

ptical devices

CONTENTS

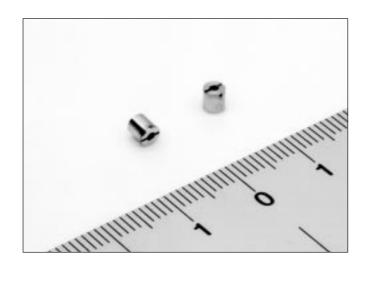
Optical Isolators 3
Polarization Dependent Type
Free Space Type 1.31μm/1.48μm/1.55μm/1.6μm/2.0μm······ 4
0.98μm Free Space Type ······ 8
Miniature Type 1.31μm/1.55μm9
Pig-tail Type 1.31μm/1.55μm11
Polarization Independent Type
In-Line Type 1.55μm 13
0.98μm In-Line Type16
Optical Isolators for Visible and Near Infrared Rays 17
Free Space Type (Wavelength: 0.6 ~ 0.8μm) ······· 18
Optical Circulators
Optical Electric Field Sensors
Optical Remote Antenna
■ Inquiries24

Optical Isolators

Outline

These compact optical isolators use TOKIN-made rare earth bismuth garnet crystals as Faraday rotators.

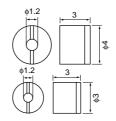
Features

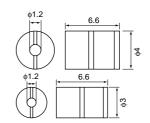

- Employ high-quality rare earth bismuth garnet crystals.
- Compact yet high performance.
- Bonded with solder and YAG laser welding to secure high reliability (PS, PSW and PW series).

Applications

- Light sources for optical fiber communications
- Light sources for optical fiber amplifiers
- * As an optical isolator for excimer laser, 0.98 (m is available aside from 1.48 (m. Pigtail type isolators and micro-miniature isolators for laser downsizing are available to satisfy individual customer requirements.

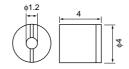
Polarization Dependent Type

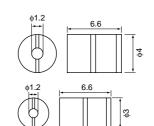

Free Space Type $1.31 \mu \text{m} / 1.48 \mu \text{m} / 1.55 \mu \text{m} / 1.6 \mu \text{m} / 2.0 \mu \text{m}$



Shapes and Dimensions

• PS series


• PSW series



• D200-PS-4M

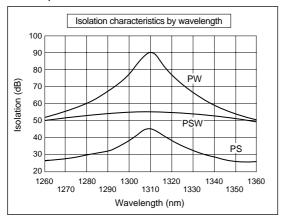
[mm]

Specifications

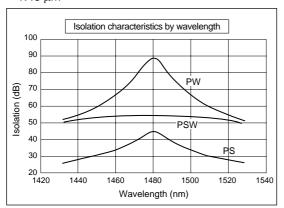
PS series

Code	Center wavelength (μm)	Aperture diameter (mm)	Isolation (dB)	Insertion loss (dB)	Outer dimension (mm)	
D131-PS-4M	1.31					
D148-PS-4M	1.48				ϕ 4	
D155-PS-4M	1.55	·	<0.0			
D131-PS-3M	1.31		>35	≤0.3		
D148-PS-3M	1.48		_00		φ3	
D155-PS-3M	1.55	•				
D162-PS-4M	1.625			<0.F	± 4	
D200-PS-4M	2.00			≤0.5	φ 4	

PSW series

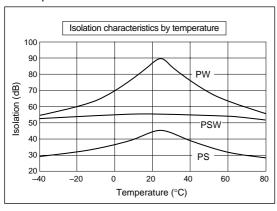

Code	Center wavelength (µm)	Aperture diameter (mm)	Isolation (dB)	Insertion loss (dB)	Outer dimension (mm)
D131-PSW-4M	1.31				
D148-PSW-4M	1.48				ϕ 4
D155-PSW-4M	1.55	<i>φ</i> 1.2	≥50	≤0.7	
D131-PSW-3M	1.31	ψ1.2	≥30	≥0.7	
D148-PSW-3M	1.48				φ3
D155-PSW-3M	1.55				

