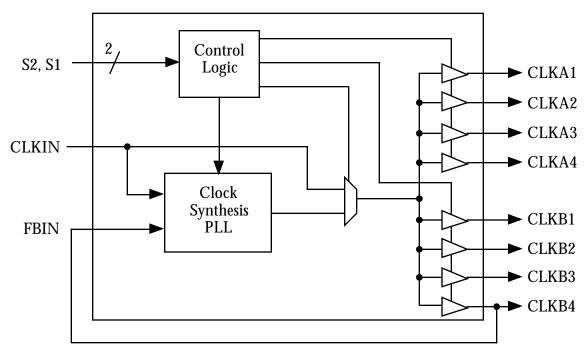
3.3 Volt Zero Delay, Low Skew Buffer

Description


The ICS671-02 is a low phase noise, high speed PLL based, 8 output, low skew zero delay buffer. Based on ICS's proprietary low jitter Phase Locked Loop (PLL) techniques, the device provides eight low skew outputs at speeds up to 160 MHz at 3.3 V. The outputs can be generated from the PLL (for zero delay), or directly from the input (for testing), and can be set to tri-state mode or to stop at a low level. For normal operation as a zero delay buffer, any output clock is tied to the FBIN pin.

ICS manufactures the largest variety of clock generators and buffers, and is the largest clock supplier in the world.

Features

- Packaged in 16 pin narrow SOIC
- Clock outputs from 19 to 200 MHz
- Zero input-output delay
- Eight low-skew (<200 ps) outputs
- Device-to-device skew <700 ps
- Low jitter (<200 ps)
- Full CMOS outputs with 25 mA output drive capability at TTL levels
- 5 V tolerant FBIN and CLKIN pins
- Tri-state mode for board-level testing
- Advanced, low power, sub-micron CMOS process
- 3.3 V operating voltage
- Industrial temperature range of -40 to 85 °C

Block Diagram

Feedback is shown from CLKB4 for illustration, but may come from any output.

ADVANCE INFORMATION

ICS671-02 3.3 Volt Zero Delay, Low Skew Buffer

Pin Assignment

TOOO	71 C	1
$\mathbf{H} \sim \mathbf{K}$	/ _(いソ
ICS67	/ I - (.	16

CLKIN \square	1	16□ FBIN
CLKA1 □	2	15 CLKA4
CLKA2 □	3	14 CLKA3
VDD□	4	13 🗆 VDD
GND □	5	12 GND
CLKB1 □	6	11 CLKB4
CLKB2 □	7	10☐ CLKB3
S2 □	8	9□ S1

16 pin narrow (150 mil) SOIC

Output Clock Mode Select Table

S2	S1	CLKA1:A4	CLKB1:B4	A & B Source	PLL Status
0	0	Tri-state (high impedance)	Tri-state (high impedance)	PLL	ON
0	1	Stopped Low	Stopped Low	none	OFF
1	0	Running	Running	CLKIN*	OFF
1	1	Running	Running	PLL	ON

^{*}Note: Buffer mode only; not zero delay between input and output.

Pin Descriptions

Number	Name	Туре	Description	
1	CLKIN	I	Clock Input. (5 V tolerant)	
2, 3, 14, 15	CLKA1:A4	Ο	Clock Outputs A1:A4. See above table.	
4, 13	VDD	P	Power supply. Connect both pins to same voltage (3.3 V).	
5, 12	GND	P	Connect to ground.	
6, 7, 10, 11	CLKB1:B4	О	Clock Outputs B1:B4. See above table.	
8	S2	I	Select input 2. See table above. Internal pull-up.	
9	S1	I	Select input 1. See table above. Internal pull-up.	
16	FBIN	I	Feedback Input. Connect to any output under normal operation. (5 V tolerant)	

Key: I = Input; O = output; P = power supply connection. Outputs have a weak internal pull-down when in tri-state mode.

External Components

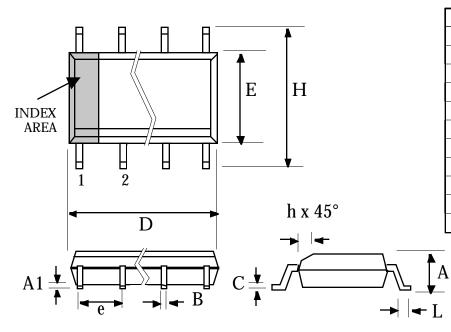
The ICS671-02 requires a minimum number of external components for proper operation. Decoupling capacitors of $0.01\mu F$ should be connected between VDD and GND on pins 4 and 5, and VDD and GND on pins 13 and 12, as close to the device as possible. A series termination resistor of 33 may be used close to each clock output pin to reduce reflections.

