SPEC.NO.	TQ3C-8EACO-E1CWP08-00						
DATE	September 11, 2000						

SPEC

F	0	R			
•	•		•		

TYPE: KCS038AA1AI-G20

CONTENTS

- 1. Application
- 2. Construction and Outline
- 3. Mechanical Specifications
- 4. Absolute Maximum Ratings
- 5. Electrical Characteristics
- 6. Optical Characteristics
- 7. Circuit Block Diagram of LCD
- 8. Interface Signals
- 9. Interface Timing Chart of LCD
- 10. Data and Screen
- 11. Input Timing Characteristics of LCD
- 12. Supply Voltage Sequence Condition of LCD
- 13. Backlight Characteristics
- 14. Design Guidance for Analog Touch Panel (T/P)
- 15. Lot Number Identification
- 16. Warranty
- 17. Precautions for Use
- 18. Reliability Data / Environmental Test
- 19. Recommended additional circuit
- 20. Outline Drawing

KYOCERA CORPORATION KAGOSHIMA HAYATO PLANT LCD DIVISION

This specification is subject to change without notice. Consult Kyocera before ordering.

Original	Designed by	:Engineering	Confirmed by :QA Dept.		
Issue Data	Prepared	Checked	Approved	Checked	Approved
September 11, 2000	S. Oshita	M.Fujitani	4 Matsummer	S. Hgyarh	y. goshita

Revision Record

Designed Prepared		ed by	: Engineering	Dept.	Confirmed by : QA Dept.		
		red	Checked	Approved	Checked	Approved	
Rev. No.	Da	t e	Page		Descriptio	ons	

Cauti on

- 1. This general specification can be changed, just for your reference only. Kyocera will release specification later exclusive for you. Please refer to it as the formal document of specification.
- 2. This LCD is supposed to be for general electric appliances such as audio, office automation, industrial applications, home appliances and game machines. Do not use the LCD as a display for a medical instrument that is required extremely high reliability and its failure and malfunction may affect human lives. In the case you did, Kyocera will not take responsibility for it.
- 3. Kyocera may scrap the tooling or stop supplying the LCD, after 2 year time frame from your latest purchase of the LCD.

1. Application

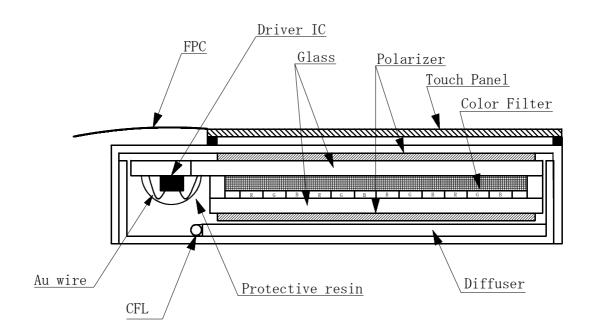
This data sheet defines the specification for a $(240\times3)\times320$ dot, STN Transmissive color dot matrix type Liquid Crystal Display with CFL backlight and Touch Panel.

2. Construction and Outline

 $(240\times3)\times320$ dots, COB type LCD with CFL backlight and Touch Panel.

Backlight system : Side-edge type CFL (1 tube).

Inverter : Option.


Recommended Inverter: KCI-93 (TAMURA CORPORATION)

or equivalent.

Polarizer : Glare treatment.

Additional circuit : None.

Touch Panel : Analog type . Non-Glare treatment.

This drawing is showing conception only.

3. Mechanical Specifications

3-1 Mechanical Specifications of LCD

ITEM	SPECIFICATION	UNIT
Outline dimensions	74.9 (W) \times 94.8 (H) \times 8.3 (D)	mm
Effective viewing area	59.6 (W) × 78.8 (H)	mm
Dot number	$240 \times R. G. B (W) \times 320 (H)$	Dots
Dot size	0.06 (W) × 0.22 (H)	mm
Dot pitch	0.08 (W) × 0.24 (H)	mm
Display color *1	White *2	_
Base color *1	Black *2	_
Mass	85	g

^{*1} Due to the characteristics of the LC material, the color vary with environmental temperature.

Display data "H" :R,G,B Dots ON : White Display data "L" :R,G,B Dots OFF : Black

3-2 Specifications of touch panel

ITEM	SPECIFICATION	UNIT
Input	Radius-0.8 stylus or Finger	1
Actuation Force	Тур. 15, Мах. 80	රු
Transparency	Тур. 79	%
Surface hardness	pencil hardness 2H or more according to JIS-K5400	-

^{*2} Negative-type display

4. Absolute Maximum Ratings

4-1 Electrical absolute maximum ratings

ITEM	SYMBOL	MIN.	MAX.	UNIT
Supply voltage for logic	VDD	0	7. 0	V
Supply voltage for LCD driving *1	V0-V5	0	37. 0	V
Input signal voltage *2	Vin	0	VDD	V
Touch Panel Supply voltage	Vtp	0	7. 0	V
Touch Panel Input Current	Itp	0	24. 0	mA

^{*1} V0 \geq V1 \geq V2 \geq V3 \geq V4 \geq V5 = 0(V)

4-2 Environmental absolute maximum ratings

ITEM		SYMBOL	MIN	MAX	UNIT
Operating temperature	*1	Тор	0	50	$^{\circ}$
Storage temperature	*2	Тѕто	-20	60	$^{\circ}$ C
Operating humidity	*3	Нор	10	*4	%RH
Storage humidity	*3	Нѕто	10	*4	%RH
Vibration		_	*5	*5	_
Shock		_	*6	*6	_

^{*1} LCD's display quality shall not be guaranteed at the temperature range of : below 0°C and upper 40°C.

