

Features

· Rail-To-Rail operation

• Pin-compatible with 3125 BusSwitch & 74 series 125

Single-Supply operation: 2V to 6V
Low ON-resistance: 8Ω typical @ 5V

• Tight match between channels: 0.9Ω typical

• RON flatness: 3W typical

• Low power consumption: $0.5 \mu\Omega$ typical

• High Speed, $T_{ON} = 8\mu s$ typical

• High-current channel capability: >100mA

• Wide bandwidth: >200 MHz

Applications

• Instrumentation, ATE

· Audio Switching and Routing

• Telecommunications Systems

· Data Communications

• Battery-Powered Systems

· Replaces Mechanical Relays

Precision Wide Bandwidth Analog Switch

Description

Pericom PI5A101 is an all-purpose analog switch designed for single-supply operation from +2V to +6V. This switch is ideal for audio, video, and data switching and routing.

The PI5A101 is a quad SPST (single-pole, single-throw) NC (normally closed) function.

When on, each switch conducts current equally well in either direction. When off, they block voltages up to the power-supply rails.

The PI5A101 is fully specified with +5V and +3.3V supplies. With +5V the R_{ON} is 8Ω typical, making it ideal forreplacing mechanical relays in data communications, test equipment, and instrumentation applications. Matching between channels is better than $2\Omega.$ R_{ON} flatness is better than 4Ω over the specified range.

These analog switches also offer wide bandwidths (>200 MHz high speed ($T_{\rm ON}$ > 15ns), and low charge injection (Q > 10pC).

The PI5A101 is available in the narrow-body 14-pin small SOIC and 16-pin QSOP packages for operation over the industrial (-40°C to +85°C) temperature range.

Functional Diagrams, Pin Configurations and Truth Tables

Switches show for logic "0" input NIC = Not Internally Connected

Logic	Switch
0	ON
1	OFF

Ordering Information

P/N	Package
PI5A101W	Narrow Body SOIC-14
PI5A101Q	QSOP-16

$\textbf{Electrical Specifications - Single +5V Supply} \ \ (V_{CC} = \ +5V \pm 10\%, GND = 0V, \ V_{INH} = 2.4V, \ V_{INL} = \ 0.8V)$

Description	Parameter	Conditions	Temp. (°C)	Min. ⁽²⁾	Typ.(1)	Max. ⁽²⁾	Units
Analog Switch			•				
Analog Signal Range (3)	V _{ANALOG}		Full	0		V _{CC}	V
On-Resistance	R _{ON}	$V_{CC} = 4.5 \text{V}, I_{COM} = -30 \text{mA},$	25		8	10	Ω
OII-RESISTANCE			Full			12	
On-Resistance Match	A.D	V_{NO} or $V_{NC} = +2.5V$	25		0.9	2	
Between Channels (4)	$\Delta R_{ m ON}$		Full			4	
On-Resistance Flatness ⁽⁵⁾	D	$V_{CC} = 5V, I_{COM} = -30mA,$ $V_{NO} \text{ or } V_{NC} = 1V, 2.5V, 4V$	25		3	4	
On-Resistance Flatness	R _{FLAT} (ON)		Full			5	
NO or NC Off	I _{NO(OFF)} or	$V_{CC} = 5.5V, V_{COM} = 0V,$ V_{NO} or $V_{NC} = 4.5V$	25		0.05		nA
Leakage Current ⁽⁶⁾	I _{NC(OFF)}		Full	-80		80	
COM Off Leakage Current ⁽⁶⁾	I _{COM(OFF)}	$V+ = 5.5V, V_{COM} = +4.5V$ $V_{NO} \text{ or } V_{NC} = \pm 0V$	25		0.05		
			Full	-80		80	
COM On Leakage	T	$V_{CC} = 5.5V, V_{COM} = +4.5V$	25		0.07		
Current ⁽⁶⁾	I _{COM(ON)}	V_{NO} or $V_{NC} = +4.5V$	Full	-80		80	
Logic Input			•				
Input High Voltage	V _{INH}	Guaranteed Logic High Level		2			* 7
Input Low Voltage	V _{INL}	Guaranteed Logic Low Level				0.8	V
Input Current with Input Voltage High	I _{INH}	$V_{\rm IN}$ =2.4V, all others = 0.8V	Full	1	0.005	1	
Input Current with Input Voltage Low	I _{INL}	$V_{\rm IN}$ =0.8V, all others = 2.4V		-1	0.005	1	μА

2

$\textbf{Electrical Specifications - Single +5V Supply} \ \ (V_{CC} = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = \ 0.8V) \ \textbf{continued}$

