

3.3V CMOS OCTAL D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

IDT74LVC534A ADVANCE INFORMATION

FEATURES:

- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
 - > 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP, 0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of 40°C to +85°C
- $VCC = 3.3V \pm 0.3V$, Normal Range
- Vcc = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4 µ W typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

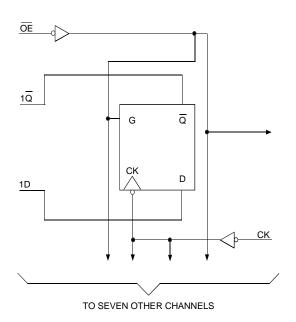
Drive Features for LVC534A:

- High Output Drivers: ±24mA
- Reduced system switching noise

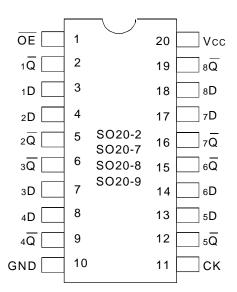
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION:


The LVC534A device features 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. This device is particularly suitable for implementing buffer registers, input-output (I/O) ports, bidirectional bus drivers, and working registers.

On the positive transition of the clock (CLK) input, the $\overline{\mathbb{Q}}$ outputs are set to the logic levels set up at the data (D) inputs.


A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. \overline{OE} does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

EXTENDED COMMERCIAL TEMPERATURE RANGE

OCTOBER 1999

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	VI < 0 or Vo < 0		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
ŌĒ	Output-enable Input (Active LOW)
CK	Clock Input
хD	Data Inputs
χQ	3-State Outputs (Active LOW)

CAPACITANCE ($T_A = +25^{\circ}C_{r}$, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

FUNCTION TABLE (1)

	Inputs		Output
ŌĒ	CK	D	Ωx
Н	Х	Х	Z
L	1	L	Н
L	1	Н	L
L	H or L	Х	\overline{Q}_0

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance
 - ↑ = Low-to-High Transition
 - $\overline{\mathbf{Q}}_0$ = Output level before the indicated steady input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C To +85°C

Symbol	Parameter	-	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V	Vcc = 2.3V to 2.7V			_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	1
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
Іохн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$V_{CC} = 0V$, V_{IN} or $V_{O} \le 5.5V$		_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -1	18mA	_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	Vin = GND or Vcc	_	_	10	μA
Iccz			$3.6 \le V_{IN} \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND Vcc = 3.0 - 3.6V		_	_	500	µA

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Co	nditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = -0.1mA	Vcc - 0.2	_	٧
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	I _{OL} = 0.1mA	_	0.2	V
		Vcc = 2.3V	IOL = 6mA	_	0.4	
			IOL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		VCC = 3.0V	IoL = 24mA	_	0.55	9LVC Link

NOTE:

OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

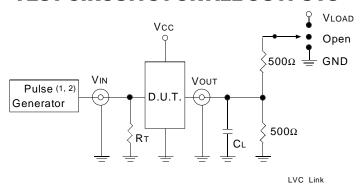
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per transceiver Outputs enabled	CL = OpF, f = 10Mhz	_	pF
CPD	Power Dissipation Capacitance per transceiver Outputs disabled		_	pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.7V		$VCC = 3.3V \pm 0.3V$		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay	_	9.5	1.5	8.5	ns
tphl	CK to xQ					
tрzн	Output Enable Time	_	9.5	1.5	8.5	ns
tpzL	\overline{G} to $x\overline{Q}$					
tphz	Output Disable Time	_	8.5	1.5	7.5	ns
tPLZ	\overline{G} to $x\overline{Q}$					
tsu	Data Setup Time	2	_	2	_	ns
tH	Data Hold Time	1.5	_	1.5	_	ns
tw	CLK Pulse Width	4	_	4	_	ns
tsk(o)	Output Skew ⁽²⁾	_	_	_	500	ps

NOTES:

- 1. See test circuits and waveforms. $T_A = -40^{\circ}C$ to + $85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.


^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to +85°C.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

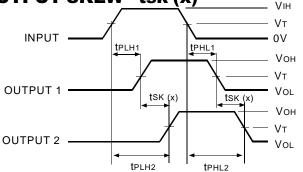
Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF VC Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

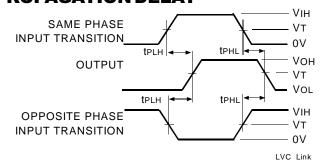

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz: tF \leq 2.5ns: tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

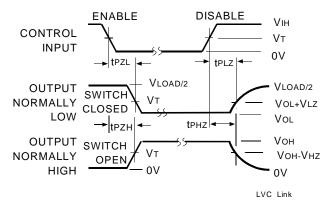
SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

OUTPUT SKEW - tsk (x)

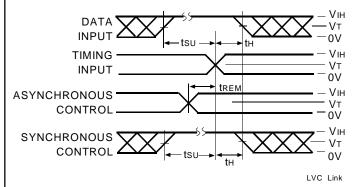


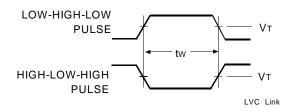
tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*