*2 Temp. = -20° C < 48 h , Temp = 60° C < 168 h Store LCD panel at normal temperature/humidity. Keep it free from vibration and shock. LCD panel that is kept at low or high temperature for a long time can be defective due to the other conditions, even if the temperature satisfies standard.

*3 Non-condensation.

*4 Temp. $\leq 40^\circ \text{C}$, 85% RH Max. Temp. $> 40^\circ \text{C}$, Absolute Humidity shall be less than 85%RH at 40°C.

* 5	Frequency	10∼55 Hz	Converted to acceleration value :
	Vibration width	0.15 mm	$(0.3 \sim 9 \text{ m/S}^2)$
	Interval	10-55-10 Hz	1 minute

2 hours in each direction $\,$ X/Y/Z (6 hours as total) EIAJ ED-2531

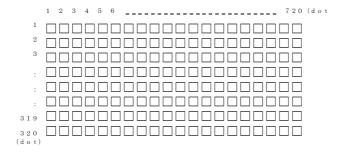
*6 Acceleration: 490 m/S² Pulse width: 11 msec

3 times in each direction : $\pm X/\pm Y/\pm Z$.

EIAJ ED-2531

^{*2} Input signal :CP, LOAD, FRM, DF, DISP, D0~D7

5. Electrical Characteristics 5-1. LCD


Temp. = 25° C, VDD = $+3.3V \pm 0.3V$

ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply voltage for logic	VDD	_	3. 0	3. 3	3.6	V
LCD driving voltage *1	Van-	0 ℃	29. 7	30. 7	31.7	V
	Vop= V0-V5	25 ℃	28. 5	29.5	30.5	V
		50 ℃	27. 9	28.9	29.9	V
Input voltage	Vin	"H" level	0.8VDD	_	VDD	V
		"L" level	0	_	0. 2VDD	V
Clock frequency	f cp		2. 02	2. 16	10.0	MHz
Frame frequency *2	f frm		70	75	80	Hz
Randomizing frequency *3	f DF		300	_	800	Hz
Current consumption	IDD	*5	_	0.8	1.0	mA
for logic		*6	_	0.6	0.8	
Current consumption for LCD driving	IEE	*5	_	2.4	3. 1	mA
for LCD driving *4	_	*6		1.1	1. 4	
Power consumption	Pdisp	*5	_	75	100	mW
*4		*6	_	34	45	

- *1 Maximum contrast ratio is obtained by adjusting the LCD supply voltage (Vop= VO-V5) for driving LCD.
- *2 In consideration of display quality, it is recommended that frame frequency is set in the range of 70-80Hz. When you have to use higher frame and clock frequencies, confirm the LCD's performance and quality prior to finalizing the frequency values: Generally, as frame and clock frequencies become higher, current consumption will get bigger and display quality will be degraded.
- *3 It is recommended that randomizing frequency be set in the range of 300-800Hz. At finalizing the frequency, confirm with actual tests that phenomena like flickering and/or horizontal lines do not appear on screen.
- *4 Include recommended circuit. Refer 19. recommended additional circuit.

* 5	Display high	frequency pattern,	(see	below).	
	VDD = 3.3V,	$Vop = V0-V5$, f_{FRM}	$_{M} = 75$	Hz , fcp	= 2.16MHz
	Pattern:				

*6 Display high frequency pattern, (see below). VDD = 3.3V , Vop = VO-V5 , f $_{\rm FRM}$ = 75 Hz , fcp = 2.16MHz Pattern:

5-2. Touch Panel

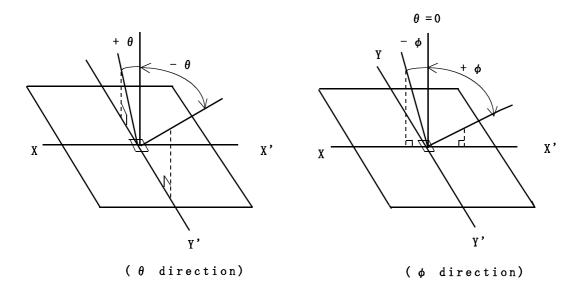
5-2-1. Terminal resistance

Between XL and XR : (400 \sim 1000) Ω Between YU and YL : (300 \sim 800) Ω

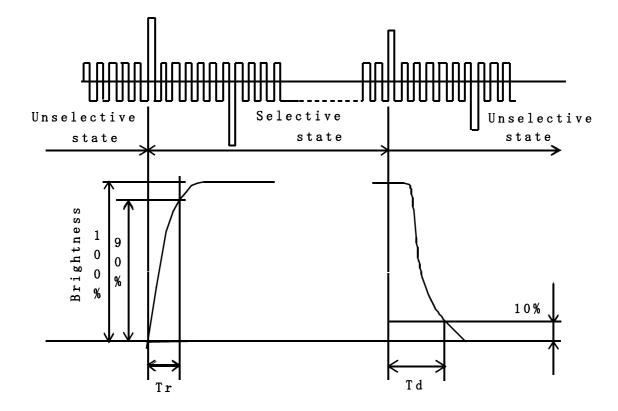
5-2-2. Linearity $\pm 1.5\%$

5-2-3. Insulation resistance $20M\,\Omega$ or more at DC25V

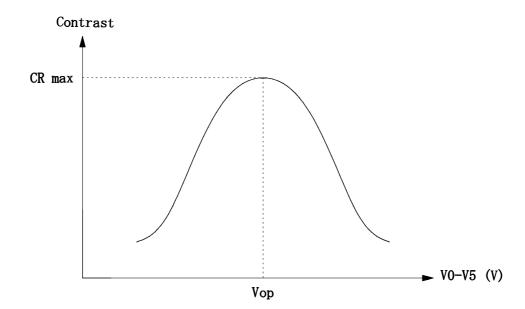
6. Optical Characteristics


Measuring Spot = ϕ 6mm , Temp. = 25°C

ITEM		SYMBOL	CONDITION		MIN.	TYP.	MAX.	UNIT
Response	Rise	Tr	$\theta = \phi = 0^{\circ}$		_	250	350	ms
time	Down	Td	$\theta = \epsilon$	<i>ϕ</i> =0°	_	150	250	ms
Viewing angle	e range	θ	CD \ O	$\phi = 0^{\circ}$	-50	_	50	deg.
		φ	CR≧2	$\theta = 0^{\circ}$	-30	_	40	deg.
Contrast rat:	io	CR	$\theta = \epsilon$	<i>b</i> =0°	10.0	17. 0	_	_
Chromaticity	Red	Х	$\theta = \phi = 0^{\circ}$		0. 45	0.50	0. 55	
coordinates		у			0. 27	0.32	0.37	
	Green	X	0 00		0. 25	0.30	0.35	
		у	$\theta = \phi = 0^{\circ}$	0. 41	0.46	0.51		
	Blue	X	$\theta = \phi = 0^{\circ}$		0. 12	0. 17	0.22	
		у	$\theta = 0$	⊅ =0	0. 11	0. 16	0.21	_
	White	X	0	. 00	0. 26	0.31	0.36	
		у	$\theta = 0$	<i>₽</i> =0°	0. 27	0.32	0.37	
	Black	X	0 -	ı _0°	0. 25	0.30	0.35	
		у	$\theta = 0$	\$ =0°	0. 24	0. 29	0.34	


Optimum contrast is obtained by adjusting the LCD driving voltage(Vop) while at the viewing angle of $~\theta$ = ϕ = 0° .

6-1 Contrast ratio is defined as follows:


6-2. Definition of viewing angle



6-3. Definition of response time

6-4. Definition of Vop

8. Interface signals

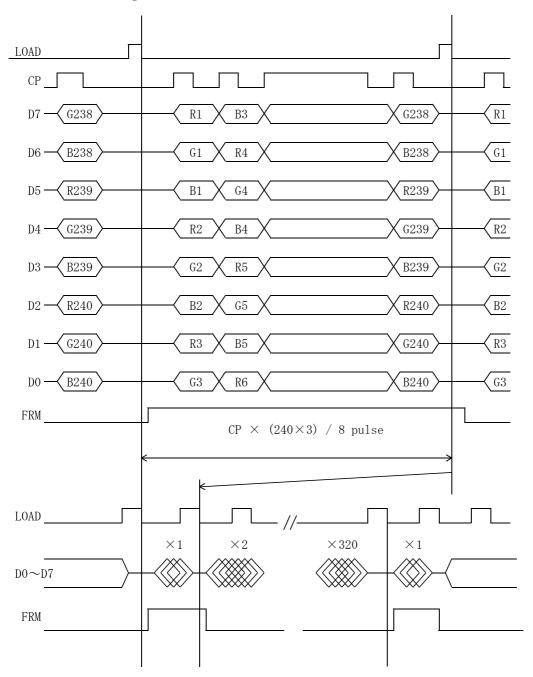
8-1. LCD

CN1:

PIN NO.	SYMBOL	DESCRIPTION	LEVEL
1	FRM	Synchronous signal for driving scanning line	Н
2	LOAD	Data signal latch clock	$H \rightarrow \Gamma$
3	CP	Data signal shift clock	$\mathbb{H} \to \mathbb{L}$
4	DISP	Display control signal	H(ON), L(OFF)
5	VDD	Power supply for logic	_
6	VDD	Power supply for logic	_
7	VSS	GND	_
8	DF	AC signal for driving	_
9	V0	*	_
10	V1	*	_
11	V2	*	_
12	V3	*	_
13	V4	*	_
14	V5	*	_
15	D7		
16	D6	Display data	
17	D5		
18	D4		H(ON), L(OFF)
19	D3		
20	D2		
21	D1		
22	D0		

*V0 \sim V5 : Refer 19. Recommended Bias Votage Circuit for driving LCD.

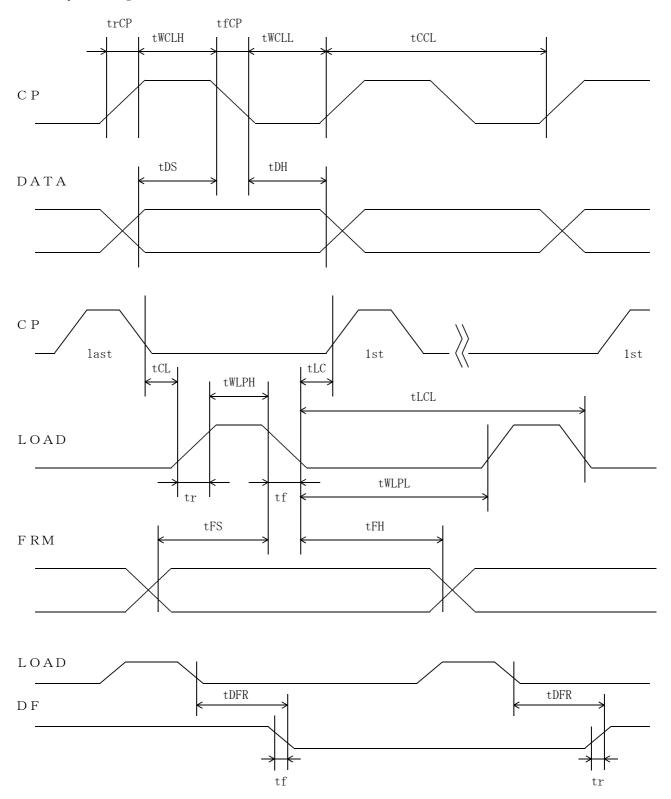
8-2. CFL


PIN No	SYMBOL	DESCRIPTION	LEVEL
1	HV	Power supply for CFL	AC
2	GND	Ground line (from inverter)	

