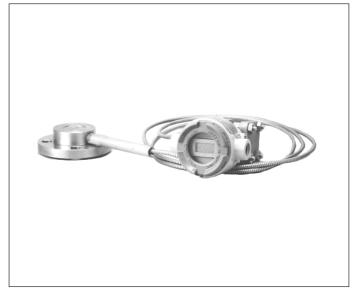
ST3000 Ace Smart Transmitter JTH Series of Remote-sealed Type Pressure Transmitters


JTH920A/JTH940A/JTH960A/JTH980A

General

The ST3000 Ace* Smart Transmitter is a microprocessorbased smart transmitter that features high performance and excellent stability. Capable of measuring gas, liquid, and vapor pressures, and liquid levels, it transmits 4 to 20 mA DC analog and digital signals according to the measured pressure.

It can also execute two-way communications between the SFC (Smart Field Communicator), and, via DE protocol, with the TDCS3000 or 3000^{\times} and a database, thus facilitating self-diagnosis, range resetting, and automatic zero adjustment.

Remote-sealed pressure transmitters are suitable for the measurement of pressures (pressures, liquid levels, etc.) of process fluids that are highly corrosive, tend to condense, precipitate metal, etc.

Features

- (1) Excellent stability and high performance
 - Long-term stability has been proven in 500,000 installations worldwide.
 - Unique characterization and composite semiconductor sensors realize excellent temperature and static pressure characteristics.

(2) A diverse lineup

- A diverse flange lineup, ranging from small diameter 1.5in. (40mm) and 2in. (50mm) to 3in. (80mm), is available to meet user requirements.
- A wide range of models, including those for general purpose and high-temperature service, is available to meet user requirements. In addition, the working temperature range of general purpose models has been expanded to 180°C maximum to allow you greater freedom in instrumentation.
- A wide variety of corrosion-resistant materials for wetted parts is also available.

(3) Multiprotocol communication

- Either analog output (4 to 20 mA DC), analog FSK output (4 to 20 mA DC) or digital output (DE protocol) is possible.
- Two-way communication using digital output facilitates self-diagnosis, range resetting, automatic zero adjustment, and other operations.

4) Full after-sales service program

 From product delivery to replacement, we will service all your needs. Our nationwide service network provides all the backup you require, including trial operation support and regular maintenance.

Applications

Petroleum/Petrochemical/Chemical

- For the measurement of liquid levels including corrosive fluids at high temperatures, and high temperatures under vacuum
- · For the measurement of liquid levels in small tanks

Electric Power/City Gas/Other Utilities

For measurement applications that require a high degree of stability and accuracy

Pulp and Paper

- For lines that need transmitters resistant to chemical liquids, corrosive fluids and the like
- For the measurement of liquid levels in small tanks

Iron and Steel/Nonferrous Metal/Ceramics

 For lines that require stable measurement under strictly controlled (temperature, humidity, etc.) conditions

Machinery/Shipbuilding

 For lines that require stable measurement under strictly controlled (temperature, humidity, vibration, etc.) conditions

Specifications

Measuring span/setting range/working pressure range/overload resistant value:

See Table 1.

Output/communication:

Analog output (4 to 20 mA DC) Analog FSK output (4 to 20 mA DC)

(Frequency shift keying signal transmission

system)

Digital output (DE protocol)

Supply voltage and load resistance:

10.8 to 45 V DC. A load resistance of 250 Ω or more is necessary between loops. (See Figure 1)

Sealing liquid: Silicone oil for general purpose and

high-temperature models

Fluorine oil for oxygen and chlorine models

For specific gravity, see Table 2.

Temperature ranges of wetted parts:

See Table 2.

Ambient temperature ranges:

See Table 2, except for explosion-proof models with digital indicators, which have to be used

within the following ranges:

Models with digital indicators:

Normal operating conditions: -20 to 70°C

Operative limits: -30 to 80°C

JIS pressure-resistant special explosion-proof

models: -20 to 60°C

JIS intrinsically safe explosion-proof models:

-10 to 60°C

Ambient humidity range:

5 to 100% RH

Stability against supply voltage change:

±0.005% FS/V

Lightning protection:

Peak value of voltage surge: 100 kV Peak value of current surge: 1000 A

Dead time: Approx. 0.4 sec

Damping time constant:

Selectable from 0 to 32 sec in ten stages

Waterproof/dustproof structure:

JIS C0920 watertight: NEMA3 and 4X JIS F8001 class 2 watertight: IEC IP67

Explosion-proof structure:

JIS special explosion-proof models: (Exd II CT4X)

JIS intrinsically safe models: (i3aG4)

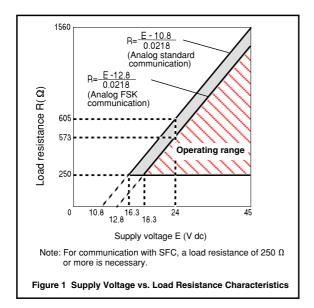
	Measuring Span	Setting Range	Working Pressure Range	Overload Resistant Value
JTH920A	2.5~100kPa	-100∼100kPa		
	{250~10000mmH₂O}	{-10000~10000mmH₂O}	Up to the flange rating	
JTH940A	35~3500kPa	-100∼3500kPa		5250kPa
	{0.35~35kgf/cm²}	{-1~35kgf/cm²}		{52.5kgf/cm²}
JTH960A	0.7~10MPa	-0.1∼10MPa	Up to the smaller value of either setting range or flange rating (For negative pressures, see Figures 2, 3 and 4.)	15.3MPa
	$\{7\sim 102 \text{kgf/cm}^2\}$	{-1~102kgf/cm²}	(For flange rating, see "Max Working Pressure")	{153kgf/cm²}
JTH980A	0.7~42MPa	-0.1∼42MPa		63MPa
	{7~428kgf/cm ² }	{-1~428kgf/cm²}		{630kgf/cm²}

Note) The flange diameter of JTH920A applies only to the flush diaphragm flange 3in. (50mm) and the extended diaphragm flange 4in. (100mm).

Table 1 Measuring Span, Setting Range, and Working Pressure Range/Overload Resistant Value

	Temperature Range (°C) Note 1), Note 4)					
		General-purpose models	High-temperature models	High-temperature vacuum models	High-temperature high vacuum models	Oxygen and chlorine models
Wetted parts section	Normal operating range	-40∼180	-5~280 Note 5)	-5~280 Note 5)	10~280 Note 5)	-10~120
	Operative limit range	-50∼185	-10~310 Note 6)	-10~310 Note 6)	-10~310 Note 6)	-40∼125
Ambient temperature Note 2)	Normal operating	-30~75	-5~55	-5∼55	10~55	-10∼75
Flange diameter:	range					
Flush diaphragm 3in. (80mm)	Operative limit range	-50∼80	-10~60	-10∼60	-10∼60	-40∼80
Extended diaphragm 4in. (100mm)						
Ambient temperature Note 2)	Normal operating	-15∼65	-5~45	-5~55	10~55	-10∼75
Flange diameter:	range					
Flush diaphragm 2in. (50mm) /1.5in. (40mm)	Operative limit range	-30~80	-10~55	-10∼60	-10~60	-40∼80
Extended diaphragm 3in. (80mm) /2in. (50mm)						
Specific gravity of fill liquid Note 3)		0.935	1.07	1.07	1.09	1.87

Table 2 Temperature Range of **Wetted Parts Section and** Ambient Temperature Range


Note 1) See the working pressures and temperatures of the wetted parts section in

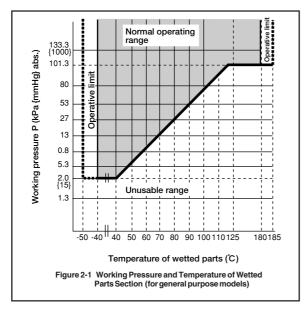
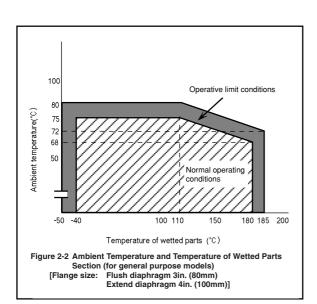
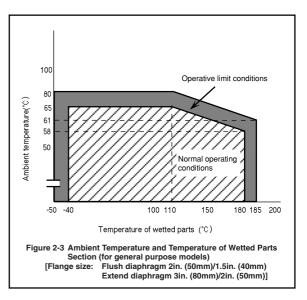
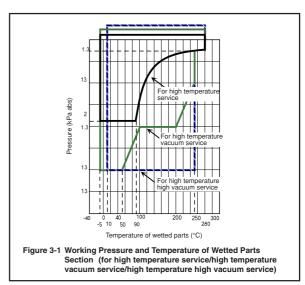

Note 2)

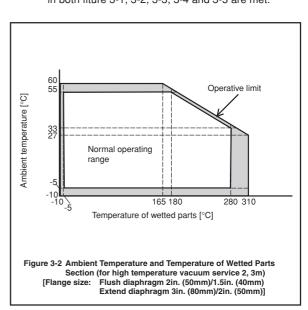
Figure 2, Figure 3, and Figure 4. Ambient temperatures of the transmitter itself Approximate values at the temperature of 25°C Note 3)

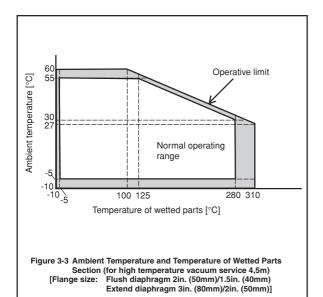

Note 4)

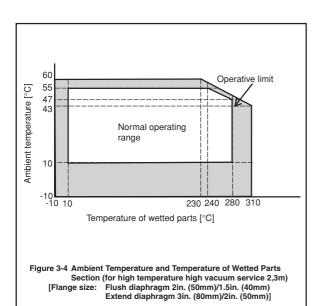

Note that if the operating temperature falls below the lower limit of the normal operating range, the response of the transmitter becomes slower. When the wetted parts material is tantalum, the upper limit is 180°C. When the wetted parts material is tantalum, the upper limit is 200°C. Note 5) Note 6)

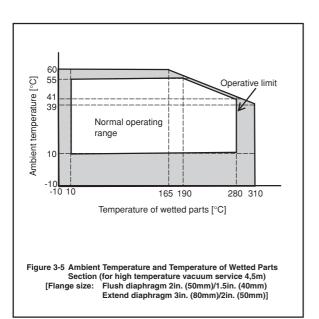


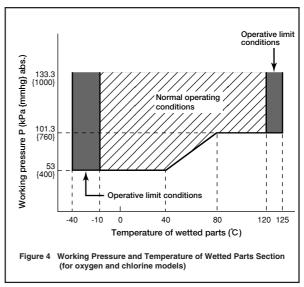
Note) In the case of dual diaphragm, the lower limite value of working pressure becomes 53 kPa abs.

