Rd := Rd << Rs

0011 LSR Rd, Rs MOVS Rd, Rd, LSR Rs Rd := Rd >> Rs

0100 ASR Rd, Rs MOVS Rd, Rd, ASR Rs Rd := Rd ASR Rs

0101 ADC Rd, Rs ADCS Rd, Rd, Rs Rd := Rd + Rs + C-bit

0110 SBC Rd, Rs SBCS Rd, Rd, Rs Rd := Rd – Rs – NOT C-bit

0111 ROR Rd, Rs MOVS Rd, Rd, ROR Rs Rd := Rd ROR Rs

1000 TST Rd, Rs TST Rd, Rs Set condition codes on Rd AND Rs

1001 NEG Rd, Rs RSBS Rd, Rs, #0 Rd = – Rs

1010 CMP Rd, Rs CMP Rd, Rs Set condition codes on Rd – Rs

1011 CMN Rd, Rs CMN Rd, Rs Set condition codes on Rd + Rs

1100 ORR Rd, Rs ORRS Rd, Rd, Rs Rd := Rd OR Rs

1101 MUL Rd, Rs MULS Rd, Rs, Rd Rd := Rs * Rd

1110 BIC Rd, Rs BICS Rd, Rd, Rs Rd := Rd AND NOT Rs

1111 MVN Rd, Rs MVNS Rd, Rs Rd := NOT Rs

15 14 13 12 11 10 9 6 5 3 2 0

[2:0] Source/Destination register

[5:3] Source register 2

[9:6] Opcode

0 1 0 Op0 0 0 Rs Rd
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INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-11. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction. 

EXAMPLES

EOR R3, R4 ; R3 := R3 EOR R4 and set condition codes
ROR R1, R0 ; Rotate Right R1 by the value in R0, store

; the result in R1 and set condition codes
NEG R5, R3 ; Subtract the contents of R3 from zero,

; store the result in R5. Set condition codes ie R5 = – R3
CMP R2, R6 ; Set the condition codes on the result of R2 – R6
MUL R0, R7 ; R0 := R7 * R0 and set condition codes
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FORMAT 5: HI-REGISTER OPERATIONS/BRANCH EXCHANGE

OPERATION

There are four sets of instructions in this group. The first three allow ADD, CMP and MOV operations to be 
performed between Lo and Hi registers, or a pair of Hi registers. The fourth, BX, allows a Branch to be performed 
which may also be used to switch processor state. The THUMB assembler syntax is shown in Table 3-12.

NOTE

In this group only CMP (Op = 01) sets the CPSR condition codes.

The action of H1= 0, H2 = 0 for Op = 00 (ADD), Op =01 (CMP) and Op = 10 (MOV) is undefined, and should not be 
used.

Figure 3-34. Format 5

Table 3-12. Summary of Format 5 Instructions 

Op H1 H2 THUMB assembler ARM equivalent Action

00 0 1 ADD Rd, Hs ADD Rd, Rd, Hs Add a register in the range 8-15 to a 
register in the range 0-7.

00 1 0 ADD Hd, Rs ADD Hd, Hd, Rs Add a register in the range 0-7 to a 
register in the range 8-15.

00 1 1 ADD Hd, Hs ADD Hd, Hd, Hs Add two registers in the range 8-15

01 0 1 CMP Rd, Hs CMP Rd, Hs Compare a register in the range 0-7 
with a register in the range 8-15. Set 
the condition code flags on the 
result.

01 1 0 CMP Hd, Rs CMP Hd, Rs Compare a register in the range 8-
15 with a register in the range 0-7. 
Set the condition code flags on the 
result.

15 14 13 12 11 10 9 8 6 5 3 2 0

[2:0] Destination register

[5:3] Source register

[6] Hi operand flag 2

[7] Hi operand flag 1

[9:8] Opcode

0 1 0 Op0 0 1 Rs/Hs Rd/Hd

7

H1 H2



KS32C6200 RISC MICROCONTROLLER THUMB INSTRUCTION SET

3-75

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-12. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

THE BX INSTRUCTION

BX performs a Branch to a routine whose start address is specified in a Lo or Hi register.

Bit 0 of the address determines the processor state on entry to the routine:

Bit 0 = 0 Causes the processor to enter ARM state.
Bit 0 = 1 Causes the processor to enter THUMB state.

NOTE

The action of H1 = 1 for this instruction is undefined, and should not be used.

01 1 1 CMP Hd, Hs CMP Hd, Hs Compare two registers in the range 
8-15. Set the condition code flags on 
the result.

10 0 1 MOV Rd, Hs MOV Rd, Hs Move a value from a register in the 
range 8-15 to a register in the range 
0-7.

10 1 0 MOV Hd, Rs MOV Hd, Rs Move a value from a register in the 
range 0-7 to a register in the range 
8-15.

10 1 1 MOV Hd, Hs MOV Hd, Hs Move a value between two registers 
in the range 8-15.

11 0 0 BX Rs BX Rs Perform branch (plus optional state 
change) to address in a register in 
the range 0-7. 

11 0 1 BX Hs BX Hs Perform branch (plus optional state 
change) to address in a register in 
the range 8-15.

Table 3-12. Summary of Format 5 Instructions  (Continued)

Op H1 H2 THUMB assembler ARM equivalent Action
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EXAMPLES

Hi-Register Operations

ADD PC, R5 ; PC := PC + R5 but don't set the condition codes.
CMP R4, R12 ; Set the condition codes on the result of R4 - R12.
MOV R15, R14 ; Move R14 (LR) into R15 (PC)

; but don't set the condition codes, 
; eg. return from subroutine.

Branch and Exchange

; Switch from THUMB to ARM state.
ADR R1,outofTHUMB ; Load address of outofTHUMB into R1.
MOV R11,R1
BX R11 ; Transfer the contents of R11 into the PC.

; Bit 0 of R11 determines whether
; ARM or THUMB state is entered, ie. ARM state here.

        ...
ALIGN
CODE32
outofTHUMB

; Now processing ARM instructions...

USING R15 AS AN OPERAND

If R15 is used as an operand, the value will be the address of the instruction + 4 with bit 0 cleared. Executing a BX 
PC in THUMB state from a non-word aligned address will result in unpredictable execution.
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FORMAT 6: PC-RELATIVE LOAD

OPERATION

This instruction loads a word from an address specified as a 10-bit immediate offset from the PC. The THUMB 
assembler syntax is shown below.

NOTE: The value specified by #Imm is a full 10-bit address, but must always be word-aligned (ie with bits 1:0 set to 0), 
since the assembler places #Imm >> 2 in field Word 8. The value of the PC will be 4 bytes greater than
the address of this instruction, but bit 1 of the PC is forced to 0 to ensure it is word aligned.

Figure 3-35. Format 6

Table 3-13. Summary of PC-Relative Load Instruction

THUMB assembler ARM equivalent Action

LDR Rd, [PC, #Imm] LDR Rd, [R15, #Imm] Add unsigned offset (255 
words, 1020 bytes) in Imm to 
the current value of the PC. 
Load the word from the resulting 
address into Rd.

15 14 13 12 11 10 8 0

[7:0] Immediate value

[10:8] Destination register

0 1 0 Rd0 1 Word8

7
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INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction. The instruction cycle times for the THUMB 
instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R3,[PC,#844] ; Load into R3 the word found at the
; address formed by adding 844 to PC.
; bit[1] of PC is forced to zero.
; Note that the THUMB opcode will contain
; 211 as the Word8 value.
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FORMAT 7: LOAD/STORE WITH REGISTER OFFSET

OPERATION

These instructions transfer byte or word values between registers and memory. Memory addresses are pre-
indexed using an offset register in the range 0-7. The THUMB assembler syntax is shown in Table 3-14. 

Figure 3-36. Format 7

Table 3-14. Summary of Format 7 Instructions 

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, Ro] STR Rd, [Rb, Ro] Pre-indexed word store:
Calculate the target address by 
adding together the value in Rb 
and the value in Ro. Store the 
contents of Rd at the address.

0 1 STRB Rd, [Rb, Ro] STRB Rd, [Rb, Ro] Pre-indexed byte store:
Calculate the target address by 
adding together the value in Rb 
and the value in Ro. Store the 
byte value in Rd at the resulting 
address.

1 0 LDR Rd, [Rb, Ro] LDR Rd, [Rb, Ro] Pre-indexed word load:
Calculate the source address by 
adding together the value in Rb 
and the value in Ro. Load the 
contents of the address into Rd.

15 14 13 12 11 10 9 8 6 5 3 2 0

[2:0] Source/Destination register

[5:3] Base register

[8:6] Offset register

[10] Byte/Word flag
0 = Transfer word quantity
1 = Transfer byte quantity

[11] Load/Store flag
0 = Store to memory
1 = Load from memory

Ro0 1 0 01 L B Rb Rd
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INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-14. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STR R3, [R2,R6] ; Store word in R3 at the address 
; formed by adding R6 to R2.

LDRB R2, [R0,R7] ; Load into R2 the byte found at
; the address formed by adding R7 to R0.

1 1 LDRB Rd, [Rb, Ro] LDRB Rd, [Rb, Ro] Pre-indexed byte load:
Calculate the source address by 
adding together the value in Rb 
and the value in Ro. Load the 
byte value at the resulting 
address.

Table 3-14. Summary of Format 7 Instructions  (Continued)

L B THUMB assembler ARM equivalent Action
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FORMAT 8: LOAD/STORE SIGN-EXTENDED BYTE/HALFWORD

OPERATION

These instructions load optionally sign-extended bytes or halfwords, and store halfwords. The THUMB assembler 
syntax is shown below. 

Figure 3-37. Format 8

Table 3-15. Summary of format 8 instructions 

S H THUMB assembler ARM equivalent Action

0 0 STRH Rd, [Rb, Ro] STRH Rd, [Rb, Ro] Store halfword:
Add Ro to base address in Rb. Store 
bits 0-15 of Rd at the resulting address.

0 1 LDRH Rd, [Rb, Ro] LDRH Rd, [Rb, Ro] Load halfword:
Add Ro to base address in Rb. Load bits 
0-15 of Rd from the resulting address, 
and set bits 16-31 of Rd to 0.

1 0 LDSB Rd, [Rb, Ro] LDRSB Rd, [Rb, Ro] Load sign-extended byte:
Add Ro to base address in Rb. Load bits 
0-7 of Rd from the resulting address, 
and set bits 8-31 of Rd to bit 7.

1 1 LDSH Rd, [Rb, Ro] LDRSH Rd, [Rb, Ro] Load sign-extended halfword:
Add Ro to base address in Rb. Load bits 
0-15 of Rd from the resulting address, 
and set bits 16-31 of Rd to bit 15.

15 14 13 12 11 10 9 8 6 5 3 2 0

[2:0] Destination register

[5:3] Base register

[8:6] Offset register

[10] Sign-extended flag
0 = Operand not sign-extended
1 = Operand sign-extended

[11] H flag

Ro0 1 0 11 H S Rb Rd



THUMB INSTRUCTION SET KS32C6200 RISC MICROCONTROLER

3-82

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-15. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STRH R4, [R3, R0] ; Store the lower 16 bits of R4 at the
; address formed by adding R0 to R3.

LDSB R2, [R7, R1] ; Load into R2 the sign extended byte
; found at the address formed by adding R1 to R7.

LDSH R3, [R4, R2] ; Load into R3 the sign extended halfword
; found at the address formed by adding R2 to R4.
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FORMAT 9: LOAD/STORE WITH IMMEDIATE OFFSET 

Figure 3-38. Format 9

15 14 13 12 11 10 6 5 3 2 0

[2:0] Source/Destination register

[5:3] Base register

[10:6] Offset value

[11] Load/Store flag
0 = Store to memory
1 = Load from momory

[12] Byte/Word flag
0 = Transfer word quantity
1 = Transfer byte quantity

Offset50 1 1 B L Rb Rd
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OPERATION

These instructions transfer byte or word values between registers and memory using an immediate 5 or 7-bit offset. The THUMB 
assembler syntax is shown in Table 3-16.

NOTE: For word accesses (B = 0), the value specified by #Imm is a full 7-bit address, but must be word-aligned 
(ie with bits 1:0 set to 0), since the assembler places #Imm >> 2 in the Offset5 field.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-16. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

LDR R2, [R5,#116] ; Load into R2 the word found at the
; address formed by adding 116 to R5.
; Note that the THUMB opcode will
; contain 29 as the Offset5 value.

STRB R1, [R0,#13] ; Store the lower 8 bits of R1 at the
; address formed by adding 13 to R0.
; Note that the THUMB opcode will
; contain 13 as the Offset5 value.

Table 3-16. Summary of Format 9 Instructions 

L B THUMB assembler ARM equivalent Action

0 0 STR Rd, [Rb, #Imm] STR Rd, [Rb, #Imm] Calculate the target address by 
adding together the value in Rb 
and Imm. Store the contents of 
Rd at the address.

1 0 LDR Rd, [Rb, #Imm] LDR Rd, [Rb, #Imm] Calculate the source address by 
adding together the value in Rb 
and Imm. Load Rd from the 
address.

0 1 STRB Rd, [Rb, #Imm] STRB Rd, [Rb, #Imm] Calculate the target address by 
adding together the value in Rb 
and Imm. Store the byte value 
in Rd at the address.

1 1 LDRB Rd, [Rb, #Imm] LDRB Rd, [Rb, #Imm] Calculate source address by 
adding together the value in Rb 
and Imm. Load the byte value at 
the address into Rd.
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FORMAT 10: LOAD/STORE HALFWORD

OPERATION

These instructions transfer halfword values between a Lo register and memory. Addresses are pre-indexed, using 
a 6-bit immediate value. The THUMB assembler syntax is shown in Table 3-17.

NOTE: #Imm is a full 6-bit address but must be halfword-aligned (ie with bit 0 set to 0) 
since the assembler places #Imm >> 1 in the Offset5 field.

Figure 3-39. Format 10

Table 3-17. Halfword Data Transfer Instructions

L THUMB assembler ARM equivalent Action

0 STRH Rd, [Rb, #Imm] STRH Rd, [Rb, #Imm] Add #Imm to base address in Rb and 
store bits 0–15 of Rd at the resulting 
address.

1 LDRH Rd, [Rb, #Imm] LDRH Rd, [Rb, #Imm] Add #Imm to base address in Rb. Load 
bits 0-15 from the resulting address into 
Rd and set bits 16-31 to zero.

15 14 13 12 11 10 6 5 3 2 0

[2:0] Source/Destination register

[5:3] Base register

[10:6] Immediate value

[11] Load/Store bit
0 = Store to memory
1 = Load from momory

Offset51 0 0 0 L Rb Rd
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INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-17. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction. 

EXAMPLES

STRH R6, [R1, #56] ; Store the lower 16 bits of R4 at the address formed by
; adding 56 R1. Note that the THUMB opcode will contain
; 28 as the Offset5 value.

LDRH R4, [R7, #4] ; Load into R4 the halfword found at the address formed by
; adding 4 to R7. Note that the THUMB opcode will contain
; 2 as the Offset5 value.
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FORMAT 11: SP-RELATIVE LOAD/STORE

OPERATION

The instructions in this group perform an SP-relative load or store.The THUMB assembler syntax is shown in the 
following table. 

NOTE: The offset supplied in #Imm is a full 10-bit address, but must always be word-aligned (ie bits 1:0 set to 0), 
since the assembler places #Imm >> 2 in the Word8 field.

Figure 3-40. Format 11

Table 3-18. SP-Relative Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STR Rd, [SP, #Imm] STR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020 
bytes) in Imm to the current value of the 
SP (R7). Store the contents of Rd at the 
resulting address.

1 LDR Rd, [SP, #Imm] LDR Rd, [R13 #Imm] Add unsigned offset (255 words, 1020 
bytes) in Imm to the current value of the 
SP (R7). Load the word from the 
resulting address into Rd.

15 14 13 12 11 10 8 0

[7:0] Immediate value

[10:8] Destination register

[11] Load/Store bit
0 = Store to memory
1 = Load from memory

1 0 0 Rd1 L Word8

7
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INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-18. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction. 

EXAMPLES

STR R4, [SP,#492] ; Store the contents of R4 at the address
; formed by adding 492 to SP (R13).
; Note that the THUMB opcode will contain
; 123 as the Word8 value.
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FORMAT 12: LOAD ADDRESS

OPERATION

These instructions calculate an address by adding an 10-bit constant to either the PC or the SP, and load the 
resulting address into a register. The THUMB assembler syntax is shown in the following table.

NOTE: The value specified by #Imm is a full 10-bit value, but this must be word-aligned (ie with bits 1:0 set to 0) 
since the assembler places #Imm >> 2 in field Word 8.

Where the PC is used as the source register (SP = 0), bit 1 of the PC is always read as 0. The value of the PC will 
be 4 bytes greater than the address of the instruction before bit 1 is forced to 0.

The CPSR condition codes are unaffected by these instructions.

Figure 3-41. Format 12

Table 3-19. Load Address 

SP THUMB assembler ARM equivalent Action

0 ADD Rd, PC, #Imm ADD Rd, R15, #Imm Add #Imm to the current value 
of the program counter (PC) 
and load the result into Rd.

1 ADD Rd, SP, #Imm ADD Rd, R13, #Imm Add #Imm to the current value 
of the stack pointer (SP) and 
load the result into Rd.

15 14 13 12 11 10 8 0

[7:0] 8-bit unsigned constant

[10:8] Destination register

[11] Source
0 = PC
1 = SP

1 0 1 Rd0 SP Word8

7
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INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-19. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD R2, PC, #572 ; R2 := PC + 572, but don't set the
; condition codes. bit[1] of PC is forced to zero.
; Note that the THUMB opcode will
; contain 143 as the Word8 value.

ADD R6, SP, #212 ; R6 := SP (R13) + 212, but don't
; set the condition codes.
; Note that the THUMB opcode will
; contain 53 as the Word 8 value.
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FORMAT 13: ADD OFFSET TO STACK POINTER

OPERATION

This instruction adds a 9-bit signed constant to the stack pointer. The following table shows the THUMB assembler 
syntax. 

NOTE: The offset specified by #Imm can be up to -/+ 508, but must be word-aligned (ie with bits 1:0 set to 0) 
since the assembler converts #Imm to an 8-bit sign + magnitude number before placing it in field SWord7. 
The condition codes are not set by this instruction.

Figure 3-42. Format 13

Table 3-20. The ADD SP Instruction

S THUMB assembler ARM equivalent Action

0 ADD SP, #Imm ADD R13, R13, #Imm Add #Imm to the stack pointer (SP).

1 ADD SP, #-Imm SUB R13, R13, #Imm Add #-Imm to the stack pointer (SP).

15 14 13 12 11 10 6 0

[6:0] 7-bit immediate value

[7] Sign flag
0 = Offset is positive
1 = Offset is negative

1 0 1 1 0 SWord7

9 8 7

0 0 0 S
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INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-20. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

ADD SP, #268 ; SP (R13) := SP + 268, but don't set the condition codes.
; Note that the THUMB opcode will
; contain 67 as the Word7 value and S=0.

ADD SP, #-104 ; SP (R13) := SP - 104, but don't set the condition codes.
; Note that the THUMB opcode will contain
; 26 as the Word7 value and S=1.
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FORMAT 14: PUSH/POP REGISTERS

OPERATION

The instructions in this group allow registers 0-7 and optionally LR to be pushed onto the stack, and registers 0-7 
and optionally PC to be popped off the stack. The THUMB assembler syntax is shown in Table 3-21.

NOTE

The stack is always assumed to be Full Descending.

Figure 3-43. Format 14

Table 3-21. PUSH and POP Instructions

L R THUMB assembler ARM equivalent Action

0 0 PUSH { Rlist } STMDB R13!, { Rlist } Push the registers specified by 
Rlist onto the stack. Update the 
stack pointer.

0 1 PUSH { Rlist, LR } STMDB R13!, { Rlist, R14 
}

Push the Link Register and the 
registers specified by Rlist (if 
any) onto the stack. Update the 
stack pointer.

1 0 POP { Rlist } LDMIA R13!, { Rlist } Pop values off the stack into the 
registers specified by Rlist. 
Update the stack pointer.

1 1 POP { Rlist, PC } LDMIA R13!, {Rlist, R15} Pop values off the stack and 
load into the registers specified 
by Rlist. Pop the PC off the 
stack. Update the stack pointer.

15 14 13 12 11 10 0

[7:0] Register list

[8] PC/LR bit
0 = Do not store LR/Load PC
1 = Store LR/Load PC

[11] Load/Store bit
0 = Store to memory
1 = Load from memory

1 0 1 1 L Rlist

9 8 7

1 0 R
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INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-21. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

PUSH {R0-R4,LR} ; Store R0,R1,R2,R3,R4 and R14 (LR) at
; the stack pointed to by R13 (SP) and update R13.
; Useful at start of a sub-routine to
; save workspace and return address.

POP {R2,R6,PC} ; Load R2,R6 and R15 (PC) from the stack
; pointed to by R13 (SP) and update R13.
; Useful to restore workspace and return from sub-routine.
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FORMAT 15: MULTIPLE LOAD/STORE

OPERATION

These instructions allow multiple loading and storing of Lo registers. The THUMB assembler syntax is shown in the 
following table.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-22. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

STMIA R0!, {R3-R7} ; Store the contents of registers R3-R7
; starting at the address specified in
; R0, incrementing the addresses for each word.
; Write back the updated value of R0.

Figure 3-44. Format 15

Table 3-22. The Multiple Load/Store Instructions

L THUMB assembler ARM equivalent Action

0 STMIA Rb!, { Rlist } STMIA Rb!, { Rlist } Store the registers specified by 
Rlist, starting at the base 
address in Rb. Write back the 
new base address.

1 LDMIA Rb!, { Rlist } LDMIA Rb!, { Rlist } Load the registers specified by 
Rlist, starting at the base 
address in Rb. Write back the 
new base address.

15 14 13 12 11 10 8 0

[7:0] Register list

[10:8] Base register

[11] Load/Store bit
0 = Store to memory
1 = Load from memory

1 1 0 Rb0 L Rlist

7
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FORMAT 16: CONDITIONAL BRANCH

OPERATION

The instructions in this group all perform a conditional Branch depending on the state of the CPSR condition codes. 
The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead 
of the current instruction.

The THUMB assembler syntax is shown in the following table.

Figure 3-45. Format 16

Table 3-23. The Conditional Branch Instructions 

Cond THUMB assembler ARM equivalent Action

0000 BEQ label BEQ label Branch if Z set (equal)

0001 BNE label BNE label Branch if Z clear (not equal)

0010 BCS label BCS label Branch if C set (unsigned higher 
or same)

0011 BCC label BCC label Branch if C clear (unsigned 
lower)

0100 BMI label BMI label Branch if N set (negative)

0101 BPL label BPL label Branch if N clear (positive or 
zero)

0110 BVS label BVS label Branch if V set (overflow)

0111 BVC label BVC label Branch if V clear (no overflow)

1000 BHI label BHI label Branch if C set and Z clear 
(unsigned higher)

1001 BLS label BLS label Branch if C clear or Z set 
(unsigned lower or same)

1010 BGE label BGE label Branch if N set and V set, or N 
clear and V clear (greater or 
equal)

15 14 13 12 11 8 0

[7:0] 8-bit signed immediate

[11:8] Condition

1 1 0 Cond1 SOffset8

7
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NOTES
1. While label specifies a full 9-bit two’s complement address, this must always be halfword-aligned (ie with bit 0 set to 0) 

since the assembler actually places label >> 1 in field SOffset8.
2. Cond = 1110 is undefined, and should not be used.

