IS45C4400x IS45LV4400x Series # 4M x 4 (16-MBIT) DYNAMIC RAM WITH EDO PAGE MODE # PRELIMINARY INFORMATION OCTOBER 2002 ### **FEATURES** - Extended Data-Out (EDO) Page Mode access cycle - TTL compatible inputs and outputs - Refresh Interval: 2,048 cycles/32 ms 4,096 cycles/64 ms • Refresh Mode: RAS-Only, CAS-before-RAS (CBR), and Hidden • Single power supply: 5V±10% or $3.3V \pm 10\%$ - Byte Write and Byte Read operation via two CAS - Automotive Temperature Range Option A: $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Option A1: $-40^{\circ}\text{C to } +85^{\circ}\text{C}$ ### **DESCRIPTION** The *ISSI* 4400 Series is a 4,194,304 x 4-bit high-performance CMOS Dynamic Random Access Memory. These devices offer an accelerated cycle access called EDO Page Mode. EDO Page Mode allows 2,048 or 4096 random accesses within a single row with access cycle time as short as 20 ns per 4-bit word. These features make the 4400 Series ideally suited for high-bandwidth graphics, digital signal processing, high-performance computing systems, and peripheral applications. The 4400 Series is packaged in a 24-pin 300-mil SOJ with JEDEC standard pinouts. ## PRODUCT SERIES OVERVIEW | Part No. | Refresh | Voltage | |-------------|---------|------------| | IS45C44002 | 2K | 5V ± 10% | | IS45C44004 | 4K | 5V ± 10% | | IS45LV44002 | 2K | 3.3V ± 10% | | IS45LV44004 | 4K | 3.3V ± 10% | ## **KEY TIMING PARAMETERS** | Parameter | -50 | -60 | Unit | |----------------------------------|-----|-----|------| | RAS Access Time (trac) | 50 | 60 | ns | | CAS Access Time (tcac) | 13 | 15 | ns | | Column Address Access Time (taa) | 25 | 30 | ns | | EDO Page Mode Cycle Time (tpc) | 20 | 25 | ns | | Read/Write Cycle Time (trc) | 84 | 104 | ns | Copyright © 2002 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. ## **FUNCTIONAL BLOCK DIAGRAM** # TRUTH TABLE | Function | | RAS | CAS | WE | ŌĒ | Address tr/tc | DQ | |---------------------------|----------------------|---------------------------------|-------------------|-------------------|-------------------|---------------|--------------| | Standby | | Н | Н | Χ | Χ | Χ | High-Z | | Read | | L | L | Н | L | ROW/COL | D оит | | Write: Word (Early Write) | | L | L | L | Х | ROW/COL | DIN | | Read-Write | | L | L | H→L | L→H | ROW/COL | Dout, Din | | EDO Page-Mode Read | 1st Cycle: | L | H→L | Н | L | ROW/COL | Dout | | | 2nd Cycle: | L | $H{ ightarrow} L$ | Н | L | NA/COL | D оит | | EDO Page-Mode Write | 1st Cycle: | L | $H{ ightarrow} L$ | L | Χ | ROW/COL | Din | | | 2nd Cycle: | L | $H{ ightarrow} L$ | L | Χ | NA/COL | DIN | | EDO Page-Mode | 1st Cycle: | L | H→L | H→L | L→H | ROW/COL | Dout, Din | | Read-Write | 2nd Cycle: | L | $H{ ightarrow} L$ | $H{ ightarrow} L$ | $L{\rightarrow}H$ | NA/COL | DOUT, DIN | | Hidden Refresh | Read | L→H→L | L | Н | L | ROW/COL | D оит | | | Write ⁽¹⁾ | $L{\rightarrow}H{\rightarrow}L$ | L | L | Χ | ROW/COL | Dоит | | RAS-Only Refresh | | L | Н | Χ | Χ | ROW/NA | High-Z | | CBR Refresh | | H→L | L | Х | Х | Х | High-Z | ### Note: 1. EARLY WRITE only. # **Functional Description** The IS45C4400x and IS45LV4400x are CMOS DRAMs optimized for high-speed bandwidth, low power applications. During READ or WRITE cycles, each bit is uniquely addressed through the 11 or 12 address bits. These are entered 11 bits (A0-A10) at a time for the 2K refresh device or 12 bits (A0-A11) at a time for the 4K refresh device. The row address is latched by the Row Address Strobe (RAS). The column address is latched by the Column