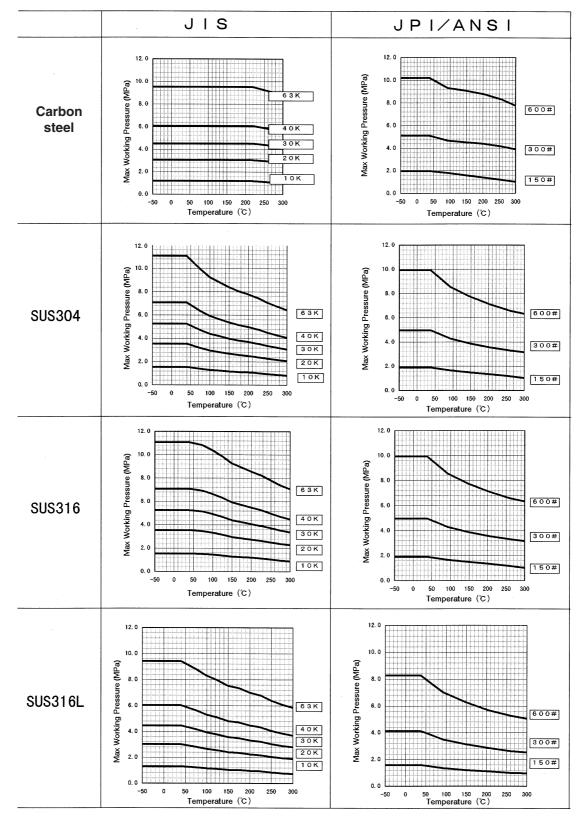





Note) When the fill liquid is for general purpose, make sure before using your transmitter that the conditions in both Figure 2-1,2-2 and Figure 2-3 are met.




Note) When the fill liquid is for high temperature vacuum service/high temperature high vacuum service, make sure before using your transmitter that the condition in both fiture 3-1, 3-2, 3-3, 3-4 and 3-5 are met.



Note) In the case of dual diaphragm, the lower limit value of working pressure becomes 53 kPa abs.

Max Working Pressure

- Note 1. Max Working Pressure depends on flange rating, flange materials and operating temperature. Please refer to the following data.
- Operating range of temperature depends on the specifications of transmitter.

 Note 2. In the case of flange type (JTF940 , JTC940) and remote sealed type (JTU940 , JTH940),
 - Max Working Pressure depends on the smaller value of either 3.5MPa or following data.
- Note 3. In the case of absolute remote sealed type (JTS940 □),
 - Max Working Pressure depends on the smaller value of either 3.5MPa abs or following data.
 - As for the following data, the vertical axis represent gauge pressure.
- Note 4. In the case of remote sealed type (JTH960 🗆), Max Working Pressure depends on the smaller value of either 10MPa or following data.
- Note 5. In the case of 1/2in. remote sealed type (JTE929□, JTE930□, JTH960□),
 - Max Working Pressure depends on the smaller value of either 5.1MPa or the following data as for adapter flange (HF).

Process pipe connection:

Flanges (both higher and lower pressure sides)

Flush diaphragm:

JIS10K, 20K, 30K, and 63K-80mm/50mm/40mm

(RF) equivalents

ANSI150, 300, and 600-3in./2lin./1.5in. (RF)

equivalents

JPI150, 300, and 600-3in./2in./1.5in. (RF)

equivalents

Extended diaphragm:

JIS10K, 20K, 30K-100mm/80mm/50mm/40mm

(RF) equivalents

ANSI150 and 300-4in./3in./2in. (RF) equivalents

JPI150 and 300-4in./3in./2in. (RF) equivalents

Screw connection:

G1/2 button diaphragm (G1/2 external thread)

Electrical conduit connection:

G1/2 internal thread

1/2NPT internal thread (Not usable with JIS ex-

plosion-proof models)

Materials:

Center body: SUS316
Transmitter case: Aluminum alloy
Meter body cover: SUSF304

Wetted parts materials:

SUS316 (SUS316L for diaphragm only)

SUS316L

Hastelloy C, tantalum, etc.

Flange materials:

Carbon steel (SF440A), SUS304, SUS316,

SUS316L

Bolts and nuts materials (for fastening meter body cover):

Carbon steel (SNB7), SUS630, SUS304

Capillary section:

Capillary tube length: 2, 3, 4, 5, 6, 7, 8, 9, and 10 m

2, 3, 4, and 5 m when flange diameters:

flush diaphragm model 2in. (50mm)/1.5in.

(40mm)

extended diaphragm model 3in. (80mm)/2in.

(50mm) (Same for olefin covering)

Capillary tube material: SUS316 Armored tube material: SUS304

Coating (optional): Olefin covering to improve corrosion

resistance

(Not available for high-temperature vacuum or high-temperature high-

vacuum models)

Finish: Housing: light beige (Munsell 4Y7.2/1.3)

Cap: dark beige (Munsell 10YR4.7/0.5)

Corrosion-resistant finish:

Standard: Corrosion-resistant paint (Baked acrylic paint)

Corrosion-resistant finish:

Corrosion-resistant paint (Baked acrylic paint),

fungus-proof finish

Corrosion-proof finish:

Corrosion-proof paint (Baked epoxy paint),

fungus-proof finish

Corrosion-resistant finish (silver paint):

Transmitter case is silver-coated in addition to

the above corrosion-resistant finish.

Built-in indicating meter:

The digital LCD indicator (optional) indicates actual flow rates (in SI units) and can be set freely between -19999 and 19999 (4.5 digits). For actual calibration, specify the following items when placing your order:

- Actual calibration range
- · Actual calibration unit
- Proportional representation and instructions about square-root extraction

Various kinds of data can be set using the SFC smart communicator (Ver. 7.1 or newer).

Burnout feature:

Choice of three states at abnormal condition:

Burnout of output values: none

upper limit lower limit

Grounding: Grounding resistance 100 Ω max.

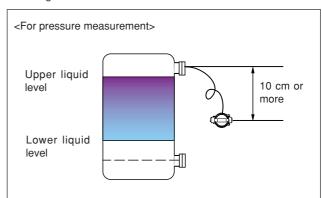
Mounting: Direct mounting on the process side

Using 2-inch pipe mounting brackets:

Mount the transmitter on a horizontal or vertical 2-

U bolts and nuts: SUS304

inch pipe, then use the brackets.


Materials: Brackets: carbon steel

Weight: Approx. 13.3 kg

(including JIS10K-80mm flange and capillary 5 m

long)

Mounting Notes

- If the fluid to be measured contains hydrogen, please consult a Yamatake representative.
- When mounting the transmitter, leave a space of at least 10 cm under the lower nozzle of the tank. If the no space is available, please consult a Yamatake representative.

Optional Specifications

External zero adjustment function:

The transmitter can be easily zero-adjusted in the field with a flat-head screwdriver.

Additional lightning protection:

It is possible to achieve a lightning protection performance of 200 kV, 2000 A, twice the standard performance (100 kV, 1000 A). This is advisable when the transmitter is to be used in lightning-prone areas such as mountains, hills and wherever high-performance lightning protection is required.

Elbow:

This is an adaptor for changing the electrical conduit connection port from the horizontal to the vertical direction, if required by wiring conditions in the field. One or two elbows may be used as needed.

Dual diaphragm:

Diaphragm can be changed when the adapter for dual diaphragm is used.

Water free treatment (including oil-free treatment):

The transmitter is shipped with dry and oil-free wetted parts.

Oil free treatment:

The transmitter is shipped with oil-free wetted parts. (The vent drain plug is coated with a small amount of fluorine oil to prevent galling.)

FEP protective film:

Use FEP protective films when corrosive fluids are used or to inhibit ion migration from metal diaphragms.

Working temperature range:

0 to 110°C

Working pressure range:

atmospheric pressure to flange rating (up to JIS10K, ANSI/JPI150) (Not usable under negative pressure)

Electric power specification:

This specification applies to where stringent quality control is required, such as in the electric power and city gas industries.

Special burnout (3.2 mA):

The burnout output value (in the lower-limit direction) under abnormal conditions shall be 3.2 mA (-5%) or less.

Test report:

The test report indicates the results of appearance, I/O characteristics, insulation resistance, and breakdown voltage tests.

Material certificate:

The material certificate shows the chemical composition, heat-treatment conditions, and mechanical properties of the materials used for the wetted parts.

Strength calculation sheet:

The strength calculation sheet indicates the strength of the meter body cover, flanges, bolts, etc.

Withstand pressure and airtight tests (for general purposes):

The withstand pressure and airtight test result sheet shows the results of a pressure resistance test (under water pressure for 10 minutes) performed on the wetted parts.

Traceability certificate:

This certificate consists of three parts: the transmitter's measurement control system configuration diagram, a calibration certificate, and a test report.

Conformance to non-SI units:

We deliver transmitters set to any non-SI unit you specify.

Transmitter Handling Notes

To get the most from the performance this transmitter can offer, please use it properly noting the points mentioned below. Before using it, please read the Instruction Manual.

Transmitter Installation Notes

- When installing the transmitter, ensure that gaskets do not protrude from connecting points into the process (such as adapter flange connection points and connecting pipes and flanges). Gasket protrusion may result in leaks and output errors.
- Do not use the transmitter outside its defined pressure, temperature, and connection specifications. A serious accident may otherwise occur due to damage and leaks.
- When performing wiring work in explosion-proof areas, follow the work method specified in the explosion-proof guidelines. In addition, when the wiring for an explosionproof product is a pull-in pressure-resistant packingcable, be sure to use a pressure-resistant packing-cable adapter certified by Yamatake Corporation.
- Be sure to use the cable which allowable temperature is more than 65°C.

- After installing the transmitter, do not step or stand on it.
 Using it as a foothold could cause it to collapse and cause physical injury.
- Be careful not to hit the glass indicator with tools etc. This could break the glass and cause injury.
- This transmitter is heavy. Wear safety shoes and take care when installing it.

Wiring Notes

 To avoid shocks, do not perform electrical wiring work with wet hands or with live wires.

- Do wiring work properly in conformance with the specifications. Wiring mistakes may result in malfunction or irreparable damage to the instrument.
- Use a power supply that conforms to the specifications.
 Use of an improper power supply may result in malfunction or irreparable damage to the instrument.

Performance

Shown for each item are the upper limit (URV) $^{(1)}$ and the lower limit (LRV) $^{(2)}$ of the calibration range or the percentage ratio of the maximum value of the span to χ (kPa).