Cond = 1111 creates the SWI instruction: see .

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-23. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

CMP R0, #45 ; Branch to ’over’ if R0 > 45.
BGT over ; Note that the THUMB opcode will contain
... ; the number of halfwords to offset.
...

over ... ; Must be halfword aligned.
...

1011 BLT label BLT label Branch if N set and V clear, or N 
clear and V set (less than)

1100 BGT label BGT label Branch if Z clear, and either N 
set and V set or N clear and V 
clear (greater than)

1101 BLE label BLE label Branch if Z set, or N set and V 
clear, or N clear and V set (less 
than or equal)

Table 3-23. The Conditional Branch Instructions  (Continued)

Cond THUMB assembler ARM equivalent Action
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FORMAT 17: SOFTWARE INTERRUPT

OPERATION

The SWI instruction performs a software interrupt. On taking the SWI, the processor switches into ARM state and 
enters Supervisor (SVC) mode.

The THUMB assembler syntax for this instruction is shown below.

NOTE: Value8 is used solely by the SWI handler; it is ignored by the processor.

INSTRUCTION CYCLE TIMES

All instructions in this format have an equivalent ARM instruction as shown in Table 3-24. The instruction cycle 
times for the THUMB instruction are identical to that of the equivalent ARM instruction.

EXAMPLES

SWI 18 ; Take the software interrupt exception.
; Enter Supervisor mode with 18 as the
; requested SWI number.

Figure 3-46. Format 17

Table 3-24. The SWI Instruction

THUMB Assembler ARM Equivalent Action

SWI Value 8 SWI Value 8 Perform Software Interrupt:
Move the address of the next instruction 
into LR, move CPSR to SPSR, load the 
SWI vector address (0x8) into the PC. 
Switch to ARM state and enter SVC 
mode.

[7:0] Comment field

15 14 13 12 11 10 0

1 1 0 1 1 Value8

9 8 7

1 1 1
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FORMAT 18: UNCONDITIONAL BRANCH 

OPERATION

This instruction performs a PC-relative Branch. The THUMB assembler syntax is shown below. The branch offset 
must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead of the current 
instruction.

NOTE: The address specified by label is a full 12-bit two’s complement address, 
but must always be halfword aligned (ie bit 0 set to 0), since the assembler places label >> 1 in the Offset11 field.

EXAMPLES

here B here ; Branch onto itself. Assembles to 0xE7FE. 
; (Note effect of PC offset).

B jimmy ; Branch to 'jimmy'.
 ... ; Note that the THUMB opcode will contain the number of 

; halfwords to offset.
jimmy  ... ; Must be halfword aligned.

Figure 3-47. Format 18

Table 3-25. Summary of Branch Instruction

THUMB Assembler ARM Equivalent Action

B label BAL label (halfword 
offset)

Branch PC relative +/- Offset11 << 1, 
where label is PC +/- 2048 bytes.

[10:0] Immediate value

15 14 13 12 11 10 0

1 1 1 0 0 Offset11
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FORMAT 19: LONG BRANCH WITH LINK

OPERATION

This format specifies a long branch with link. 

The assembler splits the 23-bit two’s complement half-word offset specifed by the label into two 11-bit halves, 
ignoring bit 0 (which must be 0), and creates two THUMB instructions.

Instruction 1 (H = 0)

In the first instruction the Offset field contains the upper 11 bits of the target address. This is shifted left by 12 bits 
and added to the current PC address. The resulting address is placed in LR.

Instruction 2 (H =1)

In the second instruction the Offset field contains an 11-bit representation lower half of the target address. This is 
shifted left by 1 bit and added to LR. LR, which now contains the full 23-bit address, is placed in PC, the address of 
the instruction following the BL is placed in LR and bit 0 of LR is set.

The branch offset must take account of the prefetch operation, which causes the PC to be 1 word (4 bytes) ahead 
of the current instruction

Figure 3-48. Format 19

15 14 13 12 11 10 0

[10:0] Long branch and link offset high/low

[11] Low/High offset bit
0 = Offset high
1 = Offset low

1 1 1 1 H Offset
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INSTRUCTION CYCLE TIMES

This instruction format does not have an equivalent ARM instruction. 

EXAMPLES

BL faraway ; Unconditionally Branch to 'faraway'
next ... ; and place following instruction 

; address, ie ’next’, in R14,the Link
; register and set bit 0 of LR high.
; Note that the THUMB opcodes will
; contain the number of halfwords to offset.

faraway  ... ; Must be Half-word aligned.

Table 3-26. The BL Instruction

H THUMB assembler ARM equivalent Action

0 BL label none LR := PC + OffsetHigh << 12

1 temp := next instruction address
PC := LR + OffsetLow << 1
LR := temp | 1



THUMB INSTRUCTION SET KS32C6200 RISC MICROCONTROLER

3-102

INSTRUCTION SET EXAMPLES

The following examples show ways in which the THUMB instructions may be used to generate small and efficient 
code. Each example also shows the ARM equivalent so these may be compared.

MULTIPLICATION BY A CONSTANT USING SHIFTS AND ADDS

The following shows code to multiply by various constants using 1, 2 or 3 Thumb instructions alongside the ARM 
equivalents. For other constants it is generally better to use the built-in MUL instruction rather than using a 
sequence of 4 or more instructions.

Thumb ARM

1. Multiplication by 2^n (1,2,4,8,...)

LSL Ra, Rb, LSL #n ;MOV Ra, Rb, LSL #n

2. Multiplication by 2^n+1 (3,5,9,17,...)

LSL Rt, Rb, #n ; ADD Ra, Rb, Rb, LSL #n
ADD Ra, Rt, Rb

3. Multiplication by 2^n-1 (3,7,15,...)

LSL Rt, Rb, #n ; RSB Ra, Rb, Rb, LSL #n
SUB Ra, Rt, Rb

4. Multiplication by -2^n (-2, -4, -8, ...)

LSL  Ra, Rb, #n ; MOV Ra, Rb, LSL #n
MVN  Ra, Ra ; RSB Ra, Ra, #0

5. Multiplication by -2^n-1 (-3, -7, -15, ...)

LSL  Rt, Rb, #n ; SUB Ra, Rb, Rb, LSL #n
SUB Ra, Rb, Rt

Multiplication by any C = {2^n+1, 2^n-1, -2^n or -2^n-1} * 2^n
Effectively this is any of the multiplications in 2 to 5 followed by a final shift. This allows the following additional 
constants to be multiplied. 6, 10, 12, 14, 18, 20, 24, 28, 30, 34, 36, 40, 48, 56, 60, 62 .....

(2..5) ; (2..5)
LSL  Ra, Ra, #n ; MOV Ra, Ra, LSL #n
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GENERAL PURPOSE SIGNED DIVIDE

This example shows a general purpose signed divide and remainder routine in both Thumb and ARM code.

Thumb code

;signed_divide ; Signed divide of R1 by R0: returns quotient in R0,
; remainder in R1

;Get abs value of R0 into R3
ASR R2, R0, #31 ; Get 0 or -1 in R2 depending on sign of R0
EOR R0, R2 ; EOR with -1 (0xFFFFFFFF) if negative
SUB R3, R0, R2 ; and ADD 1 (SUB -1) to get abs value

;SUB always sets flag so go & report division by 0 if necessary
BEQ divide_by_zero

;Get abs value of R1 by xoring with 0xFFFFFFFF and adding 1 if negative
ASR R0, R1, #31 ; Get 0 or -1 in R3 depending on sign of R1
EOR R1, R0 ; EOR with -1 (0xFFFFFFFF) if negative
SUB R1, R0 ; and ADD 1 (SUB -1) to get abs value

;Save signs (0 or -1 in R0 & R2) for later use in determining ; sign of quotient & remainder.
PUSH  {R0, R2}

;Justification, shift 1 bit at a time until divisor (R0 value) ; is just <= than dividend (R1 value). To do this shift 
dividend ; right by 1 and stop as soon as shifted value becomes >.

LSR R0, R1, #1
MOV R2, R3
B %FT0

just_l LSL R2, #1
0 CMP R2, R0

BLS just_l

MOV R0, #0 ; Set accumulator to 0
B %FT0 ; Branch into division loop

div_l LSR R2, #1
0 CMP R1, R2 ; Test subtract

BCC %FT0
SUB R1, R2 ; If successful do a real subtract

0 ADC R0, R0 ; Shift result and add 1 if subtract succeeded

CMP R2, R3 ; Terminate when R2 == R3 (ie we have just
BNE div_l ; tested subtracting the 'ones' value).
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;Now fixup the signs of the quotient (R0) and remainder (R1)
POP {R2, R3} ; Get dividend/divisor signs back
EOR R3, R2 ; Result sign
EOR R0, R3 ; Negate if result sign = – 1
SUB R0, R3
EOR R1, R2 ; Negate remainder if dividend sign = – 1
SUB R1, R2
MOV pc, lr

ARM Code

signed_divide ; Effectively zero a4 as top bit will be shifted out later
ANDS   a4, a1, #&80000000
RSBMI   a1, a1, #0
EORS   ip, a4, a2, ASR #32

;ip bit 31 = sign of result
;ip bit 30 = sign of a2

RSBCS   a2, a2, #0 

;Central part is identical code to udiv (without MOV a4, #0 which comes for free as part of signed entry sequence)
MOVS    a3, a1
BEQ     divide_by_zero

just_l ; Justification stage shifts 1 bit at a time
CMP     a3, a2, LSR #1
MOVLS   a3, a3, LSL #1 ; NB: LSL #1 is always OK if LS succeeds
BLO     s_loop

div_l
CMP     a2, a3
ADC     a4, a4, a4
SUBCS   a2, a2, a3
TEQ     a3, a1
MOVNE   a3, a3, LSR #1
BNE     s_loop2
MOV     a1, a4
MOVS    ip, ip, ASL #1
RSBCS   a1, a1, #0
RSBMI   a2, a2, #0
MOV pc, lr
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DIVISION BY A CONSTANT

Division by a constant can often be performed by a short fixed sequence of shifts, adds and subtracts.

Here is an example of a divide by 10 routine based on the algorithm in the ARM Cookbook in both Thumb and ARM 
code.

Thumb Code

udiv10 ; Take argument in a1 returns quotient in a1, 
; remainder in a2

MOV     a2, a1
LSR     a3, a1, #2
SUB     a1, a3
LSR     a3, a1, #4
ADD     a1, a3
LSR     a3, a1, #8
ADD     a1, a3
LSR     a3, a1, #16
ADD     a1, a3
LSR     a1, #3
ASL     a3, a1, #2
ADD    a3, a1
ASL     a3, #1
SUB    a2, a3
CMP     a2, #10
BLT     %FT0
ADD     a1, #1
SUB    a2, #10

0
MOV    pc, lr

ARM Code

udiv10 ; Take argument in a1 returns quotient in a1, 
; remainder in a2

SUB     a2, a1, #10
SUB     a1, a1, a1, lsr #2
ADD     a1, a1, a1, lsr #4
ADD     a1, a1, a1, lsr #8
ADD    a1, a1, a1, lsr #16
MOV     a1, a1, lsr #3
ADD     a3, a1, a1, asl #2
SUBS    a2, a2, a3, asl #1
ADDPL   a1, a1, #1
ADDMI   a2, a2, #10
MOV     pc, lr
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NOTES
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4 System Manager

OVERVIEW

The KS32C6200 System Manager has the following functions:

— Arbitrates bus access requests from several master blocks, based on a fixed priority. 

— Provides the required memory control signals for external memory accesses. For example, if a master block 
such as DMA or the CPU generates an address that corresponds to a DRAM bank, the System Manager's 
DRAM controller generates the required DRAM access signals (nRAS, nCAS, and so on). 

— Supports big-endian mode for most graphic device drivers (see Figure 4-5).

— Compensates for differences in bus width for data flowing between the external data bus and the internal data 
bus.

SYSTEM MANAGER REGISTERS

The KS32C6200 microcontroller has the SFRs, Special Function Registers, to keep the system control information 
of system manager, cache, DMA, UART and so on. The SFRs have the SMR, System Manager Register files, to 
configure the external memory maps such as DRAM, SRAM, ROM and extra-I/O control. 

By utilizing the SMR, you can specify the memory type, external bus width, access cycles, required control signal 
timings (nRAS, nCAS and so on), memory bank location and each memory bank size which has a very 
configurable address space. The SMR provides (or accepts) the control signals, addresses, and data that are 
required by external devices during normal system operation. There are eleven registers to control one ROM bank, 
two SRAM banks, two DRAM banks, four extra-I/O banks and DRAM Refresh.

The KS32C6200 provides up to 32 M bytes of address space and each bank provides up to 4 M half-word memory 
space because each bank has 22 address pins and 16-bit data width.

Figure 4-1.  KS32C6200 Memory Map (Default Map after Reset)

Undefined Region

Undefined Region

32 M bytes
(SA[24:0])

128 K half word

Special Function
Register

ROM Region
(Accessable Region)

0x01010000

0x01000000

0x00000000

0x00040000
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The KS32C6200 provides 32-MByte memory space and an internal 25-bit system address bus. You can use any 
address area from 0000000h to 1FEFFFFh by 64-Kbyte address steps. Each bank can be located anywhere in the 
32-MByte address space, except the upper 64-Kbyte area where SFRs (Special Function Registers) can be 
located. To use the full 32-MByte memory space, we recommend for you to allocate the SFRs to the upper 64-
kbyte address area, 1FF0000h–1FFFFFFh.

The configurable memory allocation in the KS32C6200 is designed to provide you with convenience. By 
manipulating the SMRs, you can easily allocate the memory area anywhere you wish and use the consecutively 
connected memory space without changing the H/W. You can also easily change the physical DRAM memory size 
by manipulating the SMR.  

For example, if you want to change the size of memory space from 1 M half word to 4 M half word. You can enlarge 
the memory space just by changing the next pointer of the DRAM bank. 

NOTE

The last 64 Kbyte area can not be allocated as memory banks except SFR. Because the last 64 Kbyte 
bank starts its address 1FFxxxxh, the next pointer of the last bank should be “200xxxxh”. Actually, the next 
point is 9 bits, so the value of the next pointer is 000xxxxh. If you need to utilize the full 32 M bytes of 
memory space, it is recommended that you allocate the SFRs to the last 64-Kbyte area, 1F0000h–
1FFFFFFh, and to use the remaining areas for other banks.   

Figure 4-2.  System Memory Map

32 MBytes
(SA[24:0])

Max. 4 M half word (22 bit) per bank

DRAM Bank 1

DRAM Bank 0

EXTRA Bank 3

EXTRA Bank 2

EXTRA Bank 1

EXTRA Bank 0

SRAM Bank 1

SRAM Bank 0

ROM Bank 0

Extra Bank 3

SP IO R/W 0

SP IO R/W 1

SPECIAL REGISTERS

Special I/O R/W 0

Special I/O R/W 1
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SYSTEM REGISTER ADDRESS CONFIGURATION REGISTER (SYSCFG) 

The SMRs (System Manager Registers) have the SYSCFG (System Register Address Configuration Register), 
which determines the start address (base point) of SFR (Special Function Register) files. The SYSCFG contains 
the start address of SFR. If the reset value of SYSCFG is 1001h, the SYSCFG is mapped to the virtual address 
01000000h.

Figure 4-3.  System Register Address Configuration Register (SYSCFG) 

Register Offset
Address

R/W Description Reset Value

SYSCFG 0x0000 R/W Special function register to determine the start
address

0x1001

NUStart WE CE SE

31 16 15 13 12 4 3 2 1 0

0 0 0

14

[0] Stall Enable (ST)
When set to 1, Stall operation is enabled
0 = Disable; It is recommended for faster operation.
1 = Enable; Insert an internal wait inside the core logic
      when non-sequential memory accesses occur.

[1] Cache Enable (CE)
When set to 1, Cache operation is enabled
0 = Cache operation disable
1 = Cache operation enable 

[2] Write Buffer Enable (WE)
When set to 1, Write buffer operation is enabled
0 = Write buffer operation disable
1 = Write buffer operation enable

[3] Not Used Bit (NU)

[12:4] SYSCFG Address (SFRs Start Address)
The resolution is 64 K bytes, if you want to place the 
start address at 1800000h. 
Setting value = 1800000h/10000h = 180xh

[15:13] Reserved Bits
You should set them 000b
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Start Address

The SYSCFG[12:4] bits indicate the start address of SFRs. Since the SYSCFG is located at the bottom of the SFR 
file, the SYSCFG's location is the same as the start address of the SFRs. 

You can allocate the SFRs to the arbitrary location by manipulating the SYSCFG. We recommend that you do not 
change the SYSCFG during operation once you have configured it after a system reset. The SYSCFG should not 
be overlapped with any other bank. 

If the start address of the SYSCFG is changed, the other control registers in the SFRs will have the new address 
which is the sum of its offset address and the new address of SYSCFG. For example, after a system reset, the 
initial address of SYSCFG is 1000000h and the ROM control register has the initial address '1003000h, because 
the ROM control register has the offset value '3000h', and the initial address is the sum of 1000000h and 3000h. If 
the SYSCFG address is changed to 1800000h, the address of ROM control register will be 1803000h. 

Cache Disable/Enable

You can disable/enable the cache memory in the KS32C6200. You can enable the cache memory by setting the 
CE bit to logic 'one'. You can also use the non-cacheble area to maintain the data coherency of a specific memory 
area. Because the cache memory does not have the auto-flushing mode, you should be careful about the data 
coherency when you reenable the cache memory. You also have to check whether or not the DMA changes the 
memory data. The DMA accessible memory area must be non-cacheble to keep data coherency. 

To keep the data coherency between the cache and the external memory, the KS32C6200 uses the write-through 
policy. To compensate for performance degradation, there is an internal four-depth write buffer. Please refer to 
Chapter 5 for more detail information.

Write Buffer Disable/Enable

The KS32C6200 has four 'Write Buffer Registers' to enhance its memory writing performance. When the Write 
Buffer mode is enabled, the CPU writes data into the Write Buffer first, instead of an external memory which 
requires the longer memory write cycles. Write Buffer has 4 registers and each register includes a 32-bit data field, 
a 25-bit address field and a 2-bit status field.

Stall Disable/Enable

When the stall option is enabled, the MCU core logic inserts a wait, which occurs by non-sequential memory 
access. The MCU core has a larger time margin when memory access is executed. When the stall option is 
disabled, the MCU core logic does not insert a wait signal. The operation time of MCU core logic is faster than 
when the stall option is enabled. 
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ROM CONTROL REGISTER

The KS32C6200 supports one ROM bank for program memory. The ROM bank has configurable features such as 
access timing, access size and page mode support. The ROMCON (ROM Control Register) in SMR supplies the 
control modes such as normal mode access, page mode access and wait cycles of each mode and external ROM 
bank.

The initial address of ROMCON is 01003000h which is the sum of the initial address of SYSCFG (01000000h) and 
ROM control register offset address (000030000h). The register address is reconfigurable. You can change the 
ROM control register by changing the content of SYSCFG.   

Figure 4-4.  ROM Control Register (ROMCON)

Register Offset
Address

R/W Description Reset Value

ROMCON 0x3000 R/W ROM control register 02003002h

31 23 22 13 11 1014 8 7 2 1 0

[1:0] Bus Width (DW)
10 = 16 bit (half-word) Others = No use
(The ROM interface supports only 16 bits of 
external data bus width)

[8:7] Page Mode Configuration (Pmc)
00 = Normal ROM 01 = 4 data page
10 = 8 data page 11 = 16 data page

[10:9] Page Mode Access Cycles (Tacp)
00 = 5 cycle 01 = 2 cycles
10 = 3 cycle 11 = 4 cycles

[13:11] Access cycles for ROM bank (Tacc)
000 = Disable bank 100 = 5 cycles
001 = 2 cycle 101 = 6 cycles
010 = 3 cycles 110 = 7 cycles
011 = 4 cycles 111 = Not used

[22:14] Start point of ROM bank (Base Pointer)
It indicates ROM bank start address

[31:23] End point + 1 of ROM (Next Pointer)
It indicates ROM bank end address + 1
(Next point value has to be bigger than the value of the 
base pointer. If the base pointer value and next pointer 
value are the same, ROM bank is not used any more)

Next Pointer Tac Tacp DWPmcBase Pointer

9 6
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Page Mode ROM Access (Burst Mode Access) 

KS32C6200 ROM can interface with simple ROM and page mode ROM. You can enable/disable burst mode and 
can define the readable number of burst data by using ROMCON[8:7]. ROM has two different access cycles for 
simple ROM and page mode ROM. When page mode is selected, the first data access time is different from the 
access time of the following data if the data is in the same page. 

Tacc, access cycles for ROM bank, is defined as the access cycle after the active bank changes to the ROM bank. 
This cycle time is also used for simple ROM access mode. When CPU reads consecutive data within the same 
page, the page mode ROM supplies a data read cycle shorter than reading the different page. The Tacp bit in ROM 
control register defines the consecutive data read cycles in page mode ROM.

Writing on the ROM bank 

In the KS32C6200, you can write data into the ROM bank area. Though the internal program of ROM is not 
changed physically, you may need a writing feature if SRAM or flash ROM is installed into the ROM bank. 

ROM Bank Space

You can configure memory space in the KS32C6200. You can manipulate the memory bank size and bank location 
by using the ROMCON (ROM Control Register). The ROMCON has two 9-bit address pointers. One is the base 
pointer and the other is the next pointer. These two pointers denote the beginning and ending addresses of the 
ROM bank. The values of these pointers are compared with the address[24:16] to make a bank-select signal. The 
size of the ROM bank area can be increased/decreased by 64 K bytes. The value of the next pointer should be the 
sum of ROM bank end address and one. 

For example, after a system reset, the start address of ROM bank is 00000000h and the end address is 
00FFFFFFh. The value of the next pointer is 0100h ((0FFFFFFh+1h)/64-Kbytes). If the values of the next pointer 
and the base pointer of the ROM bank are the same, the ROM bank will be disabled.

Initialization

After a system reset, the initial value of ROMCON is set to 80003002h. In the system initialization, the external bus 
width is 16-bits (half-word) and the normal ROM mode is enabled. The longest value of the page mode access 
cycles is selected. 
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ROM Programming

Figure 4-5.  The Byte Swap Operation of BTU and Data Positions in Memory

Big-Endian Format / Little-Endian Format

In the Big-Endian format, the most significant byte of a word is stored at the lowest numbered byte and the least 
significant byte at the highest numbered byte. The byte '0' of the memory system is connected to data lines from 31 
to 24. 

In the Little-Endian format, the lowest numbered byte in a word is considered as the least significant byte, and the 
highest numbered byte as the most significant. The byte '0' of the memory system is connected to data lines from 7 
to 0.

Big-Enidan Supporting Core and Little-Engine Supporting Physical Memory

The ARM7TDMI core in KS32C6200 is a little-endian base core supporting the big-endian format. To support the 
big-endian format in ARM7TDMI, the KS32C6200 adopts BTU, Bus Twist Unit. The main function of BTU is to 
exchange bytes in a word as shown in Figure 4-5. For example, when MCU core accesses the data ‘100h’, the BTU 
alters ‘100h’ to ‘103h’, and the CPU will get the data, 103h, in the physical memory. 

