

Dual-band CDMA Low Noise Amplifier

 Single and dual mode CDMA and AMPS handsets receiving in the Cellular 869-894MHz, and

PCS 1930-1990MHz bands

· Low noise/high linearity subsystems

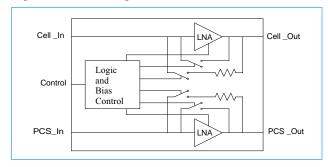
Applications

Features

- IBM's integrated SiGe BiCMOS technology
- CDMA / AMPS operation in the Cellular and PCS receive bands
- · Low noise figure:
 - 1.7B over Cellular band
 - 1.9dB over PCS band
- · Low power supply current drain:
 - · 10mA High linearity mode
 - 5mA Low linearity mode
 - <0.3mA Bypass mode
 - <1μA Standby mode
- High input IP3: + 8dBm
- · 22dB reverse isolation
- · Integrated logic and bias control network
- · Single-ended RF interface
- Requires Single 2.75-volt power supply

IBM4012 S830

QFN 16L Package 3.0mm x 3.0mm x 0.90mm


Description

The IBM3604012Q016 Low Noise Amplifier (LNA) is a monolithic device intended for CDMA and AMPS wireless handsets operating in the Cellular and PCS bands. The LNA is fabricated using IBM's Silicon Germanium (SiGe) BiCMOS technology for low noise, high gain and high linearity performance.

The monolithic LNA device consists of the following, as shown in figure 1:

- Two high gain blocks with medium gain and bypass switching options
- Logic and bias control network to support switching options and operating modes

Figure 1. Block Diagram

Note: The LNA is susceptible to damage from electrostatic discharge (ESD). Observe normal ESD precautions at all times when handling or using the device.

Each gain block is optimized for a single (cellular or PCS) band of operation. The integrated logic and bias control network facilitate band and gain selection. In addition, the device can operate in a high or low linearity mode. The low linearity mode reduces operating current and enables long battery life.

A bypass mode enables the device to handle strong incoming signals with low current drain. A Standby mode for power saving is also available.

The device is housed in a QFN 16 lead chip scale package and requires off-chip passive components for RF matching.

Ordering information:

To order samples of the product or the Evaluation board, please visit:

www.ibm.com/chips/support/howtobuy.html

Part Number	Description
IBM3604012Q016	CDMA Dual Band Low Noise Amplifier
IBM3604012EVBA	Evaluation Board Assembly

January 15, 2002 Page 1 of 12

Input and Output

Figure 2. Pinout

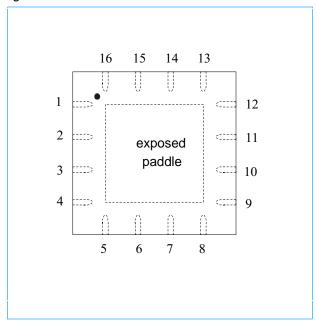
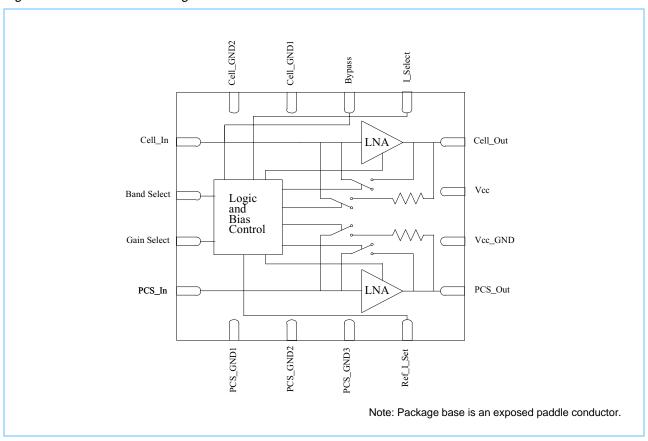