LCD side connector : HV-2S-C1 (JAE) Recommended matching connector : HV-2P-HF (JAE)

8-3. Touch Panel

PIN No	SYMBOL	DESCRIPTION
1	уU	y-Upper terminal
2	xL	x-Left terminal
3	уL	y-Lower terminal
4	xR	x-Right terminal


9. Interface Timing Chart of LCD

10. Data and Screen

	V1		Y1			Y2			Ү3		•••		Y240	
C H I P A R	X1	D7 R1	D6 G1	D5 B1	D4 R2	D3 G2	D2 B2	D1 R3	D0 G3	D7 B3		D2 R240	D1 G240	D0 B240
E A	X320					C	CHIP AR	PEA						

$1\ 1.$ Input Timing Characteristics of LCD

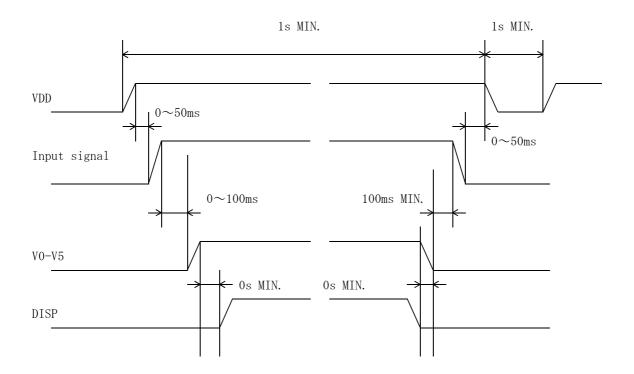
11-1. Switchig characteristics

Input Characteristics ; VDD = +3.3V \pm 0.3V, Temp. = 25 $^{\circ}$ C

ITEM		SYMBOL	MIN.	MAX.	UNIT
CP Cycle	*1, *2	tCCL	100	_	ns
CP "H" Pulse Width	*2	tWCLH	40	_	ns
CP "L" Pulse Width	*2	tWCLL	40	_	ns
CP Rise Up Time	*2	trCP		30	ns
CP Fall Down Time	*2	tfCP		30	ns
Data Set Up Time		tDS	25		ns
Data Hold Time		tDH	20	1	ns
LOAD "H" Pulse Width		tWLPH	100	-	ns
LOAD "L" Pulse Width		tWLPL	4900	_	ns
LOAD Cycle	*3	tLCL	5000	_	ns
CP→LOAD Delay Time		tCL	0	_	ns
LOAD→CP Delay Time	*4	tLC	200-tWLPH	_	ns
Input Signal Rise Up	Time	tr	-	30	ns
Input Signal Fall Dow	n Time	tf		30	ns
FRM Data Set Up Time		tFS	100	_	ns
FRM Data Hold Time		tFH	30	_	ns
DF Delay Time		tDFR	0	300	ns

^{*1} CP Cycle is adjust so that FRM signal is 75Hz.

①trCP + tfCP \leq tCCL - (tWCLH + tWCLL) ②trCP, tfCP \leq 30 ns Please use on condition that ①,② are filled.


^{*2} The formula of condition

^{*3} LOAD Cycle is const.

^{*4} tLC \geq 0

12. Supply Voltage Sequence Condition of LCD

<u>DO NOT</u> apply DC voltage to the LCD panel. DC voltage induce irreversible electrochemical reactions and reduce LCD life. Always follow the power supply ON/OFF sequence of VDD first, input signal second, VO-V5 third and finally DISP. This will prevent DC driving of the LCD or CMOS LSI latch up as shown below.

- * The above sequence should be designed as to keep each normal figure on condition that liquid crystal module is loaded on your system.
- * Control the input signal and VO V5 to the above ON OFF timing when you switch ON/OFF the display during VDD and DISP are on. And also design the circuit as VO V5's OFF level become GND level.
- * Control the supply voltage sequence not to float all signal line when the LCD panel is driving.

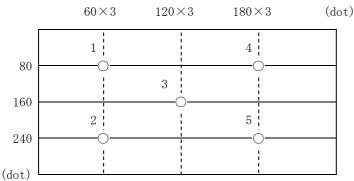
13. Backlight Characteristics

13-1. CFL ratings

Temp. = 25° C

ITEM		SYMBOL	MIN.	TYP.	MAX.	NOTE
Starting discharge Voltage	*1	VS	-	_	(720) Vrms.	0 ℃
discharge voltage	↑ 1	VS		_	(580) Vrms.	25 ℃
Discharging tube current	*2	IL	_	(1.0) mArms.	(2.5) mArms.	_
Discharging tube voltage		VL		(345) Vrms.	_	_
Operating life (IL=1.0 mArms.)	*3	Т	_	(10,000) Hr.	_	_
Operating frequency		F	(40) kHz	_	(150) kHz	_

- *1 The Non-load output voltage (VS) of the inverter should be designed to have some margin, because VS may increase due to the leak current which may be caused by wiring of CFL cables. (Reference value: (936) Vrms MIN.)
- *2 Do not apply more than (2.5)mA discharge tube current. Because CFL maybe broken due to over current.
- *3 When the illuminance or quantity of light has decreased to 50 % of the initial value.