 To put big-endian format data into memory, a compiled code has to put into memory ROM by exchanging bytes in 
a word. In Figure 4-5, double swappings (BTU and compiled code swapping) enable Big-Endian format with no 
problem. The reason that the KS32C6200 uses the double swappings is due to internal hardware implementation 
issue. 

Byte Swapping in a Word 

Byte swapping is executed by using the sample C. The sample changes the byte sequence in a word. 

Unsigned Long Swap (Unsigned long Data) // Make the Sequence of Bytes Reverse in a word
{

return ( ( (0xff000000 & data)>>24)+
  ( (0x00ff0000 & data)>>8)+
  ( (0x0000ff00 & data)<<8)+
  ( (0x000000ff & data)<<24) );

}

MCU Core

100h

101h

102h

103h

b3

b2

b1

b0

b3

b2

b1

b0

b0

b1

b2

b3

BTU

Physical Memory Compiled Code

*BTU: Byte Twist Unit

100h

101h

102h

103h

b0

b1

b2

b3

100h

101h

102h

103h

b3

b2

b1

b0

ROM writing
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ROM Writing

BTU changes the byte sequence in a word. Program codes are byte-swapped. To write program to ROM, do as 
follows;

1. Compile the program in big-endian format

2. Byte-swap the compiled code (recommend to make a program that executes byte-swap of a binary file)

3. Write the code to ROM

Little-Endian Format Code versus Byte-Swapped Big-Endian Format Code

If character strings do not exist in a program, the Little-Endian format code may be the same as the byte-swapped 
big-endian format code. Because the bytes in strings are not affected by the endian format, the two codes are 
different in strings. The byte-swapped big-endian format code has to be used in the KS32C6200. If Little-Endian 
format code is used, the strings will not be displayed correctly (byte-swapped strings may be displayed).

Interfacing External Peripherals

Peripheral address is also byte-swapped. If you want to access address 00b in memory, you have to access 
address 11b in the program. This is due to the word swapping of BTU. The relation between physical address and 
the address used by instructions is as follows. 

Table 4-1.  The Relation Between Physical Address and Address in Instructions

Physical address Byte Wide Access
(Address Used in Instructions)

Half Word Wide Access
(Address Used in Instructions)

00b 11b 10b

01b 10b –

10b 01b 00b

11b 00b –
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SRAM CONTROL REGISTERS

KS32C6200 has two banks of SRAM. Each bank can set up its SRAM access configuration. SRAMCON0 and 
SRAMCON1 (SRAM Control Registers) specify not only the features of SRAM but also two special I/Os (special 
I/O 0, special I/O 1) in the external bank 3. 

The initial address of SRAMCON0,1 are 01003004h and 01003008h. The real address of each SRAM control 
registers is the sum of 'SYSCFG address' and 'offset address' of each SRAM control register. The register address 
is reconfigurable, so you can change the SRAM control register address using the SYSCFG. 

Figure 4-6.  SRAM Control Registers (SRAMCON0, SRAMCON1)

Register Offset
Address

R/W Description Reset Value

SRAMCON0 0x3004 R/W SRAM control register 0 0x00000000
SRAMCON1 0x3008 R/w SRAM control register 1 0x00000000

31

Base Pointer

[1:0] Bus Width (DW)
00 = Disable bank 01 = 8 (byte mode)
10 = 16 (half word mode) 11 = Not used
KS32C6200 has external 16-bit data bus and supports
8/16 bit data bus width)

[10:2] Special I/O address setting value
It denotes the start address of Special I/O in extra-bank 3. 
Extra-bank 3 has two Special I/O areas for cost effective solution. 
(see the explanation of extra-bank for more information)

[13:11] Access cycles for SRAM bank (Tacc)
000 = Disable bank 100 = 5 cycles 
001 = 2 cycles 101 = 6 cycles
010 = 3 cycles 110 = 7 cycles
011 = 4 cycles 111 = Not used

[22:14] Start point of SRAM bank (Base pointer) 
Indicates SRAM bank start address

[31:23] End point + 1 of SRAM bank (Next Pointer)
Indicates SRAM bank end address + 1
(Next point value has to be bigger than base pointer value. 
If the values of base pointer and next pointer are the same, 
the SRAM bank is not valid any more)

1014 13 11

Tacc Special I/O Adr.

23 22 0

Next Pointer DW

2 1
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SRAM Bank Space

KS32C6200 provides two SRAM banks and each bank can be configured differently. You can program SRAM 
access cycles, memory bank size and location by using the SRAMCON0,1. The SRAM control register has two 9-
bit address pointers (base pointer and next pointer). These two pointers denote the start address and end address 
of the SRAM bank. These 9 bits are compared with the address [24:16] to make the bank-select signal. The size of 
SRAM bank area can be increased/decreased by 64 K bytes. The value of the next pointer should be the sum of 
the end address of SRAM bank and one. 

Initialization

When the system is initialized, the value of both SRAM control registers is 0000000h and it specifies that SRAM 
banks are disabled because the next pointer and the base pointer have the same values. 

Special I/O Address

The extra-bank 3 of KS32C6200 has two special I/O areas to make simple control signal for the external latch. Two 
SRAM control registers have 9 bits dedicated for these special I/O areas in the extra-bank 3. 

extra-bank 3 provides four special control signals, nIORD0,1and nIOWR0,1. When you read/write data from/to 
external latch devices, the four special control signals do not need additional address decoder logics. These 
signals are available only at extra-bank 3. When MCU accesses any special I/O area specified by SRAM control 
registers, the extra-bank generates I/O read/write signals to the corresponding area. Figure 4-20 shows the 
diagram of special I/O read/write interface logic. 

Address Bus Generation

The address bus of KS32C6200 is quite different from the general MCUs'. Although general MCU does not use the 
A0 pin in 16-bit data bus width, the KS32C6200 always uses the A0 pin regardless of data bus width. When an 8-bit 
data bus is selected, the resolution of address bus is a byte and when a 16-bit is selected, the resolution of address 
bus is a half-word.

Figure 4-7.  External Address Bus Generation (ADDR[21:0])

Data Bus Width External Address Pins (ADDR[21:0]) Accessible Memory size
8-bits A21-A0 (internal)    4 M bytes
16-bits A22-A1 (internal)   4 M-byte half-word

A[21:0]

A[22:1]

Internal Address BUS

8-bit

16-bit

External address pins
ADDR[21:0]

Data bus width configuration
(8bit/16bit)

22-bit

22-bit

22-bit
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SRAM Bank Configuration

The nWBE (not Write Byte Enable) signal is for SRAM, the extra I/O or external memories such as flash memory. 
When CPU writes one-byte data to an external RAM with 16-bit data bus, only one 8-bit data must be written. 
However, the other 8-bit data should not be written. The nWBE[0] is for low-byte write operation and nWBE[1] is for 
upper-byte write operation.

The DRAM has different writing methods from SRAM and other external memories. The DRAM module has two 
CAS signals to separate data bus by a byte unit order. A RAS signal is used for bank selection and a CAS signal  
for byte selection.

 Figure 4-8.  DRAM and SRAM Bank Configuration

Bank 0

Upper
Byte

Lower
Byte

Bank 1nRAS1

nRAS0

nCAS1

nCAS0

DRAM

Bank 0

Upper
Byte

Lower
Byte

Bank 1nRCS1

nRCS0

nWBE[1]

nWBE[0]

SRAM
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DRAM CONTROL REGISTERS

KS32C62000 has two banks of DRAM and each bank can control DRAM access timing as other memory banks do. 
The DRAM interface has two DRAMCON0,1 (DRAM Control Registers) and one REFCON (DRAM Refresh Control 
Register). The initial addresses of each DRAM control register are 01003010h and 01003020h. The Refresh 
control register address is 01003024h. You can change the address of the DRAM control register by changing the 
value of SYSCFG.

KS32C6200 provides a fully programmable configuration for DRAM interface. You can easily modify the 
configuration setting value such as external data bus width, number of access cycles for fast page or EDO, access 
cycles for each DRAM bank and row address strobe (nRAS) pre-charge timing by changing the value of the 
corresponding DRAM control register. The Refresh Control register controls the DRAM refresh operation. 
KS32C6200 supports CAS before the RAS (CBR) refresh mode and Self-Refresh mode.

KS32C6200 can generate row and column address, and supports symmetric/asymmetric address DRAM by 
changing the number of address line from 8 to 11. It can support various sizes of DRAM by varying column address 
size. If the number of a column address or a row address is larger than 11, the accessible DRAM memory size is 
smaller than the original size of the DRAM. For example, if a 16 M bit DRAM with 4 M x 4 (row address=12-bit and 
column address=10-bit) is connected to KS32C6200, the maximum accessible size of the memory is 8 M bit (11-bit  
x10-bit) and the other 8 M bit will be obsolete. 

EDO Mode DRAM Access

Even if you specify DRAM as EDO mode, KS32C6200 gives the same timing diagram compared with normal fast 
page mode. However, KS32C6200 CPU fetches data (when read) a half-clock later than normal fast page mode, 
because EDO mode can make data valid even if CAS goes to high when RAS is low. CPU can have enough time 
to access and latch the data. Eventually, EDO mode can reduce memory access time.   

DRAM Bank Space

KS32C6200 provides two DRAM banks and each bank can be configured differently. You can program the DRAM 
access cycles, memory bank size and bank location by using two DRAM control registers, DRAMCON0,1. DRAM 
control register has two 9-bit address pointers, Base and Next pointer. These two pointers denote the start and end 
address of DRAM bank. These 9-bits are compared with the address [24:16] to make the bank select signal. The 
size of the DRAM bank area can be increased/decreased by 64 K bytes. The value of the next pointer should be 
the sum of the end address of the bank and one. 

Initialization 

When the system is initialized, the start address and end address of two DRAM bank are 00000000h. It specifies  
that the DRAM bank is disabled because the respective values of the next pointer and the base pointer are the 
same.  

DRAM Bank Configuration

The DRAM has different write methods from SRAM or other external memories. DRAM module has two CAS 
signals to separate data bus by byte order. RAS signal is used for bank selection and CAS signal is used for byte 
selection. Figure 4-9 shows the DRAM bank configuration. 

Register Offset 
Address

R/W Description Reset Value

DRAMCON0 0x0000301c R/W DRAM 0 control register 0x00000000
DRAMCON1 0x00003020 R/W DRAM 1 control register 0x00000000
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Ex) Setting for 60 ns EDO DRAM (KM416V1204)

Figure 4-9.  DRAM Control Registers (DRAMCON 0,1)

Conditions Setting Value for DRAMCON
Memory map: 1000000h–11fffffh
DRAM: 10 bits (row)x 10 bits (column) x 16 bits (data), 60 ns, EDO
MCLK: 33 MHz

0x9040101a

31 23 22 13 12 11 1014 8 7 4 3 2 1 06 5

[1:0] Bus Width (DW)
00 = Disable Bank 01 = 8(Byte)
10 = 16 (Half word) 11 = Not used

[3:2] Column Address Number (CAN)
00 = 8 bits 01 = 9 bits
10 = 10 bits 11 = 11 bits

[4] EDO ERAM or Ordinary DRAM (EDO)
0 = Ordinary 1 = EDO DRAM

[6:5] CAS strobe time (@ Page mode) (TPGM)
00 = 1 cycle 01 = 2 cycles
10 = 3 cycles 11 = 4 cycles

[7] CAS pre-charge (Tcp)
0 = 1 cycle 1 = 2 cycles

[10:8] CAS strobe time (@ Single mode) (Tcs)
000 = 1 cycle 100 = 5 cycles 
001 = 2 cycles 101 = Not used
010 = 3 cycles 110 = Not used
011 = 4 cycles 111 = Not used

[11] RAS to CAS delay (Trc)
0 = 1 cycle 1 = 2 cycles

[13:12] RAS pre-charge time (Trp)
00 = 1 cycle 01 = 2 cycles
10 = 3 cycles 11 = 4 cycles

[22:14] Base point of DRAM x (Base Pointer)
DRAM bank start address 

[31:23] End point + 1 of DRAM x (Next Pointer)
DRAM bank end address + 1

Next Pointer Trp Tcs CAN DWTpgmBase Pointer Trc Tcp EDO
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DRAM REFRESH CONTROL REGISTER

KS32C6200 provides the CAS Before RAS (CBR) refresh and Self-refresh Mode. The refresh control register 
(REFCON) determines refresh mode, refresh timings, refresh intervals as well as external bus enable.

Figure 4-10.  DRAM Refresh Control Register (REFCON)

Register Offset
Address 

R/W Description Reset Value

REFCON 0x00003024 R/W DRAM refresh control 0x00000001

[0] Validity of Special Register Field (VSF)
0 = Not Accessible to Memory Bank
1 = Accessible to Memory Bank
(Whenever MCU accesses one of the System Manager 
registers (SMR), the VSF bit is auto-cleared and the external 
bus is disabled. To re-activate the external bus, the VSF bit 
should be set to 1 by using the STMIA instruction in the end. 
You should write into 10 system manager registers all together 
with the STMIA instruction while the VSF bit set instruction is in 
the end.)

[15] Reserved 

[16] Refresh Enable (REN)
0 = Self refresh mode or disable DRAM refresh.
(When this bit is set to 0, the DRAM enters the self refresh 
mode and cannot be accessed.)
1 = Enable DRAM Refresh
(When this bit is cleared, the MCU refreshs the DRAM 
periodically and can read/write the DRAM)
 
[19:17] CAS Hold Time (Tcs)
000 = 1 cycles 100 = 5 cycles 
001 = 2 cycles 101 = Not used
010 = 3 cycles 110 = Not used
011 = 4 cycles 111 = Not used

[20] CAS Set-up Time (Tcsr)
0 = 1 cycle 1 = 2 cycles

[31:21] Refresh interval (Refresh count)
Refresh Period = (211 - Value + 1) / MCLK
Ex) If refresh duration is 15.6us,
      Refresh count Value =  2     + 1 - 33 x 15.6

           = 10111111110b

31 20 19 17 16 15 14 1 021

Refresh  count Tcsr Tcs REN VSF0

11
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DRAM SELF-REFRESH MODE

DRAM requires a refresh operation periodically to keep data correct, and JEDEC defines a couple of refresh 
modes. The self-refresh mode, which is defined in JEDEC specification, enables the DRAM to refresh memory 
cells internally without periodical external refresh control signals, unless another refresh mode happens or power 
fails.

The operation of self-refresh is similar to that of CBR (CAS before RAS) refresh. Once after CPU generates CBR 
mode signals and keeps the CBR mode state for more than 100 us, DRAMs the recognize refresh mode as self- 
refresh mode instead of CBR refresh.

self-Refresh mode by Hardware

When a nRESET, system reset pin, is low, the system manager block generates self-refresh mode signals. For 
example, whenever the KS32C6200 is initialized, it activates self-refresh mode. This hardware refresh feature 
enables the system to avoid DRAM data loss if a system back-up circuitry supplies power to DRAM continuously 
while main power is disconnected.

When the main power of the system is disconnected, the KS32C6200 will be disabled. Meanwhile, if DRAM has 
power back-up circuitry, it still requires periodical refresh signals from the KS32C6200. Therefore, if KS32C6200 
does not make DRAM self-refresh mode, it loses valid DRAM data in a short time.

For this reason, when the main power of the system is disconnected and nRESET goes to the low signal, the 
system manager block of KS32C6200 makes self-refresh signals. You can make memory back-up systems easily 
by utilizing this feature, if only DRAM is used for system memory.

Figure 4-11.  self-Refresh Mode Entry Process by nRESET (Power-On)

nRESET

InternalRST

nRAS

nCAS

nOE

DATA

reset filter
65 Cycles

Internal Reset 256 Cycles

DRAM will enter self refresh mode ater 100us

Main Power
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Figure 4-12.  Self-Refresh Mode Entry Process by nRESET (Power-Off)

nRESET

InternalRST

nRAS

nCAS

nOE

DATA

reset filter
65 Cycles

DRAM will enter self refresh mode ater 100us

Main Power
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Self-Refresh mode by software

After a system reset, KS32C6200 goes into the DRAM self-refresh mode. By setting the REN bit of DRAM refresh 
control register to "1", you can make the system manager block work as a normal DRAM access mode.

To enable the self-refresh mode during a normal DRAM access mode, you need to change the REN bit to "0". 
System manager detects the value of the REN bit, changing the value from 1 to 0, and then activates the self- 
refresh mode. If you want change the mode from self-refresh mode to normal DRAM access mode, just write "1" to 
REN bit once again.

Figure 4-13.  Self-Refresh Mode Entry Process by Software

NOTE: When DRAM does not recognize self-refresh mode after a system initialization
Even though KS32C6200 activates self-refresh mode when the system power is connected, DRAM may not recognize self- 
refresh mode correctly, because of unstable state of control signals during a system initialization— most of DRAMs recognize 
the self-refresh mode very well when power is switched on. If the DRAM does not go into the self-refresh mode and nRAS, 
nCAS are low level, the DRAM outputs data with the assertion of OE signal. In this case, KS32C6200 may fetch corrupted data 
from external memories because DRAM always outputs data with the assertion of OE signal. 

KS32C6200 has a watch-dog timer to cope with a system malfunction problem. When KS32C6200 is initialized, the watch-dog 
timer is enabled and makes the external system reset signal unless MCU disables the watch-dog timer in the middle of an 
operation. Therefore, it is recommended that you put the code, which disables the watch-dog timer, into the boot ROM area. If 
"power on initial" does not work correctly and KS32C6200 fetches corrupted data, the watch-dog timer will make a system reset 
signal, causing the system reset of KS32C6200 once again. The second watch-dog reset will cause DRAM to enter the self-
refresh mode since system power and other states are stable.

If KS32C6200 accesses DRAM to read or write data during the self-refresh mode, the nRAS and nCAS signals do not work at 
all, because the DRAM accessing during the self-refresh mode causes corrupted data to be read or written. 

REN

nRAS

nCAS

nOE

DATA

CPU writers
SFR bits

CPU writers
SFR bits

DRAM access available DRAM Self refresh mode DRAM access available

DRAM enter CBR-Refresh
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Memory access is forbidden when the SMR is changed.

The external bus is disabled when MCU accesses SMRs to change system memory configurations. It is intended to 
prevent the system malfunction, caused by memory address space overlapped during the new configuration. To re-
activate external bus operation, the VSF bit in the refresh control register needs to be set to logic 'one' by writing 
SMRs with STMIA instruction. While STMIA instruction writes 10 registers of SMRs, the refresh control register 
must be written at the last step with VSF bit = “0” so that the external bus can be reactivated right after the System 
Manager Register has a new configuration. 

It is not recommended for you to change the SFRs after a system initialization. If the SFRs is changed, especially 
memory related areas, you have to flush the cache memory for data coherency.

Figure 4-14.  DRAM Refresh Timing

MCLK

nRAS

nCAS

Address

nWE

Data

Tcsr Tcs
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EXTRA-BANK ACCESS CONTROL REGISTERS

The KS32C6200 provides four extra-banks and four EXTCONn (extra-bank Control registers) which control timing, 
bank size and bus width. Extra-bank 3 has special features compared with other extra-banks. It has two special 
dedicated addresses (refer to two SRAM control registers) to provide the low cost external I/O control solution. 
Extra-bank 3 has special signals such as nIORD0/1 and nIOWR0/1. When you read/write data from/to external 
latch devices in extra-bank 3, the extra-address decoding ICs are not required any more. Basically, they have the 
same timing diagram as extra-bank 3.  

The initial address of each I/O control register is the sum of its own offset address with the initial SYSCFG register 
address, 01000000h. 

Figure 4-15.  Special I/O Address Map

Register Offset
Address

R/W Description Reset Value

EXTCON0 0x300c R/W extra-bank 0 control register 0x00000000
EXTCON1 0x3010 R/W extra-bank 1 control register 0x00000000
EXTCON2 0x3014 R/W extra-bank 2 control register 0x00000000
EXTCON3 0x3018 R/W extra-bank 3 control register 0x00000000

nWE nOE

nIOWR1

nIORD1

nIOWR0

nIORD0

nECS3

64KB

64KB

End address of
Extra Bank 3

Special I/O 1 address
specified by SRAM 
control1 register

Special I/O 0 address
specified by SRAM 
control 0 register

Start address of
Extra Bank 3
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Fetching data from read cycle

 When fetching data, the point of data reading is the last down edge of MCLK within the nECS active region. Users 
may be curious about the figure 4-23, nOE's deasserting before the point of data reading. If nOE has to be 
deasserted after the point of data reading, use 'tcoh'=0 which defines the time between nOE's deasseting and 
nECS's deasserting. Setting 'tcoh' as 0, nOE is deasserted after the point of data reading as you want.

Special I/O Address

Two SRAM control registers have dedicated 9 bits each for the extra-bank 3, for providing the low cost system 
solution. Bank 3 has special signals, nIORD0/1, nIOWR0/1. When you read/write data from/to external latch 
devices, these signals prevent extra-address decoding ICs. These signals are only available at extra-bank 3. When 
CPU access any of the special I/O address area (64-Kbytes, 16-bit offset address) specified by SRAM Control 
registers, the extra-bank generates I/O Read and Write signals for the corresponding address area. Fig 4-23, 24 
shows the timing diagram of special I/O read/write cycles.
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Figure 4-16.  Extra-bank Control Registers (Extcntr0,1,2,3)

31 23 22 13 11 1014 8 7 4 2 1 05

[1:0] Programmable Bus Width (DW)
00 = Disable Bank 10 = Half word
01 = Byte 11 = Not used

[4:2] Chip Selection Set-up on nOE (Tcos)
000 = 0 cycle 100 = 4 cycles
001 = 1 cycle 101 = 5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

[7:5] Address Set-up before nECS (Tacs)
000 = 0 cycle 100 = 4 cycles
001 = 1 cycle 101 = 5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

[10:8] Chip Selection Hold on nOE (Tcoh)
000 = 0 cycle 100 = 4 cycles
001 = 1 cycle 101 = 5 cycles
010 = 2 cycles 110 = 6 cycles
011 = 3 cycles 111 = 7 cycles

[13:11] Access cycles (nOE low time) (Tacc)
000 = Not used 100 = 5 cycles
001 = 2 cycle 101 = 6 cycles
010 = 3 cycles 110 = 7 cycles
011 = 4 cycles 111 = 8 cycles

[22:14] Start Address of Extra Bank n. (Base pointer)
It denotes the start address of extra-bank.

[31:23] End point + 1 of Extra Bank n (Next Pointer)
It denotes the plus of end address of extra bank with one.