Table 1. Pin Assignments

Pin	Signal	Type	Description
1	Cell_In	Input	Cellular band LNA input
2	Band Select	Input	Band select logic input
3	Gain Select	Input	High/Mid gain logic input
4	PCS_ In	Input	PCS band LNA input
5	PCS_GND1	Ground	PCS signal ground
6	PCS_GND2	Ground	PCS signal ground
7	PCS_GND3	Ground	PCS signal ground
8	Ref_I_Set	DC	Current setting pin
9	PCS_Out	Output	PCS band LNA output
10	Vcc_GND	Ground	Bias circuit Ground
11	Vcc	Power	Bias circuit positive supply
12	Cell_out	Output	Cellular band LNA output
13	I_Select	Input	High/low linearity logic input
14	Bypass	Input	bypass switch logic input
15	Cell_GND1	Ground	Cellular signal ground
16	Cell_GND2	Ground	Cellular signal ground
ер	IC Ground	Ground	RF ground (exposed paddle)

Figure 3. Functional Block Diagram

Page 2 of 12 January 15, 2002

Electrical and Thermal Characteristics

Table 2. Absolute Maximum and Minimum Ratings

Parameter	Symbol	Min	Max	Units	Notes
Supply Voltage	Vcc		3.6	volts	
Continuous Power Dissipation			30	mW	
RF Input Level	Cell_In, PCS_In		+10	dBm	Vcc applied
Operating Temperature		-40	+85	°C	
Storage Temperature		-65	+150	°C	
Lead Temperature			240	°C	Soldering for 10 seconds

Table 3. DC Electrical Characteristics (25 °C)

Parameter	Symbol	Min	Тур	Max	Units	Notes
Supply Voltage	V _{CC}	2.65	2.75	2.85	volts	
			10	12.5	mA	High Linearity mode
Cumply Current	laa		5	7	mA	Low Linearity mode
Supply Current	Icc		<0.3	1	mA	Bypass mode
			<1.0	10	μΑ	Standby mode
Logic Input Low Voltage Level	V _{IL}	0.0		0.54	volts	
Logic Input High Voltage Level	V _{IH}	2.4		Vcc	volts	
Logic Input Low Current	I _{IL}			-1.5	nA	V _{IL} = 0.0
Logic Input High Current	I _{IH}			1.5	nA	$V_{IH} = V_{CC}$

Table 4. Mode Control Truth Table

Modes of Operation			Control Pin Logic				
Band	Gain	Linearity	Band Select	Gain Select	I_Select	Bypass	
	High	High	0	1	1	0	
	Mid	High	0	0	1	0	
Cellular	High	Low	0	1	0	0	
	Mid	Low	0	0	0	0	
	Bypass		0	0	0	1	
	High	High	1	1	1	0	
	Mid	High	1	0	1	0	
PCS	High	Low	1	1	0	0	
	Mid	Low	1	0	0	0	
	Bypass		1	0	0	1	
	Standby Mode		1	1	1	1	

January 15, 2002 Page 3 of 12

Table 5. AC Electrical Characteristics, Cellular Band 869-894MHz, High Linearity mode (Current 10mA)

Parameter	Min	Тур	Max	Units	Notes
	14.5	15.0	15.5	dB	High gain selected
Power Gain	10.0	10.5	11.0	dB	Medium gain selected
	-3.5	-4	-4.5	dB	Bypass mode
		+/-0.3		dB	High gain selected
Gain Flatness (869-894 MHz)		+/-0.2		dB	Medium gain selected
		+/-0.3		dB	Bypass mode
		1.7	1.9	dB	High gain selected
Noise Figure		2.4	2.8	dB	Medium gain selected
		6.0	6.5	dB	Bypass mode
	+7.5	+8.5		dBm	High gain selected
nput Third Order Intercept Point (IIP3)	+14.5	+15.5		dBm	Medium gain selected
	+20.0	+20.5		dBm	Bypass mode
	-4.5	-4		dBm	High gain selected
nput 1dB Compression	-0.5	+0.5		dBm	Medium gain selected
	+4.5	+5.0		dBm	Bypass mode
	7	8		dB	High gain selected
Input Return Loss	12	15		dB	Medium gain selected
	6	7		dB	Bypass mode
	10	12		dB	High gain selected
Output Return Loss	6	7		dB	Medium gain selected
	10	12		dB	Bypass mode
	20	22		dB	High gain selected
Reverse Isolation	16	18		dB	Medium gain selected
	3	4		dB	Bypass mode

Note: Device characteristics measured with IBM3604012EVBA Evaluation Board Assembly. Optimum external input and output matching to 50 ohm terminations. Input power =-30dBm (-15dBm: Bypass mode); V_{CC} = 2.75 volts, ambient temperature = 25 °C, and frequency = 880 MHz. Max, Min and Typ values are based on statistical samples from several non-consecutive wafer lots.