Address Strobe (CAS). RAS is used to latch the first nine bits and CAS is used the latter ten bits. # **Memory Cycle** A memory cycle is initiated by bring RAS LOW and it is terminated by returning both RAS and CAS HIGH. To ensures proper device operation and data integrity any memory cycle, once initiated, must not be ended or aborted before the minimum tras time has expired. A new cycle must not be initiated until the minimum precharge time trp, tcp has elapsed. # Read Cycle A read cycle is initiated by the falling edge of \overline{CAS} or \overline{OE} , whichever occurs last, while holding \overline{WE} HIGH. The column address must be held for a minimum time specified by tar. Data Out becomes valid only when trac, tar, tare and toer are all satisfied. As a result, the access time is dependent on the timing relationships between these parameters. # **Write Cycle** A write cycle is initiated by the falling edge of $\overline{\text{CAS}}$ and $\overline{\text{WE}}$, whichever occurs last. The input data must be valid at or before the falling edge of $\overline{\text{CAS}}$ or $\overline{\text{WE}}$, whichever occurs last. # **Auto Refresh Cycle** To retain data, 2,048 refresh cycles are required in each 32 ms period, or 4,096 refresh cycles are required in each 64ms period. There are two ways to refresh the memory: - By clocking each of the 2,048 row addresses (A0 through A10) or 4096 row addresses (A0 through A11) with RAS at least once every 32 ms or 64ms respectively. Any read, write, read-modify-write or RAS-only cycle refreshes the addressed row. - 2. Using a CAS-before-RAS refresh cycle. CAS-before-RAS refresh is activated by the falling edge of RAS, while holding CAS LOW. In CAS-before-RAS refresh cycle, an internal 9-bit counter provides the row addresses and the external address inputs are ignored. CAS-before-RAS is a refresh-only mode and no data access or device selection is allowed. Thus, the output remains in the High-Z state during the cycle. ### Power-On After application of the V_{DD} supply, an initial pause of 200 μ s is required followed by a minimum of eight initialization cycles (any combination of cycles containing a RAS signal). During power-on, it is recommended that \overline{RAS} track with VDD or be held at a valid VIH to avoid current surges. # **PIN CONFIGURATION** ### 24 Pin SOJ ^{*} A11 is NC for 2K Refresh devices. # **PIN DESCRIPTIONS** | A0-A11 | Address Inputs (4K Refresh) | |--------|-----------------------------| | A0-A10 | Address Inputs (2K Refresh) | | DQ0-3 | Data Inputs/Outputs | | WE | Write Enable | | ŌĒ | Output Enable | | RAS | Row Address Strobe | | CAS | Column Address Strobe | | VDD | Power | | GND | Ground | | NC | No Connection | ## ABSOLUTE MAXIMUM RATINGS(1) | Symbol | Parameters | | Rating | Unit | |--------|------------------------------------|------------|------------------------------|------| | VT | Voltage on Any Pin Relative to GND | 5V
3.3V | -1.0 to +7.0
-0.5 to +4.6 | V | | VDD | Supply Voltage | 5V
3.3V | -1.0 to +7.0
-0.5 to +4.6 | V | | Іоит | Output Current | | 50 | mA | | Po | Power Dissipation | | 1 | W | | Тѕтс | Storage Temperature | | -55 to +125 | °C | #### Note # RECOMMENDED OPERATING CONDITIONS (Voltages are referenced to GND.) | Symbol | Parameter | | Min. | Тур. | Max. | Unit | |--------|--------------------|-------------------------|------|----------------------|-----------|------| | VDD | Supply Voltage | 5V | 4.5 | 5.0 | 5.5 | V | | | | 3.3V | 3.0 | 3.3 | 3.6 | | | VIH | Input High Voltage | 5V | 2.4 | _ | VDD + 1.0 | V | | | | 3.3V | 2.0 | _ | VDD + 0.3 | | | VIL | Input Low Voltage | 5V | -1.0 | _ | 0.8 | V | | | | 3.3V | -0.3 | _ | 8.0 | | | ТА | Temperature Range | Option A:
Option A1: | | 0 to 70
-40 to 85 | | °C | # CAPACITANCE(1,2) | Symbol | Parameter | Max. | Unit | |--------|--|------|------| | CIN1 | Input Capacitance: A0-A10(A11) | 5 | рF | | CIN2 | Input Capacitance: RAS, CAS, WE, OE | 7 | рF | | Сю | Data Input/Output Capacitance: DQ0-DQ3 | 7 | pF | #### Notes ^{1.} Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. ^{1.} Tested initially and after any design or process changes that may affect these parameters. ^{2.} Test conditions: TA = 25°C, f = 1 MHz. ### ELECTRICAL CHARACTERISTICS(1) (Recommended Operating Conditions unless otherwise noted.) | Symbol | Parameter | Test Condition | V_{DD} | Speed | Min. | Max. | Unit | |--------|--|--|------------------------------|------------|------------------|--------------------------|------| | lıL | Input Leakage Current | Any input $0V \le V_{IN} \le V_{DD}$
Other inputs not under test = $0V$ | | | - 5 | 5 | μA | | lio | Output Leakage Current | Output is disabled (Hi-Z)
0V ≤ Vouт ≤ Vpd | | | - 5 | 5 | μA | | Vон | Output High Voltage Level | $I_{OH} = -5.0 \text{ mA}, V_{DD} = 5V$
$I_{OH} = -2.0 \text{ mA}, V_{DD} = 3.3V$ | | | 2.4 | _ | V | | Vol | Output Low Voltage Level | IoL = 4.2 mA, VDD = 5V
IoL = 2 mA, VDD = 3.3V | | | _ | 0.4 | V | | Icc1 | Standby Current: TTL | RAS, CAS ≥ VIH Temp Op A:
Temp Op A:
Temp Op A1:
Temp Op A1: | 5.0V
3.3V
5.0V
3.3V | | _
_
_
_ | 2.0
0.5
3.5
2.5 | mA | | lcc2 | Standby Current: CMOS | \overline{RAS} , $\overline{CAS} \ge V_{DD} - 0.2V$ | 5.0V
3.3V | | _ | 1
0.5 | mA | | Icc3 | Operating Current:
Random Read/Write ^(2,3,4)
Average Power Supply Current | RAS, CAS, Address Cycling, trc = trc (min.) | | -50
-60 | _ | 120
110 | mA | | Icc4 | Operating Current:
EDO Page Mode ^(2,3,4)
Average Power Supply Current | $\overline{RAS} = VIL, \overline{CAS},$ Cycling tpc = tpc (min.) | | -50
-60 | _ | 90
80 | mA | | Icc5 | Refresh Current: RAS-Only ^(2,3) Average Power Supply Current | \overline{RAS} Cycling, $\overline{CAS} \ge V_{IH}$ trc = trc (min.) | | -50
-60 | _ | 120
110 | mA | | Icc6 | Refresh Current:
CBR ^(2,3,5)
Average Power Supply Current | RAS, CAS Cycling trc = trc (min.) | | -50
-60 | _ | 120
110 | mA | #### Notes: ^{1.} An initial pause of 200 µs is required after power-up followed by eight \overline{RAS} refresh cycles (\overline{RAS} -Only or CBR) before proper device operation is assured. The eight \overline{RAS} cycles wake-up should be repeated any time the tree refresh requirement is exceeded. ^{2.} Dependent on cycle rates. ^{3.} Specified values are obtained with minimum cycle time and the output open. ^{4.} Column-address is changed once each EDO page cycle. ^{5.} Enables on-chip refresh and address counters. # AC CHARACTERISTICS(1,2,3,4,5,6) (Recommended Operating Conditions unless otherwise noted.) | | | -5 | 50 | -6 | 60 | | |--------------|--|------|-----------|------|------|-------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Units | | trc | Random READ or WRITE Cycle Time | 84 | _ | 104 | _ | ns | | trac | Access Time from RAS(6, 7) | _ | 50 | _ | 60 | ns | | tcac | Access Time from CAS(6, 8, 15) | _ | 13 | _ | 15 | ns | | taa | Access Time from Column-Address ⁽⁶⁾ | _ | 25 | _ | 30 | ns | | tras | RAS Pulse Width | 50 | 10K | 60 | 10K | ns | | trp | RAS Precharge Time | 30 | _ | 40 | _ | ns | | tcas | CAS Pulse Width(23) | 8 | 10K | 10 | 10K | ns | | tcp | CAS Precharge Time ⁽⁹⁾ | 9 | _ | 9 | _ | ns | | tсsн | CAS Hold Time (21) | 38 | _ | 40 | _ | ns | | trcd | RAS to CAS Delay Time(10, 20) | 12 | 37 | 14 | 45 | ns | | tasr | Row-Address Setup Time | 0 | _ | 0 | _ | ns | | trah | Row-Address Hold Time | 8 | _ | 10 | _ | ns | | tasc | Column-Address Setup Time(20) | 0 | _ | 0 | _ | ns | | t CAH | Column-Address Hold Time(20) | 8 | _ | 10 | _ | ns | | tar | Column-Address Hold Time (referenced to RAS) | 30 | _ | 40 | _ | ns | | trad | RAS to Column-Address Delay Time(11) | 10 | 25 | 12 | 30 | ns | | tral | Column-Address to RAS Lead Time | 25 | _ | 30 | _ | ns | | trpc | RAS to CAS Precharge Time | 5 | _ | 5 | | ns | | trsh | RAS Hold Time | 8 | _ | 10 | | ns | | trhcp | RAS Hold Time from CAS Precharge | 30 | _ | 35 | | ns | | tcLz | CAS to Output in Low-Z(15, 24) | 0 | _ | 0 | | ns | | tcrp | CAS to RAS Precharge Time(21) | 5 | _ | 5 | | ns | | top | Output Disable Time(19, 24) | 3 | 15 | 3 | 15 | ns | | toe | Output Enable Time(15, 16) | _ | 12 | | 15 | ns | | toed | Output Enable Data Delay (Write) | 12 | _ | 15 | _ | ns | | tоенс | OE HIGH Hold Time from CAS HIGH | 5 | _ | 5 | _ | ns | | toep | OE HIGH Pulse Width | 10 | _ | 10 | _ | ns | | toes | OE LOW to CAS HIGH Setup Time | 5 | _ | 5 | _ | ns | | trcs | Read Command Setup Time(17, 20) | 0 | _ | 0 | _ | ns | | trrh | Read Command Hold Time
(referenced to RAS)(12) | 0 | _ | 0 | _ | ns | | trch | Read Command Hold Time (referenced to CAS)(12, 17, 21) | 0 | _ | 0 | _ | ns | | twch | Write Command Hold Time(17) | 8 | _ | 10 | _ | ns | | twcr | Write Command Hold Time (referenced to RAS)(17) | 40 | _ | 50 | _ | ns | | twp | Write Command Pulse Width(17) | 8 | _ | 10 | _ | ns | | twpz | WE Pulse Widths to Disable Outputs | 7 | _ | 7 | _ | ns | # AC CHARACTERISTICS (Continued)(1,2,3,4,5,6) (Recommended Operating Conditions unless otherwise noted.) | | | -5 | 60 | -60 | 0 | | |--------------|---|------|-----------|------|----------|-------| | Symbol | Parameter | Min. | Max. | Min. | Max. | Units | | trwL | Write Command to RAS Lead Time(17) | 13 | _ | 15 | _ | ns | | tcwL | Write Command to CAS Lead Time(17, 21) | 8 | _ | 10 | _ | ns | | twcs | Write Command Setup Time(14, 17, 20) | 0 | _ | 0 | _ | ns | | tdhr | Data-in Hold Time (referenced to RAS) | 39 | _ | 39 | _ | ns | | tach | Column-Address Setup Time to CAS Precharge during WRITE Cycle | 15 | _ | 15 | | ns | | toeh | OE Hold Time from WE during READ-MODIFY-WRITE cycle ⁽¹⁸⁾ | 8 | _ | 10 | | ns | | tos | Data-In Setup Time(15, 22) | 0 | _ | 0 | _ | ns | | tон | Data-In Hold Time(15, 22) | 8 | _ | 10 | _ | ns | | trwc | READ-MODIFY-WRITE Cycle Time | 108 | _ | 133 | _ | ns | | trwd | RAS to WE Delay Time during READ-MODIFY-WRITE Cycle(14) | 64 | _ | 77 | | ns | | tcwp | CAS to WE Delay Time(14, 20) | 26 | _ | 32 | _ | ns | | tawd | Column-Address to WE Delay Time(14) | 39 | _ | 47 | _ | ns | | tpc | EDO Page Mode READ or WRITE
Cycle Time | 20 | _ | 25 | | ns | | trasp | RAS Pulse Width in EDO Page Mode | 50 | 100K | 60 | 100K | ns | | t CPA | Access Time from CAS Precharge(15) | _ | 30 | _ | 35 | ns | | tprwc | EDO Page Mode READ-WRITE
Cycle Time | 56 | _ | 68 | _ | ns | | tсон | Data Output Hold after CAS LOW | 5 | _ | 5 | _ | ns | | toff | Output Buffer Turn-Off Delay from CAS or RAS(13,15,19, 24) | 0 | 12 | 0 | 15 | ns | | twnz | Output Disable Delay from WE | 3 | 10 | 3 | 10 | ns | | tcsr | CAS Setup Time (CBR REFRESH)(20, 25) | 5 | _ | 5 | _ | ns | | tchr | CAS Hold Time (CBR REFRESH)(21, 25) | 8 | _ | 10 | _ | ns | | tord | OE Setup Time prior to RAS during HIDDEN REFRESH Cycle | 0 | _ | 0 | _ | ns | | tref | Auto Refresh Period 2,048 Cycles 4,096 Cycles | | 32