Next Pointer Tacc Tcoh Tocs DWTacsBase Pointer
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MEMORY MAPPING FOR EXTERNAL MEMORY AND I/O

Figure 4-17. An Example of System Manager Register Settings

Special
Function

Start address
SYSCFG[12:4]: 1FFh

ROMCON
Next pointer: 004h
Base Pointer: 000h

SRAMCON0

SRAMCON1
Next pointer: 000h
Base Pointer: 000h

DRAMCON0

DRAMCON1
Next pointer: 000h
Base Pointer: 000h

ETXCON0

ETXCON1
Next pointer: 0A1h
Base Pointer: 0A0h

ETXCON2

ETXCON3
Next pointer: 90h
Base Pointer: 80h

Special I/O 1
Start address
SRAMCON1: 000h

Special I/O 0

Next pointer: 184h
Base Pointer: 180h

Next pointer: 160h
Base Pointer: 120h

Next pointer: 000h
Base Pointer: 000h

Next pointer: 000h
Base Pointer: 000h

Start address
SRAMCON0: 082h

SFR

SRAM0

DRAM0

I/O BANK 1

I/O BANK 3

I/O BANK 3

ROM

32MB Memory space

1FFFFFFh

1FF0000h

183FFFFh

1800000h

15FFFFFh

1200000h

0A0FFFFh

0A00000h

090FFFFh

082FFFFh

0820000h

0800000h

003FFFFh

0000000h

Special I/O 0
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TIMING DIAGRAM

Figure 4-18.  Simple ROM Access Timing

Figure 4-19.  Page Mode ROM Access Timing

MCLK

Address

nRCS

nWE

nOE

tADDRd

tNROE

Tacc = 6

tNRCS

tNROE

Data(R)

tRDh

tADDRh

tNRCS

tNROE tNROE

tWDh

tADDRh

tNROE tNROE

Tacc Tacp Tacp Tacp

tWDh

MCLK

Address

nRCS

nWE

nOE

Data(R)
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Figure 4-20.  SRAM Read Timing

Data(R)

MCLK

Address

nRCS

nWE

nOE

nWBE

tADDRd

tNROE

Tacc = 6

tNRCS

tNROE

tRDh

tADDRh

tNRCS



KS32C6200 RISC MICROCONTROLLER SYSTEM MANAGER

4-25

Figure 4-21.  SRAM Write Timing

Data(W)

MCLK

Address

nRCS

nWE

nOE

nWBE

Tacc = 6

tNRCS

tNROE tNROE

tWDh

tADDRdtADDRh

tNRCS

tNRWE tNRWE

tNRWEtNWBE

tWDd
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Figure 4-22.  DRAM Bank Read Timing (Page Mode)

tADDRd

MCLK

nCAS

nOE

Address

Data(R)

Trp tNRASrtNRASf

Trc Tcs Tcp Tpgm

tNCASf tNCASr tNCASf tNCASr

tADDRh tNDOE

EDO

tNDOE

row addr column addr column addr

nRAS

Fetch Time
@Normal DRAM

Fetch Time
@EDO DRAM
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Figure 4-23.  DRAM Bank Write Timing (Page Mode)

tADDRd

MCLK

nCAS

nOE

Address

Data(W)

Trp tNRASrtNRASf

Trc Tcs Tcp Tpgm

tNCASr tNCASW tNCASr

tADDRh tNDWEtNDWE

row addr column addr column addr

nRAS

tNCASw

tWDDhtWDDhtWDDd

tWDDh
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Figure 4-24.  Extra-I/O Read Timing (tCOH=1, tACC=4, tCOS=1, tACS=2)

nI/ORD

MCLK

Address

nECS

nWE/
nWBE

nOE

Data(R)

tADDRd

tcos

tcoh

tNROE

tRDh

tADDRh

tacs tNECS

tNIORD

tNECS

tNROE

Tacc = 4

tNIORDTacs + Tcos

tcoh=0

tcoh=1
Data fetch ( tcoh=0) Data fetch ( tcoh=1)



KS32C6200 RISC MICROCONTROLLER SYSTEM MANAGER

4-29

Figure 4-25.  Extra-I/O Write Timing

nI/OWR

MCLK

Address

nECS

nWBE

nWE

Data(W)

tADDRd

tcoh

tWDh

tADDRh

tacs tNECS

tNIOWR

tNECS

tNRWE

tNIOWRTacs + Tcos + 0.5clk

tNRWE

tNWBE tNWBE
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NOTES
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5 Unified (Instruction/Data) Cache

OVERVIEW

KS32C6200 CPU has a 2-Kbyte internal unified (instruction/data) cache, which adopts associative two-way set 
architecture with four-word (16 bytes) line size. It has a write-through policy to keep data coherency. When cache 
miss occurs, four words of memory are fetched sequentially from external memory. It has an LRU (Least Recently 
Used) algorithm to raise the hit ratio.

RISC CPU uses the instruction and data cache to improve performance. Without cache, bottleneck, which occurs 
during the instruction and data fetches from the external memory, may seriously degrade performance. The unified 
cache deals with instruction and data without distinguishing them.
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Figure 5-1.  Cache Memory Configuration
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CACHE OPERATION

Cache Organization 

KS32C6200 cache has a two-Kbyte cache memory and one small Tag RAM. The Tag RAM has a 2-bit CS (Cache 
Status) and two set Tag memories for set 0 and 1. Each Tag set has a 15-bit address field [24:10] which is stored in 
the cache memory. The 2-bit CS indicates the validity of cached data of the corresponding cache memory line. It is 
also used for the cache replacing algorithm and for selecting the data coming from Set 0 and 1. Cache memory has 
two sets, Set 0 and Set 1. Each set has 64-lines and each line has four words of memory space (128-bits). 

Cache Replace Operation

After a system is initialized, the value of CS is set to "00", signifying that the contents of set 0 and set 1 cache 
memory are invalid. When a cache fill occurs, the value of CS is changed to "01" at the specified line, which 
signifies that only set 0 is valid. When the subsequent cache fill occurs, the value of CS will be "11" at the specified 
line, which represents that contents of both set 0 and set 1 are valid. When the contents of the two set are valid and  
the content replacement is required due to the cache miss, the value of CS is changed to "10" at the specified line, 
signifying that the content of set 0 is replaced. When the value of CS is "10" and another contents replacement is 
required due to the cache miss, the content of set 1 will be replaced by changing the value of CS to "11". 

Conclusively, at normal steady state, the value of CS will be changed from 11 to 10 (10 to 11), which is information 
for the implementation of a 2-bit pseudo LRU (Least Recently Used) replacement policy.

Figure 5-2.  CS-Bit Status Diagram

miss

NVALID: 00

Reset(/)

miss
miss or hit 1

miss or hit 0 hit 0

AV-S0D : 10AV-S1D: 11

hit 1

S0 only: 01
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; Not valid Data

; Read Miss

; Set 0=Valid & Set 1=Invalid
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; Read Miss

; AV_S1D = All Valid & Set 1 Ditry
  Dirty means to access just before.
  It does not change status on hit
; AV_S0D = All Valid & Set 0 Dirty
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Cache Disable Operation

The KS32C6200 cache provides programmable entire-cache-enable/disable mode. You can enable cache by 
setting the value of CE in SYSCFG to 1, and disable it by clearing SYSCFG[1] to zero. When the cache disable 
mode is specified, instructions and data are always fetched from external memory. The KS32C6200 can also 
provide non-cacheable areas in cache-enable mode for some particular memory access operations, such as the 
DMA operation. The two non-cacheable areas are specified by four special registers to be introduced later.

You have to be cautious about data coherency when the cache memory is enabled again, because the cache 
memory does not have auto flush mode. You also have to be cautious whether or not DMA changes memory data. 
The DMA accessible memory area should be non-cacheable to keep the data coherency. To keep data coherency 
between cache and external memory, KS32C6200 uses the write-through method.

Write Buffer Operation

KS32C6200 has four Write Buffer Registers to enhance memory writing performance. When Write Buffer mode is 
enabled, the CPU writes data into the write buffer instead of an external memory when the external bus is already 
occupied by another bus master like that of DMA. The Write buffer has 4 registers and each register includes a 32-
bit data field, a 25-bit address field and a 2-bit status field. The system manager executes all operations of the write 
buffer

Figure 5-3.  Write Buffer Configuration

Cache Flushing

A cache flushing is needed to enable the cache operation again. When the cache is disabled, the Tag RAM and 
cache memory, set 0 and set 1, can be manipulated exactly like normal memory. You can flush the cache by writing 
zero to the Tag RAM and making all data of the cache invalid. The structure of the Tag RAM and cache memory is 
shown in Figure 5-l. The memory location of the Tag RAM and set 0,1 cache memory is as follows:

NOTE: Cache flushing must be executed only in the cache disable mode. 

Tag RAM 0x11000000–0x110000ff

Set 0 0x10000000–0x100003ff

Set 1 0x10800000–0x108003ff

[31:0] Write Buffer Data
Data to be written into external memory

[1:0] MAS
00 = 8 bit data mode
01 = 16 bit data mode
10 = 32 bit data mode
11 = Not Used

[24:0] Address 
Indicates the address of Write data

24 0 31 0

Address MAS Write Buffer Data
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CACHE CONTROL REGISTERS

KS32C6200 cache provides two non-cacheable areas. It has four Cache Control registers to specify two non-
cacheable areas. Usually a cache stores any data in the whole system memory area, but sometimes it needs a 
non-cacheable region to keep the data consistency between the external memory and the cache memory. 

The KS32C6200 provides two non-cacheable areas and each of them requires two Cache Control Registers to 
indicate the start and end address of the non-cacheable area. If a non-cacheable area is specified, the area is not 
cached when read miss occurs.

Figure 5-4.  Non-cacheable Area Register

Register Offset
Address

R/W Description Reset Value

CACHNAB0 0x1000 R/W Start address of non-cacheable area 0 0x00000000
CACHNAE0 0x1800 R/W End address of non-cacheable area 0 plus

one
0x00000000

CACHNAB1 0x2000 R/W Start address of non-cacheable area 1 0x00000000
CACHNAE1 0x2800 R/W End address of non-cacheable area 1 plus

one
0x00000000

31 25 24 9 8 7 6 5 4 3 2 1 0

[24:9] Non-Cachaeble Start/End Address
These 16-bit addresses become the upper address
of the area[24:9]. The minimum non-cachable area is
512 bytes because the offset address is 9 bits.

Start/End Address 0 0 0 0 0 0 0 0 0

CACHNAE0

CACHNAB0

CACHNAE1

CACHNAB1

Cacheable area

Non Cacheable Area 0

Cacheable area

Non Cacheable Area 1
(Minimum 512 bytes)

Cacheable area

Memory Map

1ffffffh

0h
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6 Derasterizer

OVERVIEW

KS32C6200 Derasterizer provides 16 x 16 bit image data rotation feature. The derasterizer consists of 16 registers 
with 16-bit data width. The 16 x 16-bit register array is used to rotate the raster image data 90 or 270 degree.

NOTE: When h[15:0] is written and v[15:0] is read, the address of DRAST0–DRAST15 is read.

Rotation

To rotate image data, you should fill image data into the 16 x 16 bit register array from DRAST0 to DRAST15, 
horizontally. The image data, which is made by reading the 16 x 16, has the rotated image. You can change the 
rotation direction by manipulating the shift control register, SFTCON[3]. When SFTCON[3] is 0, the read image 
data is rotated by 90 degree and when SFTCON[3] is set to 1, the image data is rotated by 270 degree.

Write: h0 −> h15 (DRAST0 −> DRAST15)
Read: 90 degree: (horizontal direction) v0 −> v15 => (vertical direction) MSB −> h15, LSB −> h0
          270 degree: (horizontal direction) v15 −> v0 => (vertical direction) MSB −> h0, LSB −> h15

Register Offset
Address

R/W Description Reset Value

DRAST0 0x00006000 R/W 16-bit derasterizer data register 0 Undefined
DRAST1 0x00006004 R/W 16-bit derasterizer data register 1 Undefined
... ... ... ... ...
DRAST14 0x00006038 R/W 16-bit derasterizer data register 14 Undefined
DRAST15 0x0000603c R/W 16-bit derasterizer data register 15 Undefined
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Figure 6-1.  Rotate Configuration

At first DRAST0 is written, second DRAST1 is written,..., last DRAST15 written by S/W

v1v0 v9v3 v7v5 v6v4 v10v8 v11 v14v12v2 v15v13
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h7
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h10
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h15

DRAST0

DRAST15

bit0

bit15 bit0

bit15

At first v0 is read, second v1, ..., last v15 is read by S/W

when
270

degree

bit15 bit0

when
90

degree
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Figure 6-2. Derasterizer Rotation Example
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7 Shift Control

OVERVIEW

The KS32C6200 provides data shift and reverse (180 degree rotation) features. Shift module has one 16 bit 
register for data reverse operation and six 32-bit registers and one 16-bit register for data shift operation. The 
seven data shift operation registers have seven serially connected registers for 224-bit data shift operation.

Data Reverse Register (DATARVS)

The data reverse operation is a kind of data position exchanger. The written data bit stream exchanges its position 
so that the MSB of the original goes to the LSB of the reversed data and the LSB of the original goes to the MSB of 
the reversed data. 

Normal (MSB-------LSB)  => reversed (LSB-------MSB)

Data reverse operation is useful for data rotation operation. The rotator block supports only 90- and 270-degree 
operation. Data reverse operation behaves the same as to the 180 degree rotator operation.

[15:0] Data reverse DATARVS keeps the reversed bit stream of the data. You can get 
reversed data right by read operation after writing.

Register Offset
Address

R/W Description Reset Value

DATARVS 0x7000 R/W Data transfer 0000h
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Figure 7-1.  Reverser

NOTES
1. MSB is placed at bit 15 and LSB at bit 0 while writing 16-bit data to this register
2. Read the data from this register; MSB is bit 0 and LSB is bit 15. 

Example:
  Input --------------------->  Reverse data register --------------------------> Output

  “1011 0111 0000 1010” “0101 0000 1110 1101”

31 16 15 0

Reverse Data

[15:0] Reverse Data
Bit 15 Bit 00
Bit 14 Bit 01
Bit 13 Bit 02
Bit 12 Bit 03
Bit 11 Bit 04
Bit 10 Bit 05
Bit 09 Bit 06
Bit 08 Bit 07
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SHIFT CONTROL REGISTER 

Shift Control Register (SFTCON) in the KS32C6200 specifies the rotation degree of the derasterizer data, the 
direction of data shift, the shift mode, and the status of the shift mode operation (shifting or finished).

Figure 7-2.  Shift Control Register

Register Offset
Address

R/W Description Reset Value

SFTCON 0x7004 R/W Shift control register 0h

31 0

[0] Shift Mode 
0 = Fill with zero
1 = Rotate

[1] Direction of Shift
0 = Down (Right)
1 = Up (Left)

[2] Shift Status (read only)
0 = Shifting
1 = Finished

[3] Direction of Derasterizer
0 = 90 degree
1 = 270 degree

2 1

XX

4 3

XX
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SHIFT COUNT REGISTER 

Shift Count Register (SFTCNT) specifies the amount of shift operation. When a non-zero value is written into this 
register, the shifter starts data shifting up to the specific amount. When shift operation has finished, the SFTCON[2] 
is set to "1". The execution time is proportional to the amount of shift.

Figure 7-3.  Shift Count Register

Register Offset
Address

R/W Description Reset Value

SFTCNT 0x7008 R/W Shift count register 00h

31 8 7 0

Shift Counter

[7:0] Shift Counter 
This data specifies the amount of shift count
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SHIFT WORD DATA REGISTER 

The shift control block in KS32C6200 has seven serially connected Shift Word Data Registers (SFTDATA0-6). 
These serially connected registers form 208-bit bidirectional shift register block. The shift operation mode can be 
manipulated by the SFTCON register. The SFTCON[0] bit controls the shift mode such as fill-with-0 mode or rotate 
(wrap) mode and the SFTCON[1] bit controls shift direction, left or right.

Example 1: Shift Right Mode (when SFTCON[1]=’0’)

Example 2: Shift Left Mode (when SFTCON[1]=’1’)

When programming:

1. Load values into SFTDATA0–SFDATA6 (Shift Word Data Registers)

2. Second: Set the value of SFTCON (Shift Control Register)

3. Third: Set the value of SFTCNT (Shift Counter Register)

Register Offset
Address

R/W Description Reset Value

SFTDATA0 0x700c R/W Shift word data 0 register, 32 bits Undefined
SFTDATA1 0x7010 R/W Shift word data 1 register, 32 bits Undefined
.... .... .... .... ....
SFTDATA6 0x7024 R/W Shift word data 16 register, 16 bits Undefined

1

0
SFTDATA6

15 0

SFTDATA5

31 0 31 0

SFTDATA0
0

SFTCON[0]

208-bit bidirectional shifter

SFTDATA6

15 0

SFTDATA5

31 0 31 0

SFTDATA0

208-bit bidirectional shifter
0

1

SFTCON[0]

0
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8 Timer

OVERVIEW

The KS32C6200 has three 16-bit timers. The three timer blocks share an 8-bit prescaler and a clock-divider which 
has 4 different divided signals. Each timer block receives its own clock signals, for example, the Timer Clock, from 
the clock divider which receives the clock from the 8-bit prescalar. The 8-bit prescaler is programmable and divides 
the MCLK signal depending on the loading value which is stored in TSTCON[14:7].

The timer count value register (TBCNTn) has the initial count value which is loaded into the down-counter when the 
timer is enabled. Each timer has its own 16-bit down-counter which is driven by the timer clock. When the down-
counter reaches zero, the timer interrupt request is generated to inform the CPU that the timer operation is 
completed. When the timer counter reaches zero, the value of corresponding TBCNTn is automatically loaded into 
the down-counter to continue the next operation. However, if the timer stops, for example, by clearing the timer 
enable bit of TCON during the timer running mode, the count value of TBCNTn will not be reloaded into the 
counter.

The timer count value register is used to define the duration of the timer operation, and contains the number of 
timer clocks needed for one operation duration.

The timer duration is:

Timer_clock = MCLK/( prescale_value + 1 )/division_factor (Hz)
Timer_duration = count_value x Timer_clock_period = count_value/Timer_clock  
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Figure 8-1.  16-Bit Timer Block Diagram
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TIMER CONTROL REGISTER

You can disable or enable the timer operation and select the clock-divider output from four-divided signals by using 
the Timer Control Register (TCON)

Figure 8-2.  Timer Control Register

Register Offset
Address

R/W Description Reset Value

TCON 0x5800 R/W System timers control register 000h

31 9 8 7 6 5 4 3 2 1 0

[0] Timer 0 enable
0 = Stop
1 = Run

[2:1] Clock division factor selection for timer 0
00 = 4 01 = 8
10 = 16 11 = 32

[3] Timer 1 enable
0 = Stop
1 = Run

[5:4] Clock division factor selection for timer 1
00 = 4 01 = 8
10 = 16 11 = 32

[6] Timer 2 enable
0 = Stop
1 = Run

[8:7] Clock division factor selection for timer 2
00 = 4 01 = 8
10 = 16 11 = 32

xxxxxx
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TIMER COUNT VALUE REGISTER

The timer count value registers, TBCNTn, are used to specify the time-out duration of each timers. The count value 
will be loaded or reloaded into the down-counter automatically when timer operation is enabled or the down-
counter is decreased to zero.  

Figure 8-3.  Timer Count Value Register

If you change the value of TBCNTn while the timer is running, the new value will be written into TBCNTn and the 
counter resumes count with the new value.  The timer programming sequence is shown in Figure 8-4. The count 
value and the defintion of timer clock, including the prescaling value and the  clock division factor, should be 
specified before setting the timer-enable bit.

Figure 8-4.  Timer Programming Sequence

Register Offset
Address

R/W Description Reset Value

TBCNT0 0x5804 R/W Timer 0 count value register Undefined
TBCNT1 0x5808 R/W Timer 1 count value register Undefined
TBCNT2 0x580c R/W Timer 2 count value register Undefined

31 16 15 0

Count value

[15:0] Timer 0/1/2 Count value

Set timer enable bit to start the timer operation

Set count value in TBCNTn

Select clock division factor in TCON

Set prescalling value in TSTCON
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9 DMA

OVERVIEW

The KS32C6200 has two general direct memory access channels (DMA0, DMA1) that perform the data transfers 
between the following sources without CPU intervention:

— Memory and memory

— Parallel port and memory

— Serial port and memory

The on-chip DMA controller can be started by software or by an external DMA request. DMA operation can also be 
stopped and restarted by software. The CPU can recognize when a DMA operation has been completed by 
software polling or by a DMA interrupt request. The KS32C6200 DMA controller can increase or decrease source 
or destination addresses and conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word) data transfers. 

Detailed information about the DMA block's operation is provided in the descriptions of the DMA registers.

Figure 9-1.  DMA0/DMA1 Unit Block Diagram
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DMA OPERATION

The DMA operation can be summarized as follows:

— DMA transfers

— Bus control arbitration

— Starting/ending DMA transfers

DMA Transfers

The DMA transfers data directly between a requester and a target. The requester or the target is memory, UART, 
parallel port, or an external device. An external device requests DMA service by activating the nXDREQ signal. 

A channel is programmed by writing the DMA control registers, which contain control information such as requester 
address, target address, and the amount of data. UART, parallel port, external I/O, and software (memory) can 
request DMA service. UART and parallel port are internally connected to the DMA. Especially, UART0 requests the 
DMA service to DMA0 and UART1 to DMA1. 

Bus Control Arbitration

Because DMA0, DMA1 and DRAM controller (DRAM refresh) can request bus control, the bus control priority must 
be arbitrated. The priority of these bus masters is as follows:

For fast response to the DMA0 request, the DMA0 has the highest priority. Because the DMA0 has higher priority 
than the DRAM controller, the DMA0 have to be used very carefully to avoid disturbing the DRAM controller to 
refresh the DRAM. You may think that the DMA0 can not move the large data of DRAM because of the DRAM 
refresh. But, the DMA0 can transfer the large DRAM data if you do not use continuous DMA0 mode. The DMA0, 
which doesn't use the continuous mode, releases the internal bus request in a short time after one unit of data is 
transferred (one word, one half-word (16-bit) or one byte). Just after the bus is released, the DRAM controller can  
control the bus and refresh DRAMs.

If the DMA1, which has lower priority than the DRAM controller, holds bus by the continuous mode, the DRAM 
refresh controller can not control the bus until the DMA1 frees the bus control. 

The transfer-rate of DMA is changed by the CPU core status. If the CPU core fetches data or instructions from 
external memories (cache memory), the DMA transfer-rate became low (high), because the CPU core, which has 
the lowest priority, may control the bus in order to read/write the data or instructions from external memories. 

Starting/Ending DMA Transfers 

DMA starts to transfer data after the DMA receives the service request from the nXDREQ signal, UART, parallel 
port, or software. When the entire data buffer has been transferred, the DMA becomes idle. If you want to preform 
another buffer transfer, the DMA must be reprogrammed. When the same buffer transfer is preformed again, the 
DMA must be reprogrammed. 

Bus Master Type Priority
DMA0 1

DRAM controller (DRAM refresh) 2

DMA1 3

Write buffer 4

CPU core 5
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DATA TRANSFER MODE

Single Mode

The DMA request (nXDREQ, UART or PPIC) causes one byte, one half-word, or one word to be transmitted. The 
single mode requires the DMA request for every data transfer. The nXDREQ signal may be deasserted after 
checking whether or not the nXDACK is asserted.

Figure 9-2.  External DMA Requests (Single Mode)

Block Mode

The assertion of only one DMA request (nXDREQ, UART, PPIC or S/W) causes the entire data, which is set in 
control registers, to be transmitted. The DMA transfer will be completed when the counter reaches zero. The 
nXDREQ signal may be deasserted after checking whether or not nXDACK is transmitted.

Figure 9-3.  External DMA Requests (Block Mode)

nXDREQ

nXDACK

RD/WR cycle

nXDACK

nXDREQ

RD/WR cycle
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Demand Mode

The amount of data that DMA transfers depends on how long the DMA request input (nXDREQ) is held active. In 
demand mode, the DMA (DMA1 only) continues to transfer data while the DMA request input (nXDREQ) is held 
active.

