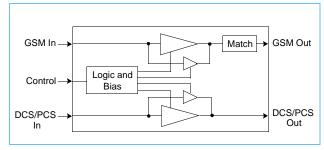

Tri-Band GSM Low Noise Amplifier

Features

- IBM's Silicon Germanium BiCMOS technology
- Receive operation in the GSM900, DCS1800, PCS1900 bands
- Excellent noise figure:
 - 1.4dB over GSM band
 - 1.5dB over DCS band
 - 1.9dB over PCS band
- Low power supply current drain:
 - · 5mA high gain mode
 - 3mA low gain mode
 - 1μA standby mode
- High input IP3
- 34dB Typical reverse isolation
- On-chip output match for GSM900 band
- Integrated mode select and bias circuits
- 10-lead MSOP plastic package
- · Single-ended interface to inputs and outputs
- Requires single 3-volt power supply

Applications

- Receiver designs for single, dual, or triple mode handsets operating in the GSM900, DCS1800, and PCS1900 bands
- · GPS and Bluetooth portable radios



MSOP10L Package 4.9mm x 3.0mm x 0.92mm

Description

The IBM3604011S010 GSM Low Noise Amplifier (LNA) is a monolithic device intended for wireless handset receiver applications in the GSM900, DCS1800, and PCS1900 bands. The LNA is fabricated using IBM's SiGe (silicon-germanium) BiCMOS technology for low noise, high gain, and high third-order intercept point (IP3) performance. The LNA design minimizes the number of external components required for 50-ohm input and output matching.

Figure 1. Block Diagram

Note: The LNA is susceptible to damage from electrostatic discharge (ESD). Observe normal ESD precautions at all times when handling or using the device.

As shown in Figure 1, the LNA consists of the following:

- Two sets of high/low gain blocks
- Decode logic and bias control circuits
- 50-ohm output matching for the GSM900 band

One gain block set is optimized for the GSM900 band, and the other for the DCS1800/PCS1900 bands. The decode logic and bias control circuits facilitate mode control. The band select input switches between the GSM and DCS/PCS bands. A gain control function selects high or low gain for improved dynamic range and reduced current drain. A power down mode extends battery life. The device is housed in a 10-lead MSOP package with an exposed paddle conductor for RF ground.

Ordering Information

www.ibm.com/chips/support/howtobuy.html

Part Number	Description
IBM3604011S010	GSM Tri-Band Low Noise Amplifier
IBM3604011EVBA	Demonstration Board Assembly

October 3, 2001 Page 1 of 11

Input and Output

Figure 2. Pinout

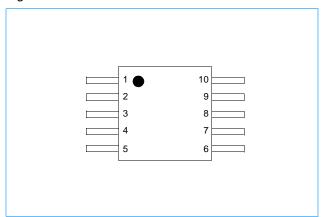
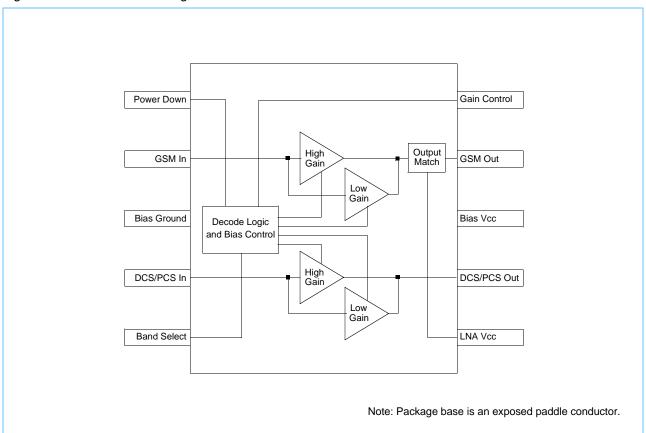