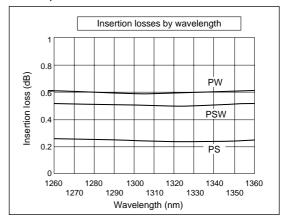
PW series

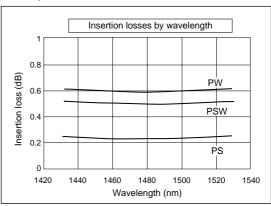

Code	Center wavelength (µm)	Aperture diameter (mm)	Isolation (dB)	Insertion loss (dB)	Outer dimension (mm)
D131-PW-4M	1.31				
D148-PW-4M	1.48				φ4
D155-PW-4M	1.55	<i>φ</i> 1.2	≥60	≤0.7	
D131-PW-3M	1.31	ψ1.2			
D148-PW-3M	1.48				φ3
D155-PW-3M	1.55				

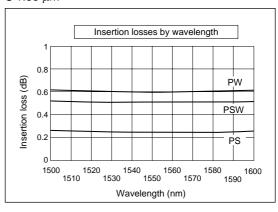
4

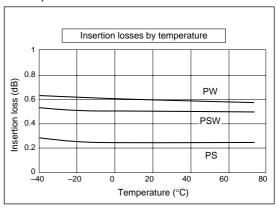

• 1.31 μm

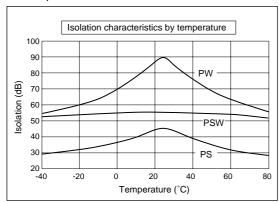

● 1.48 µm

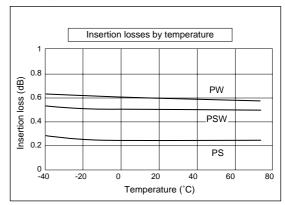

• 1.55 μm

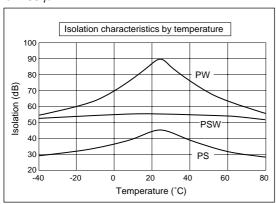

• 1.31 μm

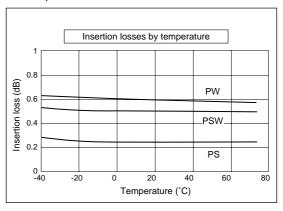

● 1.31 µm

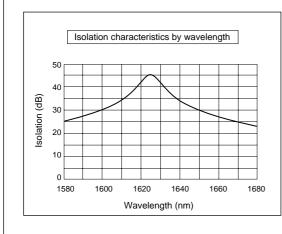

• 1.48 μm

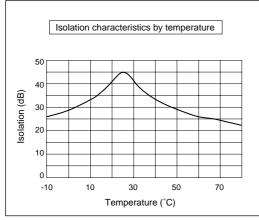

• 1.55 μm

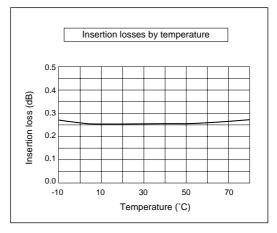

● 1.31 µm


• 1.48 μm

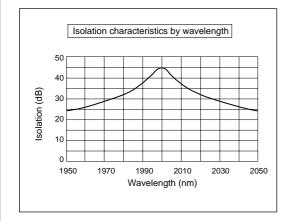

• 1.48 μm

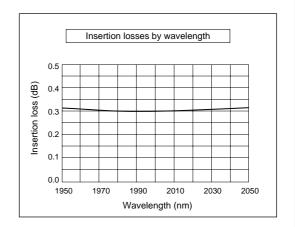

• 1.55 μm

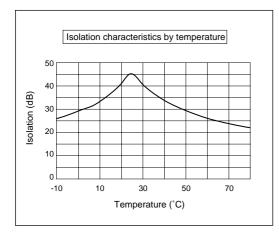

• 1.55 μm

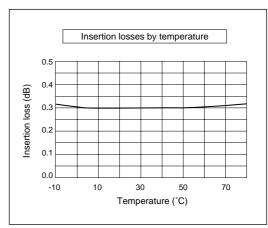