Figure 9-4.  External DMA Requests (Demand Mode)

nXDACK

RD/WR cycle

nXDREQ
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DMA0 CONTROL REGISTER

[0] Run enable/disable When you set this bit to '1', the DMA operation starts. To stop the DMA 
operation, you must clear this bit to '0'. To control only this bit, use the 
address 0xc020. By using the 0xc020 address, you can avoid affecting 
the other values of the control register.

[1] BUSY status(2) When the DMA starts, this read-only status bit is automatically set to '1'. 
When the DMA is in an idle state, this bit is set to '0'.

[3:2] DMA0 mode selection Four sources can initiate DMA operation: software (memory to memory), 
an external DMA request (nXDREQ), the parallel port, and the UART 
block. The mode selection bits determine which source can initiate a DMA 
operation at any given time (see Figure 9-5).

[4] Destination address direction This bit determines whether the destination address will be decreased or 
increased during a DMA operation.

[5] Source address direction This bit determines whether the source address will be decreased or 
increased during a DMA operation.

[6] Destination address fix This bit determines whether the destination address will be changed 
during a DMA operation. You can use this bit to transfer data from multiple 
sources to a single destination.

[7] Source address fix This bit determines whether the source address will be changed during a 
DMA operation. You can use this bit to transfer data from a single source 
to multiple destinations.

[8] Stop interrupt enable A DMA operation is started by setting the run enable bit to one and is 
stopped by clearing the run disable bit to zero. When this bit is set to '1' 
and the DMA is forced to stop, the 'stop interrupt' is generated. If this bit is 
'0', the 'stop interrupt' is not generated. The interrupt, which is generated 
when the DMA counter is expired, can not be masked by this bit.

[9] Reset If this bit is set to '1', the value of DMA0 control registers will be initialized. 
When this bit is cleared to '0', you can specify other control values. 

[10] Peripheral direction When the mode bit is set to '10' (parallel port from / to memory) or '11' 
(UART from / to memory), this direction bit specifies the direction of the 
DMA operation. If this bit is set to '1', the DMA operates from memory to 
peripheral (parallel port/UART). If this bit is cleared to '0', the DMA 
operates from peripheral to memory.

Register Offset
Address

R/W Description Reset Value

DMACON0 0xc000 R/W DMA0 control register 0x0000
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[11] Single/block mode This bit determines the number of external DMA requests (nXDREQ) that 
are required for the DMA operation. At single mode (this bit is set to '0'), 
the KS32C6200 requires an external DMA request for every DMA 
operation. At block mode (this bit is set to '1'), the KS32C6200 requires 
only one DMA request during the entire DMA operation. An entire DMA 
operation is the DMA operation before the value of counter becomes zero.

[13:12] Transfer width This determines the transfer data width: byte (8-bit), half-word (16-bit), or 
word (32-bit). If the transfer data width is a byte, source/destination 
address will be increased/decreased by one. If it is a half-word, the 
address will be increased/decreased by two. If it is a word, the address 
will be increased/decreased by four. Note that the "transfer width" is not 
the physical size of data bus. The physical size of data bus is determined 
by SMR (System Manager Registers) configurations. 

[14] Continuous mode This bit specifies whether or not the DMA operation holds the system bus 
until the count value is changed to zero. Therefore, this bit must be 
carefully used so that the whole operation time does not exceed 
appropriate intervals such as DRAM Refresh.

[15] Demand mode To speed up the external DMA operation, set this bit. If this bit has been 
set during the DMA operation, the DMA never goes to the idle state. The 
external device can control the amount of data transferred/received by 
hardware. The amount of data is depends on how long nXDREQ signal is 
active.

NOTES
1. All control bits have to be configured independently and carefully.
2. The BUSY status is “read-only” bit. 
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Figure 9-5.  DMA0 Control Register

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0] Run enable (RE)
0 = Disable DMA 1 = Enable DMA operation

[1] Busy status (Read only) (BS)
0 = DMA idle 1 = DMA active

[3:2] Mode selection (MODE)
00 = Software 01 = External nXDREQ
10 = Parallel port 11 = UART0 port 

[4] Destination address direction (DD)
0 = Increase address 1 = Decrease address

[5] Source address direction (SD)
0 = Increase address 1 = Decrease address

[6] Destination address fix (DF)
0 = Increase/decrease destination address
1 = Do not change destination address (fix)

[7] Source address fix (SF)
0 = Increase/decrease source address
1 = Do not change source address (fix)

[8] Stop interrupt enable (SI)
0 = Do not generate the stop interrupt when DMA stops
1 = Generate the stop interrupt when DMA stops

[9] Reset (RS)
0 = Normal operation 
1 = Initialize control register

[10] Transfer direction for parallel/UART only(TD)
0 = Parallel/UART to memory 
1 = Memory to parallel/UART

[11] Single/Block mode
0 = One nXDREQ initiates a single DMA operation 
1 = One nXDREQ initiates a block DMA operation

[13:12] Transfer Width (TW)
00 = Byte (8-bit) 01 = Half-word (16-bit)
10 = Word (32-bit) 11 = Not used 

[14] Continuous (CN)
0 = Normal operation 
1 = Hold system bus until the whole DMA operation stops.

[15] Demand Mode (DM)
0 = Normal external DMA mode
1 = Demand mode

DM CN TW SB TD RS SI SF DF SD DD MODE BS RE
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DMA0 SOURCE/DESTINATION ADDRESS REGISTER

These registers contain the 25-bit source/destination address of a DMA channel. Depending on the setting of the 
DMA control register (DMACON0), these addresses will be increased/decreased or will remain the same.

Figure 9-6.  DMA0 Source/Destination Address Register

DMA0 TRANSFER COUNT REGISTER

This register contains the 24-bit value which is the number of DMA transfers. This value is decreased by 1 when 
one DMA operation is completed regardless of the width of the data which was transferred.

Figure 9-7.  DMA0 Transfer Count Register

Register Offset
Address

R/W Description Reset Value

DMASRC0 0xc004 R/W DMA source address register Undefined
DMADST0 0xc008 R/W DMA destination address register Undefined

Register Offset
Address

R/W Description Reset Value

DMACNT0 0xc00c R/W DMA transfer count register Undefined

31 25 24 0

Source/Destination Address

[24:0] Source/Destination Address

31 2324 0

Number of Transfers

[23:0] Number of Transfers
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DMA1 CONTROL REGISTER

DMA1 is the second DMA. The UART1 can transfer data through only DMA1.

[0] Run enable/disable When you set this bit to '1', the DMA1 operation starts. To stop the DMA1 
operation, you must clear this bit to '0'. To control this bit only, use the 
address 0xc810. By using the 0xc810 address, the other values in the 
control register will not be affected.

[1] BUSY status(2) When DMA1 starts, this read-only status bit is automatically set to '1'. 
When it is cleared to '0', the DMA1 goes into an idle status.

[3:2] DMA1 mode selection Four sources can initiate a DMA1 operation: software, an external DMA 
request (nXDREQ), the parallel port, and the UART block. The DMA1 
mode selection bits determine which source can initiate the DMA1 
operation at any given time (see Figure 9-8).

[4] Destination address direction This bit determines whether the destination address will be decreased or 
increased during a DMA1 operation.

[5] Source address direction This bit determines whether the source address will be decreased or 
increased during a DMA1 operation.

[6] Destination address fix This bit determines whether the destination address will or will not change 
during a DMA1 operation. This feature is used when transferring data 
from multiple sources to a single destination.

[7] Source address fix This bit determines whether or not the source address will change during 
a DMA1 operation. This feature is used when transferring data from a 
single source to multiple destinations.

[8] Stop interrupt enable A DMA1 operation is started by setting the run enable bit to one, and is 
stopped by clearing the disable bit to zero. When this bit is set to one and 
the DMA operation is forced to stop, the “stop interrupt” is generated. If 
this bit is set to zero, the “stop interrupt” is not generated. The interrupt, 
which is generated when the DMA counter is expired, can not be masked 
by this bit.

[9] Reset If this bit is set to one, the DMA1 control register value will be initialized. 
When this bit is cleared to zero, you can specify other control values.

[10] Peripheral direction When the mode bit is set to '10' (parallel port from/to memory) or 
'11'(UART from/to memory), this direction bit specifies the direction of the 
DMA1 operation. If this bit is set to '1', the DMA1 operates from memory to 
peripheral (parallel port/UART). If this bit is cleared to '0', the DMA1 
operates from peripheral to memory.

Register Offset
Address

R/W Description Reset Value

DMACON1 0xc800 R/W DMA1 control register 0x0000000



DMA KS32C6200 RISC MICROCONTROLLER

9-10

[11] Single / Block mode This bit determines the number of external DMA requests (nXDREQ) that 
are required for the DMA operation. At single mode (this bit is set to zero), 
the KS32C6200 requires an external DMA request for every DMA 
operation. At block mode (this bit is set to one), the KS32C6200 requires 
only one DMA request during the entire DMA operation. An entire DMA 
operation is the DMA operation before the value of counter becomes zero.

[13:12] Transfer width This determines the width of the data being transferred: byte, half-word, or 
word. If the data transfer width is a byte, the source/destination address 
will be increased/decreased by one. If it is a half-word, the address 
changes by 2. If a word, the address changes by 4. Note that the "transfer 
width" is not the size of the physical data bus. The size of physical data 
bus is determined by SMR (System Manager Registers) configurations. 

[14] Continuous mode This bit specifies that the DMA1 operation hold the system bus until the 
count value to set to "0". Therefore, this bit must be carefully used unless 
the whole operation time can not exceed the appropriate interval such as 
DRAM refresh.

NOTES
1.  All control bits have to be configured independently and carefully.
2.  The BUSY status is "read-only" bit.
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Figure 9-8.  DMA1 Control Register

31 28 27 22 20 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 01821

CN TW SB TD RS SI SF DF SD DD MODEBS RE00 00Reserved

[0] Run enable (RE)
0 = Disable CDMA 1 = Enable CDMA operation

[1] Busy status (Read only) (BS)
0 = DMA idle 1 = DMA active

[3:2] Mode selection (MODE)
00 = Software 01 = External nXDREQ
10 = Parallel port 11 = UART1 port 

[4] Destination address direction (DD)
0 = Increase address 1 = Decrease address

[5] Source address direction (SD)
0 = Increase address 1 = Decrease address

[6] Destination address fix (DF)
0 = Increase/decrease destination address
1 = Do not change destination address (fix)

[7] Source address fix (SF)
0 = Increase/decrease source address
1 = Do not change source address (fix)

[8] Stop interrupt enable (SI)
0 = Do not generate the stop interrupt when DMA stops
1 = Generate the stop interrupt when DMA stops

[9] Reset (RS)
0 = Normal operation 
1 = Initialize control register

[10] Transfer direction for parallel/UART only(TD)
0 = Parallel/UART to memory 
1 = Memory to parallel/UART

[11] Single/Block mode
0 = Single mode 
1 = Block mode

[13:12] Transfer Width (TW)
00 = byte (8-bit) 01 = halfword (16-bit)
10 = word (32-bit) 11 = Not used 

[14] Continuous (CN)
0 = Normal operation 
1 = Hold system bus until the whole DMA operation stops.

0
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DMA1 SOURCE/DESTINATION ADDRESS REGISTER

These registers contain the 25-bit source/destination address of a DMA1 channel. Depending on the setting of the 
DMA1 control register(DMACON1), these address will be increased, decreased, or will remain the same.

Figure 9-9.  DMA1 Source/Destination Address Register

DMA1 TRANSFER COUNT REGISTER

This register contains the 24-bit value which is the number of DMA1 transfers. This value is decreased by 1 when 
one DMA operation is completed regardless of the width of the data transferred.

Figure 9-10.  DMA1 Transfer Count Register

Register Offset
Address

R/W Description Reset Value

DMASRC1 0xc804 R/W DMA1 source address register Undefined
DMADST1 0xc808 R/W DMA1 destination address register Undefined

Register Offset
Address

R/W Description Reset Value

DMACNT1 0xc80c R/W DMA1 transfer count register Undefined

31 25 24 0

Source/Destination Address

[24:0] Source/Destination Address

31 2324 0

Number of Transfers

[23:0] Number of Transfers
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10 Parallel Port Interface

OVERVIEW

The KS32C6200's parallel port interface controller(PPIC) supports four IEEE Standard 1284 communication 
modes:

— Compatibility mode (CentronicsTM)

— Nibble mode

— Byte mode

— Enhanced Capabilities Port (ECP) mode

The PPIC also supports all variants of these communication modes, including device ID requests and run-length 
encoded (RLE) data compression. The PPIC contains specific hardware to support the following operations:

— Automatic hardware handshaking between host and peripheral compatible with ECP modes

— Run-length detection and compression/decompression data between host and peripheral during ECP mode 
transfers

These features can substantially improve data transfer rates when KS32C6200 operates the parallel port in the  
Compatibility or ECP mode.

In addition, hardware handshaking over the parallel port can be enabled or disabled by software. This gives you the 
direct control of PPIC signals as well as the eventual use of future protocols. Other operations defined in the IEEE 
Standard 1284, such as negotiation, Nibble mode and Byte mode data transfers, and termination cycles, must be 
carried out by software. The IEEE 1284 EPP communications mode is not supported.

NOTE

Here we assume that you are familiar with the parallel port communication protocols specified in the IEEE 
1284 Parallel Port Standard. If you are not, we strongly recommend for you to read this standard 
beforehand. It would be helpful for you in understanding the contents described in this section.

A detailed technical introduction to the IEEE 1284 Parallel Port Standard can be found in the Web site:
http://www.fapo.com/ieee1284.htm
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PPIC OPERATING MODES

The KS32C6200 PPIC supports four kinds of handshaking modes for data transfers:

— Software handshaking mode to forward and reverse data transfers

— Compatibility hardware handshaking mode to forward data transfers

— ECP hardware handshaking without RLE support (ECP-without-RLE) mode to forward and reverse data 
transfers

— ECP hardware handshaking with RLE support (ECP-with-RLE) mode to forward and reverse data transfers

Mode selection is specified in the PPIC control register (PPCON). By setting the PPCON[3:2], one of these four 
modes is enabled.

Software Handshaking Mode

This mode is enabled by setting the PPCON's mode-selection bits, PPCON[3:2], to "00.” 

In this mode, you can use PPIC interrupt event registers (PPINTEN and PPINTPND) and the read/write PPIC 
status register (PPSTAT) to detect and control the logic levels on all parallel port signal pins. Software can control 
all parallel port operations, including all four kinds of parallel port communications protocols supported by the 
KS32C6200 (refer to IEEE 1284 standard for operation control). In addition, it also gives software the flexibility of 
adopting new and revised protocols.

Compatibility Hardware Handshaking Mode

Compatibility hardware handshaking mode is enabled by setting the PPCON's mode-selection bits as "01",   i.e. 
PPCON[3:2] = 01. In this mode, hardware generates all handshaking signals needed to implement compatibility 
mode of the parallel port communication protocol.

When this mode is enabled, the PPIC automatically generates a BUSY signal to receive the leading edge of 
nSTROBE from the host, and latches the logic levels on PPD7-PPD0 pins into the PPDATA register. The PPIC 
then waits for nSTROBE to negate it and for the PPDATA's data field to be read. After the PPDATA is read, the 
PPIC asserts nACK for the duration specified in the ACK Width Register (PPACKWTH), and then negates the 
nACK and BUSY signal to conclude the data transfer, as shown in Figure 10-1.

NOTE

The BUSY-control bit’s initial value in the PPSTAT register, PPSTAT[3], which is "1" after a system reset, 
results in the high logic level on BUSY output and handshaking disable. To enable hardware handshaking 
in this mode, the BUSY-control bit PPSTAT[3] must be cleared to "0" by software beforehand.
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Figure 10-1.  Compatibility Hardware Handshaking Timing

PPD[7:0] Data

nSTROBE

BUSY

nACK
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ECP-without-RLE Mode

ECP-without-RLE hardware handshaking mode is enabled by setting the PPCON's mode-selection bits to "10", i.e. 
PPCON[3:2] = 10. In this mode, hardware generates handshaking signals needed to implement ECP mode of the 
parallel port communication protocol.

When receiving data from the host, the PPIC automatically responds to the high-to-low transition on the nSTROBE 
by latching the logic levels on the PPD7-PPD0 and nAUTOFD in the PPDATA register. The nAUTOFD logic level, 
which is latched to the PPDATA[8], indicates whether the current data on the PPD[7:0] is a data-byte or a 
command-byte. When the PPDATA is read, the PPIC drives BUSY to high level and waits for nSTROBE to go high 
level. It then drives BUSY to low level to conclude one forward data transfer operation, as shown in Figure 10-2.

The reception of a command byte, indicated by PPDATA[8]=0, causes the command received-bit in the PPIC 
interrupt pending register, PPINTPND[9], to be set to "1". By examining the PPDATA[7], software will interpret the 
command byte as a channel address if it is "1" and carry out the corresponding operation, or interpret the command 
byte as a run-length count if it is "0" and then perform data decompression.

During reverse data transfers, software is responsible for data compression, and writing data or command byte in 
PPDATA to define the logic levels on PPD7-PPD0 and BUSY pins. The PPDATA[8] indicates whether the current 
data on the PPDATA[7:0] is a data-byte or a command-byte. The state of PPDATA[8] is output through the BUSY 
pin. In response to writing the PPDATA, the PPIC automatically drives the nACK to low level and waits for the 
nAUTOFD to go to high level. It then drives nACK to high level to conclude one reverse data transfer operation, as 
shown in Figure 10-3.

Figure 10-2.  ECP Hardware Handshaking Timing (Forward)

PPD[7:0] Byte 0 Byte 1

nAUTOFD Data byte Command byte

nSTROBE

BUSY
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Figure 10-3.  ECP hardware Handshaking Timing (Reverse)

ECP-with-RLE Mode

ECP-with-RLE hardware handshaking mode is enabled by setting the PPCON's mode-selection bits, PPCON[3:2], 
to “11.” In this mode, the PPIC performs the same ECP mode handshaking as in ECP-without-RLE mode, except 
for the fact that run-length compression/decompression is also carried out by hardware.

During forward data transfers, the PPIC automatically detects and intercepts run-length counts, and carries out 
data decompression. Only the channel addresses will cause the command-received-bit in the PPINTPND register, 
PPINTPND[9], to be set to one. If the command-receive interrupt occurs in ECP-with-RLE mode, the software 
performs the operations associated with the channel address. 

Similarly, the PPIC automatically carries out the data compression in PPDATA during the reverse data transfers.

Digital Filtering

The KS32C6200 provides digital filtering function on host control signal inputs, nSELECTIN, nSTROBE, nAUTOFD 
and nINIT, to improve noise immunity and make the PPIC more impervious to the inductive switching noise. The 
digital filtering function can be enabled regardless of hardware handshaking or software handshaking.

If this function is enabled, the host control signal can be detected only when its input level keeps stable during two 
sampling periods.

Digital filtering can be disabled to avoid signal missing in some specialized applications with high bandwidth 
requirement. Otherwise, it is recommended that digital filtering be enabled.

PPD[7:0] Byte 0 Byte 1

BUSY Data byte Command byte

nACK

nAUTOFD
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PPIC SPECIAL REGISTERS

PARALLEL PORT DATA REGISTER

The parallel port data register, PPDATA, contains an 8-bit data field, PPDATA[7:0], that defines the logic level on 
the parallel port data pins, PPD[7:0]. It also contains a status bit, PPDATA[8], which is used to indicate when a 
command byte (RLE count or channel address) is received during forward data transfers in ECP mode.

Figure 10-4.  Parallel Port Data Register

Register Offset
Address

R/W Description Reset Value

PPDATA 0xb000 R/W Parallel port data register 0x000

31 9 8 7 0

[7:0] Data for parallel port bus, PPD[7:0]
This is an 8-bit read/write field.
When PPCON[6] is zero and this field is read, this field 
provides the logic levels on the PPN[7:0], which is latched 
when the strobe input from the host (nSTROBE) transits from 
high to low level. (The PPCON[6] bit determines 
the forward or reverse dataflow direction of the parallel port.)
When PPCON[6] is one and this field is written, the value of 
this field determines the logic level on the PPD[7:0]. 

[8] ECP mode command byte indicator
During the ECP forward data transfers, the logic level of the 
nAUTOFD is read from PPDATA[8]. The nAUTOFD indicates 
whether the data in the PPDATA[7:0] is a data-byte or a 
command-byte. To read the nAUTOFD from the PPDATA[8], 
the following two conditions are required:
1)  nSTROBE has transited from high level to low level.
2)  The data bus output enable bit in the parallel port control 
      register, PPCON[6], is 0.

When the ECP data transfers are in reverse and the data bus 
output enable bit in the parallel port control register 
,PPCON[6], is 1, the logic level of the BUSY pin is written to 
PPDATA[8]. The BUSY pin indicates whether the data written 
in the PPDATA[7:0] is a data-byte or a command-byte.
0 = Command-byte in the PPDATA[7:0]
1 = Data-byte in the PPDATA[7:0]

X Data Field
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PARALLEL PORT STATUS REGISTER

The parallel port status register, PPSTAT, contains eleven bits to control the parallel port interface signals. These 
eleven bits consist of four read-only bits to read the logic level of the host input pins, two read-only bits to read the 
logic level on the BUSY and nACK output pins, and five read/write bits to control the logic levels on the printer 
output pins by software for handshaking control.

[0] nFAULTcontrol Setting this bit drives the nFAULT output to low level; clearing it drives the 
signal high level on the external nFAULT pin. The nFAULT informs the 
host of a fault condition in the printer engine.

[1] SELECT control Setting this bit to one drives the SELECT output to High level; clearing it to 
zero drives the signal low on the external SELECT pin. The SELECT 
informs the host of a response from the printer engine.

[2] PERROR control Setting this bit drives PERROR output to high level; clearing it drives the 
signal low level on the external PERROR pin. The PERROR informs the 
host that a paper error has occurred in the engine.

[3] BUSY control Setting this bit drives the external BUSY output to high level by force. This 
disables hardware handshaking. When this bit is zero, the external BUSY 
output is the internal BUSY signal. 

[4] nACK control Setting this bit drives the external nACK output to high level by force. This 
is generally done when hardware handshaking is disabled. When this bit 
is one, the external nACK is the internal nACK signal.

[5] BUSY status This read-only bit reflects the logic level on the external BUSY output pin. 
After a system reset, the PPSTAT[3] is "1", which results in one, the value 
of PPSTAT[5] being "1". So, for compatibility mode operation, you must 
clear the PPSTAT[3] by software beforehand so as to enable the 
hardware handshaking.

[6] nACK status This read-only bit reflects the inverted logic level on the external nACK 
output pin. After a system reset, PPSTAT[6] is "1".

[7] nSLCTIN status This read-only bit reflects the level read on the nSLCTIN input pin after 
synchronization and optional digital filtering when the digital filtering 
enable bit, PPCON[1], is set to one.

[8] nSTROBE status This read-only bit reflects the level read on the nSTROBE input pin after 
synchronization and optional digital filtering when the digital filtering enable 
bit, PPCON[1], is set to one.

[9] nAUTOFD status This read-only bit reflects the level read on the nAUTOFD input pin after 
synchronization and optional digital filtering when the digital filtering enable 
bit, PPCON[1], is set to one.

Register Offset
Address

R/W Description Reset Value

PPSTAT 0xb004 R/W Parallel port status register 0x000007e8
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[10] nINIT status This read-only bit reflects the level read on the nINIT input pin after 
synchronization and optional digital filtering when the digital filtering enable 
bit, PPCON[1], is set to one.