Average life time of CFL will be decreased when LCD is operating at lower and higher temperature

13-2. Surface Brightness (IL = 1.0 mArms.)

Temp. =25℃

ITEM	MIN.	TYP.	MAX.	UNIT
Brightness	40	65	1	$\mathrm{cd/m}^2$

(Measuring points)

- 1) Rating is defined as the average brightness inside the viewing area.
- 2) 30 minutes after CFL is turned on. (Ambient Temp. = 25° C)
- 3) The inverter should meet the eccentric conditions;
 -Sine, symmetric waveform without spike in positive and negative.
- 4) Measuring Inverter : KCI-93 (TAMURA CORPORATION)

14. Design Guidance for Analog Touch-Panel (T/P)

14-1. Electrical

In customer's design, please remember the following considerations.

- 1. Do not use the current regulated circuit.
- 2. Keep the current limit with top and bottom layer. (See Sec, 4-1)
- 3. Analog T/P can not sense two point touching separately.
- 4. A contact resistance is appeared at the touch point between top and bottom layer. After this resistance has stable read the T/P position data.
- 5. Analog T/P is also a "Capacitor" in an equivalent circuit.

 Design your sensing circuit and low-pass filter with considering this "Capacitor" value.

14-2. Software

- 1. Do the "User Calibration".
- 2. "User Caribration" may be needed with long term using. Include "User Caribration" menu in your software.

14-3. Mechanical Design

14-3-1. Each "Area"

Please confirm the following information before starting your design.

(a) Kev Area

"Key Area" is an area where T/P specifications(Linearity, Durability, Actuation force, etc.) are guaranteed.

- 1) Do a touch data sensing and calibration inside this area.
- 2) In normal cases it is a same size as your flat display's "active area".
- 3) The ITO layer durability near the edge of Key area is less stronger than the center.
- (b) Transparent Insulation-paste Area.

Insulation-paste is printed with 1.0mm distance outer from "Key Area".

- 1) The purpose is to avoid potential shorting problem from the bezel housing edge from or housing "stick" when molding.
- 2) Consider your housing edge position to keep 1.0mm distance from this paste line. (See.Fig.1)
- 3) The cross section of this edge is taper shape. So if it is over the display's active area, it will be shining as a prism.

(c) Prohibition Area

Input by pen and finger is prohibited in this area.

Because of the thickness around T/P, the ITO layer on the PET film will be expanded and as a conclusion it will be cracked if pressed. (See. Fig. 2)

- 1) We strongly recommend that the bezel should protect this area.
- 2) An exposure of this area and stylus contact should be avoided.
- 3) When assembling at the customer, do not press this area with tools.
- 4) Consider your design to avoid the pressure by the housing bezel.

14-3-2. Example of Housing Design.

- 1) If an consumer will put a palm on housing in normal usage care should be taken as follows.
- 2) Keep the gap, for example 0.3 to 0.7mm, between bezel edge and T/P surface. The reason is to avoid the bezel edge from contacting T/P surface that may cause a "short" with bottom layer. (See. Fig. 1)
- 3) Insertion a cushion material is recommended.
- 4) The cushion material should be limited just on the busbar insulation past area. If it is over the transparent insulation paste area a "short" may be occurred.

14-3-3. Mounting on display and housing bezel

- 1) In all cases, the T/P should be supported form the backside of the glass.
- 2) Do not use an adhesive tape to bond it on the front of T/P and hang it to the housing bezel.
- 3) Never expand the T/P top layer (PET-film) like a balloon by internal air pressure. The life of the T/P will be extremely short.
- 4) If a dew will be on the heat-sealed area or exposed traces at the end of a flexible tail, the migration of silver can occur. This will cause sometimes a short circuit.

If your final product will used in a humid circumstance or will be moved from humid, warm environments to cold ones, a dew condensation can occur.

Consider a water seal with your housing bezel.

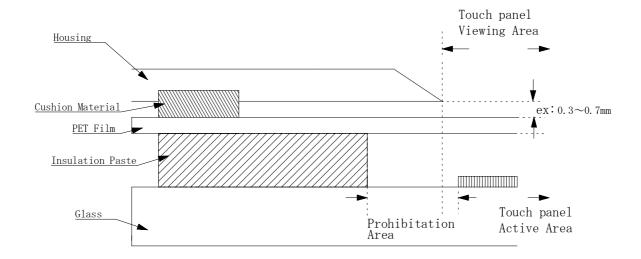


Fig. 1

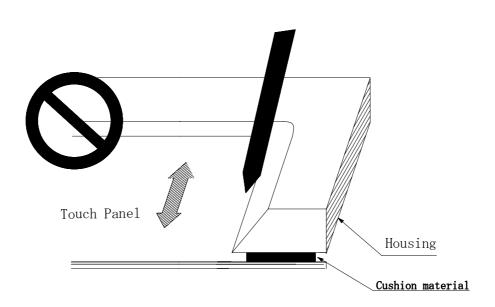


Fig. 2

15. Lot Number Identification

The lot number shall be indicated on the back of the backlight case of each LCD.