JTH920A (for general purpose and high-temperature models)

Material for Wetted Parts: SUS316

Flange diameter: Flush diaphragm 3in. (80mm) Extended diaphragm 4in. (100mm)

Accuracy (*3)	Linear output:	$\pm 0.3\%$ $\pm (0.3 \times \frac{12.5}{\chi}) \%$	(χ ≥12.5kPa {1250mmH ₂ O}) (χ <12.5kPa {1250mmH ₂ O})
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm 1.25\% \pm 1.25 \times \frac{25}{\chi}\%$	(χ ≥25kPa 2500mmH ₂ O) (χ <25kPa 2500mmH ₂ O)
Change of 55°C (*3)	Combined shift:	$\pm 2.5\% \pm 2.5 \times \frac{25}{\chi} \%$	(χ ≥25kPa 2500mmH ₂ O) (χ <25kPa 2500mmH ₂ O)

JTH920A (for general purpose and high-temperature models)

Material for Wetted Parts: Hastelloy C, Tantalum Flange Diameter: Flush diaphragm 3in. (80mm)

Accuracy (*3)	Linear output:	$\pm 0.4\%$ $\pm (0.4 \times \frac{12.5}{\chi}) \%$	(χ ≥12.5kPa {1250mmH ₂ O}) (χ <12.5kPa {1250mmH ₂ O})
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm 3.2\%$ $\pm 3.2 \times \frac{25}{\chi} \%$	(χ ≥25kPa 2500mmH ₂ O) (χ <25kPa 2500mmH ₂ O)
Change of 30°C ^('3) (Range from -5 to 55°C)	Combined shift:	$\pm 4.5\% \pm 4.5 \times \frac{25}{\chi} \%$	(χ ≥25kPa {2500mmH ₂ O}) (χ <25kPa {2500mmH ₂ O})

JTH940A (for general purpose and high-temperature models)

Material for Wetted Parts: SUS316

Flange diameter: Flush diaphragm 3in. (80mm) Extended diaphragm 4in. (100mm)

Accuracy (*3)	Linear output:	$\begin{array}{ccc} \pm & 0.2\% \\ \pm & (0.05 + 0.15 \times \frac{350}{\chi}) \% \end{array}$	(χ ≥350kPa {3.5kgf/cm²}) (χ <350kPa {3.5kgf/cm²})
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm (0.25 + 0.5 \times \frac{350}{\chi}) \%$	
Change of 55°C ^('3)	Combined shift:	$\begin{array}{ll} \pm & 1.05\% \\ \pm & (0.35 + 0.7 \times \frac{350}{\chi}) \% \end{array}$	(χ ≥350kPa {3.5kgf/cm²}) (χ <350kPa {3.5kgf/cm²})

JTH940A (for general purpose and high-temperature models)

Material for Wetted Parts: Hastelloy C, Tantalum Flange Diameter: Flush diaphragm 3in. (80mm)

Accuracy (*3)	Linear output:	$\begin{array}{ccc} \pm & 0.2\% \\ \pm & (0.05 + 0.15 \times \frac{350}{\chi}) \% \end{array}$	($\chi \ge 350 \text{kPa} \ 3.5 \text{kgf/cm}^2 $) ($\chi < 350 \text{kPa} \ 3.5 \text{kgf/cm}^2 $)
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm (0.15 + 0.5 \times \frac{350}{\chi}) \%$	
Change of 30°C (Range from -5 to 55°C) ('3)	Combined shift:	$\begin{array}{ll} \pm & 0.9\% \\ \pm & (0.35 + 0.55 \times \frac{350}{\chi}) \% \end{array}$	($\chi \ge 350 \text{kPa} \ 3.5 \text{kgf/cm}^2 $) ($\chi < 350 \text{kPa} \ 3.5 \text{kgf/cm}^2 $)

JTH960A (for general purpose and high-temperature models)

Material for Wetted Parts: SUS316

Flange diameter: Flush diaphragm 3in. (80mm) Extended diaphragm 4in. (100mm)

Accuracy (*3)	Linear output:	$\begin{array}{ccc} \pm & 0.2\% \\ \pm & (0.05 + 0.15 \times \frac{3.5}{\chi}) \% \end{array}$	($\chi \ge 3.5 \text{MPa} \ 35 \text{kgf/cm}^2 $) ($\chi < 3.5 \text{MPa} \ 35 \text{kgf/cm}^2 $)
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm (0.25 + 0.5 \times \frac{3.5}{\chi}) \%$	
Change of 55°C (*3)	Combined shift:	$\begin{array}{ll} \pm & 1.05\% \\ \pm & (0.35 + 0.7 \times \frac{3.5}{\chi}) \% \end{array}$	($\chi \ge 3.5 \text{MPa} 35 \text{kgf/cm}^2 $) ($\chi < 3.5 \text{MPa} 35 \text{kgf/cm}^2 $)

JTH960A (for general purpose and high-temperature models)

Material for Wetted Parts: Hastelloy C, Tantalum Flange Diameter: Flush diaphragm 3in. (80mm)

Accuracy (*3)	Linear output:	$\begin{array}{ccc} \pm & 0.2\% \\ \pm & (0.05 + 0.15 \times \frac{3.5}{\chi}) \% \end{array}$	$(\chi \ge 3.5 \text{MPa} 35 \text{kgf/cm}^2)$ $(\chi < 3.5 \text{MPa} 35 \text{kgf/cm}^2)$
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm (0.15 + 0.5 \times \frac{3.5}{\chi}) \%$	
Change of 30°C (*3) (Range from -5 to 55°C)	Combined shift:	$\begin{array}{ll} \pm & 0.9\% \\ \pm & (0.35 + 0.55 \times \frac{3.5}{\chi}) \% \end{array}$	($\chi \ge 3.5 \text{MPa} 35 \text{kgf/cm}^2 $) ($\chi < 3.5 \text{MPa} 35 \text{kgf/cm}^2 $)

JTH940A (for general purpose and high-temperature models)

Material for Wetted Parts: SUS316

Flange diameter: Flush diaphragm 2in. (50mm)/1.5in. (40mm) Extended diaphragm 3in. (80mm)/2in. (50mm)

Accuracy (*3)	Linear output:	$\pm 0.3\% \pm (0.3 \times \frac{350}{\chi}) \%$	($\chi \ge 350 \text{kPa} 3.5 \text{kgf/cm}^2 $) ($\chi < 350 \text{kPa} 3.5 \text{kgf/cm}^2 $)
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm (0.25 + 0.5 \times \frac{350}{\chi})$ %	
Change of 55°C ^(*3)	Combined shift:	$\pm 1.05\%$ $\pm (0.35 + 0.7 \times \frac{350}{\chi}) \%$	($\chi \ge 350 \text{kPa} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

JTH940A (for general purpose and high-temperature models)

Material for Wetted Parts: Hastelloy C, Tantalum

Flange diameter: Flush diaphragm 2in. (50mm)/1.5in. (40mm)

Accuracy (*3)	Linear output:	$\pm 0.3\% \pm (0.3 \times \frac{350}{\chi}) \%$	($\chi \ge 350 \text{kPa} \ \{3.5 \text{kgf/cm}^2\}\)$ ($\chi < 350 \text{kPa} \ \{3.5 \text{kgf/cm}^2\}\)$
Temperature characteristics (Shift from the set range) Change of 30°C ('3)	Zero shift:	$\pm 0.68\%$ $(0.68 \times \frac{350}{\chi})$ %	(χ ≥350kPa {3.5kgf/cm ² }) (χ <350kPa {3.5kgf/cm ² })
(Range from -5 to 55°C)	Combined shift:	$\pm 1.75\% \pm (1.75 \times \frac{350}{\chi}) \%$	($\chi \ge 350 \text{kPa} \ 3.5 \text{kgf/cm}^2 $) ($\chi < 350 \text{kPa} \ 3.5 \text{kgf/cm}^2 $)

JTH960A (for general purpose and high-temperature models)

Material for Wetted Parts: SUS316

Flange diameter: Flush diaphragm 2in. (50mm)/1.5in. (40mm) Extended diaphragm 3in. (80mm)/2in. (50mm)

Accuracy (*3)	Linear output:	$\pm 0.4\% \pm (0.4 \times \frac{3.5}{\chi}) \%$	($\chi \ge 3.5 \text{MPa} 35 \text{kgf/cm}^2 $) ($\chi < 3.5 \text{MPa} 35 \text{kgf/cm}^2 $)
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm (0.25 + 0.5 \times \frac{3.5}{\chi}) \%$	
Change of 55°C (*3)	Combined shift:	$\begin{array}{ll} \pm & 1.5\% \\ \pm & (0.35 + 0.7 \times \frac{3.5}{\chi}) \% \end{array}$	($\chi \ge 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $) ($\chi < 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $)

JTH960A (for general purpose and high-temperature models)

Material for Wetted Parts: Hastelloy C, Tantalum

Flange diameter: Flush diaphragm 2in. (50mm)/1.5in. (40mm)

Accuracy (*3)	Linear output:	$\pm 0.4\%$ $\pm (0.4 \times \frac{3.5}{\chi}) \%$	($\chi \ge 3.5 \text{MPa} \ \{3.5 \text{kgf/cm}^2\}$) ($\chi < 3.5 \text{MPa} \ \{3.5 \text{kgf/cm}^2\}$)
Temperature characteristics (Shift from the set range) Change of 30°C ('3)	Zero shift:	$\pm 0.68\%$ $(0.68 \times \frac{3.5}{\chi})$ %	($\chi \ge 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $) ($\chi < 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $)
(Range from -5 to 55°C)	Combined shift:	$\pm 1.75\% \pm (1.75 \times \frac{3.5}{\chi}) \%$	($\chi \ge 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $) ($\chi < 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $)

JTH980A (for general purpose models)

Material for Wetted Parts: SUS316

Flange diameter: 2in. wafer Bottom diaphragm

Accuracy (*3)	Linear output:	$\begin{array}{cccc} \pm & 0.2\% \\ \pm & (0.05 + 0.15 \times \frac{7}{\chi}) & \% \end{array}$	($\chi \ge 7MPa \ \{7.0kgf/cm^2\}$) ($\chi < 7MPa \ \{7.0kgf/cm^2\}$)
Temperature characteristics (Shift from the set range)	Zero shift:	\pm (0.25+0.5× $\frac{7}{\chi}$) %	
Change of 55°C (*3)	Combined shift:	$\begin{array}{ll} \pm & 1.05\% \\ \pm & (0.35 \!+\! 0.7 \!\times\! \frac{7}{\chi}\;) \;\;\% \end{array}$	($\chi \ge 7\text{MPa} \{7.0\text{kgf/cm}^2\}$) ($\chi < 7\text{MPa} \{7.0\text{kgf/cm}^2\}$)

Notes) (*1): URV denotes the value for 100% (20 mA DC) output.