Page 4 of 12 January 15, 2002

Table 6. AC Electrical Characteristics, Cellular Band 869-894MHz, Low Linearity mode (Current 5mA)

Parameter	Min	Тур	Max	Units	Notes
. 3.3	14.0	14.5	15.0	dB	High gain selected
Power Gain	9.5	10.0	10.5	dB	Medium gain selected
- Guer Gain.	-3.5	-4	-4.5	dB	Bypass mode
		+/-0.3		dB	High gain selected
Gain Flatness (869-894 MHz)		+/-0.2		dB	Medium gain selected
,		+/-0.2		dB	Bypass mode
		1.6	1.8	dB	High gain selected
Noise Figure		2.4	2.6	dB	Medium gain selected
S .		6	6.5	dB	Bypass mode
	6.5	+8.0		dBm	High gain selected
Input Third Order Intercept Point (IIP3)	9.5	+10.5		dBm	Medium gain selected
	+20.0	+20.5		dBm	Bypass mode
	-4.5	-3.5		dBm	High gain selected
Input 1dB Compression	-1.0	+1.2		dBm	Medium gain selected
	+4.5	+5.0		dBm	Bypass mode
	6	8		dB	High gain selected
Input Return Loss	10	14		dB	Medium gain selected
	6	7		dB	Bypass mode
	10	12		dB	High gain selected
Output Return Loss	6	7		dB	Medium gain selected
	10	12		dB	Bypass mode
	20	22		dB	High gain selected
Reverse Isolation	16	18		dB	Medium gain selected
	3	4		dB	Bypass mode
					·

Note: Device characteristics measured with IBM3604012EVBA Evaluation Board Assembly. Optimum external input and output matching to 50 ohm terminations. Input power =-30dBm (-15dBm: Bypass mode); V_{CC} = 2.75 volts, ambient temperature = 25 °C, and frequency = 880 MHz. Max, Min and Typ values are based on statistical samples from several non-consecutive wafer lots.

January 15, 2002 Page 5 of 12

Table 7. AC Electrical Characteristics, PCS Band 1930-1990MHz, High Linearity mode (Current 10mA)

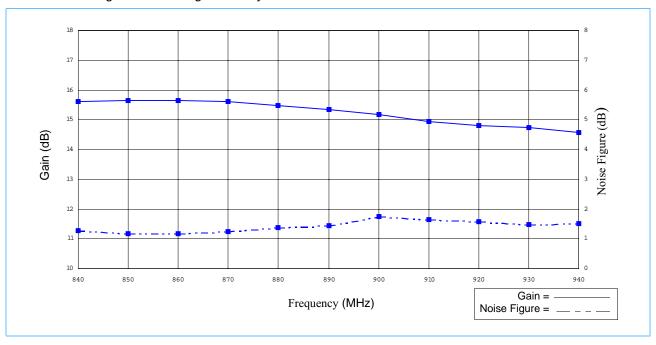
Parameter	Min	Тур	Max	Units	Notes
	13.0	13.5	14.0	dB	High gain selected
Power Gain	12.0	12.5	13.0	dB	Medium gain selected
	6.0	-6.5	7.0	dB	Bypass mode
		+/-0.5		dB	High gain selected
Gain Flatness (1930-1990 MHz)		+/-0.4		dB	Medium gain selected
		+/-0.3		dB	Bypass mode
		1.9	2.1	dB	High gain selected
Noise Figure		2.2	2.4	dB	Medium gain selected
		6.5	7.0	dB	Bypass mode
	+5.5	+6.5		dBm	High gain selected
Input Third Order Intercept Point (IIP3)	+6.0	+7.0		dBm	Medium gain selected
	+27	+28		dBm	Bypass mode
	-4.0	-3.5		dBm	High gain selected
Input 1dB Compression	-3.5	-3.0		dBm	Medium gain selected
	6.0	+6.5		dBm	Bypass mode
	10	12		dB	High gain selected
Input Return Loss	10	13		dB	Medium gain selected
	8	10		dB	Bypass mode
	10	12		dB	High gain selected
Output Return Loss	10	14		dB	Medium gain selected
	8	10		dB	Bypass mode
	20	22		dB	High gain selected
Reverse Isolation	20	22		dB	Medium gain selected
	6	6.5		dB	Bypass mode

Note: Device characteristics measured with IBM3604012EVBA Evaluation Board Assembly. Optimum external input and output matching to 50 ohm terminations. Input power =-30dBm (-10dBm: Bypass mode); $V_{CC} = 2.75$ volts, ambient temperature = 25 °C, and frequency = 1960 MHz. Max, Min and Typ values are based on statistical samples from several non-consecutive wafer lots.