YEAR	2000	2001	2002	2003	2004	2005
CODE	0	1	2	3	4	5

MONTH	JAN.	FEB.	MAR.	APR.	MAY	JUN.
CODE	1	2	3	4	5	6

MONTH	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.
CODE	7	8	9	X	Y	Z

16. Warranty

16-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

16-2. Production Warranty

Kyocera warrants its LCDs for a period of 12 months after receipt by the purchaser, and within the limits specified. Kyocera shall, by mutual agreement, replace or rework defective LCDs that are shown to be Kyocera's responsibility.

17. Precautions for use

17-1. Installation of the LCD modules

- 1. The LCD module shall be installed so that there is no pressure on the LSI chips.
- 2. The LCD module shall be installed flat, without twisting or bending.
- 3. The display window size should be the same as the effective viewing area.
- 4. In case you use outside frame of effective viewing area as outward appearance of your product, unevenness of its outward appearance is out of guarantee.
- 5. Do not pull the CFL lead wires and do not bend the root of the wires. Housing should be designed to protect CFL lead wires from external stress.

17-2. Static Electricity

- 1. Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required. Operation should wear ground straps.
- 2. Aluminum foil covering the terminal electrodes should remain in place until installed.

17-3. LCD module Operation

- 1. The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.
- 2. Vop must be adjusted to optimize viewing angle and contrast.
- 3. Operation of the LCD module at temperature below the limit specified may cause image degradation and/or bubbles. It may also change the characteristics of the liquid crystal. This phenomenon may not recover. The LCD shall be operated within the temperature limits specified.

17-4. Storage

- 1. The LCD module shall be stored within the temperature and humidity limits specified. Store in a dark area, and protected the LCD module from direct sunlight or fluorescent light.
- 2. The LCD module should be packaged to prevent damage.

17-5. Screen Surface

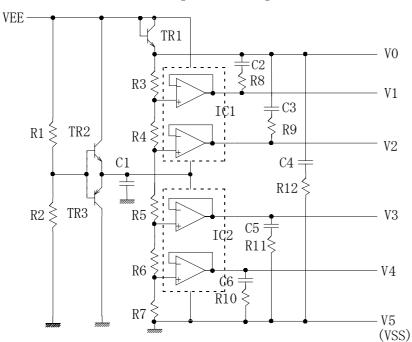
- 1. $\underline{\text{DO NOT}}$ store in a high humidity environment for extended periods. Image degradation, bubbles may result.
- 2. The touch panel screen is easily scratched or damaged. Prevent touching it with any hard material, and from being pushed or rubbed.
- 3. Do not apply excessive force on the surface of touch panel, that is greater than the force specified by the spec. It may cause a color variation etc. on LCD display.
- 4. The touch panel screen may be cleaned with a soft cloth or cotton pad. Methanol, or Isopropyl Alcohol may be used, but insure that all solvent residue is removed.
- 5. Water may cause damage or discoloration of the touch panel screen. Clean any condensation or moisture from any source immediately.
- 6. Always keep the LCD module free from condensation during testing. Condensation may permanently spot or stain the touch panel screen.

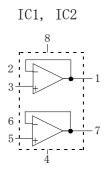
18. Reliability Data / Environmental Test

TEST ITEM	TEST CONDITION	TEST TIME	RESULT
High Temp. Atmosphere	70℃	240 h	Display Quality : No defect Display Function : No defect Current Consumption : No defect
Low Temp. Atmosphere	−20°C	240 h	Low Temp. Bubble : None Solid Crystallization of Liquid Crystal : None Display Quality : No defect Display Function : No defect Current Consumption : No defect
High Temp. Humidity Atmosphere	40℃ 90%RH	240 h	Display Quality : No defect Display Function : No defect Peel-off of Organic Sealing : None Current Consumption : No defect
Temp. Cycle	-20°C 0.5 h R. T. 0.5 h 70°C 0.5 h	10cycles	Display Quality : No defect Display Function : No defect Peel-off of Organic Sealing : None Bubble on Cell : None
High Temp. Operation	50℃ Vop	500 h	Display Quality : No defect Current Consumption : No defect
Point Activation life	Polyacetal stylus(R0.8) Hitting force 250g Hitting speed 3 time/s	one million times	Display Quality : No defect Current Consumption : No defect
Writing Friction	Special stylus writing force 250g writing speed 3000 Characters /h writing area 20mm x 20mm	a hundred thousand times	Display Quality : No defect Current Consumption : No defect

st Each test item uses a test LCD only once. The tested LCD is not used in any other tests.

st The LCD is tested in circumstances in which there is no condensation.


^{*} The tested LCD is inspected after 24 hours of storage at room temperature and room humidity after each test is finished.


^{*} The reliability test is not an out-going inspection.

^{*} The results of the reliability test are for your reference purpose only. The reliability test is conducted only to examine the LCD's capability.