Table 1. Pin Assignments

Pin	Signal	Type	Description
1	Power Down	Input	Power down logic input
2	GSM In	Input	GSM band LNA input
3	Bias Ground	Ground	Bias circuits ground
4	DCS/PCS In	Input	PCS/DCS band LNA input
5	Band Select	Input	Band select logic input
6	LNA Vcc	Power	Positive supply, LNA circuits
7	DCS/PCS Out	Output	PCS/DCS band LNA output
8	Bias Vcc	Power	Positive supply, bias circuits
9	GSM Out	Output	GSM band LNA output
10	Gain Control	Input	Gain control logic, all bands
	IC Ground	Ground	RF ground (exposed paddle)

Figure 3. Functional Block Diagram

Page 2 of 11 October 3, 2001

Electrical and Thermal Characteristics

Table 2. Absolute Maximum and Minimum Ratings

Parameter	Symbol	Min	Max	Units	Notes
Supply Voltage	Bias V _{CC} , LNA V _{CC} , DCS/PCS Out		3.6	volts	All modes
Digital Control Voltage	Power Down, Gain Control, Band Select		3.6	volts	All modes
Continuous Power Dissipation			22	mW	All modes
RF Input Level GSM Input, DCS/PCS Input			+10	dBm	High gain mode
Ki iliput Level	GSW Input, DGS/FGS Input		+10	dBm	Low gain mode
Operating Temperature		-40	+85	°C	
Storage Temperature		-65	+150	°C	
Lead Temperature			240	°C	Soldering for 10 seconds

Table 3. DC Electrical Characteristics (-40 to +85 °C)

Parameter	Symbol	Min	Тур	Max	Units	Notes
Supply Voltage	V _{CC}	2.7	3.0	3.3	volts	
	Icc		5.1	7.0	mA	High gain mode
Supply Current			2.6	3.5	mA	Low gain mode
			1.0	5.0	μΑ	Standby mode
Logic Input Low Voltage Level	V_{IL}	0.0		0.54	volts	
Logic Input High Voltage Level	V _{IH}	2.4		3.3	volts	
Logic Input Low Current	Ι _{ΙL}			-1.5	nA	V _{IL} = 0.0
Logic Input High Current	I _{IH}			1.5	nA	$V_{IH} = V_{CC}$

Table 4. Mode Control Truth Table

Mode	Control Pins					
Wiode	Band Select	Gain Control	Power Down			
Standby	X	X	L			
GSM Low Gain	L	L	Н			
GSM High Gain	L	Н	Н			
DCS/PCS Low Gain	Н	L	Н			
DCS/PCS High Gain	Н	Н	Н			
Note: X = Don't care.						

October 3, 2001 Page 3 of 11

Table 5. AC Electrical Characteristics, GSM900 Band

Parameter	Min	Тур	Max	Units	Notes
Power Gain	17.5	19.5	21.5	dB	High gain mode
Power Gain	-6	-3	0	dB	Low gain mode
Gain Flatness (925 to 960 MHz)		+-0.3		dB	High gain mode
Noice Figure		1.4	1.9	dB	High gain mode
Noise Figure		5	7	dB	Low gain mode
Input Third Order Intercent Deint (IID2)	-6	-4		dBm	High gain mode
Input Third Order Intercept Point (IIP3)	-4	-1		dBm	Low gain mode
Input 1dD Compression	-22.5	-19.5		dBm	High gain mode
Input 1dB Compression	-19.5			dBm	Low gain mode
Input Petura Loca	10	12		dB	High gain mode
Input Return Loss	9	11		dB	Low gain mode
Output Deturn Loop	11	14		dB	High gain mode
Output Return Loss	6	8		dB	Low gain mode
Reverse Isolation	32	40		dB	High gain mode
reverse isolation	28	30		dB	Low gain mode

Note: Characteristics measured with IBM3604011EVBA Demonstration Board Assembly. Optimum external input matching and onchip output matching to 50-ohm terminations. Input power = -30dBm (-21dBm: low gain mode); V_{CC} = 3.0 volts, ambient temperature = 25 °C, and frequency = 940 MHz. Max, Min and Typ values are based on statistical samples from several non-consecutive wafer lots.