Figure 10-5.  Parallel Port Status Register

31 9 8 7 6 5 4 3 2 1 0

[0] External nFAULT output control bit
1 = nFAULT output Low; printer fault has occurred
0 = nFAULT output High; no printer fault

[1] SELECT output control bit
0 = SELECT output Low; no response from printer
1 = SELECT output High; paper error has occurred

[3] BUSY output control bit
0 = BUSY output Low; not busy 1 = BUSY output High; busy

[4] nACK output control bit
1 = nACK output Low; do not acknowledge handshake
0 = nACK output High; acknowledge handshake

[5] BUSY output level
This read-only bit feflects the logic level on the external 
BUSY output. After a system reset, this bit is 1.

[6] nACK output level
This read-only bit reflects the logic level on the external 
nACK output. After a system reset, this bit is 1.

[7] nSLCTIN input level
This read-only bit reflects the logic level on the nSLCTIN
input after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is 1).

[8] nSTROBE input level
This read-only bit reflects the logic level on the nSTROBE
input after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is 1).

[9] nAUTOFD input level
This read-only bit reflects the logic level on the nAUTOFD
input after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is 1).

[10] nINIT input level
This read-only bit reflects the logic level on the nINIT
input after synchronization (and optional digital filtering when
the digital filtering enable bit, PPCON[1], is 1).

X XXXXX X XXX

10
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PARALLEL PORT ACK WIDTH REGISTER

This register contains the 9-bit nACK pulse width field. This value defines the nACK pulse width whenever the 
parallel port interface controller enters Compatibility mode, that is, when the parallel port control register mode bits, 
PPCON[3:2], are set to “01”. The nACK pulse width is selectable from 0 to 511 MCLK periods. 

The nACK pulse width can be modified at any time and with any PPIC operation mode selection, but it can only be 
used during a compatibility handshaking cycle. If you change the nACK width near the end of a data transfer (when 
nACK is already low), the new pulse width value does not affect the current cycle. The new pulse width value would 
be used at the start of the next cycle. 

Figure 10-6.  Parallel Port ACK Width Register

Register Offset
Address

R/W Description Reset Value

PPACKWTH 0xb008 R/W Parallel port acknowledge width register Undefined

31 9 8 0

[8:0] nACK pulse width
The value in the 9-bit field defines the nACK pulse width
when Compatibility mode is enabled(PPCON[3:2] = 01)
The period of the nACK pulse can range from 0 to 511 
MCLKs. If you write a new value to the nACK width field
near the end of a data transfer operation, the new pulse
width value does not take effect until the next cycle takes
place.

nACK Pulse Width
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PARALLEL PORT CONTROL REGISTER

The parallel port control register, PPCON, is used to configure the PPI operations, such as handshaking, digital 
filtering, operating mode, data bus output, abort operations, and DMA. The PPCON[15:13] bits are read-only.

[0] Software reset Setting the software reset bit causes the PPIC's handshaking control and 
compression/decompression logic to immediately terminate the current 
operation and return to software Idle state. When PPCON[0] is set to "1", 
the run-length decompression status bit, PPCON[13], and the full status bit,
PPCON[14], are automatically cleared to "0".

[1] Digital filter enable Setting this bit enables digital filtering on all four host control signal inputs: 
nSELECTIN, nSTROBE, nAUTOFD, and nINIT.

[3:2] Mode selection This two-bit value selects the current operating mode of the parallel port 
interface (see Figure 14-4). 

Software mode: disables all hardware handshaking so that handshaking 
can be performed by software. 

Compatibility mode: Compatibility mode hardware handshaking can be 
enabled during a forward data transfer. 

You can change the mode selection at any time, but if a Compatibility 
mode operation is currently in-progress, it will be completed as a normal 
operation. Mode should be changed from Compatibility mode to another 
mode only when BUSY is high level. This ensures that there is no parallel 
port activity while the parallel port is being re-configured. 

ECP-without-RLE mode: ECP mode hardware handshaking without RLE 
support can be enabled during forward or reverse data transfers. You can 
change the mode selection at any time, but if an ECP cycle is currently in 
progress, it will be completed as a normal operation. 

ECP-with-RLE mode: ECP mode hardware handshaking with RLE 
support can be enabled during forward or reverse data transfers. 
Changing the mode doesn't affect current data transfer operation, 
including compression/decompression, until data transfer operation is 
completed. To abort an operation immediately, set the software-reset bit, 
PPCON[0], to "1".

[4] ECP direction This bit determines whether the direction of ECP is forward or reverse. If 
this bit is set to '1', then the reverse direction is operated.

Register Offset
Address

R/W Description Reset Value

PPCON 0xb00c R/W Parallel port control register 0x00000000
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[5] Error cycle The error cycle bit is used to execute an error cycle in compatibility mode. 
When PPCON[5] is set to "1", the BUSY status bit in the parallel port 
status register, PPSTAT[5], is set to "1". This immediately causes the 
KS32C6200 to drive the BUSY to high level. If you set the error cycle bit 
while a compatibility mode handshaking sequence is in progress, the 
PPSTAT[5] will remain to be set to one beyond the end of the current 
cycle. 

The error cycle bit does not affect the nACK pulse if it is already active, 
but it will delay an nACK pulse if it is about to be generated. When 
PPCON[5] is "1", software can set or clear the parallel port status register 
control bits: PPSTAT[0] (nFAULT control), PPSTAT[1] (SELECT control), 
and PPSTAT[2] (PERROR control). When PPCON[5] is cleared to “0", the 
parallel port interface controller generates a delayed nACK pulse and 
makes BUSY low active to finish the error cycle 

[6] Data bus output enable The parallel port data bus output enable bit performs two functions: 
1) It controls the state of the tri-state output drivers.
2) It qualifies the data latching from the output drivers into the parallel 
   port data register’s data field, PPDATA[7:0]. 

When PPCON[6] is "0", the parallel port data bus lines, PPD[7:0] are 
disabled. This allows data to be latched onto the PPDATA’s data field. 
When PPCON [6] is "1", the PPD[7:0] is enabled and data is prevented 
from being latched onto the PPDATA’s data field. In this frozen state, the 
data field is unaffected by the transition of nSTROBE. 

The setting of the abort bit, PPCON[7], affects the operation of the data 
bus output enable bit, PPCON[6]. If PPCON[7] is "1", the nSELECTIN 
must remain high to allow PPCON[6] to be set, or to remain set. If  
PPCON[6] is "1" and nSELECTIN goes low, the PPCON[6] is cleared and 
setting this bit will have no effect.

[7] Abort The abort bit causes the parallel port interface controller to use 
nSELECTIN to detect the time when the host suddenly aborts a reverse 
transfer and returns to compatibility mode; If PPCON[7] is "1", the low 
level on nSELECTIN causes the parallel port data bus output enable bit  
PPCON[6] to be cleared, and the output drivers for the data bus lines 
PPD[7:0] to be tri-stated.

[8] DMA selection The PPIC can issue a DMA request in compatibility mode, ECP-without-
RLE mode, or in ECP-with-RLE mode, if the DMA request enable bit 
PPCON[9] is set to one. The DMA selection bit determines which DMA 
channel is used for data transfer. When PPCON[8] is "0", the DMA 
channel 0 is used; when it is "1", the DMA channel 1 is used.

[9] DMA request enable When this bit is set to "1", the PPIC issues a DMA request to DMA 
channel 0 or 1 during a data transfer. Otherwise, an interrupt is requested 
for the data transfer.
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[10] Flush request When this bit is set to "1", the PPIC issues a flush request to send the 
remaining data to the parallel port. The remaining data is the run-length 
code and the data in the PPIC's buffer while reverse ECP-with-RLE mode 
is operating.

[12] Zero insert When the run-length count is '0', this bit specifies whether or not to send 
the RLE count during ECP-with-RLE reverse data transfers. If this bit is 
set to '1', then the count "0" will be sent. Otherwise, it will not be sent.

[13] RLE status This bit indicates that the run-length decompression is taking place during 
forward data transfers in ECP-with-RLE mode. It is set when a run-length 
count is received and loaded into the internal counter, and cleared when 
the last read of the PPDATA data field occurs.

[14] Data latch status If a data is latched to PPDATA, then this bit is set to '1'. It is automatically 
cleared to zero when the PPDATA is read.

[15] Data empty In reverse ECP mode, this bit specifies the PPDATA is empty. It is 
automatically cleared to zero while the PPDATA is written with a new 
data.
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Figure 10-7.  Parallel Port Control Register

31 9 8 7 6 5 4 3 2 1 0

[0] Software reset control
0 = No effect
1 = Terminate current PPIC operation and enter idle status

[1] Digital filter enable
0 = disable 1 = enable

[3:2] Operating mode
00 = Software mode 01 = Compatibility mode
10 = ECP mode without RLE 11 = ECP mode with RLE

[4] ECP direction
0 = forward 1 = reverse

[5] Error cycle control (Compatibility mode only)
0 = End error cycle 
1 = Execute an error cycle (drive BUSY high level)

[6] PPD[7:0] output enable
0 = Disable PPD[7:0] output 1 = Enable PPD[7:0] output

[7] About bit
0 = Normal operation
1 = Disable data bys output and tri-state PPD[7:0] drivers

[8] DMA selection
0 = DMA0 1 = DMA1 (codec DMA)

[9] INT/DMA request mode
0 = Generate interrupt request for data transfer
1 = Send a DMA request to the DMA controller for data transfers

[10] Flush data
0 = No operation 1 = Flush the remaining data

[12] Zero insert (reverse ECP with RLE)
0 = When run-length is 0, only data to be transmitted
1 = When run-length is 0, RLE count and data are transmitted

[13] Decompress status
0 = finished 1 = decompression is operating

[14] Data latch status
0 = No data 1 = Data is latched, if this bit is read, automatically cleared

[15] Data Empty (reverse ECP mode)
0 = Data is processed
1 = PPDATA is empty, it is automatically cleared
      when write operation occurs

X ModeXXXX X XX

16 15 14 13 12 11 10

XXXXX
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PARALLEL PORT INTERRUPT EVENT REGISTERS

The two parallel port interrupt event registers, PPINTEN and PPINTPND, control interrupt-related events for the 
input signal originating from the host, as well as data reception, command reception, and invalid events. The 
parallel port interrupt enable register, PPINTEN, contains the interrupt enable bits for each interrupt event that is 
indicated by the PPINTPND status bits. If the PPINTEN enable bit is "1", the corresponding event causes the 
KS32C6200 CPU to generate an interrupt request. Otherwise, no interrupt request is issued.

NOTE

To clear the corresponding pending bit to zero after a interrupt service routine, write the pending bit to one. The 
value of the pending bit is changed from one to zero automatically.

[0] nSLCTIN Low-to-High The bit of PPINTPND is set when a Low-to-High transition on nSLCTIN is 
detected. If the corresponding enable bit is set in the PPINTEN register, 
an interrupt request is generated.

[1] nSLCTIN High-to-Low The bit of PPINTPND is set when a High-to-Low transition on nSLCTIN is 
detected. If the corresponding enable bit is set in the PPINTEN register, 
an interrupt request is generated.

[2] nSTROBE Low-to-High The bit of PPINTPND is set when a Low-to-High transition in the 
nSTROBE is detected. If the corresponding enable bit is set in the 
PPINTEN register, an interrupt request is generated.

[3] nSTROBE High-to-Low The bit of PPINTPND is set when a High-to-Low transition in the 
nSTROBE is detected. If the corresponding enable bit is set in the 
PPINTEN register, an interrupt request is generated.

[4] nAUTOFD Low-to-High The bit of PPINTPND is set when a Low-to-High transition in the 
nAUTOFD is detected. If the corresponding enable bit is set in the 
PPINTEN register, an interrupt request is generated.

[5] nAUTOFD High-to-Low The bit of PPINTPND is set when a High-to-Low transition in the  
nAUTOFD is detected. If the corresponding enable bit is set in the 
PPINTEN register, an interrupt request is generated.

[6] nINIT Low-to-High The bit of PPINTPND is set when a Low-to-High transition in the nINIT is 
detected. If the corresponding enable bit is set in the PPINTEN register, 
an interrupt request is generated.

[7] nINIT High-to-Low The bit of PPINTPND is set when a High-to-Low transition in the nINIT is 
detected. If the corresponding enable bit is set in the PPINTEN register, 
an interrupt request is generated.

Register Offset
Address

R/W Description Reset Value

PPINTEN 0xb010 R/W Parallel port interrupt enable register 0x00000000
PPINTPND 0xb014 R/W Parallel port interrupt pending register 0x00000000
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[8] Data received The bit of PPINTPND is set when data is latched into the PPDATA 
register's data field. This occurs during every High-to-Low transition of 
nSTROBE when the parallel port data bus enable bit, PPCON[6], is "0". 
An interrupt is also generated if the ECP-with-RLE mode is enabled, and if 
a data decompression is in progress.

[9] Command received The bit of PPINTPND is set when a command byte is latched into the 
PPDATA register data field. If ECP-without-RLE mode is enabled, the 
command received interrupt is issued whenever a run-length or channel 
address is received. If ECP-with-RLE mode is enabled, the command 
received interrupt is issued only when a channel address is received. This 
event can be posted only when ECP mode is enabled. The corresponding 
enable bit in the PPINTEN register determines whether or not an interrupt 
request will be generated when a command byte is received.

[10] Invalid transition The bit of PPINTPND is set when nSLCTIN transitions high-to-low in the 
middle of an ECP forward data transfer handshaking sequence. This 
interrupt is issued if nSLCTIN is low when nSTROBE is Low or when 
BUSY is high. This event can be detected only when ECP mode is 
enabled.

[11] Transmit Data Empty The bit of PPINTPND is set to one when the transmit data register 
(=PPDATA) can be written during an ECP reverse data transfers
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Figure 10-8.  Parallel Port Event Interrupt Enable Register (PPINTEN)

31 9 8 7 6 5 4 3 2 1 0

[0] nSELECTIN Low-to-High transition
0 = Disable interrupt 1 = Enable interrupt

[1] nSELECTIN High-to-Low transition
0 = Disable interrupt 1 = Enable interrupt

[2] nSTROBE Low-to-High transition
0 = Disable interrupt 1 = Enable interrupt

[3] nSTROBE High-to-Low transition
0 = Disable interrupt 1 = Enable interrupt

[4] nAUTOFD Low-to-High transition
0 = Disable interrupt 1 = Enable interrupt

[5] nAUTOFD High-to-Low transition
0 = Disable interrupt 1 = Enable interrupt

[6] nINITIAL Low-to-High transition
0 = Disable interrupt 1 = Enable interrupt

[7] nINITIAL High-to-Low transition
0 = Disable interrupt 1 = Enable interrupt

[8] Data received (latched to PPDATA data field)
0 = Disable interrupt 1 = Enable interrupt

[9] Command byte received (in PPDATA data field)
0 = Disable interrupt 1 = Enable interrupt

[10] Invalid nSELECTIN transition during ECP
0 = Disable interrupt 1 = Enable interrupt

[11] Transmit data (PPDATA) empty
0 = Disable interrupt 1 = Enable interrupt

X XXXXX X XXX

101112

XX
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Figure 10-9.  Parallel Port Event Interrupt Pending Register (PPINTPND)

31 9 8 7 6 5 4 3 2 1 0

[0] nSELECTIN Low-to-High transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[1] nSELECTIN High-to-Low transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[2] nSTROBE Low-to-High transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[3] nSTROBE High-to-Low transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[4] nAUTOFD Low-to-High transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[5] nAUTOFD High-to-Low transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[6] nINITIAL Low-to-High transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[7] nINITIAL High-to-Low transition
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[8] Data received (latched to PPDATA data field)
0 = Normal operation
1 = Data received; issue interrupt if enabled in PPINTEN

[9] Command byte received (in PPDATA data field)
0 = Normal operation
1 = Command byte received; issue interrupt if enabled in PPINTEN

[10] Invalid nSELECTIN transition during ECP
0 = Normal operation
1 = Transition occured; issue interrupt if enabled in PPINTEN

[11] Transmit data (PPDATA) empty
0 = Normal operation
1 = PPDATA empty; issue interrupt if enabled in PPINTEN

X XXXXX X XXX

101112

XX
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NOTES
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11 UART

OVERVIEW

The KS32C6200 UART (Universal Asynchronous Receiver and Transmitter) unit provides two independent 
asynchronous serial I/O (SIO) ports, each of which can operate in interrupt-based or DMA-based mode, i.e. SIO 
can generate interrupt or DMA request to transfer data between CPU and SIO.

The KS32C6200 UART includes programmable baud-rates, infra-red (IR) transmit/receive, one or two stop bit 
insertion, 5-bit, 6-bit, 7-bit or 8-bit data transfers, and parity checking.

Each SIO contains a baud-rate generator, transmitter, receiver and control unit, as shown in Figure11-1. The baud-
rate generator can be clocked by either the internal system clock (MCLK) or the external clock, UCLK input from 
the UCLK pin. The transmitter and the receiver contain data buffer registers and data shifters. Data, which is to be 
transmitted, is written to the transmit holding register and then copied to the transmit shifter. It is then shifted out by 
the transmit data pin (TXDn). The received data is shifted by the receive data pin (RXDn), and then copied to the 
receive buffer register from the shifter once one data byte has been received. The control unit provides controls for 
mode selection and status/interrupt generation.
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Figure 11-1.  Serial I/O Block Diagram
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UART OPERATION

The following sections describe the UART operations that include infra-red mode, loopback mode, interrupt 
generation, baud-rate generation, data transmission, data reception and so on.

Infra-red mode

The KS32C6200 UART block supports infra-red (IR) transmit and receive, which can be selected by setting the 
infra-red-mode bit in the line control register (ULCONn). The implementation of the mode is shown in Figure 11-2.

In IR mode, the transmit period is pulsed at a rate of 3/16 as is at the normal serial transmit rate (when the transmit 
data value in the UTXBUF register is zero); in IR receive mode, the receiver must detect the 3/16 pulsed period to 
recognize a zero value in the receive buffer register, URXBUF, as the IR receive data. (refer to the frame timing 
diagrams shown in Figure 11-15 and 11-16)

Figure 11-2.  UART Block Diagram

Loopback mode

The KS32C6200 UART provides a test mode referred as the loopback mode to aid in isolating faults in the 
communication link. In this mode, the transmitted data is immediately received. This feature allows the processor to 
verify the internal transmit and to receive the data path of each SIO channel. This mode can be selected by setting 
the loopback-bit in the UART control register (UCONn).
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INTERRUPT/DMA REQUEST GENERATION

Each SIO of KS32C6200 UART has seven status signals: overrun error, parity error, frame error, break, receive 
buffer full, transmit buffer register empty and transmitter empty, all of which are indicated by the corresponding 
UART status register (USTATn).

The overrun error, parity error, frame error and break condition are referred to as the receive status, each of which 
can cause the receive status interrupt request, if the receive-status-interrupt-enable bit is set to one in the control 
register UCONn. When a receive-status-interrupt-request is detected, you can know the signal which causes the 
request by reading the status register (USTATn).

When the receiver transfers the data of the receive shifter to the receive buffer register, it activates the receive 
buffer full status signal which will cause the receive interrupt, if the receive mode in control register is selected as 
the interrupt mode. When the transmitter transfers data from its transmit buffer register to its shifter, the transmit 
holding register empty status signal is activated. The signal causes the transmit interrupt if the transmit mode in 
control register is selected as interrupt mode.

The receive-buffer-full and transmit-buffer-register empty status signals can also be connected to generate the 
DMA request signals if the receive/transmit mode in the control register is selected as the DMA mode.

As mentioned before, two DMA channels, DMA0 and DMA1, are provided in the KS32C6200. Each SIO can be 
connected with a fixed DMA channel. In other words, the SIO0 can only generate the DMA0 request and the SIO1 
can only generate the DMA1 request.

BAUD-RATE GENERATION

Each SIO's baud-rate generator provides the serial clock for transmitter and receiver. The source clock for the 
baud-rate generator can be selected with the KS32C6200's internal system clock (MCLK) or the external clock 
input (UCLK), which is determined by the serial-clock-selection bit in UART line control register (ULCONn). The 
baud-rate clock is generated by dividing the source clock by 16 and a 16-bit divisor specified by the UART baud- 
rate divisor register (UBRDIVn). The UBRDIVn can be determined as follows:

UBRDIVn = (int)(source_clock / (bps x 16)) - 1  

where the divisor should be from 1 to (216-1). For example, if the baud-rate is 56,000 bps and MCLK is 33 MHz 
(use internal system clock), UBRDIVn is:

UBRDIVn = (int)(33000000 / (56000 x 16)) - 1
= (int)(36.83) - 1
= 36 - 1 = 35

DATA TRANSMISSION

The data frame for transmission is programmable. It consists of a start bit, 5 to 8 data bits, an optional parity bit and 
1 to 2 stop bits, which can be specified by the line control register (ULCONn). The transmitter can also produce the 
break condition. The break condition forces the serial output to logic 0 state for a duration longer than one frame 
transmission time. At the receiving end, the break condition sets an error flag as mentioned above.

The data transmission process is shown in Figure 11-3. The transmitter transfers data through a path as follows: 
data source -> transmit buffer register -> transmit shifter -> TXDn pin. It then completes the parallel-to-serial data 
conversion. Two flags (status signals), transmit buffer register empty and transmitter empty, are used to indicate 
the status of the transmit buffer register and transmitter.
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DATA RECEPTION

Like the transmission, the data frame for reception is also programmable. It consists of a start bit, 5 to 8 data bits, 
an optional parity bit and 1 to 2 stop bits by settings in the line control register (ULCONn). The receiver can detect 
overrun error, parity error, frame error and break condition, each of which can set an error flag. 

The overrun error indicates that new data has overwritten the old data before the old data has been read. The 
parity error indicates that the receiver has detected a parity condition other than what it was programmed for. The 
frame error indicates that the received data does not have a valid stop bit. The break condition indicates that the 
RXDn input is held in the logic 0 state for a duration longer than one frame transmission time.

The data reception process is shown in Figure 11-4. The receiver transfers data through a path as follows: RXDn 
pin -> receive shift register -> receive buffer register -> destination. This completes the serial-to-parallel data 
conversions. In addition to receive-error-status flags, a receive-buffer-full flag is used to indicate the status of the 
receive buffer register.

Figure 11-3.  UART Data Transmission Process
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Figure 11-4.  UART Data Reception Process
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UART SPECIAL REGISTERS

UART LINE CONTROL REGISTER

There are two identical UART line control registers, ULCON0, 1, in the UART block, each for a SIO channel.

[1:0] Word Length (WL) The word length indicates the number of data bits to be transmitted or 
received per frame.

00 = 5 bits
01 = 6 bits
10 = 7 bits
11 = 8 bits

[2] Number of stop bit The number of stop bit specifies how many stop bits are used to signal 
end-of-frame (EOF).

0 = One stop bit per frame
1 = Two stop bit per frame

[5:3] Parity Mode (PMD) The parity mode specifies how parity generation and checking are to be 
performed during UART transmit and receive operations.

0xx = No parity
100 = Odd parity
101 = Even parity
110 = Parity forced/checked as "1"
111 = Parity forced/checked as "0"

[6] Serial Clock Selection This selection bit specifies the clock source.

0 = Internal (MCLK)
1 = External (UCLK)

[7] Infra-Red Mode The infra-red mode determines whether or not to use the infra-red mode.