 $^{(\mbox{\tiny $^{*}\!3$})}\!\!:\;$ Within a range of URV ≥ 0 and LRV ≥ 0

Dual diaphragm JTH920A/940A/960A (for general purpose, oxygen and chlorine)

Material for Wetted Parts: SUS316, SUS316L, Hastelloy C, Tantalum

Flange diameter: Flush diaphragm 3in. (80mm)/2in. (50mm)

(Original accuracy ± 0.1) %
(Original Temperature characteristics×2) %
* For original accuracy, tempera-
ture characteristics, refer to pages
7 to 9)

JTH940A (for high-temperature vacuum and high-temperature high vacuum models)

Material for Wetted Parts: SUS316/SUS316L

Flange diameter: Flush diaphragm 3in. (80mm) Extended diaphragm 4in. (100mm)

Accuracy (*3)	Linear output:	$\begin{array}{ccc} \pm & 0.2\% \\ \pm & (0.05 + 0.15 \times \frac{350}{\chi}) \% \end{array}$	($\chi \ge 350 \text{kPa} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm (0.15 + 0.45 \times \frac{350}{\chi}) \%$	
Change of 30°C (Range from -5 to 55°C) (*3)	Combined shift:	$\begin{array}{ll} \pm & 0.9\% \\ \pm & (0.35 + 0.55 \times \frac{3.5}{\chi}) \% \end{array}$	($\chi \ge 350 \text{kPa} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

JTH940A (for high-temperature vacuum and high-temperature high vacuum models)

Material for Wetted Parts: Hastelloy C, Tantalum

Flange diameter: Flush diaphragm 3in. (80mm) Extended diaphragm 4in. (100mm)

Accuracy (*3)	Linear output:	$\begin{array}{ll} \pm & 0.2\% \\ \pm & (0.05 + 0.15 \times \frac{350}{\chi}) \% \end{array}$
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm (0.15 + 0.5 \times \frac{350}{\chi}) \%$
Change of 30°C (Range from -5 to 55°C) (*3)	Combined shift:	$\pm 0.9\%$ $\pm (0.35 + 0.55 \times \frac{350}{\chi}) \%$

JTH960A (for high-temperature vacuum and high-temperature high vacuum models)

Material for Wetted Parts: SUS316/SUS316L

Flange diameter: Flush diaphragm 3in. (80mm) Extended diaphragm 4in. (100mm)

Accuracy (*3)	Linear output:	$\begin{array}{ll} \pm & 0.2\% \\ \pm & (0.05 + 0.15 \times \frac{3.5}{\chi}) \% \end{array}$
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm (0.15 + 0.45 \times \frac{3.5}{\chi}) \%$
Change of 30°C (Range from -5 to 55°C) (*3)	Combined shift:	$\pm 0.9\%$ $\pm (0.35+0.55 \times \frac{3.5}{\chi}) \%$

JTH960A (for high-temperature vacuum and high-temperature high vacuum models)

Material for Wetted Parts: Hastelloy C, Tantalum

Flange diameter: Flush diaphragm 3in. (80mm) Extended diaphragm 4in. (100mm)

Accuracy (*3)	Linear output:	$\begin{array}{ll} \pm & 0.2\% \\ \pm & (0.05 + 0.15 \times \frac{3.5}{\chi}) \% \end{array}$
Temperature characteristics	Zero shift:	$\pm (0.15 + 0.50 \times \frac{3.5}{\chi}) \%$
(Shift from the set range) Change of 30°C	Combined shift:	\pm 0.9%
(Range from -5 to 55°C) (*3)	55364 6	$\pm (0.35 + 0.55 \times \frac{3.5}{\chi}) \%$

Notes) (*1): URV denotes the value for 100% (20 mA DC) output.

(*2): LRV denotes value for 0% (4 mA DC) output.

(*3): Within a range of URV ≥ 0 and LRV ≥ 0

JTH940A (for high-temperature vacuum and high-temperature high vacuum models)

Material for Wetted Parts: SUS316/SUS316L

Flange diameter: Flush diaphragm 2in. (50mm)/1.5in. (40mm) Extended diaphragm 3in. (80mm)/2in. (50mm)

Accuracy (*3)	Linear output:	$\begin{array}{ccc} \pm & 0.2\% \\ \pm & (0.05 + 0.15 \times \frac{350}{\chi}) \% \end{array}$	($\chi \ge 350 \text{kPa} \ \ \{3.5 \text{kgf/cm}^2\}\ \)$ ($\chi < 350 \text{kPa} \ \ \{3.5 \text{kgf/cm}^2\}\ \)$
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm (0.15 + 0.45 \times \frac{350}{\chi}) \%$	
Change of 30°C (Range from -5 to 55°C) (*3)	Combined shift:	$\pm 0.9\%$ $\pm (0.35 + 0.55 \times \frac{350}{\chi}) \%$	($\chi \ge 350 \text{kPa} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

JTH940A (for high-temperature vacuum and high-temperature high vacuum models)

Material for Wetted Parts: Hastelloy C, Tantalum

Flange diameter: Flush diaphragm 2in. (50mm)/1.5in. (40mm)

Accuracy (*3)	Linear output:	$\pm 0.3\% \pm (0.3 \times \frac{350}{\chi}) \%$	($\chi \ge 350 \text{kPa} \ \{3.5 \text{kgf/cm}^2\}$) ($\chi < 350 \text{kPa} \ \{3.5 \text{kgf/cm}^2\}$)
Temperature characteristics (Shift from the set range) Change of 30°C	Zero shift:	$\pm 0.68\%$ $(0.68 \times \frac{350}{\chi})$ %	($\chi \ge 350 \text{kPa} \ \{3.5 \text{kgf/cm}^2\}\)$ ($\chi < 350 \text{kPa} \ \{3.5 \text{kgf/cm}^2\}\)$
(Range from -5 to 55°C) (*3)	Combined shift:	$\pm 1.75\% \pm (1.75 \times \frac{350}{\chi}) \%$	$(\chi \ge 350 \text{kPa} 3.5 \text{kgf/cm}^2)$ $(\chi < 350 \text{kPa} 3.5 \text{kgf/cm}^2)$

JTH960A (for high-temperature vacuum and high-temperature high vacuum models)

Material for Wetted Parts: SUS316/SUS316L

Flange diameter: Flush diaphragm 2in. (50mm)/1.5in. (40mm) Extended diaphragm 3in. (80mm)/2in. (50mm)

Accuracy (*3)	Linear output:	$\begin{array}{ccc} \pm & 0.2\% \\ \pm & (0.2 \times \frac{210}{\chi}) \% \end{array}$	($\chi \ge 3.5 \text{MPa} 3.5 \text{kgf/cm}^2 $) ($\chi < 3.5 \text{MPa} 3.5 \text{kgf/cm}^2 $)
Temperature characteristics (Shift from the set range)	Zero shift:	$\pm (0.1+0.45 \times \frac{3.5}{\chi}) \%$	
Change of 30°C (Range from -5 to 55°C) (*3)	Combined shift:	$\begin{array}{ll} \pm & 0.9\% \\ \pm & (0.35 + 0.55 \times \frac{3.5}{\chi}) \% \end{array}$	($\chi \ge 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $) ($\chi < 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $)

JTH960A (for high-temperature vacuum and high-temperature high vacuum models)

Material for Wetted Parts: Hastelloy C, Tantalum

Flange diameter: Flush diaphragm 2in. (50mm)/1.5in. (40mm)

Accuracy (*3)	Linear output:	$\pm 0.4\% \\ \pm (0.4 \times \frac{3.5}{\chi}) \%$	($\chi \ge 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $) ($\chi < 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $)
Temperature characteristics (Shift from the set range) Change of 30°C	Zero shift:	$\begin{array}{ll} \pm & 0.68\% \\ \pm & (0.68 \times \frac{3.5}{\chi}) \end{array} \%$	($\chi \ge 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $) ($\chi < 3.5 \text{MPa} \ 3.5 \text{kgf/cm}^2 $)
(Range from -5 to 55°C) ('3)	Combined shift:	$\begin{array}{ll} \pm & 1.75\% \\ \pm & (1.75 \times \frac{3.5}{\chi}) \% \end{array}$	($\chi \ge 3.5$ MPa $\{3.5$ kgf/cm ² $\}$) ($\chi < 3.5$ MPa $\{3.5$ kgf/cm ² $\}$)

Notes) (*1): URV denotes the value for 100% (20 mA DC) output.

 $^{(^\circ3)}$: Within a range of URV \geqq 0 and LRV \geqq 0

Model Number Configuration Table

DSTJ3000 ACE Electric Pressure Transmitter Remote-sealed diaphragm style

Model	Pressure ran	ge/style	Service (Fill fluid)	Process connection
JTH920A	25 to 100kPa (250 to 1000kgf/cm2)	Lowest pressure	Regular services (Silicon oil), High temperature (Silicon oil), Oxygen service (Fluorine oil)	Flush diaphragm 3 in. (80mm)
JTH940A	35 to 3500kPa (0.35 to 35kgf/cm2)	Low pressure	Regular service (Silicon oil), High temperature (Silicon oil), Oxygen service (Fluorine oil)	Flush diaphragm 3 in. (80mm)
JTH960A	0.7 to 10MPa (7 to 102kgf/cm2)	High pressure	Regular service (Silicon oil), High temperature (Silicon oil), Oxygen service (Fluorine oil)	Flush diaphragm 3 in. (80mm)

Selections Options 1

Options 1, 2: Refer to page 27. Basic model No. - I II III IV V VI VII VIII - IXXXI XII XIV -Options 2

Basic Model No.					
	Measuring span	2.5 to 100kPa(250 to 10,160mmH2O)	JTH920A		
	35 to 3500kPa(0.35 to 35kgf/cm2)		JTH940A		
		0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A		

Selections			
I	Output	4 to 20mA 1	
	1 '	4 to 20mA(Analog FSK Communication) 2 *3	
		Digital output (DE protocol) 3 *1, *2	
П		SUS316 (Diaphragm : SUS316L) 2	
	Material of wetted part	Tantalum 4	
		Hastelloy C H	
		SUS316L 8	
III	Fill Fluid	Regular type (Silicone oil)	
		For oxygen service (Fluorine oil)	
	*11	For High temperature service (Silicon oil)	
IV	Flange rating	JIS 10K	
.,	*29	JIS 20K C	
	20	JIS 30K	
	*11	JIS 63K F	
		ANSI 150 G	
		ANSI 300 H	
	*11	ANSI 600 J	
		JPI 150 N	
		JPI 300 P	
	*11	JPI 600 Q	
V	Flange size	3 in. /80 mm 2	
VI	Flange type	Standard 1	
VII	Trange type	Carbon steel A	٦ .
• • • • • • • • • • • • • • • • • • • •	Flange material/bolt and nut	Cargon steel/SUS304 B	
	Trange material/boil and nat	Carbon steel/SUS630 C	-
		SUS304/Carbon steel D	
		SUS304/SUS304 E	
		SUS304/SUS630 F	
		SUS316/Carbon steel G	
		SUS316/SUS304 H	
		SUS316/SUS630 J	
		SUS316L/Carbon steel K	
		SUS316L/SUS304 L	
		SUS316L/SUS630 M	
VIII		2m	2
•	Length of Capillary tube	3m	3
		4m	4
		5m	5
		6m	6
		7m	7
		8m	8
		9m	Q
		10m	A
		2m	В
	Length of capillary tube with	3m	Ċ
	Olefin coating	4m	H
		5m	
		6m	J
	1	7m	T E
	1	8m	F
		9m	K
	l .	10m	G

- 1 2 Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.
- Dual diaphragm is not available for JIS63K, ANSI600 and JPI600 for a flange rating.
- Flange rating should be selected based on the operative pressure range.