Table 6. AC Electrical Characteristics, DCS1800 Band

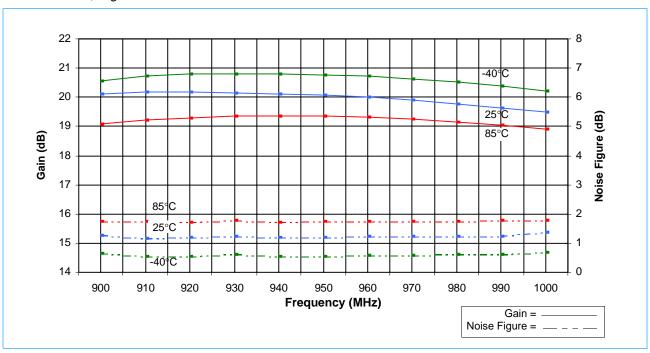
Parameter	Min	Тур	Max	Units	Notes
Power Gain	16	17.5	19	dB	High gain mode
Tower Gain	-4	-1	2	dB	Low gain mode
Gain Flatness (1805 to 1880 MHz)		+-0.3		dB	High gain mode
Noise Figure		1.5	1.9	dB	High gain mode
Noise i iguie		4.5	6.5	dB	Low gain mode
Input Third Order Intercept Point (IIP3)	-4	-1		dBm	High gain mode
mput minu Order intercept i oint (iii 3)	-2.0	+1		dBm	Low gain mode
Input 1dB Compression	-19.5	-17.5		dBm	High gain mode
input rub compression	-17.5			dBm	Low gain mode
Input Return Loss	12	16		dB	High gain mode
	14	18		dB	Low gain mode
Output Return Loss	10	11		dB	High gain mode
Output Netum Loss	12	15		dB	Low gain mode
Reverse Isolation	30	34		dB	High gain mode
iveverse isolation	26	28		dB	Low gain mode

Note: Characteristics measured with IBM3604011EVBA Demonstration Board Assembly. Optimum external input and output matching to 50-ohm terminations. Input power = -30dBm (-21dBm: low gain mode); V_{CC} = 3.0 volts, ambient temperature = 25 °C, and frequency = 1840 MHz. Max, Min and Typ values are based on statistical samples from several non-consecutive wafer lots.

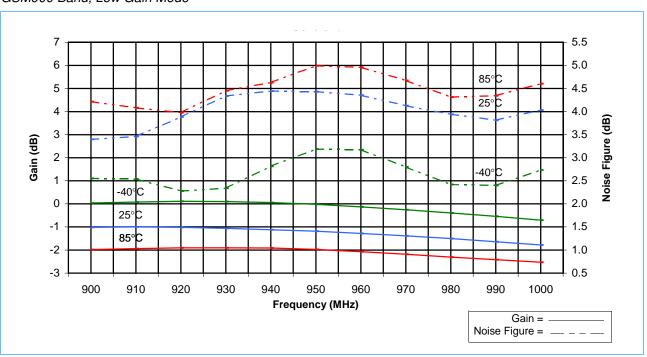
Page 4 of 11 October 3, 2001

Table 7. AC Electrical Characteristics, PCS1900 Band

Parameter Min Typ Max Units Power Gain 14.5 16 17.5 dB -5 -2 +1 dB Gain Flatness (1930 to 1990 MHz) +-0.7 dB Noise Figure 1.9 2.3 dB 5 7 dB	Notes High gain mode Low gain mode High gain mode
Power Gain -5 -2 +1 dB Gain Flatness (1930 to 1990 MHz) +-0.7 dB Noise Figure	Low gain mode
-5 -2 +1 dB Gain Flatness (1930 to 1990 MHz) +-0.7 dB Noise Figure 1.9 2.3 dB	-
Noise Figure 1.9 2.3 dB	High gain mode
Noise Figure	
5 7 dB	High gain mode
	Low gain mode
Input Third Order Intercept Point (IIP3) -2 +1 dBm	High gain mode
-1.5 +1.5 dBm	Low gain mode
Input 1dB Compression -18 -16 dBm	High gain mode
-16 dBm	Low gain mode
Input Return Loss 14 18 dB	High gain mode
14 18 dB	Low gain mode
Output Return Loss 10 13 dB	High gain mode
14 18 dB	Low gain mode
Reverse Isolation 34 37 dB	High gain mode
25 27 dB	Low gain mode