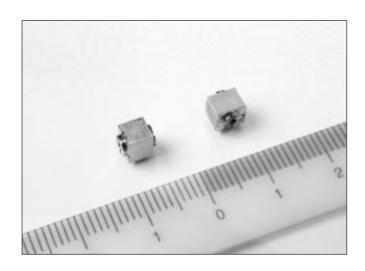
● 1.625 μm

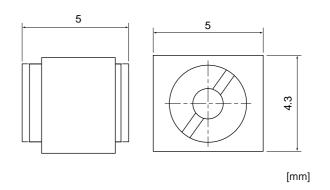




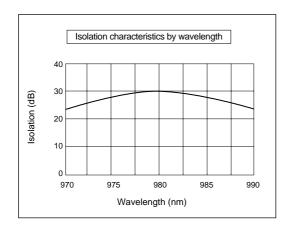


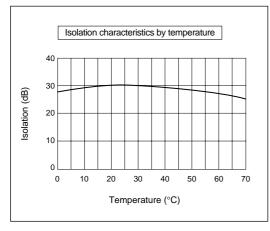


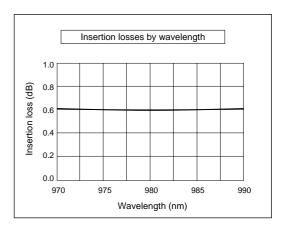


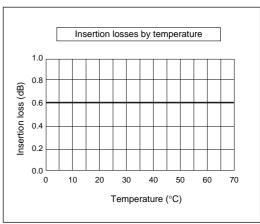


$\mathbf{0.98}\mu\mathbf{m}$ Free Shace Type

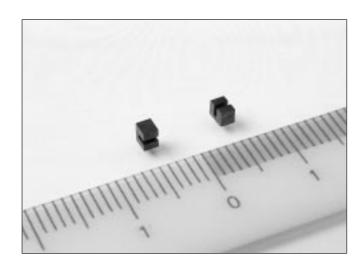


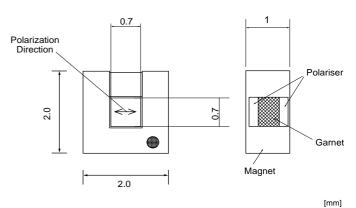

Shapes and Dimensions



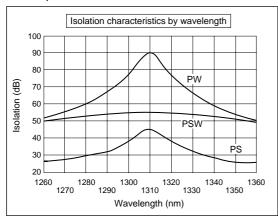

Specifications

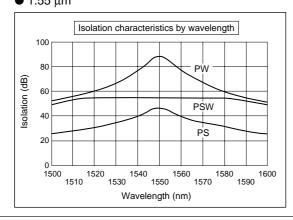
Code	Center wavelength (µm)	Aperture diameter (mm)	Isolation (dB)	Insertion loss (dB)	Dimension (mm)
D98-PS-5M	0.98	φ 1	≥25	≤1.0	$4.3 \times 5 \times 5$



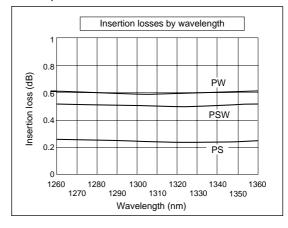


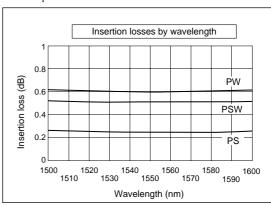
Miniature Type 1.31μ m/ 1.55μ m


Shapes and Dimensions

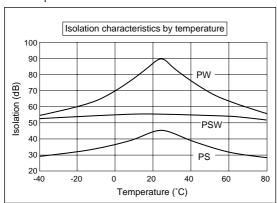

Specifications

Code	Center wavelength (μm)	Aperture diameter (mm)	Isolation (dB)	Insertion loss (dB)	Outer dimension (mm)
D131-PS-3E	1.31	0.7×0.7	≥30	≤0.3	2×2×1
D155-PW-3E	1.55	0.7×0.7	≥30	20.3	2^2^1

