

900 MHz AMPS/TDMA Power Amplifier

Features

- Highly integrated SiGe BiCMOS technology
- +29.5dBm output power for TDMA operation
- +31.5dBm output power for AMPS operation
- +16 dBm Low Power TDMA operation
- High power added efficiency
- Two-stage design with partial on-chip impedance matching
- On-chip VSWR protection
- Single power supply operation
- Low standby current: <2μA
- · Built-in on/off function
- Small-outline, low profile package: QFN
- · Low quiescent current

AMPS/TDMA Power Amplifier Block Diagram

Description

The IBM3602022Q020 900MHz AMPS/TDMA Power Amplifier (PA) is a single band, two-stage power amplifier using IBM's silicon germanium (SiGe) BiCMOS technology to yield maximum efficiency in wireless handset applications. The PA is optimized for both AMPS (U.S. Analog Mobile Phone System) and TDMA/IS-54 operations.

Advanced on-chip biasing technology ensures reliable performance in both operating modes. The power amplifier also has a power down function to extend battery life. On-chip VSWR protection allows the power amplifier to pass industry-standard ruggedness tests at full RF drive (+4dBm input) with a 10:1 load VSWR at Vcc = 5Vdc.

The 900MHz AMPS/TDMA PA is available in a 20-lead, 4mm low profile QFN package. The QFN package incorporates partial impedance matching for both the input and intermediate stages, with each requiring only one off-chip matching element. The output stage requires off-chip matching.

Ordering Information

To order samples of this product or a demonstration board, visit the IBM Microelectronics Division Web site at www.chips.ibm.com/support/howtobuy.html

Part Number	Product
IBM3602022Q020	900 MHZ AMPS/TDMA PA
IBM3602022EVBA	Evaluation Board

Note: The 900MHz AMPS/TDMA Power Amplifier is susceptible to damage from electrostatic discharge (ESD). Observe normal ESD precautions at all times when handling or using the device.

December 19, 2001 Page 1 of 7

Electrical and Thermal Characteristics

Table 1. Absolute Maximum and Minimum Ratings

Parameter	Symbol	Minimum	Typical	Maximum	Units	Mode
Supply voltage	Vsupply		3.5	5.0	Vdc	All
Standby current				2	μΑ	All
Mode control	lset_d, lset_o			5.0	Vdc	All
Input RF power				7	dBm	AMPS
Operating temperature		-30		+85	°C	All
Storage temperature		-65		+150	°C	All

Table 2. Logic Input Voltage Levels

Level	Minimum	Maximum	Units
Logic 0	0	0.6	Vdc
Logic 1	2	V _{CC}	Vdc

Table 3. AMPS Operating Characteristics ($T_A = 25$ °C, $V_{CC} = 3.5$ Vdc, CW, ON/OFF input = logic '0')

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Mode control	lset_d, lset_o	2.4	2.5	2.6	Vdc	AMPS mode
Frequency range		824	836.5	849	MHz	
Gain			28.5		dB	
Output power			31.5		dBm	
PAE		50			%	
Gain vs. Temperature			±1.0		dB	1
Stability				-60	dBc	2
Harmonics			-36		dBc	
Input VSWR			2.1:1			
Ruggedness VSWR		10:1				3

^{1. -30} to +85°C

Table 4. High Power TDMA Operating Characteristics

 $(T_A = 25^{\circ}C, V_{CC} = 3.5Vdc, NADC modulation, ON/OFF input = logic '0')$

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Mode control	lset_d, lset_o	1.2	1.3	1.4	Vdc	IS-54 mode
Frequency range		824	836.5	849	MHz	
Gain		28	30.5	31	dB	
Gain vs. Temperature			±0.8		dB	1
Output power			29.5		dBm	
Quiescent current			135	160	mA	
PAE		40			%	
ACPR			-29	-28	dBc	2
ALT1			-49	-48	dBc	3

1. -30 to +85°C

2. ±30 KHz 3. ±60KHz

Page 2 of 7 December 19, 2001

^{2.} Maximum spurs out-of-band load VSWR <5:1, in-band load VSWR <3:1
3. No damage with P_{in} = +4dBm, V_{CC} = 5Vdc

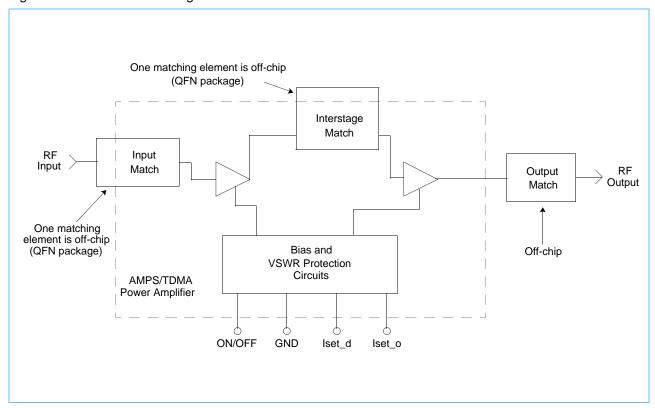


Table 5. Low Power TDMA Operating Characteristics ($T_A = 25^{\circ}C$, $V_{CC} = 3.5$ Vdc, F = 836.5 MHz, NADC modulation, ON/OFF input = logic '0')

Parameter	Symbol	Minimum	Typical	Maximum	Units	Notes
Mode control	lset_d,lset_o	2.4	2.5	2.6	Vdc	IS-54 mode
Frequency range		824	836.5	849	MHz	
Gain		26	28.5	31	dB	
Output power			16.0		dBm	
Quiescent current			45	60	mA	
PAE		8			%	
Gain vs. Temperature			±1.0		dB	1
ACPR			-29	-28	dBc	2
ALT1			-49	-48	dBc	3