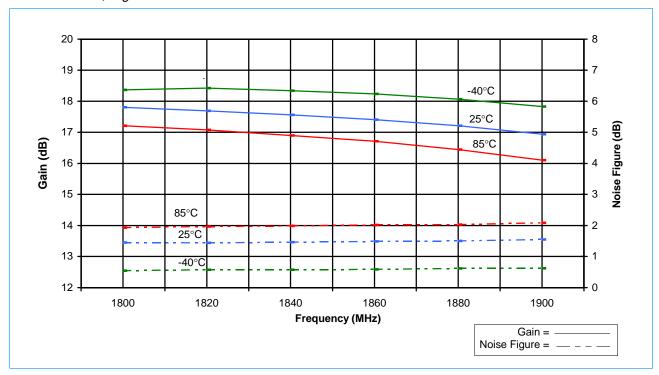

Note: Characteristics measured with IBM3604011EVBA Demonstration Board Assembly. Optimum external input and output matching to 50-ohm terminations. Input power = -30dBm (-21dBm: low gain mode); $V_{CC} = 3.0$ volts, ambient temperature = 25 °C, and frequency = 1960 MHz. Max, Min and Typ values are based on statistical samples from several non-consecutive wafer lots.

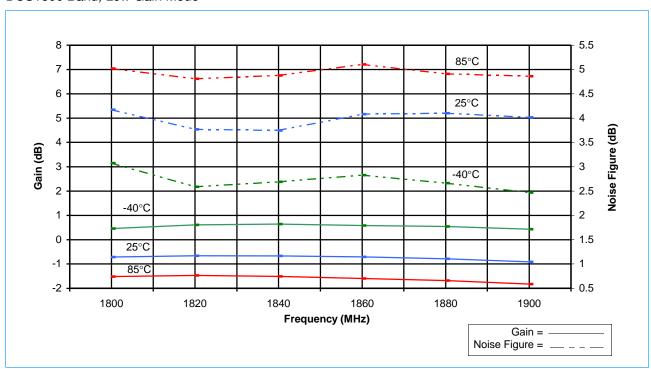
October 3, 2001 Page 5 of 11



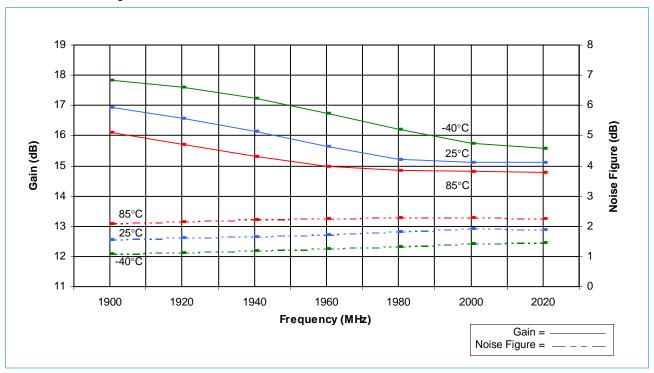
Gain and Noise Figure Plots ($V_{CC} = 3.0V$)