Model	Pressure range/style	Э	Service (Fill fluid)	Process connection
JTH920A	2.5 to 100kPa(250 to 10,160mmH2O)	Lowest pressure	Chlorine service(Ruorine oil)	Flush diaphragm 3 in. (80mm)
JTH940A	35 to 3500kPa(0.35 to 35kgf/cm2)	Lowpressure	Chlorine service(Fluorine oil)	Flush diaphragm 3 in. (80mm)
JTH960A	0.7 to 10MPa(7 to 102 kgf/cm2)	High pressure	Chlorine service(Fluorine oil)	Flush diaphragm 3 in. (80mm)

Selections Options 1 - I II III IVV VI VII VIII - IX XXI XII XIII XIV Basic model No. -Options 2

Options 1, 2: Refer to page 27.

Basic Model No.

	Measuring span	2.5 to 100kPa(250 to 10,160mmH2O)	JTH920A
П		35 to 3500kPa(0.35 to 35kgf/cm2)	JTH940A
П		0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A

ı	Output	4 to 20mA	1			
	· ·	4 to 20mA(Analog FSK Communication)	2 *3			
		Digital output (DE protocol)	3 *1, *2			
Ш	Material of wetted part	Tantalum	4			
III	Fill Fluid	For chlorine service (Fluorine oil)	5	5		
IV	Flange rating	JIS 10K		Α		
	*29	JIS 20K		C		
		JIS 30K		D		
	*11	JIS 63K		F		
		ANSI 150		G		
		ANSI 300		Н		
	*11	ANSI 600		J		
		JPI 150		N		
		JPI 300		Р		
	*11	JPI 600		Q		
V	Flange size	3 in. /80 mm		2	_	
VI	Flange type	Standard		1	1	_
VII	Florens meeteriel/heelt	Carbon steel			Α	ı
	Flange material/bolt and nut	Cargon steel/SUS304			В	ı
	and nut	Carbon steel/SUS630			С	ı
		SUS304/Carbon steel			D	i
		SUS304/SUS304			Е	ı
		SUS304/SUS630			F	ı
		SUS316/Carbon steel			G	ı
		SUS316/SUS304			Н	ı
		SUS316/SUS630			J	ı
		SUS316L/Carbon steel			K	ı
		SUS316L/SUS304			L	ı
		SUS316L/SUS630			М	Щ.
VIII	Length of Capillary	2m			$\overline{}$	1
	tube	3m			\longrightarrow	3
		<u>4m</u>				4
		5m				5
		6m				6
		7m			\longrightarrow	7
		8m			\longrightarrow	8
		9m 10m			\longrightarrow	C
		2m				E
	Langth of carillar	3m				+
	Length of capillary tube with Olefin coating					H
	tube with Oleim coating	5m			\longrightarrow	H
		6m				H
		7m				_
		l 9 m				
		8m 9m			\longrightarrow	

- 1 Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.
- 11 Dual diaphragm is not available for JIS63K, ANSI600 and JPI600 for a flange rating.
- 29 Flange rating should be selected based on the operative pressure range.

Model	Pressure range/style		Pressure range/style Service (Fill fluid)		Process connection
JTH940A	35 to 3500kPa (0.35 to 35kgf/cm2)		, , ,	Flush diaphragm 3 in. (80mm)	
	0.7 to 10MPa (7 to 102 kgf/cm2)		, , ,	Flush diaphragm 3 in. (80mm)	

JTH940A

3

8

Q

Selections Options 1

- I II III IVV VI VII VIII - IX X XI XII XIII XIV Options 1, 2: Refer to page 27. Basic model No. -Options 2

35 to 3500kPa(0.35 to 35kgf/cm2)

	weasuring span	35 to 3500kPa(0.35 to 35kgi/cm2)	J11940A	
		0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A	
ctions				
I	Output	4 to 20mA	1	
		4 to 20mA(Analog FSK Communication)	2 *3	
		Digital output (DE protocol)	3 *1, *2	
П	Material of wetted part	SUS316L	8	
	Material of Wetted part	Tantalum *30	4	
		Hastelloy C	H	
Ш	Fill Fluid	For high temperature vacuum (Silicon oil)	4	
		For high temperature high vacuum (Silicon oil)	7	
IV	Flange rating	JIS 10K	A	
	*29	JIS 20K	C	
		JIS 30K	D	
	*11	JIS 63K	F	
		ANSI 150	G	
		ANSI 300	H	
	*11	ANSI 600	J	
		JPI 150	N	
		JPI 300	P	
	*11	JPI 600	Q	
V	Flange size	3 in. /80 mm	2	
VI	Flange type	Standard	1	
VII	Flores material/balt and	Carbon steel		1
	Flange material/bolt and nut	Cargon steel/SUS304		E
	nut	Carbon steel/SUS630		
		SUS304/Carbon steel		
		SUS304/SUS304		E
		SUS304/SUS630		F
		SUS316/Carbon steel		(
		SUS316/SUS304		T
		SUS316/SUS630		J
		SUS316L/Carbon steel		F
		SUS316L/SUS304		L
		1011001011010000		

Notes

VIII

Length of Capillary tube

Basic Model No

Measuring span

- Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- 2 Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3
- Analog FSK Communication can not be combined with Intrinsically safe.

 Dual diaphragm is not available for JIS63K, ANSI600 and JPI600 for a flange rating. 11

SUS316L/SUS630

3m

4m

5m 6m 7<u>m</u>

8m 9m

10m

- 29
- Flange rating should be selected based on the operative pressure range.

 If the fill fluid is for high temperature service and wetted part material is Tantalum, 1.5 in. for flange size is not 30 available.

Model	Pressure range/style		Service (Fill fluid)	Process connection
JTH940A	0A 35 to 3500kPa(0.35 to 35kgf/cm2) Low pressure		Regular service(Silicon oil), High temperature	Flush diaphragm 2 in.
			(Silicon oil), Oxygen service(Fluorine oil)	(50mm)/1.5 in.(40mm)
JTH960A	0.7 to 10MPa(7 to 102 kgf/cm2)	High pressure	Regular service(Silicon oil), High temperature	Flush diaphragm 2 in.
		1	(Silicon oil), Oxygen service(Fluorine oil)	(50mm)/1.5 in.(40mm)

Selections Options 1 Options 1, 2: Refer to page 27.

easuring span utput aterial of wetted part *11	35 to 3500kPa(0.35 to 35kgf/cm2) 0.7 to 10MPa(7 to 102 kgf/cm2) 4 to 20mA 4 to 20mA(Analog FSK Communication) Digital output (DE protocol) SUS316 (Diaphragm : SUS316L) Tantalum *30 SUS316L Hastelloy C		JTH940A JTH960A 1 2 *3 *1, 2 2	*2			
aterial of wetted part *11	4 to 20mA 4 to 20mA(Analog FSK Communication) Digital output (DE protocol) SUS316 (Diaphragm : SUS316L) Tantalum *30 SUS316L Hastelloy C		1 2 *3 3 *1, 2 4	*2			
aterial of wetted part *11	4 to 20mA(Analog FSK Communication) Digital output (DE protocol) SUS316 (Diaphragm : SUS316L) Tantalum *30 SUS316L Hastelloy C		2 *3 3 *1, 2 4	<u>*</u> 2			
aterial of wetted part *11	4 to 20mA(Analog FSK Communication) Digital output (DE protocol) SUS316 (Diaphragm : SUS316L) Tantalum *30 SUS316L Hastelloy C		2 *3 3 *1, 2 4	*2			
*11	Digital output (DE protocol) SUS316 (Diaphragm : SUS316L) Tantalum *30 SUS316L Hastelloy C		3 *1, 2 4	*2			
*11	SUS316 (Diaphragm : SUS316L) Tantalum *30 SUS316L Hastelloy C		2	*2			
*11	Tantalum *30 SUS316L Hastelloy C		4	}			
*11	SUS316L Hastelloy C						
	Hastelloy C						
			8				
ll Fluid	D 1 (0)		Н				
	Regular type (Silicone oil)			1			
	For oxygen service (Fluorine oil)			2			
*11	For High temperature service (Silicon oil)			3			
ange rating	JIS 10K			A			
.9	JIS 20K			С			
					_		
*11					_		
					1		
					1		
					_		
*11					_		
					_		
. 0					4		
ange type						1	
					-		Α
							В
ut	<u> </u>					\dashv	С
							D
						_	E
							F
						-+	G
						\dashv	H
						\dashv	J
							K
						\dashv	L
						\dashv	М
							IVI
ength of Capillary tube							
							\dashv
							-
iui Oleiin coating							
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	*11 *11 *11 ange size ange type ange material/bolt and at ength of Capillary tube th Olefin coating	*111 JIS 30K	************************************	South	San	SOK	Solid Soli

- 1 Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- 2 Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.
- 11 Dual diaphragm is not available for JIS63K, ANSI600 and JPI600 for a flange rating.
- 29 Flange rating should be selected based on the operative pressure range.
- 30 If the fill fluid is for high temperature service and wetted part material is Tantalum, 1.5 in. for flange size is not available.

Model	Pressure range/style		Service (Fill fluid)	Process connection
JTH940A	35 to 3500kPa(0.35 to 35kgf/cm2)	Lowpressure		Flush diaphragm 2 in. (50 mm)/1.5 in.(40mm)
JTH960A	0.7 to 10MPa(7 to 102 kgf/cm2)	High pressure		Flush diaphragm 2 in. (50 mm)/1.5 in.(40mm)

Selections Options 1

 Options 1, 2: Refer to page 27.

Basic Model No.