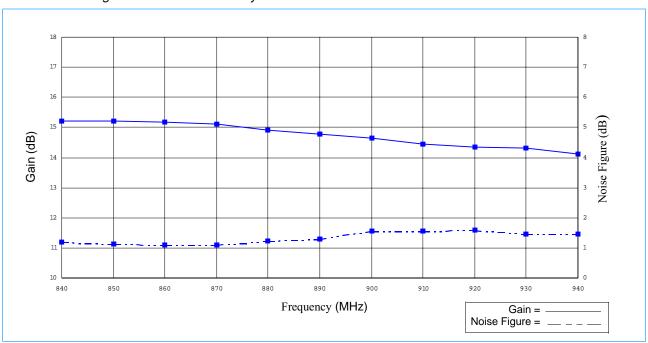
Page 6 of 12 January 15, 2002

Table 8. AC Electrical Characteristics, PCS Band 1930-1990MHz, Low Linearity mode (Current 5mA)

Parameter	Min	Тур	Max	Units	Notes
	12.5	13.0	13.5	dB	High gain selected
Power Gain	11.5	12.0	12.5	dB	Medium gain selected
	6.0	-6.5	7.0	dB	Bypass mode
		+/-0.6		dB	High gain selected
Gain Flatness (1930-1990MHz)		+/-0.4		dB	Medium gain selected
		+/-0.2		dB	Bypass mode
		1.9	2.2	dB	High gain selected
Noise Figure		2.3	2.5	dB	Medium gain selected
		6.5	7.0	dB	Bypass mode
	-2.5	-1.5		dBm	High gain selected
Input Third Order Intercept Point (IIP3)	-2.0	-1.0		dBm	Medium gain selected
	+27	+28		dBm	Bypass mode
	-4.5	-3.5		dBm	High gain selected
Input 1dB Compression	-3.0	-2.0		dBm	Medium gain selected
	6.0	+6.5		dBm	Bypass mode
	7	9		dB	High gain selected
Input Return Loss	10	12		dB	Medium gain selected
	8	10		dB	Bypass mode
	10	12		dB	High gain selected
Output Return Loss	10	12		dB	Medium gain selected
	8	10		dB	Bypass mode
	18	20		dB	High gain selected
Reverse Isolation	20	23		dB	Medium gain selected
	6	6.5		dB	Bypass mode

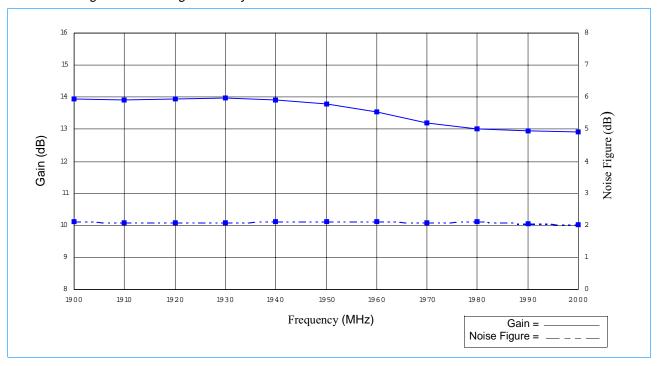

Note: Device characteristics measured with IBM3604012EVBA Evaluation Board Assembly. Optimum external input and output matching to 50 ohm terminations. Input power =-30dBm (-10dBm: Bypass mode); V_{CC} = 2.75 volts, ambient temperature = 25 °C, and frequency = 1960 MHz. Max, Min and Typ values are based on statistical samples from several non-consecutive wafer lots.