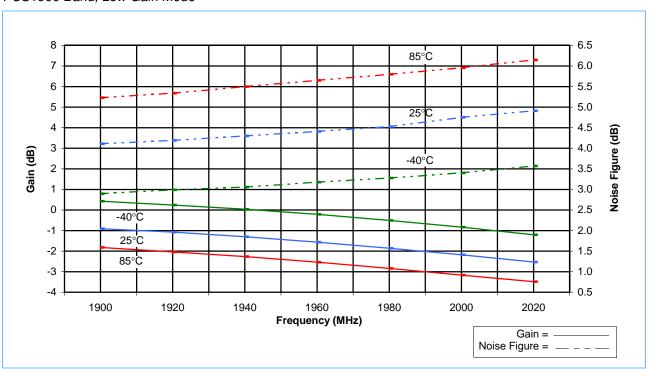
GSM900 Band, High Gain Mode


GSM900 Band, Low Gain Mode

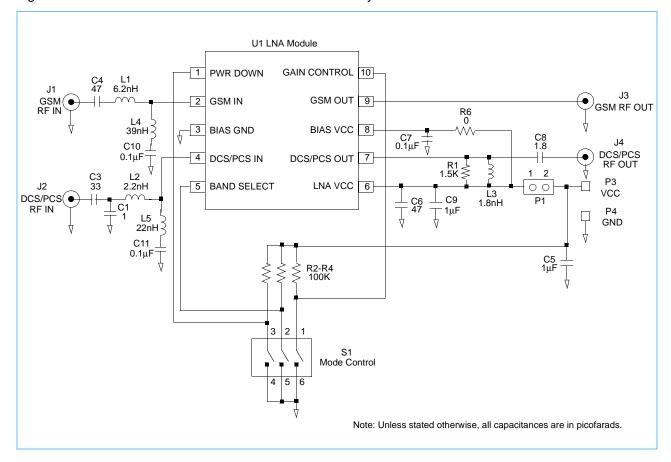

Page 6 of 11 October 3, 2001

DCS1800 Band, High Gain Mode


DCS1800 Band, Low Gain Mode


October 3, 2001 Page 7 of 11

PCS1900 Band, High Gain Mode


PCS1900 Band, Low Gain Mode

Page 8 of 11 October 3, 2001

Figure 4. IBM3604011EVBA Demonstration Board Assembly Schematic

October 3, 2001 Page 9 of 11

Mechanical Information

Figure 5. Package Diagram

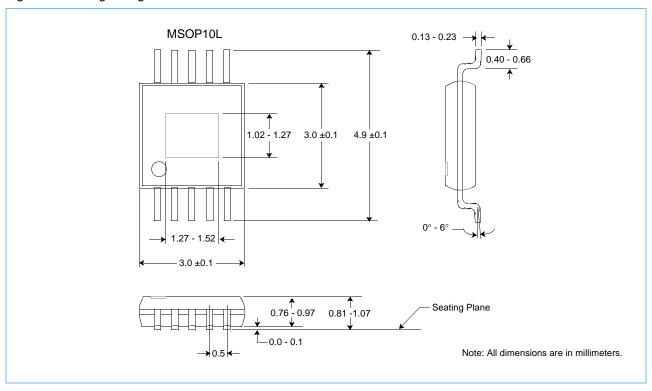
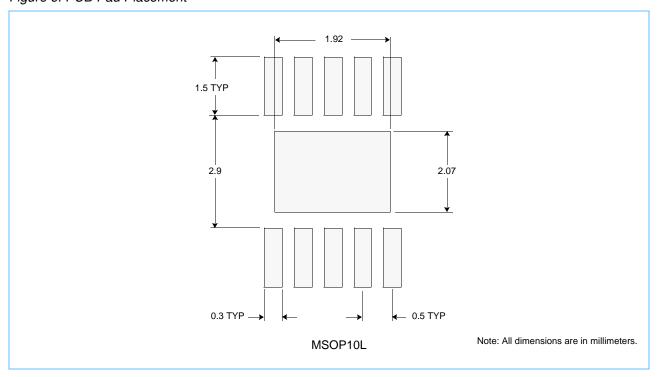



Figure 6. PCB Pad Placement

Page 10 of 11 October 3, 2001

Document Revision Log

Rev.	Contents of Modification
May 4, 2001	Initial release (00), Preliminary.
October 3, 2001	First revision (01). Preliminary removed

Note: This document contains information on products in the sampling and/or initial production phases of development. This information is subject to change without notice. Verify with your IBM field applications engineer that you have the latest version of this document before finalizing a design.

© Copyright International Business Machines Corp. 2001

All Rights Reserved

Printed in the United States of America October 2001

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.

IBM IBM Logo

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division 1580 Route 52, Bldg. 504 Hopewell Junction NY 12533-6351

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics Division home page can be found at http://www.chips.ibm.com

Ina4011_ds_100301.fm.01 October 3, 2001

October 3, 2001 Page 11 of 11