19. Recommended additional circuit

a) Recommended Bias Voltage for Driving LCD

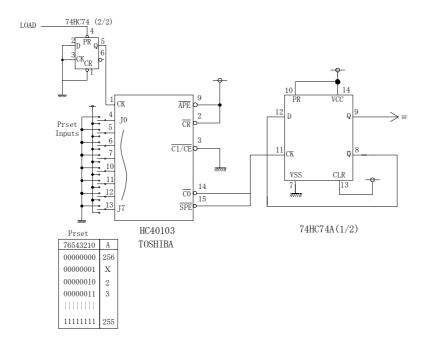
These value above are theoreticaly calculated. Fine tuning might be required in some cases. For fine tuning value of the resistor shall be adjusted to conform with the follwing equation. $\mid V0-V1\mid =\mid V1-V2\mid =\mid V3-V4\mid =\mid V4-V5\mid$

Recommended parts for Bios voltage circuit

①SEMI CONDUCTOR

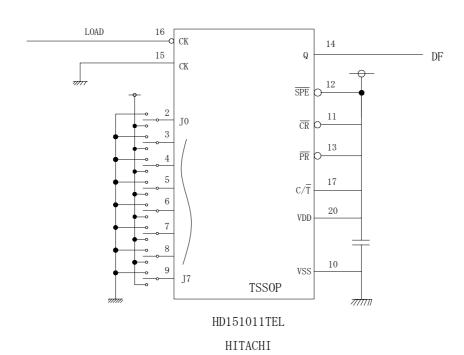
Symbol	Type	Maker Name	note
IC1	MC33172D	MOTOROLA	
IC2	MC33172D	MOTOROLA	
TR1	2SC2412K	ROHM	
TR2	2SC2412K	ROHM	
TR3	2SA1037AK	ROHM	

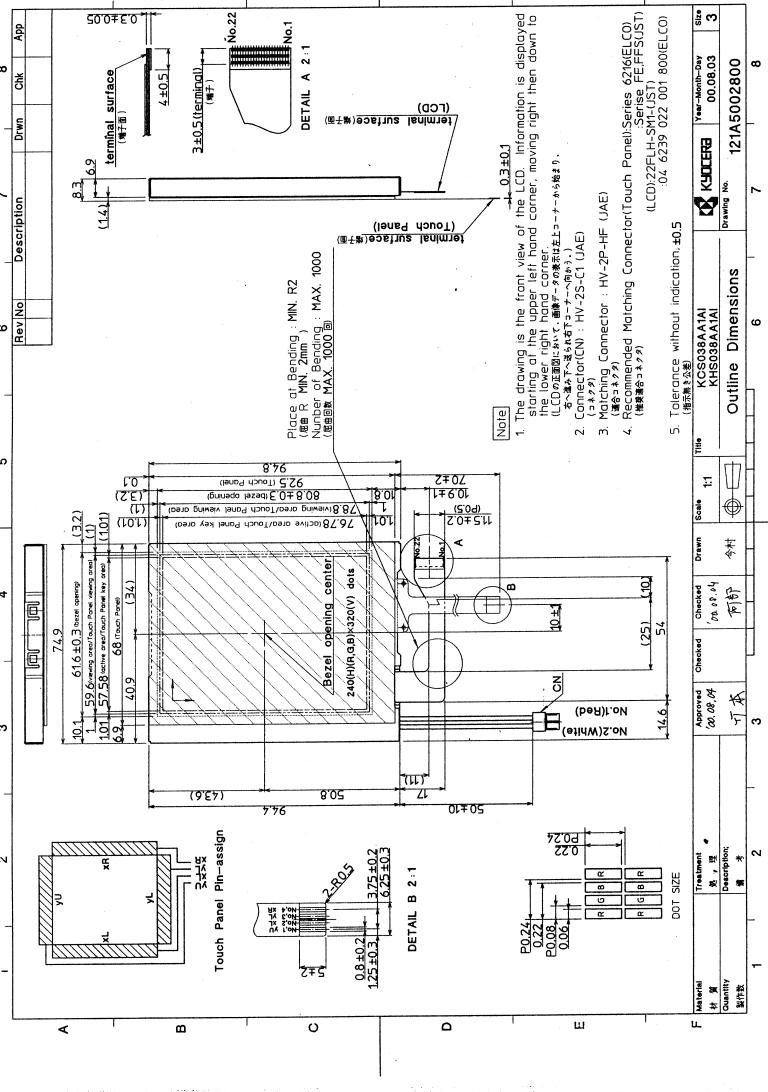
②RESISTOR


Symbol	Characteristic	Example(Maker Name)	note
R1	100K/1608/J	CR10-104J	(KYOCERA)
R2	100K/1608/J	CR10-104J	(KYOCERA)
R3	15K/1608/D	RR0816R-153-D	(SUSUMU)
R4	15K/1608/D	RR0816R-153-D	(SUSUMU)
R5	220K/1608/F	RK73H1J-220KΩF	(KOA)
R6	15K/1608/D	RR0816R-153-D	(SUSUMU)
R7	15K/1608/D	RR0816R-153-D	(SUSUMU)
R8	$15\Omega/1608/J$	CR10-150J	(KYOCERA)
R9	$15\Omega/1608/J$	CR10-150J	(KYOCERA)
R10	$15\Omega/1608/J$	CR10-150J	(KYOCERA)
R11	$15\Omega/1608/J$	CR10-150J	(KYOCERA)
R12	15Ω/1608/J	CR10-150J	(KYOCERA)

3CAPACITOR

Symbol	Characteristic	Example(Maker Name)	note
C1	4. $7 \mu / 35 V$	MF35FD4R7MC6 (NIPPON CHEMI-CON)	Electrolytic capacitor
C2	B/4. $7 \mu \text{ F}/10 \text{V}/3216/\text{M}$	LMK316BJ475ML (TAIYO YUDEN)	Ceramic Capacitor
С3	B/4. $7 \mu \text{ F}/10 \text{V}/3216/\text{M}$	LMK316BJ475ML (TAIYO YUDEN)	Ceramic Capacitor
C4	4. $7 \mu / 50 V$	MF50FD4R7MC8 (NIPPON CHEMI-CON)	Electrolytic capacitor
C5	B/4. $7 \mu \text{ F}/10 \text{V}/3216/\text{M}$	LMK316BJ475ML (TAIYO YUDEN)	Ceramic Capacitor
C6	B/4. 7 μ F/10V/3216/M	LMK316BJ475ML (TAIYO YUDEN)	Ceramic Capacitor


b) Example of Randomizing Circuit
Randomizing circuit is recommended in order to reduce "cross-talk" phenomenun
of displayed images. (Tailing, vertical strips, etc)
Its detail is subject to change according to actual operating condition and
application of the LCD. Should you have any question when installing an actual
randomizing circuit, please ask Kyocera for details.


