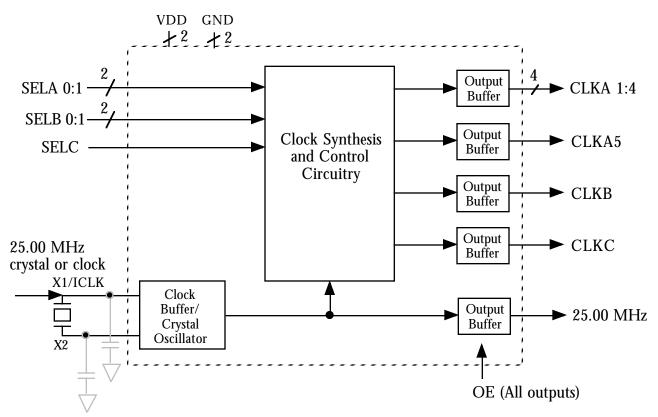


#### PRELIMINARY INFORMATION

# ICS650-14B Networking System Clock

#### **Description**

The ICS650-14B is a low cost, low jitter, high performance clock synthesizer customized for networking systems applications. Using analog Phase-Locked Loop (PLL) techniques, the device accepts a 25.0 MHz clock or fundamental mode crystal input to produce multiple output clocks of one fixed 25.0 MHz, a four (plus one) frequency selectable bank, and two frequency selectable clocks. All output clocks are frequency locked together. The ICS650R-14B outputs all have 0 ppm synthesis error.


## **Block Diagram**

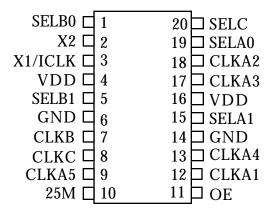
#### **Features**

Packaged in 20 pin (150 mil) SSOP (QSOP)



- 25.00 MHz fundamental crystal or clock input
- One fixed output clock of one 25.0 MHz
- One bank of four frequency selectable output clocks
- Three frequency selectable clock outputs
- Zero ppm synthesis error in all clocks
- Ideal for networking systems
- Full CMOS output swing
- Advanced, low power, sub-micron CMOS process
- 3.0V to 5.5V operating voltage
- Industrial temperature range available




Optional crystal capacitors are shown and may be required for tuning of initial accuracy (determined once per board).



#### PRELIMINARY INFORMATION

# ICS650-14B Networking System Clock

#### Pin Assignment



20 pin (150 mil) SSOP

#### Table 1

| SELA1 | SELA0 | CLKA1:4 | CLKA5  |
|-------|-------|---------|--------|
| 0     | 0     | 33.33   | 66.66  |
| 0     | M     | 50      | 75     |
| 0     | 1     | 66.67   | 133.33 |
| M     | 0     | 100     | 33.33  |
| M     | M     | 33.33   | 83.33  |
| M     | 1     | 50      | 125    |
| 1     | 0     | 33.33   | 100    |
| 1     | M     | 25      | 75     |
| 1     | 1     | 66.67   | 100    |

Table 2

| SELB0 | CLKB             |
|-------|------------------|
| 0     | 30               |
| M     | 27               |
| 1     | 48               |
| 0     | 83.33            |
| M     | 19.44            |
| 1     | 80               |
|       | 0<br>M<br>1<br>0 |

Table 3

| SELC | CLKC   |
|------|--------|
| 0    | CLKB/4 |
| M    | 62.5   |
| 1    | 125    |

0 = connect directly to ground 1 = connect directly to VDD M = leave unconnected (floating)