Dynamic							<u> </u>
Torre On Time	4	V _{CC} = 5V, see Figure 1	25		8	15	nc
Turn-On Time	ton		Full			20	
Turn-Off Time	t _{OFF}		25		3.5	7	
Turn-Oil Time			Full			10	
Charge Injection (3)	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V},$ $R_{GEN} = 0 \Omega$, see Figure 2			7	10	pC
Off Isolation	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, f = 10 MHz, see Figure 3			-55		pF
Crosstalk ⁽⁸⁾	I _{COM(OFF)}	$R_L = 50\Omega$, $C_L = 5pF$, f = 10 MHz, see Figure 4	25		-92		
NC or NO Capacitance	C _(OFF)	f= 1kHz, see Figure 5			8		
COM Off Capacitance	C _{COM(OFF)}				8		
COM On Capacitance	C _{COM(ON)}	f= 1kHz, see Figure 6			14		
-3dB Bandwidth	BW	$R_L = 50\Omega$, see Figure 7	E.di		230		MHz
Distortion ⁽⁹⁾	D	$R_{L} = 10k\Omega$	Full		0.03		%
Supply							•
Power-Supply Range	V _{CC}			2		6	V
Positive Supply Current	I _{CC}	V_{CC} = 5.5V, V_{IN} = 0V or V_{CC} , All channels on or off	Full			1	μΑ

3

Absolute Maximum Ratings

Voltages Referenced to GND
V _{CC} 0.5V to +7V
$V_{IN},V_{COM},V_{NC}{}^{(1)}0.5V$ to V_{CC} +2V
or 30mA, whichever occurs first
Current (any terminal except COM, NO, NC)
Current: COM, NO, NC (pulsed at 1ms, 10% duty cycle) 120mA

Thermal Information

Continuous Power Dissipation
Narrow SO & QSOP (derate 8.7mW/°C above +70°C) 650mW
Storage Temperature65°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Note 1.

Signals on NC, COM, or IN exceeding V_{CC} or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications-Single +3.3V Supply $(V_{CC} = +3.3V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Units	
Analog Switch	Analog Switch							
Analog Signal Range ⁽³⁾	Vanalog		Full	0		V _{CC}	V	
On-Resistance	R _{ON}	$V_{CC} = 3V$, $I_{COM} = -30$ mA, V_{NO} or $V_{NC} = 1.5V$	25		12	18		
on resistance	TON		Full			22		
On-Resistance Match	A.D		25		1	2	Ω	
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$	$V_{CC} = 3.3 \text{V}, I_{COM} = -30 \text{mA},$	Full			4		
On-Resistance	R _{FLAT(ON)}	V_{NO} or $V_{NC} = 0.8V$, 2.5V	25		4	10		
Flatness ^(3,5)			Full			12		
Dynamic	Dynamic							
Turn-On Time	t _{ON}	V_{CC} =3.3V, V_{NO} or V_{NC} = 1.5V see Figure 1	25		14	25		
Tun On Tune			Full			40	- ns	
Turn-Off Time	t _{OFF}		25		5	12		
			Full			20		
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nf}$, $V_{GEN} = 0 \text{V}$, $R_{GEN} = 0 \text{V}$, Fig. 2	25		5	10	рC	
Supply								
Positive Supply Current	I_{CC}	$V_{CC} = 3.6V$, $V_{IN} = 0V$ or V_{CC} All channels on or off	Full			1	μА	

Notes:

- 1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.
- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = R_{ON} MAX R_{ON} MIN$
- 5. Flatness is defined as the difference between the maximum and minimum value of on-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} V_B / V_A$. See Figure 3.
- 8. Between any two switches. See Figure 4.
- 9. $D = R_{FLAT(ON)}/R_L$.

 $\textbf{Typical Operating Characteristics} \ (T_{A} = +25^{o}\text{C}, \text{unless otherwise}$ noted)

 $R_{ON}\,$ vs. $V_{COM}\,$ and Temperature A: T_A = 90°C B: T_A = 25°C $V_{CC} = +5V$

Leakage Currents vs. Analog Voltage

Leakage Current vs. Temperature

Charge Injection vs. Analog Voltage

Crosstalk and Off-Isolation vs. Frequency

Insertion Loss vs. Frequency

Switching Times vs. V_{CC}

Supply Current vs. Temperature

Input Switching Threshold vs. Supply Voltage

Switching Times vs. Temperature

Supply Current vs. Input Switching Frequency

Test Circuits/Timing Diagrams

Figure 1. Switching Time

Figure 2. Charge Injection

7

Test Circuits/Timing Diagrams (continued)

Figure 3. Off Isolation

Figure 4. Crosstalk

Figure 5. Channel-Off Capacitance

Figure 6. Channel-On Capacitance

Figure 7. Bandwidth

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com

8

PS7079C 07/23/98