0 = Normal Mode Operation
1 = Infra-red Tx/Rx Mode

NOTE: The ULCONn has to be configured before the UCONn is configured.

Register Offset
Address

R/W Description Reset Value

ULCON0 0xe000 R/W UART channel 0 line control register 0x00

ULCON1 oxe800 R/W UART channel 1 line control register 0x00
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Figure 11-5.  UART Line Control Register (ULCON0,1)

31 8 7 6 5 3 2 1 0

IR SC PARITY ST WL

[1:0] Word Length per Frame
00 = 5 bits 10 = 7 bits
01 = 6 bits 11 = 8 bits

[2] Number of stop bit at the end of 
frame
0 = One stop bit per frame
1 = Two stop bit per frame

[5:3] Parity Mode
0xx = No parity
100 = Odd parity
101 = Even parity
110 = Parity forced/checked as 1
111 = Parity forced/checked as 0

[6] Serial Clock Selection
0 = Internal (MCLK)
1 = External (UCLK)

[7] Infra-Red Mode Selection
0 = Normal Mode Operation
1 = Infra-red Tx/Rx Mode
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UART CONTROL REGISTER

There are two identical UART control registers (UCON0,1) in the UART block, each for a SIO channel. The UCONn 
has to be configured after the ULCONn is configured.

[1:0] Receive Mode (RxM) The RxM determines which function is currently able to read data from the 
UART receive buffer register, URXBUF. The difference between UCON0 
and UCON1 should be noted. SIO0 can only generate a DMA0 request 
and SIO1 can only generate a DMA1 request.

For UCON0 For UCON1
00 = disable SIO0 00 = disable SIO1
01 = interrupt request 01 = interrupt request
10 = DMA0 request 10 = undefined
11 = undefined 11 = DMA1 request

NOTE: Even if you do not use the interrupt request, the interrupt request is selected to use SIO.
 If you don’t need a interrupt request, you can disable the interrupt by configuring the interrupt mask register (INTMSK).

[2] Rx Status Interrupt Enable This bit enables the UART to generate an interrupt if an exception, such 
as a break, frame error, parity error, or overrun error, occurs during a 
receive operation.

0 = do not generate receive status interrupt
1 = generate receive status interrupt

[4:3] Transmit Mode (TxM) This TxM determines which function is currently able to write Tx data to 
the UART transmit buffer register, UTXBUF. The difference between 
UCON0 and UCON1 should be noted. SIO0 can only generate a DMA0 
request and SIO1 can only generate a DMA1 request.

For UCON0 For UCON1
00 = disable SIO0 00 = disable SIO1
01 = interrupt request 01 = interrupt request
10 = DMA0 request 10 = not used
11 = not used 11 = DMA1 request

NOTE: Even if you do not use the interrupt request, the interrupt request is selected to use SIO.
If you don’t need a interrupt request, you can disable the interrupt by configuring the interrupt mask register (INTMSK).

Register Offset
Address

R/W Description Reset Value

UCON0 0xe000 R/W UART channel 0 line control register 0x00

UCON1 oxe800 R/W UART channel 1 line control register 0x00



UART KS32C6200 RISC MICROCONTROLLER

11-10

[6] Send Break Setting UCON[6] causes the UART to send a break. The break is defined 
as a continuous low level signal on the transmit data output with a 
duration more than one frame transmission time. 

This bit should be set to one when the transmitter is empty (transmitter 
empty bit, USTAT [7] ="1"). You can use the transmitter to measure a 
frame time interval. 

When the USTAT[7] is "1", write the transmit buffer register, UTXBUF, 
with dummy data and then poll the USTAT[7] value. When it returns to "1", 
clear (reset) the send break bit UCON[6]. (You have sent the break for 
one frame time interval exactly.)

0 = not send break
1 = send break

[7] Loopback Bit Setting loopback bit to ‘one’ causes the UART to enter loopback mode. In 
loopback mode, the TXDn pin is sent to the high level and the transmit 
buffer register (UTXBUF) is internally connected to the receive buffer 
register (RBR). This mode is provided for test purposes only.

 0 = Normal SIO operation mode
1 = Enable SIO loopback mode (only for testing)

Figure 11-6.  UART Control Register (UCON0,1)

31 8 7 6 5 3 2 1 0

LP SB TxM RS RxM

[1:0] SIO receive mode selection (RxM)
00 = Disable SIOn 01 = Interrupt request
10 = DMA0 request (for UCON0);
        Not used (for UCON1);
11 = Not used (for UCON0);
        DMA1 request (for UCON1);     

[2] Receive status interrupt enable
0 = Do not generate receive status interrupt
1 = Generate receive status interrupt

[4:3] SIO transmit mode selection (TxM)
00 = Disable SIOn
01 = Interrupt request
10 = DMA0 request (for UCON0);
        Not used (for UCON1);
11 = Not used (for UCON0);
        DMA1 request (for UCON1);

[6] Send break
0 = Do not send break 1 = Send break

[7] Loopback enable
0 = Normal SIO operating mode
1 = Enable SIO loopback mode (for testing only)

4
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UART STATUS REGISTER

There are two identical UART status registers, USTAT0,1, in the UART block, each for a SIO channel. The USTAT 
is a read only register that is used to monitor the status of SIO.

[0] Overrun Error USTAT[0] is automatically set to "1" whenever an overrun error occurs 
during a serial data receive operation. If the receive-status-interrupt- 
enable bit CON[2] is "1", and an overrun error occurs, a receive status 
interrupt will be generated. This bit is automatically cleared to "0" 
whenever the UART status register (USTAT) is read.

[1] Parity Error USTAT[1] is automatically set to "1" whenever a parity error occurs during 
a serial data receive operation. If the receive-status-interrupt-enable bit 
UCON[2] is "1", and a parity error occurs, a receive status interrupt will be 
generated. This bit is automatically cleared to "0" whenever the UART 
status register (USTAT) is read.

[2] Frame Error USTAT[2] is automatically set to "1" whenever a frame error occurs during 
a serial data receive operation. If the receive status-interrupt-enable bit 
UCON[2] is "1", and a frame error occurs, a receive status interrupt will be 
generated. The frame error bit is automatically cleared to "0" whenever 
the UART status register (USTAT) is read.

[3] Break Interrupt USTAT[3] is automatically set to "1" to indicate that a break signal has 
been received. If the receive status interrupt enable bit UCON[2] is "1", 
and a break occurs, a receive status interrupt will be generated. The 
break interrupt bit is automatically cleared to "0" when you read the UART 
status register.

[5] Receive Data Ready USTAT[5] is automatically set to "1" whenever the receive data buffer 
register (RBR) contains valid data received over the serial port. The 
receive data can then be read from the RBR. When this bit is "0", the RBR 
does not contain valid data. Depending on the current setting of the SIO 
receive mode bits, UCON[1:0], an interrupt or a DMA request is generated 
when USTAT[5] is "1".

[6] Tx Buffer Register Empty USTAT[6] is automatically set to "1" when the transmit buffer register 
(THR) does not contain valid data. In this case, the THR can be written 
with the data to be transmitted. When this bit is "0", the THR contains valid 
Tx data that has not been copied to the transmit shift register. In this case, 
the THR cannot be written with new Tx data. Depending on the current 
setting of the SIO transmit mode bits, UCON[4:3], an interrupt or a DMA 
request will be generated when USTAT[6] is "1".

Register Offset
Address

R/W Description Reset Value

USTAT0 0xe008 R/W UART channel 0 status register 0xc0

USTAT1 oxe808 R/W UART channel 1 status register 0xc0
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[7] Transmitter Empty (T) USTAT[7] is automatically set to "1" when the transmit buffer register has 
no valid data to transmit and the Tx shift register is empty. When the 
transmitter empty bit is "1", it indicates that the transmitter function block 
is not used and you can manipulate the setting of the transmitter function 
block.

Figure 11-7.  UART Status Register (USTAT0,1)

31 8 7 6 5 3 2 1 0

TE TH OV

[0] Overrun error
0 = No overrun error during receive
1 = Overrun error (generate receive 
      status interrupt if UCON[2] is 1) 

[1] Parity error
0 = No parity error during receive
1 = Parity error (generate receive 
      status interrupt if UCON[2] is 1)

[2] Frame error
0 = No frame error during receive
1 = frame error (generate receive 
      status interrupt if UCON[2] is 1)

[3] Break detect
0 = No break received
1 = Break received (generate receive 
      status interrupt if UCON [2] is 1)

[5] Receive data ready
0 = No valid data in the receive buffer register
1 = Vaild data present in the receive buffer 
      register (issue interrupt or DMA request 
      if UCON[1:0] is set)

[6] Transmit holding register empty
0 = Vaild data in transmit holding register
1 = No data in transmit holding register (issue
      interrupt or DMA request if UCON[1:0] is set)

[7] Tramsmitter empty
0 = Transmitter not empty; Tx in progress
1 = Transmitter empty; no data for Tx

4

PTFRBKRD
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UART TRANSMIT BUFFER REGISTER

There are two identical UART transmit buffer registers, UTXBUF, in the UART block for two SIO channels, each of 
which contains an 8-bit data value to be transmitted over the SIO channel.

In DMA-based transmit mode, as the destination of the DMA channel, the address of the transmit buffer register 
should be set to one, into the DMA destination address register.

[7:0] Transmit Data  This field contains the data to be transmitted by the corresponding SIO 
channel. When this register is written, the transmit buffer register empty 
bit in the status register, USTAT[6], should be set to "0". This prevents 
overwriting transmit data that may already be present in the URXBUF. 
Whenever the UTXBUF is written with new value, the transmit register 
empty bit, USTAT[6], is automatically cleared to "0".

Figure 11-8.  UART Transmit Buffer Register (UTXBUF0,1)

Register Offset
Address

R/W Description Reset Value

UTXBUF0 e00c W UART channel 0 transmit buffer register 0xxx

UTXBUF1 e80c W UART channel 1 transmit buffer register 0xxx

31 0

Transmit data

[7:0] Transmit data for UART

8 7
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UART RECEIVE BUFFER REGISTER

There are two identical UART receive buffer registers, RBR, in the UART block for two SIO channels, each of which 
contains an 8-bit data value for received serial data.

In DMA-based receive mode, as the source of the DMA channel, the address of the receive buffer register should 
be set into the DMA source address register.

[7:0] Receive Data This field contains the data received from the corresponding SIO channel. 
When UART finishes receiving a data frame, the receive data ready bit in 
the UART status register, USTAT[5], should be set to "1". This prevents 
reading invalid receive data that may already be present in the URXBUF. 
Whenever the RBR is read, the receive data ready bit, USTAT[5], is 
automatically cleared to "0". 

Figure 11-9.  UART Receive Buffer Register (URXBUF0,1)

Register Offset
Address

R/W Description Reset Value

URXBUF0 0xe010 R UART channel 0 receive buffer register 0xxx

URXBUF1 0xe810 R UART channel 1 receive buffer register 0xxx

31 0

Receive data

[7:0] Receive data for UART

8 7
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UART BAUD RATE DIVISOR REGISTERS

The value stored in the baud rate divisor register, UBRDIV, is used to determine the serial Tx/Rx clock rate (baud 
rate) as follows:

UBRDIVn = (int)(source_clock / (bps x 16)) - 1

The source_clock is either MCLK (the internal master clock) or UCLK (the external UART clock input) and it is 
determined by the setting of the serial clock selection bit in the line control register, ULCON[6].

Figure 11-10.  UART Baud Rate Divisor Register (UBRDIV0,1)

Register Offset
Address

R/W Description Reset Value

UBRDIV0 0xe014 R/W Baud rate divisor register 0 0x00000001

UBRDIV1 oxe814 R/W Baud rate divisor register 1 0x00000001

31 0

Buad-Rate Divisor

[15:0] Baud-rate divisor value
This field contains the baud rate divisor
value for corresponding SIO channel.
Baud rate can be calculated as: 

UBRDIVn = (int)(source_clock/(bpsx16))-1

16 15

NOTE:  The value of the baud-rate divisor should be from 1 to (216-1) 
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TIMING DIAGRAMS

Figure 11-11.  Interrupt-based Serial I/O Timing Diagram (Tx and Rx)

Figure 11-12.  DMA-based Serial I/O Timing Diagram (Tx only)

TBRE

TxD ParityStart Data Bits (5-8) Stop
(1-2)

Start

INT_TXD

WR_TBR

<TRANSMITTER>

RBR

INT

RxD ParityStart Data Bits (5-8) Stop
(1-2)

Start

<RECEIVER>

Previous Receive Data Valid Receive Data

Data Bits

<TRANSMITTER>

TxD ParityStart Data Bits (5-8) Stop
(1-2)

TxE

TBRE

WR_TBR

nDMA_REQ

nDMA_ACK
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Figure 11-13.  DMA-Based Serial I/O Timing Diagram (Rx only)

Figure 11-14.  Serial I/O Frame Timing Diagram (Normal UART)

<RECEIVER>

RxE

RxD Stop
(1-2)

ParityStart Data Bits (5-8) Start Data Bits

RBR Previous Receive Data Valid Receive Data

nDMA_REQ

nDMA_ACK

0 1 0 1 0 0 1 1 0 1

Start
Bit

Stop
Bit

SIO Frame

Data Bits
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Figure 11-15. Infra-Red Transmit Mode Frame Timing Diagram

Figure 11-16.  Infra-Red Receive Mode Frame Timing Diagram

0 1 0 1 0 0 1 1 0 1

Start
Bit

Stop
Bit

IR Transmit Frame

Data Bits

Bit 
Time

Pulse Width = 3/16 Bit Frame

0 1 0 1 0 0 1 1 0 1

Start
Bit

Stop
Bit

IR Receive Frame

Data Bits
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12 Tone Generator

OVERVIEW

The KS32C6200 Tone Generator provides a programmable tone signal which has a 50% duty cycle. The tone 
signal can be used to make out 'keyclick' sound. The Tone Generator block has a tone counter which includes an 
8-bit programmable divider and a 1/2 divider to make out the 50% duty cycle, and a Tone Data register (TONDATA) 
which has a tone enable/disable bit and tone count data bits. The 8-bit programmable divider receives MCLK/
(prescaler+1)/128 clock signals and divides it depending on the count value of TONDATA [7:0] bits. You can set the 
prescaler value of TSTCON as shown in Figure 14-3.

Figure 12-1.  Tone Generator Block Diagram

TONDATA[8] bit enables/disables the Tone generator operation. When it is cleared to '0', the tone output is 
disabled (stopped) and the programmable divider is automatically cleared while the tone data register (TONDATA) 
retains its value. The initial value of the tone enable bit is '0'.

The input clock to the tone generator is MCLK/(prescaler+1)/128. The divided-by ratio of the tone counter is 
determined by the tone data register value, ranging from 0 to 255. 

You have to load data into the tone data register (TONDATA) before enabling the tone generator to get the correct 
tone signal. To make out the 50% duty cycle tone signal, the KS32C6200 Tone Generator has a 1/2 divider with a 
programmable divider. The output of the programmable divider is divided by the 1/2 divider. 

The frequency of the tone is calculated as follows:

Tone

Enable/Disable

8-Bit Prescaler
Clock Divider

1/128
1/2 Divider 
(50% duty)

Reload

TONDATA

8-Bit Programmable 
divider

[1/Tone Data]

TONDATA[8]

[1/(1+Prescale Value)]

MLCK Reset

MCLK
(Prescaler+1) x 128 x ToneData x 2
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Table 12-1.  Tone Generator Data Value Setting (MCLK=33 MHz)

NOTE: The value of prescaler is 0xc.

Tone Generator Data Register (TONDATA)

The tone generator data register (TONDATA) stores an 8-bit value which determines the frequency of the tone 
generator output. The value in the TONDATA register determines the divided-by ratio of the programmable divider. 
The divided-by value, therefore, ranges from 0 to 255. The output value of the tone counter is divided by two, 
producing a 50% duty tone output signal. A reset clears the TONDATA value to '00h'. The tone frequency is 
therefore calculated, based on the tone data value, as follows:

Figure 12-2.  Tone Data Register (TONDATA)

TONDATA Tone Frequency TONDATA Tone Frequency

0 No tone (all high) 4 2.470 kHz

1 9.916 kHz .... ....

2 4.958 kHz 100 99 Hz

3 3.305 kHz 255 39 Hz

Register Offset
Address

R/W Description Reset Value

TONDATA 0xf004 R/W Tone generator data register 0x00

MCLK
(Prescaler+1) x 128 x ToneData x 2

31 9 8 7 0

[7:0] Tone Counter Data
8-bit tone counter data value

[8] Tone generator Control
0 = Clear counters and reset tone output
1 = Generate tone

X Tone Count Data
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13 Watch-Dog Timer

OVERVIEW

The KS32C6200 Watch-Dog Timer is used to resume controller operation when it is disturbed by malfunctions such 
as noise and system errors. It can be used as a normal interval timer to request interrupt services. You can set the 
prescaler value (initial value: 0xC) in TSTCON as shown in Figure 14-3.

Figure 13-1.  Watch-Dog Timer Block Diagram

WATCH-DOG TIMER COUNTER REGISTERS

The watch-dog timer counter register, WTCNT, is used to specify the time out duration. The watch-dog timer 
enable bit (bit 5, WTCON) must be '0' before loading a value to this register.

        Watch-dog timer clock = MCLK / (prescale value + 1 ) / division factor 
        Watch-dog timer duration = count_value x watch-dog timer clock period

8-Bit Prescaler
WTCNT

(Down Counter)
[1/(1+Prescale Value)]

MLCK Clock Divider
1/128
1/32
1/64

1/128

Interrupt

nRSTO pin

WTCON[4:3] WTCON[5] WTCON[2] WTCON[0]

Enable/
Disable

Enable/
Disable

Enable/
Disable

Pull-Up Resistor
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Table 13-1.   Watch-Dog Timer Counter Setting (MCLK=33 MHz)

NOTE: The value of prescaler is 0xc and WTCNT is 16-bit count.

Figure 13-2.  Watch-Dog Timer Count Register (WTCNT)

Clock Source Resolution Maximum Interval Remark

MCLK/(prescale+1)/16 6.30 µs 413 ms Default setting

MCLK/(prescale+1)/32 12.6 µs 826 ms –

MCLK/(prescale+1)/64 25.2 µs 1.651 s –

MCLK/(prescale+1)/128 50.4 µs 3.305 s –

Register Offset
Address

R/W Description Reset Value

WTCNT 0xf804 R/W Watch-dog timer count register 0x00000003

31 0

[15:0] Watch-dog timer count register
This specifies the time out duration

Count value

16 15
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WATCH-DOG TIMER CONTROL REGISTER

Using the Watch-Dog Timer Control register, WTCON, you can enable/disable the watch-dog timer, select the 
clock signal from 4 different sources, enable/disable interrupts, and enable/disable the watch-dog timer reset 
output signal through the nRSTO pin. If the counter value of the watch-dog timer is “0,” the WTCON is cleared to 
0x0.

Figure 13-3.  Watch-Dog Timer Control Register (WTCON)

Register Offset
Address

R/W Description Reset Value

WTCON 0xf800 R/W Watch-dog timer control register 0x00000021

31 6 5 3 2 1 0

[0] Reset Mode
0 = Disable nRSTO pin
1 = Enable nRSTO pin     

[2] Interrupt Mode
0 = Disable interrupt
1 = Enable interrupt

[4:3] Clock division factor selection
00 = 16 01 = 32
10 = 64 11 = 128

[5] Watch Dog Timer Enable/Disable
0 = Disable timer 
1 = Enable timer

4

XXX CLK
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Watch-Dog Timer Operation

Before loading a count value into the Watch-Dog Timer Count Register, WTCNT, you have to disable the watch-
dog timer by setting the WTCON[5] bit to zero. When WTCON[5] bit set to "1," the watch- dog timer is enabled and 
the counter starts down-count. The value of the watch-dog counter register is accessible at any time while the 
watch-dog timer is enabled, because it provides read and write features.

The watch-dog timer provides general timer interrupt as well as system reset features. To enable the watch-dog 
timer interrupt, the WTCON[2] bit has to be set to “1”. When the watch-dog timer interrupt is enabled, the interrupt 
signal generates one pulse of request signal to CPU. The interrupt pending bit (bit2, INTPNDR) is automatically set 
to '1' when an underflow occurs. 

When WTCON[0] bit is '1', the nRSTO pin is enabled and watch-dog reset signal comes through the nRSTO pin. If 
watch-dog counter reaches to zero, for some reason, the nRSTO signal is activated during 128 MCLK cycles, and 
the WTCON will be automatically set to 0x0. To avoid watch-dog timer activating the nRSTO signal, the MCU has 
to reload the counter value into the watch-dog counter register (WTCNT) periodically.

The nRSTO signal is not connected to the nRESET internally. If nRSTO is connected to the nRESET by an 
external logic, the KS32C6200 initialization routine will be executed by the nRSTO signal.

NOTE

The pin type of nRST is open-drain output. If you want to use the nRST pin, a pull-up resistor must be 
installed on the nRST pins.  
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NOTES
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14 I/O Ports

OVERVIEW

The KS32C6200 has 6 input, 13 output, 5 input/output, 10 extra-output ports and serial EERAM control ports. 
Some ports pins can be multiplexed with other internal device units, such as JTAG, UART, interrupt controller and 
so on. 

I/O Port Special Registers

Two registers, IOPMOD and IOP, control the I/O port configuration. Table 14-1 shows the possible values for the 
port mode registers. The IOP register contains one bit for each port which reflects the signal level at the respective 
port pin.
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Table 14-1.  I/O Port Mode Configuration Settings

I/O Port Pin I/O Port Mode Configuration Settings

Function for one Function for zero

GIP[0]:RXD0 GIP[0] RXD0

GIP[1]:RXD1 GIP[1] RXD1

GIP[2]:nEXT_INT0 GIP[2] nEXT_INT0

GIP[3]:nEXT_INT1 GIP[3] nEXT_INT1

GIP[4]:nEXT_DREQ GIP[4] nEXT_DREQ

GIP[5]:UCLK GIP[5] UCLK

GOP[0]:TXD0 GOP[0] TXD0

GOP[1]:TXD1 GOP[1] TXD1

GOP[2]:nEXT_DACK GOP[2] nEXT_DACK

GOP[3]:TONE GOP[3] TONE

GOP[4]:nRSTO GOP[4] nRSTO

GOP[5]:nIOWR1 GOP[5] nIOWR1

GOP[6]:nIOWR2 GOP[6] nIOWR2

GOP[7]:nIORD1 GOP[7] nIORD1

GOP[8]:nIORD2 GOP[8] nIORD2

GOP[9]:CLKOUT GOP[9] CLKOUT

GOP[10]:Reserved GOP[10] Reserved

GOP[11] –

GOP[12] –
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I/O PORT MODE REGISTER

The I/O port mode register, IOPMOD, is used to configure the GIP (general input port), the GOP (general output 
port), and the GIOP(general in/out port).

Figure 14-1.  I/O Port Mode Register (IOPMOD)

Register Offset
Address

R/W Description Reset Value

IOPMOD 0x4808 R/W I/O port mode register 0x00000000

[4:0] General in/out (GIOP) mode
0 = Input mode
1 = Output mode     

[15:5] General output (GOP) mode
0 = Control signal 
1 = Output mode

[21:16] General input (GIP) mode
0 = Control signal 
1 = Input mode

31 22 20 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 01821

GIP GOP GIOP
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I/O PORT REGISTER

he I/O port data register, IOPDATA, contains one-bit value for I/O ports that are configured to input mode and one-
bit write value for ports that are in output mode. You can read/write the ports through the I/O port register, 
IOPDATA.