64 | _ | 32
64 | ms | | tτ | Transition Time (Rise or Fall)(2, 3) | 1 | 50 | 1 | 50 | ns | # **AC TEST CONDITIONS** Output load: Two TTL Loads and 50 pF Input timing reference levels: VIH = 2.4V, VIL = 0.8V Output timing reference levels: VOH = 2.0V, VOL = 0.8V # IS45C4400x IS45LV4400x Series #### Notes: - 1. An initial pause of 200 µs is required after power-up followed by eight \overline{RAS} refresh cycle (\overline{RAS} -Only or CBR) before proper device operation is assured. The eight \overline{RAS} cycles wake-up should be repeated any time the tree refresh requirement is exceeded. - 2. Viн (MIN) and Vi∟ (MAX) are reference levels for measuring timing of input signals. Transition times, are measured between Vi⊣ and Vi∟ (or between Vi∟ and Vi⊢) and assume to be 1 ns for all inputs. - 3. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner. - 4. If \overline{CAS} and $\overline{RAS} = V_{IH}$, data output is High-Z. - 5. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle. - 6. Measured with a load equivalent to one TTL gate and 50 pF. - 7. Assumes that trcp trcp (MAX). If trcp is greater than the maximum recommended value shown in this table, trac will increase by the amount that trcp exceeds the value shown. - 8. Assumes that trco trco (MAX). - 9. If $\overline{\text{CAS}}$ is LOW at the falling edge of $\overline{\text{RAS}}$, data out will be maintained from the previous cycle. To initiate a new cycle and clear the data output buffer, $\overline{\text{CAS}}$ and $\overline{\text{RAS}}$ must be pulsed for tcp. - 10. Operation with the tRCD (MAX) limit ensures that tRAC (MAX) can be met. tRCD (MAX) is specified as a reference point only; if tRCD is greater than the specified tRCD (MAX) limit, access time is controlled exclusively by tCAC. - 11. Operation within the trad (MAX) limit ensures that trcd (MAX) can be met. trad (MAX) is specified as a reference point only; if trad is greater than the specified trad (MAX) limit, access time is controlled exclusively by trad. - 12. Either trich or trich must be satisfied for a READ cycle. - 13. toff (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to Voh or Vol. - 14. twcs, trwb, tawb and tcwb are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycle only. If twcs twcs (MIN), the cycle is an EARLY WRITE cycle and the data output will remain open circuit throughout the entire cycle. If trwb trwb (MIN), tawb tawb (MIN) and tcwb tcwb (MIN), the cycle is a READ-WRITE cycle and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of DQ (at access time and until CAS and RAS or OE go back to Vih) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW result in a LATE WRITE (OE-controlled) cycle. - 15. Output parameter (DQ) is referenced to corresponding CAS input. - 16. During a READ cycle, if \overline{OE} is LOW then taken HIGH before \overline{CAS} goes HIGH, DQ goes open. If \overline{OE} is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE is not possible. - 17. Write command is defined as $\overline{\text{WE}}$ going low. - 18. LATE WRITE and READ-MODIFY-WRITE cycles must have both top and toeh met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back to LOW after toeh is met. - 19. The DQs are in open during READ cycles once top or toff occur. - 20. Determined by falling edge of CAS. - 21. Determined by rising edge of CAS. - 22. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY WRITE cycles and $\overline{\text{WE}}$ leading edge in LATE WRITE or READ-MODIFY-WRITE cycles. - 23. CAS must meet minimum pulse width. - 24. The 3 ns minimum is a parameter guaranteed by design. - 25. Enables on-chip refresh and address counters. ## **READ CYCLE** ### Note: 1. toff is referenced from rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last. # **EARLY WRITE CYCLE** (OE = DON'T CARE) # READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE Cycles) ## **EDO-PAGE-MODE READ CYCLE** #### Note: 1. the can be measured from falling edge of \overline{CAS} to falling edge of \overline{CAS} , or from rising edge of \overline{CAS} to rising edge of \overline{CAS} . Both measurements must meet the the specifications. ## **EDO-PAGE-MODE EARLY-WRITE CYCLE** # EDO-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY WRITE Cycles) #### Note: tPC can be measured from falling edge of CAS to falling edge of CAS, or from rising edge of CAS to rising edge of CAS. Both measurements must meet the tPC specifications. # EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Psuedo READ-MODIFY WRITE) # **AC WAVEFORMS** # **READ CYCLE** (With WE-Controlled Disable) # RAS-ONLY REFRESH CYCLE (OE, WE = DON'T CARE) # **CBR** REFRESH CYCLE (Addresses; WE, OE = DON'T CARE) # HIDDEN REFRESH CYCLE(1) (WE = HIGH; OE = LOW) #### Notes: - 1. A Hidden Refresh may also be perfor<u>med</u> afte<u>r a Write Cycle</u>. In this case, $\overline{\text{WE}} = \text{LOW}$ and $\overline{\text{OE}} = \text{HIGH}$. - 2. toff is referenced from rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last. # **ORDERING INFORMATION** Temperature Range A: 0°C to +70°C Voltage: 5V | Speed (ns) | Order Part No. | Refresh | Package | |------------|-----------------|---------|-------------| | 50 | IS45C44002-50JA | 2K | 300-mil SOJ | | 60 | IS45C44002-60JA | 2K | 300-mil SOJ | | Speed (ns) | Order Part No. | Refresh | Package | |------------|-----------------|---------|-------------| | 50 | IS45C44004-50JA | 4K | 300-mil SOJ | | 60 | IS45C44004-60JA | 4K | 300-mil SOJ | Voltage: 3.3V | Speed (ns) | Order Part No. | Refresh | Package | |------------|------------------|---------|-------------| | 50 | IS45LV44002-50JA | 2K | 300-mil SOJ | | 60 | IS45LV44002-60JA | 2K | 300-mil SOJ | | Speed (ns) | Order Part No. | Refresh | Package | |------------|------------------|---------|-------------| | 50 | IS45LV44004-50JA | 4K | 300-mil SOJ | | 60 | IS45LV44004-60JA | 4K | 300-mil SOJ | # **ORDERING INFORMATION** Temperatur Range A1: -40°C to +85°C Voltage: 5V | Speed (ns) | Order Part No. | Refresh | Package | |------------|------------------|---------|-------------| | 50 | IS45C44002-50JA1 | 2K | 300-mil SOJ | | 60 | IS45C44002-60JA1 | 2K | 300-mil SOJ | | Speed (ns) | Order Part No. | Refresh | Package | |------------|------------------|---------|-------------| | 50 | IS45C44004-50JA1 | 4K | 300-mil SOJ | | 60 | IS45C44004-60JA1 | 4K | 300-mil SOJ | Voltage: 3.3V | Speed (ns) | Order Part No. | Refresh | Package | |------------|------------------|---------|-------------| | 50 | IS45LV44002-50JA | 1 2K | 300-mil SOJ | | 60 | IS45LV44002-60JA | 1 2K | 300-mil SOJ | | Speed (ns) | Order Part No. | Refresh | Package | |------------|------------------|---------|-------------| | 50 | IS45LV44004-50JA | 1 4K | 300-mil SOJ | | 60 | IS45LV44004-60JA | 1 4K | 300-mil SOJ |