

Astronomical Infrared Sensor Chip Assemblies Standard Products

IR Center of Excellence

High performance InSb and Impurity Band Conduction (IBC) focal plane arrays are available with spectral responses from 0.4µm to 28µm for ground based astronomy and space based instruments. Raytheon IR CoE is one of the worlds leading suppliers of focal plane arrays for astronomical applications for the past 10 years. IR CoE utilizes state-ofthe-art facilities and processes to produce these arrays. Listed below are some of the InSb and IBC arrays available from the IR CoE as standard products for astronomical applications. Custom arrays incorporating our latest multiplexer designs are also available in a variety of formats. The IR CoE has also developed a double layer heterostructure HaCdTe process for large format arrays. Custom arrays utilizing this process are available for those customers desiring HaCdTe with its ability to tailor the bandgap for any cutoff wavelenath.

Format: Pixel Size:

Active Fill Factor:

Spectral Response:

Average Quantum Efficiency:

Typical Response Uniformity: Average Dark Current:

Typical Integration Capacity:

Mean Input Referred Noise:

Optimal Operating Temperature:

Readout Type: **Operational Modes: Compatible Sampling Techniques:**

> Typical Frame Rates: Number of Outputs:

512 x 412 InSb format available upon request (contact Dr. Peter Love)

The "SIRTF" Array

256 x 256 (65.536 elements)

30 um

> 98%

0.4-5.3µm (~flat from 1-5µm)

 $> 70\% (1-5.0 \mu m)$

 \leq 5% (1 σ)

 $< 1 e^{-}/\text{sec}$

2.0 x 10⁵ e (0.06 pF and 0.6V)

6-50 e⁻ (sampling technique dependent)

15-30Kelvin

Source Follower per Detector (SFD) Destructive or non-destructive readout

Standard correlated sampling & multiple

correlated sampling (Fowler and "up-the-ramp")

1-20 Hz

ALADDIN III Quadrant

512 x 512 (262,144 elements)

27 um

> 98%

0.4-5.3µm (~flat from 1-5µm)

 $> 70\% (1-5.0 \mu m)$,

≤**8**%(1σ)

 $\leq 1 e^{-1}/\text{sec}$

2.0 x 10⁵ e (0.06 pF and 0.6V)

8-50 e⁻ (sampling technique dependent)

30-35 Kelvin

SFD

Destructive or non-destructive readout Standard correlated sampling & multiple correlated sampling (Fowler and "up-the-ramp")

1-20 Hz

ALADDIN III

1024 x 1024 (1,048,576 elements)

27 µm

> 98%

 $0.4-5.3 \mu m (\sim flat from 1-5 \mu m)$

> 70% (1–5.0 µm),

 \leq 8% (1 σ)

 $< 1 e^{-}/\text{sec}$

2.0 x 10⁵ e (0.06 pF and 0.6V)

8-50 e⁻ (sampling technique dependent)

30-35 Kelvin

Destructive or non-destructive readout Standard correlated sampling & multiple correlated sampling (Fowler and "up-the-ramp")

1-20Hz

32 (8 per quadrant)

InSb

Low Background

Astronomical Infrared Sensor Chip Assemblies Standard Products

IR Center of Excellence

upon request (contact Dr. Peter Love)			
512 x 412 & 1024 x 1024 IBC formats available	IBC		805.562.2320
institute of collection			Mr. Kevin Sparkman Test Engineer
Number of Outputs:	4	16 or 32	M. V. t. C
Typical Frame Rates:	1-20 Hz	100-500 Hz	
Compatible Sampling Techniques:	Standard correlated sampling & multiple correlated sampling (Fowler and "up-the-ramp")	Built-in correlated double sampling; multiple sampling can be implemented	pjlove@west.raytheon.com
Operational Modes:	Destructive or non-destructive readout	Integrate-while-read, Integrate-then-read	805.562.2515
Readout Type:	Source Follower per Detector (SFD)	Direct Injection (DI)	Technical Manager, Astronomy
			Dr. Peter Love
Operating Temperature:	4—12 Kelvin	4—10 Kelvin	
Mean Input Referred Noise:	15–50 e rms (Sampling technique dependent)	< 1000 e rms (CDS, high gain)	icondide C in ostricy in ooth confi
Typical Integration Capacity:	> 1.8 x 10 ⁵ e ⁻ (30fF and 1.0V bias)	1.0-3.0 x 10 ⁷ e ⁻ (Gain dependent)	lcorrales@west.raytheon.com
Average Dark Current:	< 1 e'/sec (@ T=6K)	< 100 e ⁻ /sec (@ T=6K)	Program Manager 805.562.2305
Typical Response Uniformity:	≤ 8% (♂/mean)	≤ 8% (♂/mean)	Ms. Elizabeth Corrales
Average Responsive Quantum Efficiency:	≥ 40%	1 - 20 µm ≥ 40%	
Spectral Response:	2 70% 1–28 µm	≥ 70% 1–28 μm	
Active Fill Factor:	30 μm ≥ 98 %	50 μm ≥ 98%	For more information contact:
Format: Pixel Size:	256 x 256 (65,536 elements)	320 x 240 (76,800 elements)	
Farmant	The "SIRTF" Array	220 v 240 (7/ 200 alamanta)	
	THE SHAPE OF THE PARTY OF THE P		
(Science Grade Operability > 99%)	Hilling the same		
		1	