ADVANCE INFORMATION

ICS671-02 3.3 Volt Zero Delay, Low Skew Buffer

Electrical Specifications

Parameter	Conditions	Minimum	Typical	Maximum	Units
ABSOLUTE MAXIMUM RATINGS	(note 1)				
Supply voltage, VDD	Referenced to GND	-0.5		7	V
Inputs and Clock Outputs	Referenced to GND	-0.5		VDD+0.5	V
CLKIN and FBIN Inputs		-0.5		5.5	
Electrostatic Discharge	MIL-STD-883	2000			V
Ambient Operating Temperature		-40		85	°C
Soldering Temperature	Max of 10 seconds			260	°C
Junction temperature				150	°C
Storage temperature		-65		150	°C
DC CHARACTERISTICS (VDD = 3.	3 V unless specified ot	herwise)			
Operating Voltage, VDD		3.00		3.60	V
Input High Voltage, VIH		2			V
Input Low Voltage, VIL				0.8	V
Output High Voltage, VOH	IOH=-12 mA	2.4			V
Output Low Voltage, VOL	IOL=12 mA			0.4	V
Output High Voltage, VOH, CMOS level	IOH=-8mA	VDD-0.4			V
Operating Supply Current, IDD (Note 2)	No Load, S2=1, S1=1			70	mA
Power Down Supply Current, IDD	CLKIN=0, S2=0, S1=1			12	μA
	CLKIN=0 (Note 3)			50	μA
Short Circuit Current	Each output		±50		mA
Input Capacitance	S2, S1, FBIN		7		pF
AC CHARACTERISTICS (VDD = 3.	3 V unless specified oth	ierwise)			
Input Clock Frequency	See table on page 2	19		200	MHz
Output Clock Frequency	See table on page 2	19		200	MHz
Output Clock Rise Time, CL=30pF	0.8 to 2.0V			1.5	ns
Output Clock Fall Time, CL=30pF	2.0 to 0.8V			1.25	ns
Output Clock Duty Cycle, VDD=3.3V	At VDD/2	45	50	55	%
Device to Device Skew, equally loaded	rising edges at VDD/2			700	ps
Output to Output Skew, equally loaded	rising edges at VDD/2			200	ps
Input to Output Skew, FBIN to CLKA4	rising edges at VDD/2			±250	ps
Maximum Absolute Jitter			TBD		ps
Cycle to Cycle Jitter, 30pF loads				200	ps
PLL Lock Time (Note 4)				1.0	ms


Notes:

- 1. Stresses beyond those listed under Absolute Maximum Ratings could cause permanent damage to the device. Prolonged exposure to levels above the operating limits but below the Absolute Maximums may affect device reliability.
- 2. With CLKIN = 100 MHz, FBIN to CLKA4, all outputs at 100 MHz.
- 3. When there is no clock signal present at CLKIN, the ICS671-02 will enter a power down mode. The PLL is stopped and the outputs are tri-state.
- 4. With VDD at a steady state, and valid clocks at CLKIN and FBIN.

ICS671-02

3.3 Volt Zero Delay, Low Skew Buffer

Package Outline and Package Dimensions (For current dimensional specifications, see JEDEC Publication No. 95.)

16 pin SOIC narrow

	Inches		Millimeters	
Symbol	Min	Max	Min	Max
Α	0.0532	0.0688	1.35	1.75
A1	0.0040	0.0098	0.10	0.24
В	0.0130	0.0200	0.33	0.51
С	0.0075	0.0098	0.19	0.24
D	0.3859	0.3937	9.80	10.00
E	0.1497	0.1574	3.80	4.00
e	.050 B\$C		1.27 BSC	
Н	0.2284	0.2440	5.80	6.20
h	0.0099	0.0195	0.25	0.50
L	0.0160	0.0500	0.41	1.27

Ordering Information

Part/Order Number	Marking	Shipping packaging	Package	Temperature
ICS671M-02I	ICS671M-02I	tubes	16 pin SOIC	-40 to +85 °C
ICS671M-02IT	ICS671M-02I	tape and reel	16 pin SOIC	-40 to +85 °C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.