### **Pin Descriptions**

| Number | Name    | Туре  | Description                                                                           |
|--------|---------|-------|---------------------------------------------------------------------------------------|
| 1      | SELB0   | TI    | Select pin for CLKB. See Table 2.                                                     |
| 2      | X2      | XO    | Crystal connection. Connect to 25 MHz crystal or leave unconnected for a clock input. |
| 3      | X1/ICLK | XI    | Crystal connection. Connect to 25 MHz fundamental crystal or clock input.             |
| 4      | VDD     | P     | Connect to +3.3 V or +5 V. Must be same as other VDDs.                                |
| 5      | SELB1   | I(Pu) | Select pin for CLK B. See table 2.                                                    |
| 6      | GND     | P     | Connect to ground.                                                                    |
| 7      | CLKB    | Ο     | Selectable clock output. See Table 2.                                                 |
| 8      | CLKC    | 0     | Selectable clock output. See Table 3.                                                 |
| 9      | CLKA5   | 0     | Selectable clock output. See Table 1.                                                 |
| 10     | 25M     | 0     | 25.0 MHz clock output.                                                                |
| 11     | OE      | I(Pu) | Output Enable. Tri-states all output clocks when low. Internal pull-up.               |
| 12     | CLKA1   | 0     | Selectable clock output. See Table 1.                                                 |
| 13     | CLKA4   | 0     | Selectable clock output. See Table 1.                                                 |
| 14     | GND     | P     | Connect to ground.                                                                    |
| 15     | SELA1   | TI    | Select pin for CLKA1:4 and CLKA5 outputs. See Table 1.                                |
| 16     | VDD     | P     | Connect to +3.3V or +5.0V. Must be same as other VDDs.                                |
| 17     | CLKA3   | 0     | Selectable clock output. See Table 1.                                                 |
| 18     | CLKA2   | 0     | Selectable clock output. See Table 1.                                                 |
| 19     | SELA0   | TI    | Select pin for CLKA1:4 and CLKA5 outputs. See Table 1.                                |
| 20     | SELC    | TI    | Select pin for CLKC output. See Table 3.                                              |

Key: XI, XO = crystal connections; I = Input; I(Pu) = Input with pull up O = Output; P = power supply connection; TI = tri level input

MDS 650-14B A 2 Revision 082800 Printed 11/15/00



# PRELIMINARY INFORMATION ICS650-14B Networking System Clock

## **Electrical Specifications**

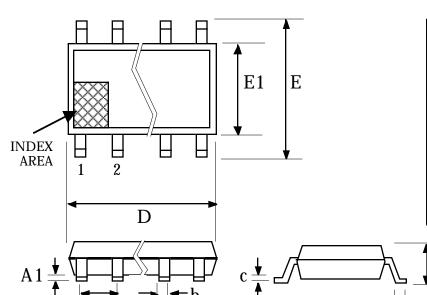
| Parameter                              | Conditions                                   | Minimum   | Typical | Maximum   | Units |  |  |
|----------------------------------------|----------------------------------------------|-----------|---------|-----------|-------|--|--|
| ABSOLUTE MAXIMUM RATINGS (note 1)      |                                              |           |         |           |       |  |  |
| Supply voltage, VDD                    | Referenced to GND                            |           |         | 7         | V     |  |  |
| Inputs and Clock Outputs               | Referenced to GND                            | -0.5      |         | VDD+0.5   | V     |  |  |
| Ambient Operating Temperature          |                                              | 0         |         | 70        | °C    |  |  |
| Ambient Operating Temperature          | Industrial "I" version                       | -40       |         | 85        | °C    |  |  |
| Soldering Temperature                  | Max of 20 seconds                            |           |         | 260       | °C    |  |  |
| Storage temperature                    |                                              | -65       |         | 150       | °C    |  |  |
| DC CHARACTERISTICS (VDD = 3.           | 3V unless noted)                             |           |         |           |       |  |  |
| Operating Voltage, VDD                 |                                              | 3         |         | 5.5       | V     |  |  |
| Input High Voltage, VIH, X1 pin only   | Clock Input                                  | VDD/2 + 1 |         |           | V     |  |  |
| Input Low Voltage, VIL, X1 pin only    | Clock Input                                  |           |         | VDD/2 - 1 | V     |  |  |
| Input High Voltage, VIH, SEL pins only |                                              | VDD - 0.5 |         |           | V     |  |  |
| Input Low Voltage, VIL, SEL pins only  |                                              |           |         | 0.5       | V     |  |  |
| Input High Voltage, VIH, OE pin only   |                                              | 2.0       |         |           | V     |  |  |
| Input Low Voltage, VIL, OE pin only    |                                              |           |         | 0.8       | V     |  |  |
| Output High Voltage, VOH               | IOH=-12mA                                    | 2.4       |         |           | V     |  |  |
| Output Low Voltage, VOL                | IOL=12mA                                     |           |         | 0.4       | V     |  |  |
| Output High Voltage, VOH, CMOS level   | IOH=-8mA                                     | VDD-0.4   |         |           | V     |  |  |
| Operating Supply Current, IDD          | No Load                                      |           | TBD     |           | mA    |  |  |
| Short Circuit Current                  | Each output                                  |           | ±50     |           | mA    |  |  |
| AC CHARACTERISTICS ( $VDD = 3$ .)      | AC CHARACTERISTICS (VDD = 3.3V unless noted) |           |         |           |       |  |  |
| Input Frequency                        |                                              |           | 25.000  |           | MHz   |  |  |
| Output Clock Rise Time                 | 0.8 to 2.0V                                  |           |         | 1.5       | ns    |  |  |
| Output Clock Fall Time                 | 2.0 to 0.8V                                  |           |         | 1.5       | ns    |  |  |
| Output Clock Duty Cycle                | At VDD/2                                     | 45        | 50      | 55        | %     |  |  |
| Frequency error                        | All clocks                                   |           |         | 0         | ppm   |  |  |
| Absolute Jitter, short term            | Variation from mean                          |           | TBD     |           | ps    |  |  |

Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings could cause permanent damage to the device. Prolonged exposure to levels above the operating limits but below the Absolute Maximums may affect device reliability.

2. CMOS level input, nominal trip point is VDD/2 for 3.3 V or 5 V operation.

## **External Components**

The ICS650R-14B requires a minimum number of external components for proper operation. Decoupling capacitors of  $0.01\mu F$  should be connected between each VDD and GND on Pins 4 and 6, and Pins 16 and 14, as close to the ICS650R-14B as possible. A series termination resistor of 33  $\Omega$  may be used for each clock output. The 25.00 MHz crystal must be connected as close to the chip as possible. The crystal should be a fundamental mode (do not use third overtone), parallel resonant. Crystal capacitors should be connected from pins X1 to ground and X2 to ground to optimize the initial accuracy. The value of these capacitors is given by the following equation, where  $C_L$  is the crystal load capacitance: Crystal caps (pF) =  $(C_L$ -6) x 2. So for a crystal with 16 pF load capacitance, two 20 pF caps should be used.




#### PRELIMINARY INFORMATION

# Networking System Clock

### Package Outline and Package Dimensions

(For current dimensional specifications, see JEDEC Publication No. 95.)



#### 20 pin SSOP

|        | Inches   |       | Millimeters |      |
|--------|----------|-------|-------------|------|
| Symbol | Min      | Max   | Min         | Max  |
| A      | 0.053    | 0.069 | 1.35        | 1.75 |
| A1     | 0.004    | 0.010 | 0.10        | 0.25 |
| b      | 0.008    | 0.012 | 0.20        | 0.30 |
| С      | 0.007    | 0.010 | 0.18        | 0.25 |
| D      | 0.337    | 0.344 | 8.55        | 8.75 |
| e      | .025 BSC |       | 0.635 H     | BSC  |
| E      | 0.228    | 0.244 | 5.80        | 6.20 |
| E1     | 0.150    | 0.157 | 3.80        | 4.00 |
| L      | 0.016    | 0.050 | 0.40        | 1.27 |

#### **Ordering Information for ICS650-14B**

| Part/Order Number | Marking     | Shipping packaging | Package     | Temperature   |
|-------------------|-------------|--------------------|-------------|---------------|
| ICS650R-14        | ICS650R-14  | tubes              | 20 pin SSOP | 0 to +70 °C   |
| ICS650R-14T       | ICS650R-14  | tape and reel      | 20 pin SSOP | 0 to +70 °C   |
| ICS650R-14I       | ICS650R-14I | tubes              | 20 pin SSOP | -40 to +85 °C |
| ICS650R-14I       | ICS650R-14I | tape and reel      | 20 pin SSOP | -40 to +85 °C |

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Inc (ICS) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.