- 1. -30 to +85°C
- 2. ±30 kHz
- 3. ±60 kHz

Figure 1. Functional Block Diagram

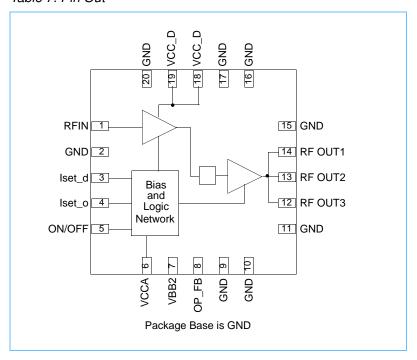
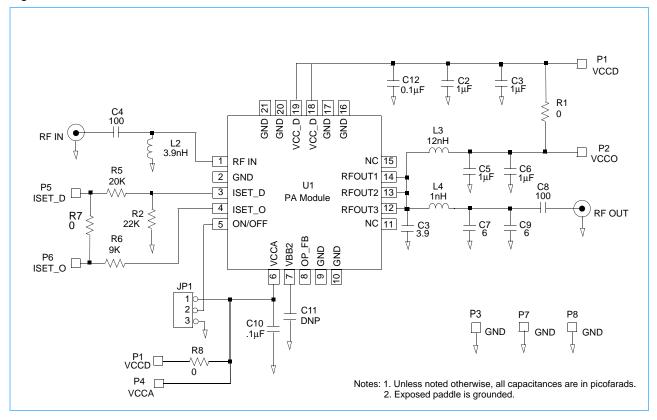

December 19, 2001 Page 3 of 7

Table 6. Lead Description (QFN, 20-lead, 4mm x 4mm package)

Lead	Name	Type	Description
1	RF IN	RF	PA input
2	GND		No connection, may be connected to ground
3	lset_d	Power	Resistor connected to ground or to MD_SEL to control driver (first) stage Icc
4	lset_o	Power	Resistor connected to ground or to MD_SEL to control output (second) stage Icc
5	ON/OFF	Input	PA on/off; logic low turns PA on
6	VCCA	Power	DC supply for bias circuitry
7	VBB2	Power	Capacitor to ground for additional bypassing of output (second) stage
8	OP_FB	Power	Optional output feedback
9	GND		No connection required, grounding recommended
10	GND		No connection required, grounding recommended
11	GND		No connection required grounding recommended
12	RFOUT1/VCCO	Output	PA output; 1 of 3 / DC supply for final stage (VCCO)
13	RFOUT2/VCCO	Output	PA output; 2 of 3 / DC supply for final stage (VCCO)
14	RFOUT3/VCCO	Output	PA output; 3 of 3 / DC supply for final stage (VCCO)
15	GND		No connection required, grounding recommended
16	GND		No connection required, grounding recommended
17	GND		No connection required, grounding recommended
18	VCC_D	Power	DC supply for driver (first) stage; 1 of 2
19	VCC_D	Power	DC supply for driver (first) stage; 2 of 2
20	GND		No connection required, grounding recommended
paddle	GND	Power	Exposed paddle; DC and RF ground

Table 7. Pin Out


Page 4 of 7 December 19, 2001

Function Description

DC supply voltages are fed to the power amplifier through VCCD, VCCA, and VCCO. The output amplifier stage is supplied through an RF choke via the RF OUT leads. VCCD supplies power to the driver stage, while VCCA supplies power to the biasing circuits. The lset_o and lset_d leads are used to control collector current (I_{CC}) in the output and driver amplifiers. The power amplifier can be configured to run in the AMPS or low-power TDMA modes when lset_d and lset_o are connected as shown in Figure 2 to create a single mode control input pin P5 or P6. To select an operating mode, connect an analog voltage supply to the control input pins P5 or P6. Set the mode voltage to the values listed in Tables 3,4 or 5 for the proper mode of operation. The ON/OFF lead controls power amplifier on/off switching. A high logic level turns the power amplifier off, which results in low standby current.

Figure 2. Demonstration Board Schematic

December 19, 2001 Page 5 of 7

Figure 3. QFN Package Dimensions

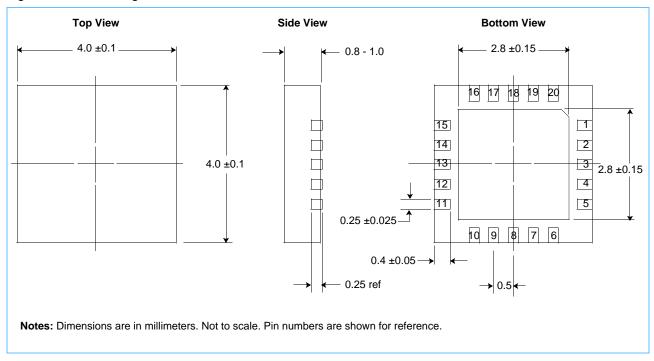


Figure 4. PCB Pad Placement, QFN Package

Page 6 of 7 December 19, 2001

Document Revision Log

Revision Date	Contents of Modification
November 2, 2001	Advance release (00).
December 19, 2001	General release (01)

Note: This document contains information on products in the design, sampling and/or initial production phases of development. This is subject to change without notice. Verify with your IBM field applications engineer that you have the latest version of this document before finalizing a design.

© Copyright International Business Machines Corporation 2001

All Rights Reserved

Printed in the United States of America. December 2001

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or others.

BM® (logo)

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division 1580 Route 52, Bldg. 504 Hopewell Junction NY 12533-6351

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics Division home page can be found at http://www.chips.ibm.com

pa2022_ds_121901.fm.01 December 19, 2001

.

December 19, 2001 Page 7 of 7