Measuring span	35 to 3500kPa(0.35 to 35kgf/cm2)	JTH940A
	0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A

Selections

I	Output	4 to 20mA 1	
		4 to 20mA(Analog FSK Communication) 2 *3	
		Digital output (DE protocol) 3 *1, *2	
П	Material of wetted part	Tantalum 4	
III	Fill Fluid	For chlorine service (Fluorine oil) 5	
IV	Flange rating	JIS 10K A	
	*29	JIS 20K C	
		JIS 30K D	
	*11	JIS 63K F	
		ANSI 150 G	
		ANSI 300 H	
	*11	ANSI 600 J	
		JPI 150 N	
		JPI 300 P	
	*11	JPI 600 Q	
V	Flange size	2 in./50mm 3	
		1.5 in./40mm 4	
VI	Flange type	Standard 1	
VII		Carbon steel	Α
	Flange material/bolt and nut	Cargon steel/SUS304	В
		Carbon steel/SUS630	С
		SUS304/Carbon steel	D
		SUS304/SUS304	E
		SUS304/SUS630	F
		SUS316/Carbon steel	G
		SUS316/SUS304	Н
		SUS316/SUS630	J
		SUS316L/Carbon steel	K
		SUS316L/SUS304	L
		SUS316L/SUS630	М
VIII	Length of Capillary tube	2m	2
	Length of Capitally tabe	3m	3
		4m	4
		5m	5
		2m	В
	Length of capillary tube with	3m	С
	Olefin coating	4m	Н
		5m	D

- 1 Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- 2 Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.
- Dual diaphragm is not available for JIS63K, ANSI600 and JPI600 for a flange rating.
- 29 Flange rating should be selected based on the operative pressure range.

Model	Pressure ran	ge/style	Service (Fill fluid)	Process connection
JTH940A	35 to 3500kPa (0.35 to 35kgf/cm2)	Low pressure	High temperature and vacuum (Silicon oil), High temperature and high vacuum (Silicon oil)	Flush diaphragm 2 in. (50 mm)/1.5 in. (40mm)
JTH960A	0.7 to 10MPa (7 to 102kgf/cm2)	High pressure	High temperature and vacuum (Silicon oil), High temperature and high vacuum (Silicon oil)	Flush diaphragm 2 in. (50 mm)/1.5 in. (40mm)

Selections Options 1

Basic Model No.

Measuring span	35 to 3500kPa(0.35 to 35kgf/cm2)	JTH940A
	0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A

Selections

lection	S									
1	Output	4 to 20mA	1							
		4 to 20mA(Analog FSK Communication)	2	*3						
		Digital output (DE protocol)	3	*1,	*2					
П	Material of control or d	SUS316L		8						
	Material of wetted part	Tantalum *15		4						
		Hastelloy C		Н						
Ш	Fill Fluid	For high temperature vacuum (Silicon oil)			4					
		For high temperature high vacuum (Silicon oil)			7	1				
IV	Flange rating	JIS 10K			•	Α				
	*29	JIS 20K				С				
		JIS 30K				D				
		JIS 63K				F				
		ANSI 150				G				
		ANSI 300				Н				
		ANSI 600				J				
		JPI 150				N				
		JPI 300				Р				
		JPI 600				Q				
V	Flange size	2 in. /50mm					3			
		1.5 in. /40mm					4		_	
VI	Flange type	Standard						1		
VII		Carbon steel							Α	1
	Flange material/bolt and nut	Cargon steel/SUS304							В	
		Carbon steel/SUS630							С	
		SUS304/Carbon steel							D	
		SUS304/SUS304							E	
		SUS304/SUS630							F	
		SUS316/Carbon steel							G	
		SUS316/SUS304							Н	
		SUS316/SUS630							J	
		SUS316L/Carbon steel							K	
		SUS316L/SUS304							L	
		SUS316L/SUS630							М	
VIII	Length of Capillary tube	2m								Ī
	Length of Capillary tube	3m								I
		4m								T
										ı

- 1 Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- 2 Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.
- 15 If the fill fluid is for high temperature service and wetted part material is Tantalum, the applicable temperature range of wetted part is from -10 to 180 deg.C
- 29 Flange rating should be selected based on the operative pressure range.

Model	Pressure range/style		Service (Fill fluid)	Process connection
JTH920A	2.5 to 100 kPa Lowest		Regular service(Silicon oil), High temperature (Silicon oil),	Extended fange type 4
	(250 to 10,160mmH2O)	pressure	Oxygen service(Fluorine oil)	in.(100 mm)
JTH940A	35 to 3500kPa	Low pressure	Regular service (Silicon oil), High temperature (Silicon oil),	Extended fange type 4
	(0.35 to 35kgf/cm2)		Oxygen service(Fluorine oil)	in.(100mm)
JTH960A	0.7 to 10MPa	High pressure	Regular service (Silicon oil), High temperature (Silicon oil),	Extended fange type 4
	(7 to 102 kgf/am2)		Oxygen serviœ(Fluorine oil)	in.(100 mm)

Selections Options 1

Basic model No. - I II III IVV VI VII VIII - IX XXI XII XIII XIV -Options 2 Options 1, 2: Refer to page 27.

Basic Model No.

Measuring span	2.5 to 100kPa(250 to 10,160mmH2O)	JTH920A
	35 to 3500kPa(0.35 to 35kgf/cm2)	
	0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A

Selectio	n <u>s</u>		
ı	Output	4 to 20mA 1	
		4 to 20mA(Analog FSK Communication) 2 *3	
		Digital output (DE protocol) 3 *1, *2	
Ш	Material of collections	SUS316 (Diaphragm: SUS316L)	
	Material of wetted part	SUS316L 8	
III	Fill Fluid	Regular type (Silicone oil)	
		For oxygen service (Fluorine oil)	
		For High temperature service (Silicon oil)	
IV	Flange rating	JIS 10K	
	*29	JIS 20K	
	23	JIS 30K D	
		ANSI 150 G	
		ANSI 300 H	
		JPI 150 N	
		JPI 300 P	
V	Flange size	4 in./100mm	
VI	Flange type	Length of extended part 50mm 2	
VI	i lalige type	Length of extended part 30mm 2 Length of extended part 100mm 3	
		Length of extended part 150mm 4	
		Length of extended part 150mm 4 Length of extended part 200mm 5	
		Length of extended part 200mm 5 Length of extended part 250mm 6	
		0 1	
\ //II		Length of extended part 300mm 7	_
VII	Flange material/bolt	Carbon steel A	
	and nut	Cargon steel/SUS304 B	
		Carbon steel/SUS630 C	
		SUS304/Carbon steel D	
		SUS304/SUS304 E	
		SUS304/SUS630 F	
		SUS316/Carbon steel G	
		SUS316/SUS304 H	
		SUS316/SUS630 J	_
		SUS316L/Carbon steel K	
		SUS316L/SUS304 L	
		SUS316L/SUS630 M	
VIII	Length of Capillary	2m	2
	tube	3m	3
		4m	4
		5m	5
		6m	6
		7m	7
		8m	8
		9m	Q
		10m	Α
		2m	В
	Length of capillary	3m	С
	tube with Olefin	4m	Н
	coating	5m	D
	I	6m	J
		7m	ŤĒ
		8m	† -
		9m	Т.
	I	10m	 Ĝ

- Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- Digital output (DE protocol) can not be combined with an external zero adjustment function.

 Analog FSK Communication can not be combined with Intrinsically safe.

 Flange rating should be selected based on the operative pressure range. 2
- 3
- 29

Model	Pressure ran	ge/style	Service (Fill fluid)	Process connection
	35 to 3500kPa (0.35 to 35kgf/cm2)	Low pressure	High temperature and vacuum (Silicon oil), High temperature and high vacuum (Silicon oil)	Extended flange type 4 in. (100mm)
JTH960A	0.7 to 10MPa (7 to 102kgf/cm2)	High pressure	High temperature and vacuum (Silicon oil), High temperature and high vacuum (Silicon oil)	Extended flange type 4 in. (100mm)

Selections Options 1

Options 1, 2: Refer to page 27.

Basic Model No.

Measuring span	35 to 3500kPa(0.35 to 35kgf/cm2)	JTH940A
	0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A

-Options 2

	Output	4 to 20mA	1						
		4 to 20mA(Analog FSK Communication)	2	*3					
		Digital output (DE protocol)	3	*1, *	2				
	Material of collections	SUS316 (Diaphragm : SUS316L)		2					
	Material of wetted part	SUS316L		8					
I	Fill Fluid	For high temperature vacuum (Silicon oil)			4				
		For high temperature high vacuum (Silicon oil)			7				
/	Flange rating	JIS 10K				Α			
	*29	JIS 20K				С			
		JIS 30K				D			
		ANSI 150				G			
		ANSI 300				Н			
		JPI 150				N			
		JPI 300				Р			
′	Flange size	4 in./100A					1		_
Ί	Flange type	Length of extended part 50mm						2	i
		Length of extended part 100mm						3	
		Length of extended part 150mm						4	i
		Length of extended part 200mm						5	i
		Length of extended part 250mm						6	i
		Length of extended part 300mm						7	
II		Carbon steel							A
	Flange material/bolt and nut	Cargon steel/SUS304							В
	nut	Carbon steel/SUS630							С
		SUS304/Carbon steel							D
		SUS304/SUS304							E
		SUS304/SUS630							F
		SUS316/Carbon steel							G
		SUS316/SUS304							Н
		SUS316/SUS630							J
		SUS316L/Carbon steel							K
		SUS316L/SUS304							L
		SUS316L/SUS630							M
П	Landb of Carillani tuba	2m							
	Length of Capillary tube	3m							
		4m							
		5m							
		6m							
		7m							_
		8m							_
		9m							_

- Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- 2 Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.
- 29 Flange rating should be selected based on the operative pressure range.

Model	Pressure range/style		Service (Fill fluid)	Process connection
	35 to 3500kPa (0.35 to 35kgf/cm2)			Extended flange type 3 in.(80mm)/2 in.(50mm)
	0.7 to 10MPa (7 to 102 kgf/cm2)	High pressure	, , , , , , , , , , , , , , , , , , , ,	Extended flange type 3 in.(80mm)/2 in.(50mm)

Selections Options 1

Basic model No. - I II III IVV VI VII VIII - IX XXI XII XII XIV - Options 2 Options 1, 2: Refer to page 27.

Basic Model No.

