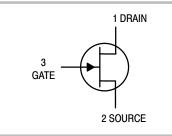
JFET - General Purpose

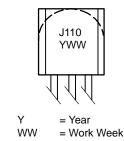
N–Channel – Depletion

N–Channel Junction Field Effect Transistors, depletion mode (Type A) designed for general purpose audio amplifiers, analog switches and choppers.

- N-Channel for Higher Gain
- Drain and Source Interchangeable
- High AC Input Impedance
- High DC Input Resistance
- Low $R_{DS(on)} < 18 \Omega$
- Fast Switching $t_{d(on)} + t_r = 8.0$ ns (Typ)
- Low Noise $\overline{en} = 6.0 \text{ nV} / \sqrt{\text{Hz}} @ 10 \text{ Hz} (\text{Typ})$


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Gate-Source Voltage	VGS	-25	Vdc
Drain–Gate Voltage	V _{DG}	-25	Vdc
Gate Current	IG	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	310 2.82	mW mW/°C
Operating Junction Temp Range	Тj	135	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C


ON Semiconductor[™]

http://onsemi.com

MARKING DIAGRAMS

ORDERING INFORMATION

Device	Package	Shipping
J110	TO-92	5000 Units/Box
J110RLRA	TO-92 2000/Tape	

Preferred devices are recommended choices for future use and best overall value.

J110

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit	
STATIC CHARACTERISTICS						
Gate-Source Breakdown Voltage	$(I_{G} = -1.0 \ \mu \text{Adc})$	V _(BR) GSS	-25	-	Vdc	
Gate Reverse Current (V _{GS}	$(V_{GS} = -15 \text{ Vdc}, V_{DS} = 0)$ = -15 Vdc, V _{DS} = 0, T _A = 100°C)	IGSS		-3.0 -200	nAdc	
Gate-Source Cutoff Voltage	$(V_{DS} = 5.0 \text{ Vdc}, I_D = 1.0 \mu\text{Adc})$	VGS(off)	-0.5	-4.0	Vdc	
Drain Source On–Resistance	$(V_{DS} = < 1.0 V, V_{GS} = 0 V)$	R _{DS(on)}	10	-	mAdc	
Zero-Gate-Voltage Drain Current (Note 1	.) (V _{DS} = 15 Vdc)	IDSS	10	-	mAdc	
DYNAMIC CHARACTERISTICS						

Drain–Gate and Source–Gate On–Capacitance $(V_{DS} = V_{GS} = 0, f = 1.0 \text{ MHz})$		C _{dg(on)} + C _{sg(on)}	-	85	pF	
Drain–Gate Off–Capacitance	(V _{GS} = -10 Vdc, f = 1.0 MHz)	C _{dg(off)}	-	15	pF	ĺ
Source–Gate Off–Capacitance	$(V_{GS} = -10 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{sg(off)}	-	15	pF	l

1. Pulse Width = $300 \ \mu$ s, Duty Cycle = 3.0%.

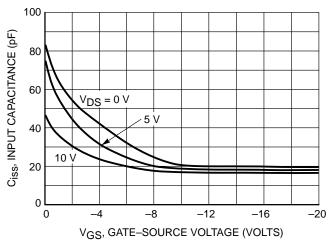
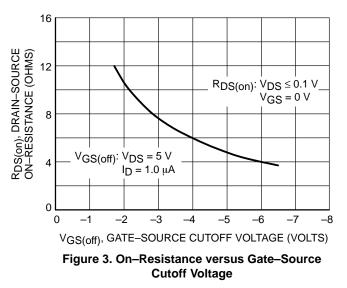



Figure 1. Common Source Input Capacitance versus Gate-Source Voltage

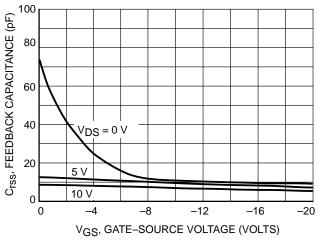
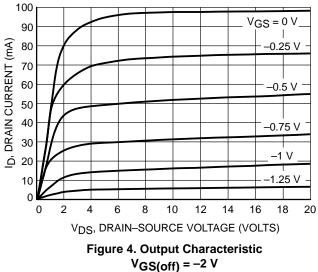
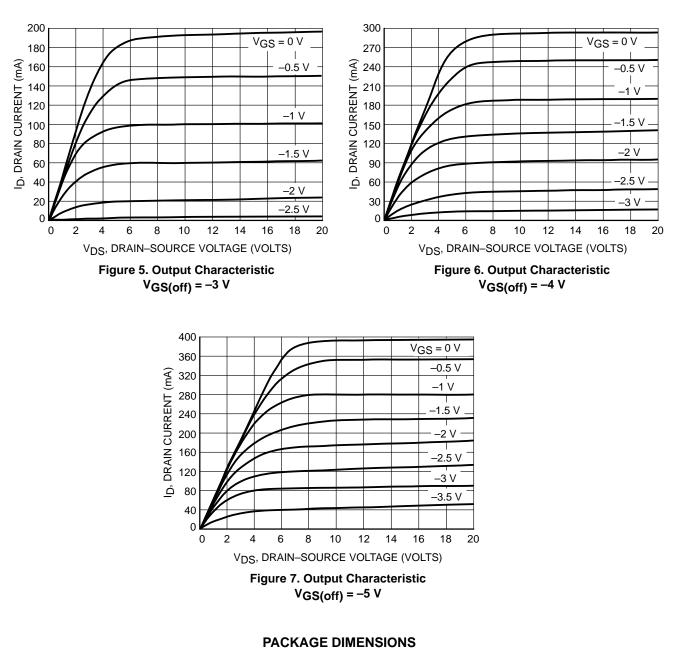
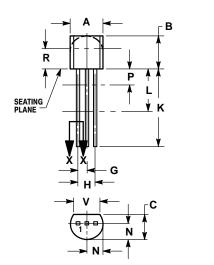




Figure 2. Common Source Reverse Feedback Capacitance versus Gate-Source Voltage


http://onsemi.com

J110

J110

TO-92 (TO-226) CASE 29-11 **ISSUE AL**

NOTES

DIMENSIONING AND TOLERANCING PER ANSI 1. Y14.5M, 1982.

CONTROLLING DIMENSION: INCH. CONTOUR OF PACKAGE BEYOND DIMENSION R

IS UNCONTROLLED. LEAD DIMENSION IS UNCONTROLLED IN P AND 4. BEYOND DIMENSION K MINIMUM

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
C	0.125	0.165	3.18	4.19	
D	0.016	0.021	0.407	0.533	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
Р		0.100		2.54	
R	0.115		2.93		
V	0.135		3.43		

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.