b-1)

There may be flickering on screen according to some LOAD signal frequencies. If in happens, set PRESET INPUTS terminals to select optimized conditions.

b-2)

SPEC.NO.	TQ3C-8EACO-E2CWP08-00			
DATE	September 11, 2000			

F	Λ	D		
ľ	V	Ц	•	

KYOCERA INSPECTION STANDARD

<u>TYPE</u>: KCS038AA1AI-G20

KYOCERA CORPORATION KAGOSHIMA HAYATO PLANT LCD DIVISION

Original	Designed by	:Engineering	Dept.	Confirmed by	:QA Dept.
Issue Data	Prepared	Checked	Approved	Checked	Approved
September 11, 2000	S.Oshita	M. Fyjilanj	Melsumm	Stignali	y, goshija

Revision Record

Date		Design	ed by	: Engineering	Dept.	Confirmed by	: QA Dept.
Date		Prepa	red	Checked	Approved	Checked	Approved
Rev. No.	v. No. Date Page				Descriptio	ons	

Visuals specification

1)Note

Item		Note			
General	1. When defects specified in this Inspection Standards are inspected, operating voltage(Vop) shall be set at the level where optimized contrast is available. Display quality is applied up to effective viewing area. (Bi-Level INSPECTION)				
	 This inspection standard about the image quality shall be applied to any defect within the effective viewing area and shall not be applicable to outside of the area. Should any defects which are not specified in this standard happen, additional standard shall be determined by mutual agreement between customer and Kyocera. 				
	4. Inspection conditions				
	Luminance : 500 Lux minimum . Inspection distance : 300 mm (from the sample) Temperature : $25~\pm~5~^{\circ}{\rm C}$ Direction : right above				
Definition of Inspection item	Pinhole, Bright spot Black spot, Scratch Foreign particle	The color of a small area is different from the remainder. The phenomenon dose not change with voltage.			
	Contrast variation	The color of a small area is different from the remainder. The phenomenon changes with voltage.			
	Polarizer (Scratch, Bubble, Dent)	Scratch, Bubble and Dent in the polarizer which can be observed in on / off state.			

2)Standard

Inspection item		Ju	dgement	standard		
Pinhole, Bright spot Black spot, Foreign particle (LCD portion)		a	. p	d = (a +	b) / 2	
	Category	Size	(mm)	Acceptab	le number	
	A	d	≤ 0.2	neg	lected	
	В	0.2 < d	≦ 0.3		5	
	С	0.3 < d	≦ 0.5		3	
	D	0.5 < d			0	
Scratch, Foreign particle (LCD portion)						
	L					
	Wid	th (mm)	Len	gth (mm)	Acceptable No.	
	-	W ≤ 0.03	Len		neglected	
	В			L ≦ 2.0	neglected	
	D				negretteu	
		$W \leq 0.1$	2.0 <		3	
		$W \leq 0.1$	2.0 <	L ≦ 4.0	+	
	C 0.03<			L ≦ 4.0	3	
Contrast variation	C 0.03<			L ≦ 4.0	3 0	
Contrast variation	C 0.03 < D		4.0 <	L ≦ 4.0	3 0 According to Circular	
Contrast variation	C 0.03 < D	W	4.0 <	d = (a +	3 0 According to Circular	
Contrast variation	C 0.03 < D	a Size (4.0 <	d = (a + Acceptab	3 0 According to Circular	
Contrast variation	C 0.03 < D	a Size (4.0 < q q mm) ≤ 0.5	d = (a + Acceptab	3 0 According to Circular b)/2 le number	

Inspection item	Judgement standard					
Polarizer (Scratch, Bubble, Dent)	(1) Scratch	L	W			
	Widt	h (mm) Ler	ngth (mm)	Acceptable No.		
	A	W ≦ 0.1		neglected		
	B 0.1 <		L ≦ 5.0	neglected		
	С 0.1		< L	0		
	D 0.3 < W — 0					
		a	d = (a +	b) / 2		
	Category	Size (mm)	Acceptab	le number		
	A	d ≦ 0.2		lected		
	D			l l		
	В	$0.2 < d \leq 0.3$		5		
	С	$0.2 < d \le 0.3$ $0.3 < d \le 0.5$				

Inspection item	Judgement standard							
Scratch (Touch Screen portion)	Width (mm)		L	Length (mm) Accept		ptable nu	mber	
	W < 0.05		05			neglected		
	0.05 ≦	W < 0.	10 1	0 < L		0		
	0.10 ≦	W				0		
Swell (Touch Screen portion)	Touch Scre					measurem	ent	
	0.4mm gauge Tablet							
Glass crack (Touch Screen portion)	Corner crack Cracks in other are than in corner							
	Judgement standard			2				
		X	Y	Z	X	Y	Z	
		0K≦3	0K ≦ 3	0K≦t	0K≤5	0K≤1.5	OK≦ t	
	• If one of • Regarding regarded a	the corr	er crac		0.5mm	depth is		