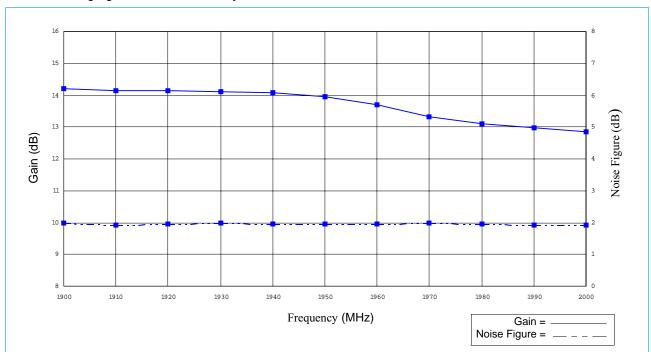
January 15, 2002 Page 7 of 12



Gain and Noise Figure Plots (V_{CC} = 2.75V, T=25 deg.C)

Cellular Band: High Gain and High Linearity Mode


Cellular Band: High Gain and Low Linearity Mode

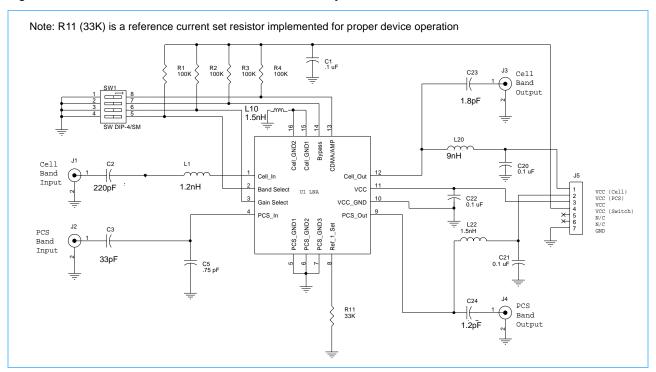
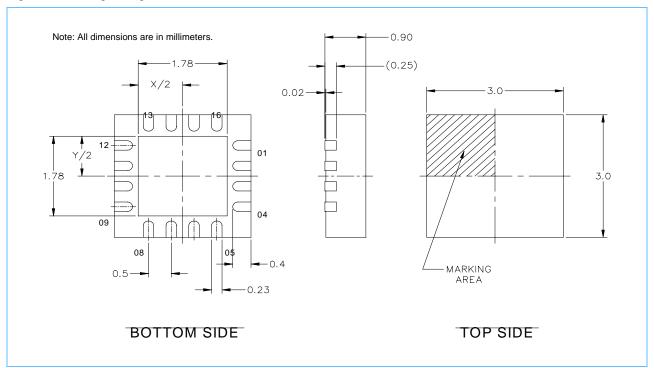

Page 8 of 12 January 15, 2002

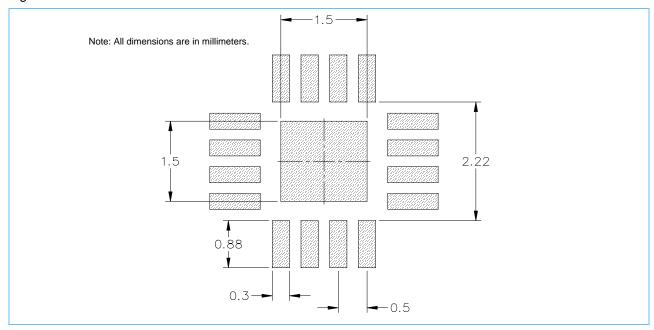
PCS Band: High Gain and High Linearity Mode

PCS Band: High gain and Low Linearity Mode

January 15, 2002 Page 9 of 12

Figure 4. IBM3604012EVBA Evaluation Board Assembly Schematic


Figure 5. Package Diagram

Page 10 of 12 January 15, 2002

Figure 6. PCB Pad Placement

January 15, 2002 Page 11 of 12

Document Revision Log

Rev.	Contents of Modification
September 25, 2001	Initial release (00).
October 30, 2001	Data and board schematic per tests on tape out (01)
January 15, 2002	Data tables updated with split lot values (02)

Note: This document contains information on products in the sampling and/or initial production phases of development. This information is subject to change without notice. Verify with your IBM field applications engineer that you have the latest version of this document before finalizing a design.

© Copyright International Business Machines Corp. 2001

All Rights Reserved

Printed in the United States of America December 2001

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.

IBM IBM Logo

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division 1580 Route 52, Bldg. 504 Hopewell Junction NY 12533-6351

The IBM home page can be found at http://www.ibm.com
The IBM Microelectronics Division home page can be found at
http://www.chips.ibm.com

Ina4012_ds_011502.fm.02 January 15, 2002

Page 12 of 12 January 15, 2002