

TYPICAL APPLICATIONS

- ➤ Local Area Networks (LANs)
- ➤ Optical Sensors
- ➤ Medical Instruments
- ➤ Automotive Displays
- ➤ Audio Systems
- ➤ Electronic Games
- ➤ Robotics Communications
- ➤ Fiber Optic Modems
- ➤ Fluorescence Instruments
- ➤ Wavelength Multipexing

DESCRIPTION

The IF-E93 is a high-output, high-speed, green LED housed in a "connector-less" style plastic fiber optic package. The output spectrum of the green LED is produced by Gallium Nitride die which peaks at a wavelength of 530 nm, ideally mapping to the lowest attenuation window of PMMA plastic optical fiber. The device package features an internal LED micro-lens, and the PBT plastic housing ensures efficient optical coupling into standard 1000 μm core plastic fiber cable.

APPLICATION HIGHLIGHTS

The high output and fast transition times of the IF-E93 make it suitable for low cost digital data links. When coupled to PMMA plastic optical fiber, attenuation is less than .1 dB/m, as compared to .16 dB/m with commonly used 650 nm LEDs. Using standard 1 mm core plastic fiber, the IF-E93 LED is capable of distances in excess of 150 meters at data rates of 5 Mbps. The fast rise and fall times of the IF-E93 permit data rates up to 30 Mbps. The drive circuit design is simpler than required for laser diodes, making the IF-E93 a good, low-cost alternative in a variety of analog and digital applications.

FEATURES

- ◆ Ultra-Low Loss in Plastic Optical Fiber
- ◆ No Optical Design Required
- Mates with Standard 1000 μm Core Jacketed Plastic Fiber Cable
- ◆ Internal Micro-Lens for Efficient Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination and Connection
- ◆ Interference-Free Transmission from Light-Tight Housing
- ♦ Visible Light Output
- ◆ Fast Rise and Fall Times

MAXIMUM RATINGS

 $(T_A = 25^{\circ}C)$

Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 60°C
Junction Temperature (T $_{J})$ 85 $^{\circ}C$
Soldering Temperature (2 mm from case bottom) (T_S) $t \le 5$ s240° C
Reverse Voltage (V_R)
Power Dissipation (PTOT) $T_{\!A}\!=\!25^{\circ}C$ 60 mW
De-rate Above 25°C1.1 mW/°C
Forward Current, DC (I_F) 35 mA

CHARACTERISTICS $(T_A=25^{\circ}C)$

Parameter	Symbol	Тур	Unit
Peak Wavelength	$\lambda_{ ext{PEAK}}$	530	nm
Spectral Bandwidth (50% of I _{MAX})	Δλ	50	nm
Output Power Coupled into Plastic Fiber (1 mm core diameter). Lens to Fiber Distance \leq 0.1 mm, 10 cm polished fiber, I_F =22 mA	75 -11	μW dBm	
Switching Times (10% to 90% and 90% to 10%) (F=33 MHz, I _F =10 mA) <i>See Figure 3</i>	t _r , t _f	3.5, 16	ns
Capacitance (V _F =0, F=1 MHz)	C_0	100	pF
Forward Voltage (I _F =20 mA)	V _f	4.0	V
Temperature Coefficient, λ_{PEAK}	TC_{λ}	.17	nm/K

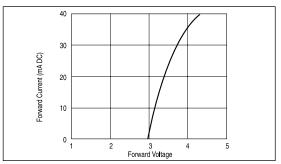


FIGURE 1. Forward current vs. forward voltage.

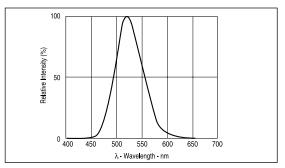


FIGURE 2. Typical spectral output vs. wavelength.

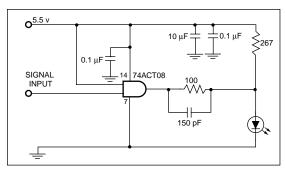
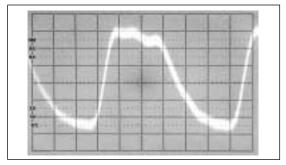
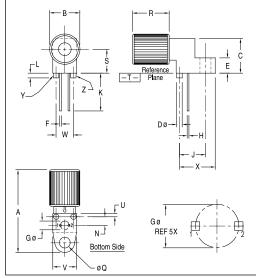




FIGURE 3. Test drive circuit ($I_F = 22 \text{mA}$).

FIGURE 4. Transition times - Sweep = 5nS/div.

Notes:

- 1. Y AND Z ARE DATUM DIMENSIONS AND T IS A DATUM SURFACE,
- (♠ | Ø 0.25(0.010) (₩ | T | Y (₩ | Z (₩) 3. POSITIONAL TOLERANCE FOR F DIM (2 PL): (♣ | 0.25(0.010) (₩ | T | Y (₩ | Z (₩)
- 5. POSITIONAL TOLERANCE FOR Q Ø:
- ϕ Ø 0.25(0.010) Θ T Y Θ Z Θ 6. POSITIONAL TOLERANCE FOR B:
- ⊕ Ø 0.25(0.010) M T

 7. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 8. CONTROLLING DIMENSION: INCH

PACKAGE IDENTIFICATION:

- Blue housing w/ double green dot
- PIN 1. Cathode
- PIN 2. Anode

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	23.24	25.27	.915	.995
В	8.64	9.14	.340	.360
С	9.91	10.41	.390	.410
D	1.52	1.63	.060	.064
Ε	4.19	4.70	.165	.185
F	0.43	0.58	.017	.023
G	2.54 BSC		.100 BSC	
Н	0.43	0.58	.017	.023
J	7.62 BSC		.300 BSC	
K	10.35	11,87	.408	.468
L	1.14	1.65	.045	.065
N	2,54 BSC		.100 BSC	
Q	.305	3.30	.120	.130
R	10.48	10.99	.413	.433
S	6.98 BSC		.275 BSC	
U	0.83	1.06	.032	.042
٧	6.86	7,11	.270	.280
W	5.08 BSC		.200 BSC	
Х	10.10	10.68	.397	.427

FIGURE 5. Case Outline.