Measuring span	35 to 3500kPa(0.35 to 35kgf/cm2)	JTH940A
	0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A

Selections

Selection	S	_		
I	Output	4 to 20mA 1		
		4 to 20mA(Analog FSK Communication) 2 *3		
		Digital output (DE protocol) 3 *1, *2		
Ш	Material of collections	SUS316 (Diaphragm : SUS316L) 2		
	Material of wetted part	SUS316L 8		
III	Fill Fluid	Regular type (Silicone oil) 1		
		For oxygen service (Fluorine oil)		
		For High temperature service (Silicon oil) 3		
IV	Flange rating	JIS 10K A		
	*29	JIS 20K C		
		JIS 30K D		
		ANSI 150 G		
		ANSI 300 H		
		JPI 150 N		
		JPI 300 P		
V	Flange size	3 in./80 mm 2		
		2 in./ 50 mm 3		
VI	Flange type	Length of extended part 50mm	2	
		Length of extended part 100mm	3	
		Length of extended part 150mm	4	
		Length of extended part 200mm	5	
		Length of extended part 250mm	6	
		Length of extended part 300mm	7	
VII		Carbon steel	А	1
	Flange material/bolt and nut	Cargon steel/SUS304	В	1
	nut	Carbon steel/SUS630	С	1
		SUS304/Carbon steel	D	1
		SUS304/SUS304	Е	1
		SUS304/SUS630	F	1
		SUS316/Carbon steel	G	1
		SUS316/SUS304	Н	
		SUS316/SUS630	J	1
		SUS316L/Carbon steel	K	1
		SUS316L/SUS304	L	
		SUS316L/SUS630	М	
VIII	1 11 1 . 0 11 1	2m		2
	Length of Capillary tube	3m		3
		4m		4
		5m		5
		2m		В
	Length of capillary tube	3m		С
	with Olefin coating	4m		Н
	l	5m		D

- 1 Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- 2 Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.
- 29 Flange rating should be selected based on the operative pressure range.

Model	Pressure range/style		Service (Fill fluid)	Process connection
	35 to 3 500kPa (0.35 to 35kgf/cm2)			Extended flange type 3 in.(80mm)/2 in.(50mm)
JTH960A	0.7 to 10MPa (7 to 102 kgf/cm2)			Extended flange type 3 in.(80mm)/2 in.(50 mm)

Selections Options 1

Options 1, 2: Refer to page 27.

Basic Model No.

Measuring span	35 to 3500kPa(0.35 to 35kgf/cm2)	JTH940A
	0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A

Selections

lections	Output	4 to 20mA	1	1						
•	Cutput	4 to 20mA(Analog FSK Communication)	2	*3						
		Digital output (DE protocol)	3	*1,	*2					
П		SUS316 (Diaphragm : SUS316L)		2	ĺ					
11	Material of wetted part	SUS316L		8						
111	Fill Fluid			O	4	1				
111	riii riula	For high temperature vacuum (Silicon oil) For high temperature high vacuum (Silicon oil)			7					
IV	Flance	JIS 10K			′	_				
IV	Flange rating *29					C				
	29	JIS 20K JIS 30K				D				
		ANSI 150				G				
		ANSI 300				Н				
	Flange size	JPI 150				N				
		JPI 300				P				
V	Florida diza	3 in. /80 mm				Г	2			
V	Flange size	2 in./50 mm					3			
VI	EL						3			
VI	Flange type	Length of extended part 50mm						2		
		Length of extended part 100mm						3		
		Length of extended part 150mm						4	-	
VII	Flange material/bolt and	Carbon steel							A	ı
	nut	Cargon steel/SUS304							В	ı
		Carbon steel/SUS630							C	İ
		SUS304/Carbon steel							D	ı
		SUS304/SUS304							E	ı
		SUS304/SUS630							F	ı
		SUS316/Carbon steel							G	ı
		SUS316/SUS304							H	ı
		SUS316/SUS630							J	ı
		SUS316L/Carbon steel							K	ı
		SUS316L/SUS304							L	ı
		SUS316L/SUS630							М	L
VIII	Length of Capillary tube	2m								L
		3m								L
		4m								L
		5m								l

- 1 Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- 2 Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.
- 29 Flange rating should be selected based on the operative pressure range.

Model	Pressure range	e/style	Service (Fill fluid)	Process connection
JTH960A	0.7 to 10MPa	High pressure	Regular service(Silicon oil), High temperature (Silicon oil),	Button diaphragm type 1
	(7 to 102 kgf/am2)		Oxygen service(Fluorine oil)	1/2 in. external screw
JTH980A	0.7 to 42MPa	Super high	Regular service(Silicon oil), High temperature (Silicon oil),	Button diaphragm type 1
	(7 to 420kaf/cm2)	pressure	Oxygen service(Fluorine oil)	1/2 in, external screw

 Options 1, 2: Refer to page 27.

Basic Model No.

Measuring span	0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A
	0.7 to 42MPa (7 to 420kgf/cm2)	JTH980A

Selections

I	Output	4 to 20mA	1							
	·	4 to 20mA(Analog FSK Communication)	2	*3						
		Digital output (DE protocol)	3	*1,	*2					
Ш	Material of wetted part	SUS316 (Diaphragm : SUS316L)		2						
	Material of wetted part	SUS316L		8		_				
Ш	Fill Fluid	Regular type (Silicone oil)			1					
		For oxygen service (Fluorine oil)			2					
IV	Flange rating Flange size	No flange used				W				
V		G 11/2 Button diaphragm 11/2in. External screw					٧	l		
VI	Flange type	Standard						1		
VII	Flange material/bolt and nut	SUS304/Carbon steel							D	
		SUS304/SUS304 *31							Е	
		SUS304/SUS630							F	
VIII	Length of Capillary tube	2m								1
	Length of Capillary tube	3m								
		4m								
	Length of capillary tube with Olefin coating	5m								
		2m								
		3m								(
		4m								
		5m								

- 1 Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- 2 Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.
- 31 Available only for JTH960A.

Model	Pressure range	e/style	Service (Fill fluid)	Process connection
JTH920A	2.5 to 100kPa (250 to 10,160mmH2O)	Lowest pressure	Regular service (Silicon oil), Oxygen service (Fluorine oil)	2 in. Wafer diaphragm
JTH940A	35 to 3500kPa (0.35 to 35kgf/cm2)	Low pressure	Regular service (Silicon oil), Oxygen service (Fluorine oil)	2 in. Wafer diaphragm
JTH960A	0.7 to 10MPa (7 to 102kgf/cm2)	High pressure	Regular service (Silicon oil), Oxygen service (Fluorine oil)	2 in. Wafer diaphragm
JTH980A	0.7 to 42MPa (7 to 420kgf/cm2)	Super high pressure	Regular service (Silicon oil), Oxygen service (Fluorine oil)	2 in. Wafer diaphragm

Selections

Options 1

Basic model No. - I II III IV V VI VII VIII

- IX X XI XII XIII XIV -Options 2

Options 1, 2: Refer to page 27.

Basic Model No.

	Measuring span	2.5 to 100kPa(250 to 10,160mmH2O)	JTH920A
١		35 to 3500kPa(0.35 to 35kgf/cm2)	JTH940A
١		0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A
١		0.7 to 42MPa (7 to 420kgf/cm2)	JTH980A

Selections

Selectio	ns		
I	Output	4 to 20mA 1	
		4 to 20mA(Analog FSK Communication) 2 *3	
		Digital output (DE protocol) 3 *1, *2	
- 11	Material of wetted part	SUS316 (Diaphragm : SUS316L)	
	Material of welled part	SUS316L 8	
Ш	Fill Fluid	Regular type (Silicone oil)	
		For oxygen service (Fluorine oil)	
IV	Flange rating	No flange used W	
V	Flange size	2 in. wafer W	
VI	Flange type	Standard 1	_
VII	Material of Bolt/nut	Carbon steel N	1
	Material of Bolt/flut	SUS630 Q	
VIII	Length of Capillary	2m	2
	tube	3m	3
		4m	4
		5m	5
		6m	6
		7m	7
		8m	8
		9m	Q
		10m	Α
		2m	В
	Length of capillary tube with Olefin	3m	С
	coating	4m	H
		5m	D
		6m	J
		7m	Е
		8m	F
		9m	K
		10m	G

- 1 Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- 2 Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.

Model	Pressure range	e/style	Service (Fill fluid)	Process connection
	35 to 3500kPa (0.35 to 35kgf/cm2)		High temperature and vacuum(Silicon oil), High temperature and high vacuum(Silicon oil)	2in. Wafer diaphragm
	0.7 to 10MPa (7 to 102 kgf/cm2)	High pressure	High temperature and vacuum(Silicon oil), High temperature and high vacuum(Silicon oil)	2 in . Wafer diaphragm

Selections Options 1

Bas ic model No. - I II III IVV VI VII VIII - IX XXI XII XIV - Options 2

Options 1, 2: Refer to page 27.

Basic Model No.

Measuring span	35 to 3500kPa(0.35 to 35kgf/cm2)	JTH940A
	0.7 to 10MPa(7 to 102 kgf/cm2)	JTH960A

Selections

- 1	Output	4 to 20mA	1							
		4 to 20mA(Analog FSK Communication)	2	*3						
		Digital output (DE protocol)	3	*1,	*2					
Ш	Material of wetted part	SUS316L		8						
Ш	Fill Fluid	For high temperature vacuum (Silicon oil)			4					
		For high temperature high vacuum (Silicon oil)			7					
IV	Flange rating	No flange used				W				
V	Flange size	2 in. wafer				,	W			
VI	Flange type	Standard						1		
VII	Material of Bolt/nut	Carbon steel							Ν	l
		SUS630							Q	
VIII	Length of Capillary tube	2m								2
		3m								3
		4m								4
		5m								5
		6m								6
		7m								7
		8m								8
		9m								Q
		10m								Α

- 1 Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- 2 Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.