Figure 14-2.  I/O Port Data Register (IOPDATA)

Register Offset
Address

R/W Description Reset Value

IOPDATA 0x4804 R/W I/O port data register Undefined

[4:0] General input/output port (GIOP)    

[17:5] General output port (GOP)

[23:18] General input port (GIP)-read only

31 22 20 19 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0182124 23

GIOPGOPGIP
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TEST CONTROL REGISTER

Test control register (TSTCON) contains 6-bits to test some functions of KS32C6200. These bits are used only for 
test at fabrication and are not specified in this manual. You can use the other bits as follows:

— CKOUT mode:
The CKOUT mode bit determines whether or not CKOUT output is divided by 2.
0 = MCLK / 2
1 = MCLK

— Prescaler value:
Timer 0, Timer 1, Timer 2, Watch-dog timer, and Tone generator use this prescaler value to divide MCLK. 

— Bidirectional control pin

Figure 14-3.  Test Control Register (TSTCON)

Register Offset
Address

R/W Description Reset Value

TSTCON 0x4800 R/W Test control register 0x00000600

[4:0] 0 for normal operation

[5] CLKOUT mode
0 = MCLK/2
1 = MCLK

[6] 0 for normal operation

[14:7] Prescaler value (>=1)

[15] Output value for 245 CLK pin

31 16 15 14 7 6 5 4 3 2 1 0

X Prescaler Value 000 0X 0 0
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EERAM CONTROL REGISTER

EERAMCON controls EEDATA and EECLK pins to interface a serial EEPROM. EERAMCON[0] bit responds to the 
EEDATA pin and EERAMCON[1] bit to the EECLK pin.

Figure 14-4.  EERAM Control Register (EERAMCON)

Register Offset
Address

R/W Description Reset Value

EERAMCON 0x5000 R/W EERAM control register 0x0000000x

[0] EERAM data

[1] EERAM clock

[2] Data direction
0 = Input mode
1 = Output mode

31 3 2 1 0

XX X
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JTAG Test-Logic Unit

32C6200 has three modes, core test mode, the logic test mode and the MDS mode. These modes are determined 
by TEST1 and TEST2 pins. MDS mode supports the JTAG test logic unit. When MCU is in the MDS mode, the 
GIOP pins is used as a TAP (test access port). The MDS mode will be used by the ICE (Incircuit Emulator) 
supporting the JTAG test logic unit. The core test mode and logic test mode are used only at fabrication.

Table 14-2.  MCU Operating Mode Setting

Table 14-3.  Test Access Port Pins (MDS Mode)

Test2 Test1 MCU State

0 1 Normal operating mode

0 1 Core test mode (only fabrication)

1 0 Logic test mode (only fabrication)

1 1 MDS mode

TAP Pin Share Pin Description

TCK GIOP[0] Test clock input

TMS GIOP[1] Test mode select input

TDI GIOP[2] Test data input

nTRST GIOP[3] Test reset input

TDO GIOP[4] Test data output
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Extra-Output Port

KS32C6200 has 13 output ports and ten additional output pins for the function blocks, which have special functions 
only for Ink-Jet printers. These usages are somewhat different from GOP because the pins are not designed as a 
dedicated output port. 

To use EOPA[5:0] as an output port:

— Write the data of EOPA[5:0] pins onto the EOPA register. 

— Write 0x1800 onto the EOPL (Extra-Output Port Latch Register). EOPA[5:0] pins have had the valid data.

— Do not clear EOPL register after writing 0x1800. 

To use EOPB[3:0] as output port:

— Write (EOPB[3:0] << 8) | 0x8000 onto the EOPB register. The bit 14 must be “0.”

EXTRA-OUTPUT PORT A REGISTER

The extra-output port A register, EOPA, contains one-bit write value to configure port to output mode.

Figure 14-5.  Extra-Output Port A Register (EOPA)

Register Offset
Address

R/W Description Reset Value

EOPA 0x8004 R/W Extra-output port A register 0x000003c0

[5:0] Extra output port

[11:6] Read only bits for chip test

31 12 11 6 5 4 3 2 1 0

XXXXXXRESERVED
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EXTRA-OUTPUT PORT LATCH REGISTER

The extra-output port latch register, EOPL, is written by “0x1800.”

EXTRA-OUTPUT PORT B REGISTER

The extra-output port B register, EOPB, contains 4-bit values of ports in output mode. 

Figure 14-6.  Extra-Output Port B Register (EOPB)

Register Offset
Address

R/W Description Reset Value

EOPL 0x8000 R/W Extra-output port latch register 0x800

Register Offset
Address

R/W Description Reset Value

EOPB 0x9010 R/W Extra-output port B register 0x0000cf0f

[7:0] Reserved for internal operation

[11:6] EOPB[3:0]

[15:12] Write 1000b

31 16 15 14 13 12 11 8 7 0

RESERVEDEOPB[3:0]1 00 0
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15 Interrupt Controller

OVERVIEW

The KS32C6200 interrupt structure has a total of 15 interrupt sources. Interrupt requests can be generated by 
internal function blocks and at external pins. The ARM7T core recognizes two kinds of interrupts, the interrupt 
request (IRQ) and the fast interrupt request (FIQ). Therefore, all KS32C6200 interrupts can be categorized as 
either IRQ or FIQ. The KS32C6200 interrupt controller extends the number of multiple interrupt sources that can be 
serviced by using three special registers, INTMOD, INTPND, and INTMSK:

— Interrupt mode register
Defines the interrupt mode, IRQ or FIQ, for each interrupt source.

— Interrupt pending register
Indicates that an interrupt requests is pending (that is, when the I-flag or F-flag is set in the program status 
register, PSR). This status prevents any additional interrupts from being acknowledged. When a pending bit is 
set, the interrupt service routine starts whenever the I-flag or F-flag is cleared to ‘0’. The service routine must 
clear the pending condition by writing a '1' to the appropriate pending bit.

— Interrupt mask register
Indicates that the current interrupt has been disabled if the corresponding mask bit is '0'. If an interrupt mask bit 
is '1', the interrupt will be serviced normally, and if the global mask bit (bit 20) is cleared, all interrupts are not 
serviced. However, the source's pending bit is set when the interrupt is generated even if the corresponding 
mask bit is '0'. After the global mask bit is set, the interrupt will be serviced.

Interrupt Sources

In the KS32C6200, the 15 interrupt sources are described as follows:

[14] Parallel port interrupt
[13] Timer 2 interrupt
[12] Timer 1 interrupt
[11] Timer 0 interrupt
[10] DMA 0 interrupt
[9] DMA 1 interrupt
[8] UART channel 0 error interrupt
[7] UART channel 1 error interrupt
[6] UART channel 0 receive interrupt
[5] UART channel 1 receive interrupt
[4] UART channel 0 transmit interrupt
[3] UART channel 1 transmit interrupt
[2] Watch-dog timer interrupt
[1] External interrupt 1
[0] External interrupt 0
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INTERRUPT MODE REGISTER

Bits in the interrupt mode register, INTMOD, specify if an interrupt is to be serviced as a fast or normal interrupt.

Figure 15-1.  Interrupt Mode Register (INTMOD)

Register Offset
Address

R/W Description Reset Value

INTMOD 0x4000 R/W Interrupt mode register 0x00000000

[14:0] Interrupt mode bit
Each of the 15 bits in the interrupt mode enable register,
INTMOD, corresponds to an interrupt source. When the 
interupt mode bit for each source is set to 1, the interrupt is 
processed by the ARM7TDMI core in the FIQ (fast interrupt)
mode. Otherwise, it is processed in the IRQ mode (normal 
interrupt). The 15 interrupt sources are summarized as 
follows:     

[14] Parallel port interrupt
[13] Timer 2 interrupt
[12] Timer 1 interrupt
[11] Timer 0 interrupt
[10] DMA 0 interrupt
[9] DMA 1 interrupt
[8] UART channel 0 error interrupt
[7] UART channel 1 error interrupt
[6] UART channel 0 receive interrupt
[5] UART channel 1 receive interrupt
[4] UART channel 0 transmit interrupt
[3] UART channel 1 transmit interrupt
[2] Watch-dog timer interrupt
[1] External interrupt 1
[0] External interrupt 0

XX

31 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XXXX XXXX XXXX X
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INTERRUPT PENDING REGISTER

The interrupt pending register, INTPND, contains interrupt pending bits for each interrupt source. The INTPND has 
nothing to do with INTMSK. Although INTMSK forbids an interrupt request to be generated, the INTPND operates 
properly regardless of the INTMSK. nEINT1,2 pins have to assert for 3 clock cycles to set the corresponding 
pending bit. 

NOTE

To clear the corresponding pending bit to zero after a interrupt service routine, write the pending bit to one. 
The value of the pending bit is changed from one to zero automatically. 

Figure 15-2.  Interrupt Pending Register (INTPND)

Register Offset
Address

R/W Description Reset Value

INTPND 0x4004 R/W Interrupt pending register 0x00000000

[14:0] Interrupt mask bit
Each of the 15 bits except the global mask bit in the 
interrupt mask register, INTMSK, corresponds to an
interrupt source. When a source interrupt mask bit
is 0 and the corresponding interrupt request is generated, the 
interrupt is not serviced by the CPU. If the mask bit is 1, the 
interrupt is serviced upon request, and if the global mask bit (bit 
20) is cleared, the interrupts are not serviced. But, when the 
interrupt is generated, the source pending bit is set. After the 
global mask bit is set, the interrupt is serviced. The 15 interrupt 
sources and global mask bit are summarized as follows:     

[20] Global mask bit
[14] Parallel port interrupt
[13] Timer 2 interrupt
[12] Timer 1 interrupt
[11] Timer 0 interrupt
[10] DMA 0 interrupt
[9] DMA 1 interrupt
[8] UART channel 0 error interrupt
[7] UART channel 1 error interrupt
[6] UART channel 0 receive interrupt
[5] UART channel 1 receive interrupt
[4] UART channel 0 transmit interrupt
[3] UART channel 1 transmit interrupt
[2] Watch dog timer interrupt
[1] External interrupt 1
[0] External interrupt 0

XX

31 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XXXX XXXX XXXX X

20 19 17 1618

0 000X 0

21
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INTERRUPT MASK INTERRUPT

The interrupt mask register, INTMSK, contains interrupt mask bits for each interrupt source. 

Figure 15-3.  Interrupt Mask Register (INTMSK)

Recognitions of the Interrupt Requests

The external interrupt pins (nEINT1, nEINT2) recognize interrupt requests by edge trigger. The KS32C6200 
detects the down edge of nEINT1, nEINT2 and checks that the interrupt request pins are low levels during two 
MCLK period to confirm the interrupt request valid. The low level interval of nEINT1,2 must be longer than 3 MCLK 
period to confirm the validity of the interrupt request. 

Register Offset
Address

R/W Description Reset Value

INTMSK 0x4008 R/W Interrupt mask register 0x00000000

[14:0] Interrupt mask bit
Each of the 15 bits except the global mask bit in the 
interrupt mask register, INTMSK, corresponds to an
interrupt source. When a source interrupt mask bit
is 0 and the corresponding interrupt request is generated, the 
interrupt is not serviced by the CPU. If the mask bit is 1, the 
interrupt is serviced upon request, and if the global mask bit (bit 
20) is cleared, the interrupts are not serviced. But, when the 
interrupt is generated, the source pending bit is set. After the 
global mask bit is set, the interrupt is serviced. The 15 interrupt 
sources and global mask bit are summarized as follows:     

[20] Global mask bit
[14] Parallel port interrupt
[13] Timer 2 interrupt
[12] Timer 1 interrupt
[11] Timer 0 interrupt
[10] DMA 0 interrupt
[9] DMA 1 interrupt
[8] UART channel 0 error interrupt
[7] UART channel 1 error interrupt
[6] UART channel 0 receive interrupt
[5] UART channel 1 receive interrupt
[4] UART channel 0 transmit interrupt
[3] UART channel 1 transmit interrupt
[2] Watch dog timer interrupt
[1] External interrupt 1
[0] External interrupt 0

XX

31 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XXXX XXXX XXXX X

20 19 17 1618

0 000X 0

21
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16 Electrical Data

ABSOLUTE MAXIMUM RATINGS

Table 16-1.  Absolute Maximum Ratings

(TA =  25 C)

THERMAL CHARACTERISTICS

Table 16-2.  Thermal Characteristics

(TA =  25 °C)

Parameter Symbol Rating Unit
Supply Voltage VDD – 0.3  to  + 7.0 V
Input Voltage VIN – 0.3  to  VDD + 0.3 V
Operating Temperature TA 0  to  + 70 °C
Storage Temperature TSTG – 40  to  + 125 °C

Parameter Symbol Value Unit
Thermal Impedance— Junction to 
Ambient Plastic 160-pin TQFP

θJA 40 °C/W
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D.C. ELECTRICAL CHARACTRERISTICS

Table 16-3.  D.C. Electrical Characteristics

(TA  =  0 °C  to  + 70 °C, VDD  =  4.75 V  to  5.25 V)

NOTES
1. We recommend for you to install the bypass capacitors between the VDD and the VSS of KS32C6200. 

The bypass capacitor increases the noise immunity of KS32C6200.
2. The pin type of O1, O2, O3, I/O1, I/O4, and I/O5 is type 4, and I/O3 is type 8.

Parameter Symbol Conditions Min Max Unit
Input High 
Voltage

VIH TTL interface 2.0 – V
TTL schmitt trigger – 2.1

Input Low 
Voltage

VIL TTL interface – 0.8 V
TTL schmitt trigger 0.8 –

Input High
Current

IIH Input buffer, VIN =  VDD – 10 10 µA

Input Low
Current

IIL Input buffer, VIN =  VSS – 10 10 µA
ILL2 Input buffer with pull-up, 

VIN =  VSS

– 200 – 10

Output High 
Voltage

VOH Type 4, IOH = – 4 mA(2) 2.4 – V

Type 8, IOH = – 8 mA(2)

Output Low 
Voltage

VOL Type 4, IOL = 4 mA(2) – 0.4 V

Type 8, IOH = 8 mA(2)

Quiescent Supply 
Current

IDD VIN =  VSS or VDD , 33 MHz – 180 mA
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Table 16-4.  A.C. Electrical Characteristics

(TA  =  0 °C  to  + 70 °C, VDD  =  4.75 V  to  5.25 V)
Parameter Symbol Min Max Unit

RESET Pulse Width tRST 69 – MCLK
CLKOUT Rising Time from MCLK tCKOUTR 5.0 15.4 ns
CLKOUT Falling Time from MCLK tCKOUTF 4.8 14.5 ns
nEINT1,2 Setup before MCLK tINTS 0 – ns
nEINT1,2 Hold after MCLK tINTH 5.0 – ns
nEINT1,2 Pulse Width tINTW 3.0 – MCLK
Parallel Port Input Hold after MCLK tPINH 0 27 ns
Parallel Port Output Valid from MCLK tPOV 3 17 ns
PPD[7:0] Valid from MCLK tPDV 11 23 ns
PPD[7:0] High Impedance from MCLK tPDZ 4 13 ns
nXDREQ Setup Time before MCLK tXDREQS 6 – ns
nXDREQ Hold Time before MCLK tXDREQH 4 – ns
nXDREQ Pulse Width tXDREQW 2 – MCLK
nXDACK Valid from MCLK tXDACK 4 29 ns
nXDACK Pulse Width tXDACKW 18 – MCLK
Address Hold Time tADDRH 7.1 – ns
Address Delay time tADDRD – 25.1 ns
ROM Bank Chip Select Delay Time tNRCS – 20.6 ns
ROM/SRAM/Extra I/O Bank Out Enable Delay tNROE – 23.5 ns
SRAM/Extra I/O Bank Write Enable Delay tNRWE – 18.2 ns
SRAM/Extra I/O Bank Write Byte Enable 
Delay

tNWBE – 18.1 ns

Read Data Hold Time tRDH 3.0 – ns
Write Data Delay Time (SRAM/Extra I/O) tWDD – 9.8 ns
Write Data Hold Time (SRAM/Extra I/O) tWDH 26.3 – ns
DRAM Row Address Strobe Active Delay tNRASF – 15.2 ns
DRAM Row Address Strobe Release Delay tNCASR – 27.0 ns
DRAM Column Address Strobe Active Delay tNCASF – 16.1 ns
DRAM CAS Signal Release Delay Time tNCASR – 17.1 ns
DRAM CAS Write Active Delay tNCASW – 19.8 ns
DRAM Bank Write Enable Delay Time tNDWE – 24.4 ns
DRAM Bank Out Enable Delay Time tNDOE – 23.5 ns
External I/O Bank Chip Select Delay Time tNECS – 20.6 ns
Special I/O Bank Read Signal Delay Time tNIORD – 23.5 ns
Speical I/O Bank Write Signal Delay Time tNIOWR – 18.2 ns
DRAM Write Data Delay Time (DRAM) tWDDD – 14.2 ns
DRAM Write Data Hold Time (DRAM) tWDDH 7.4 – ns
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Figure 16-1.  Reset Cycles (CLKSET = 0)

Figure 16-2.  CLKOUT Cycle (CLKSEL = 0)

Figure 16-3.  External Interrupt Cycle (CLKSEL = 0)

nRESET

tRST

64xNxMCLK + 65xMCLK 256MCLK

internal reset

MCLK

tCKOUTR

CLKOUT

tCKOUTF

MCLK

tINTS

nEINT1,2

tINTW
tINTH
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Figure 16-4.  Parallel Port Interface Cycle (CLKSEL = 0)

MCLK

tPINH

tPOV

tPDV tPDZ

tCLK tCKH tCKW

nSELECTIN,
nSTROBE,

nNIT,
nAUTOFD,

PPD[7:0](in)

nACK, BUSY,
SELECT,

PERROR,
nFAULT,

PPD[7:0]
(output)
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Figure 16-5.  External DMA Cycle (CLKSEL = 0)

MCLK

tCLK tCKH tCKW

tXDREQW

tXDREQS tXDREQH

nXDREQ

tXDACKW
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Figure 16-6.  ROM/SRAM Access Timing
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Data(R)
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Figure 16-7.  DRAM Bank Access Timing
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Figure 16-8.  Extra-Bank Access Timing

MCLK

Address

tADDRdtADDRh

nECS
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nOE
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NOTES
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17 Mechanical Data

Figure 17-1. 160-TQFP Package Dimensions

NOTE :  Dimensions are in millimeters.
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It's absolutely recommended to read this sheet.
Caution When Embedded ICE(through JTAG Port) is used and SFR is viewed by debugger, SFR

contents may be changed. When the program is download using the ICE, the cache is not updated. So,

you have to flush the cache before downloading by clearing the tag RAM or by a reset..

Caution SWP instruction has to manipulate the data in non-cacheable memory area. If SWP instruction

manipulates the cachable memory area, the data in cache will be differ the data in memory.

Error Page 1-4,1-5,14-5: 245CLK => 245DIR

Error Page 1-12: TBCNT2 , 581ch => 580ch
Error Page 4-11,Figure 4-8:nRCS0,nRCS1
Because nRCS0 has to be ROM bank, SRAM doesn't use RCS0.
nRCS0 => nRCS1, nRCS1 => nRCS2
Error Page 4-25: Figure 4-21

The waveform of nOE is not correct. It is right that the nOE is 'H' level.

Error Page 9-1: Figure 9-1

GDMA, DMA Chnnel 0 => DMA0, DMA Channel 0

CDMA, DMA Chnnel 0 => DMA1, DMA Channel 1

Error Page 10-7: nACK control

=> Setting this bit to "1" forces the external nACK output to Low level by force. This is generally done

when hardware handshaking is disable. When this bit is '0',the external nACK is the the internal signal.

Error Page 10-8: SELECT output control bit

;paper error has occurred => ;printer is ready
Caution Page 10-11: [9] DMA request enable
Just after PPCON9 is set, the PPIC will do DMA request for data transfers. So, the DMA has to be
configured before PPIC is configured.
Caution If the parallel port event is occurred, the PPIC asserts an interrupt request to the interrupt

controller. The PPIC then inactivatesthe interrupt request automatically though the corresponding bit of

PPINTPND is not cleared to '0', Therefore, if the bit 14 of INTPND is cleared but the PPINTPND is not

cleared. the interrupt controller retracts the interrupt request to CPU and the interrupt is lost. It's

recommended the following sequence to process parallel port interrupts.

1. Read PPINTPND and save the value to memory.

2. Turn off the bit 14 of INTPND

3. Check again PPINTPND. if the PPINTPND is different, go to 1.

4. Turn off the corresponding bit of PPINTPND by the saved value.

5. Process the parallel port interrupt by the saved PPINTPND.

Error Page 11-9:

Register Offset Address R/W Description Reset Value

UCON0 0xe004 R/W UART channel 0 control register 0x00

UCON1 0xe804 R/W UART channel 1 control register 0x00

Error Page 11-11,Figure 11-7: "[6]Transmit holding register empty" item

correctings: transmit holding register => transimt buffer register

Caution Page 13-1,Figure 13-1: nRSTO is open drain output. The external pull-up register have to

be installed.
1 /2



Error Page 14-7: Table 14-2

0 1 Normal operating mode => 0 0 Normal operating mode

Error Page 15-3: Table 15-2
The figure 15-3 is not a right figure. Replace the figure 15-3 as follows:

0910111213141516171819202122232425262728293031 000102030405060708

X X X XX X X XX X X XX X X

[14:0] Interrupt pending bit
Each of the 15 bits in the interrupt pending register, INTPND, corresponds to an interrupt source. When
an interrupt request is generated, it will be set by '1'. The interrupt service routine must then clear the
pending condition by writing '1' to the appropriate pending bit. Only the bit written with '1' toggles from '1'
to '0'. The 15interrupt sources are summarized as follows:

[14] Parallel port interrupt ......
[0] External interrupt 0

Error Page 16-2: Table 16-3

Output Low Voltage: Type 8: IOH=8mA => IOL=8mA

Error Page 16-7: Figure 16-6 6th wave

nWE => nWBE[1:0] , 2nd Drata(R) => Data(W)

Etc
o Table 1-5,1-6,1-7

Table 1.1 KS32C6000 Signal Descriptions. => Table 1.1 KS32C6200 Signal Descriptions.

o Page 1-13, Table 1-3, 16th row, EOP => EOPA

o Page 3-22, 13th line, 0x0000001=> 0x00000014

o Page 3-58, 19th line: Overflow Eetection => Overflow Detection

o Page 4-10, 17th line: Figure 4-20 => Figure 4-15

o Page 4-12, 4th line: 01003010h => 0100301ch

o Page 4-12, the last line: Figure 4-9 => Figure 4-8

o Page 4-21, Figure 4-16: Tocs => Tcos

o Page 4-27, Figure 4-23: nOE => nWE

o Page 7-1, 3rd line: 224 => 208

o Page 9-11, Figure 9-8: CDMA. => DMA.

o Page 10-8, Figure 10-5, The bit10 is ommitted in figure by mistake.

o Page 10-13, [7] Abort bit, bys => bus

o Page 11-1, 9th line: transmit holding register => transmit buffer register

o Page 13-1, Figure 13-1 : 1/128 => 1/16

o Page 14-4, 2nd line : he => The

o Page 10-6, Figure 10-4, 4th line : PPN[7:0] => PPD[7:0]
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