Selections Options 1

Basic model No. - I II III IVV VI VII VIII - IX X XI XII XII XIV - Options 2

IX	Electrical connection /	G1/2, Watertight	Х				
	explosion-proof	G1/2, JIS Flameproof with 1 pc. Of cable gland attached.	2				
		G1/2, JIS Flameproof with 2 pcs. Of cable gland attached.	3				
		G1/2, intrinsically safe *3	6				
		1/2 NPT, Watertight	А				
Х	Builting indicating smart	None		Χ			
	meter	0 to 100 % linear scales		1			
		Engineering unit scales		2			
XI	Finish	Standard			Χ		
		Corrosion-resistant			Α		
		Corrosion-proof			В		
		Corrosion-resistant (Silver coating)			D		
XII	Finish of gasket face	Standard (JISRa3.2(12.5S))				X	
XIII	Burnout feature	None					Χ
	*1	Upper limit of output at abnormal condition					U
		Lower limit of output at abnormal condition					D
XIV	Mouting bracket	None					
		Carbon steel					
		Direct mounting *14 *11					
		SUS304					

Option 2

Option 2		
	XX	No options
	A2	External Zero adjustment *2
	A4	Lightning arrestor
	B7	For mounting a high load resistance smart meter
	C1	Color: Red (Munsell 5R4/13)
	C2	Color: Yellow (Munsell 2.5Y8/16))
	C3	Color: Blue (Munsell 7.5BG7/2)
	C7	Process connection; reverse
	D1	Water free finish (included oil free finish) *16 *17
	D2	Oil free finish *16 *17
	D3	FEP protective film *24 *14
	G1	One elbow (left)
	G2	One elbow (right)
	G3	2 elbows
1	G6	Adapter for dual diaphragm
	J8	Special burn-out feature (3.2mA) *18
1	T1	Test report
	T2	Material certificate *19
	T5	Strength calculation sheet *20
1	T6	Withstand pressure and airtight test (for regular service) *21
	T8	Traceability certificate
1	U2	Non-SI unit conformance

- 1 Digital output (DE protocol) should be selected with upper/lower direction of burn out feature.
- 2 Digital output (DE protocol) can not be combined with an external zero adjustment function.
- 3 Analog FSK Communication can not be combined with Intrinsically safe.
- Dual diaphragm is not available for JIS63K, ANSI600 and JPI600 for a flange rating.
- This selection is not available for high temperature service/high temperature vacuum service/high temperature high vacuum service
- When the fill fluid is for oxygen or chroline service, there is not needed to select this.
- 17 The carbon steel for meterbody cover material is not available for this option.
- This should be selected with upper/lower direction of burn out feature.
- 19 Available only for material of wetted part.
- When ordering, designed pressure and designed temperature are required.
- 21 When ordering, withstand pressure and airtight test pressure are required.
- Not available for extended diaphragm type or dual diaphragm.

Dual diaphragm adapter (Flush flange 3 in.),

For regular service (fill fluid : silicon oil), oxygen service and chlorine service(fill fluid : Florine oil)

Selections Options
-I II III IV V VI VII - VIII

HH -Basic Model No.

Adpater for dual diaphragm	НН

Selections

I	Transimitter model number	JTH with 1 adapter	Н							
П	Material of wetted part	SUS316 (Diaphragm:SUS316L)		2						
		Tantalum		4						
		Hasterlloy C	I	Ⅎ						
		SUS316L		8	_					
III	Fill fluid	Regular type (Silicone oil)		1						
		For oxygen service (Fluorine oil)		2						
		For Chlorine service (Fluorine oil)		5						
IV	Flange rating	JIS 10K			Α					
		JIS 20K			С					
		JIS 30K			D					
		ANSI 150			G					
		ANSI 300			Н					
		JPI 150			Ν					
		JPI 300			Р					
V	Flange size	3 in. /80 mm				2				
VI	Flange type	Standard (Flush diaphragm)					1			
VII	Finish of gasket face	Standard						Χ		_
Options									-	
VIII		No options								XX
	*13	Water free and oil free treatment								D1
	*13	Oil free treatment								D2
	*13	Material certificate								T2
	*13	Pressure test								T7

Notes

13 When this option is selected, the same option for transimtter must be selected.

Dual diaphragm adapter (Flush flange 2 in.),

For regular service (fill fluid : silicon oil), oxygen service and chlorine service(fill fluid : Florine oil)

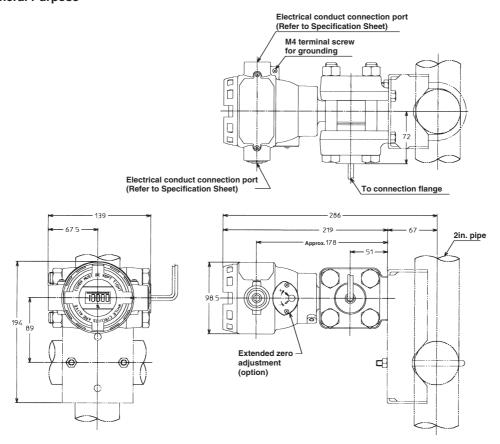
Selections Options

HH -I II III IV V VI VII - VIII

Basic Model No.

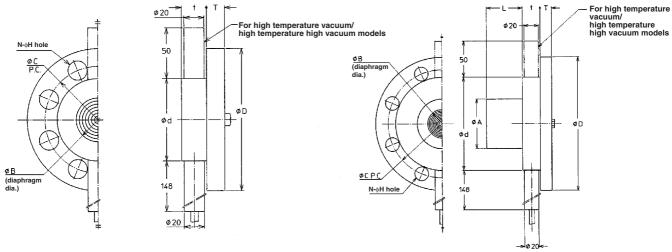
Adpater for dual diaphragm	НН

1	Transimitter model number	JTE with 1 adapter		Н								
П	Material of wetted	SUS316 (Diaphragm:SUS316L)			2							
	part	Tantalum			4							
		SUS316L			8		_					
Ш	Fill fluid	Regular type (Silicone oil)				1						
		For oxygen service (Fluorine oil) 2										
		For Chlorine service (Fluorine oil)				5						
IV	Flange rating	JIS 10K					Α					
		JIS 20K C										
		JIS 30K										
		ANSI 150 G										
		ANSI 300	Н									
		JPI 150										
		JPI 300					Р		_			
٧	Flange size	2 in. /50 mm						3		_		
VI	Flange type	Standard (Flush diaphragm)							1	<u> </u>	_	
VII	Finish of gasket face	Standard								Х		
ns											-	
VIII		No options										
	*13	Water free and oil free treatment										
	*13	Oil free treatment										
	*13	Material certificate										
	*13	Pressure test										


When this option is selected, the same option for transimtter must be selected.

Dimensions

JTH920A/JTH940A/JTH960A For General Purpose, High Temperature, High-Temperature Vacuum and High-Temperature High Vacuum Models


JTH920A For General Purpose

Button diaphragm Wafer type Dual diaphragm Process Connection M8 internal screw Screw length 11 Process Connection Process Connection Process Connection Flange sizes are same as the flush diaphragm.

JTH920A/JTH940A/JTH960A Flush Diaphragm Flange

JTH920A/JTH940A/JTH960A Extended Diaphragm Flange

Table of Flush Diaphragm Flange

		•	•		•			
Flange rating	ØD	T	øς	Ν	ØН	ød	ØΒ	t
JIS 10K -40 mm	140	16	105	4	19			
JIS 20K-40 mm	140	18	105	4	19			
JIS 30K-40 mm	160	22	120	4	23			
JIS 63K-40 mm	175	32	130	4	25			
ANSI 150 1-1/2 in.	127	18	98.6	4	16	81	43	
ANSI 3001-1/2 in.	155	21	114.3	4	22		45	
ANSI 600 1-1/2 in.	155	22.5	114.3	4	22			
JPI 150 1-1/2 in.	127	18	98.6	4	16			
JPI 3001-1/2 in.	155	21	114.3	4	22			
JPI 600 1-1/2 in.	155	22.5	114.3	4	22		_	25
JIS 10K -50 mm	155	16_	120	4	19			(Note 2)
JIS 20K-50mm	155	18	120	8	19			
JIS 30K-50 mm	165	22	130	8	19			
JIS 63K-50mm	185	34	145	8	23			
ANSI 150 -2 in.	152	19.5	120.6	4	19	99	62	
ANSI 300-2 in.	165	22.5	127	8	19		(Note 1)	
ANSI 600 -2 in.	165	25.5	127	8	19			
JPI 150-2 in.	152	19.5	120.6	4	19			
JPI 300-2 in.	165	22.5	127	8	19			
JPI 600-2 in.	165	25.5	127	8	19			
JIS 10K-80 mm	185	18	150	8	19			
JIS 20K-80 mm	200	22	160	8	23			
JIS 30K-80 mm	210	28	170	8	23			
JIS 63K-80mm	230	40	185	8	25	129.5		
ANSI 150 - 3 in.	190	24	152.4	4	19		95	25
ANSI 300-3 in.	210	28.5	168.1	8	22		,,,	
ANSI 600 - 3 in.	210	32	168.1	8	22			
JPI 150-3 in.	190	24	152.4	4	19			
JPI 300-3 in.	210	28.5	168.1	8	22			
JPI 600-3 in.	210	32	168.1	8	22			

Table of Extended Diaphragm Flange Dimensions

			•	•	•				
Frange rating	ØD	T	t	ΦC	N	øн	Ød	ØΑ	ØΒ
JIS 10K -100mm	210	18		175	8	19			
JIS 20K-100mm	225	24		185	8	23			
JIS 30K-100mm	240	32		195	8	25			
ANSI 150 -4 in.	229	24	22	190.5	8	19	457	95±1	90.4
ANSI 300-4 in.	254	32	23	200.2	8	22	157	7)-1	30.4
JPI 150-4 in.	229	24		190.5	8	19]		
JPI 300-4 in.	254	32		200.2	8	22		ĺ	
JIS 10K -80mm	185	18		150	8	19			
JIS 20K-80mm	200	22		160	8	23			
JIS 30K-80mm	210	28		170	8	23			
JIS 63K-80mm	230	40		185	8	25			
ANSI 150 -3 in.	190	24	25	152.4	4	19	129.5	40+1	60
ANSI 300-3 in.	210	28.5	23	168.1	8	22	129.5	09-1	62
ANSI 600 - 3 in.	210	32		168.1	8	22] .		
JPI 150 - 3 in.	190	24		152.4	4	19] '		
JPI 300-3 in.	210	28.5		168.1	8	22]		
JP1 600-3 in.	210	32		168.1	8	22			
JIS 10K-50mm	155	16		120	4	19			
JIS 20K-50mm	155	18		120	8	19			
JIS 30K-50mm	165	22		130	8	19			
JIS 63K-50mm	185	34		145	8	23			
ANSI 150 - 2 in.	152	19.5	25	120.6	4	19	99	47±1	43
ANSI 300-2 in.	165	22.5	23	127	8	19		4,7=	4.7
ANSI 600 - 2 in.	165	25.5		127	8	19			
JPI 150 - 2 in.	152	19.5		120.6	4	19			
JPI 300-2 in.	165	22.5		127	8	19			
JPI 600 - 2 in.	165	25.5		127	8	19			

Length of Extension

	L	
	50	-
	100	
	150	
	200	
Г	250	
	300	

Note 2) The case of the material of the wetted part is Hastelloy C and the fill fluid is for standard/High temperature/oxygen/chlorine service use, t = 26.7.

Note 1) The case of the material of the wetted part is Hastelloy C and the fill fluid is for standard/High temperature/oxygen/chlorine service use, ϕ B = 43.

Saving through Automation

Yamatake Corporation

Totate international Building 2-12-19 Shibuya Shibuya-ku, Tokyo 150-8316 Japan

Tel: 81-3-3486-2310 Fax: 81-3-3486-2593