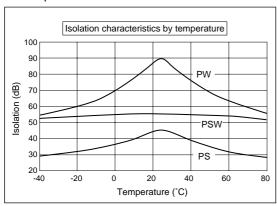

● 1.31 µm


• 1.55 μm

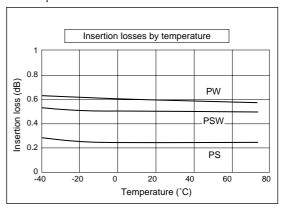
• 1.31 μm

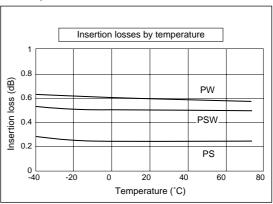


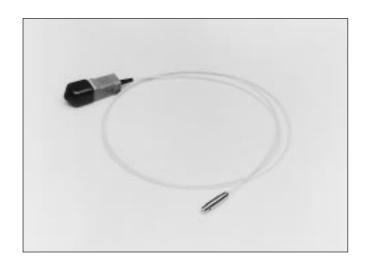
1.55 μm

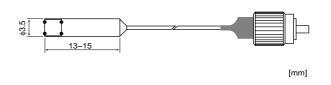


Optical devices


• 1.31 μm

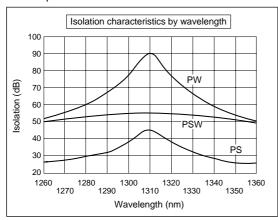

• 1.55 μm


• 1.31 μm

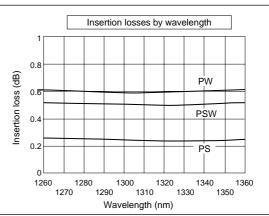

• 1.55 μm

Pig-tail Type $1.31\mu\text{m}/1.55\mu\text{m}$

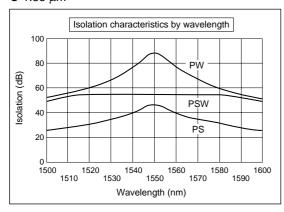
Shapes and Dimensions

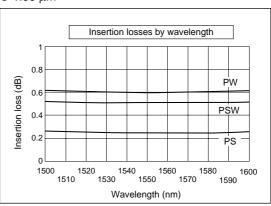


Specifications

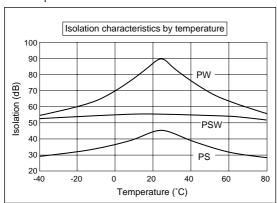

Code	Center wavelength (μm)	Aperture diameter (mm)	Isolation (dB)	Insertion loss (dB)	Outer dimension (mm)	
D131-PS-3E	1.31	- φ 0.65	≥30	≤0.9*	425	
D155-PW-3F	1.55	ψ 0.05	≥30	≥0.9	φ 2.5	

*Includes connector losses.

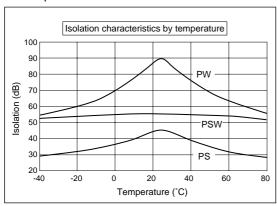

● 1.31 µm


• 1.31 μm

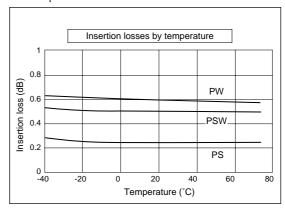
• 1.55 μm

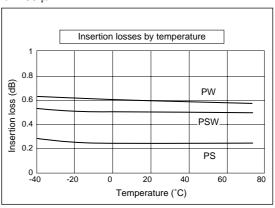


• 1.55 μm



Optical devices


• 1.31 μm

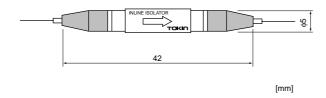

• 1.55 μm

• 1.31 μm

• 1.55 μm

Polarizatior Independent Type

In-Line Type

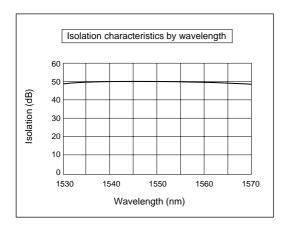

Outline

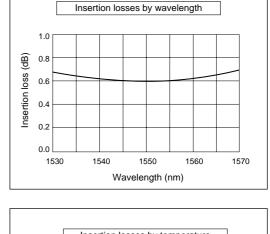
These compact optical isolators use TOKIN-made rare earth bismuth garnet crystals as Faraday rotators. Applicable to the widening of band (C band, L band or wide band) resulting from wavelength division multiplexing.

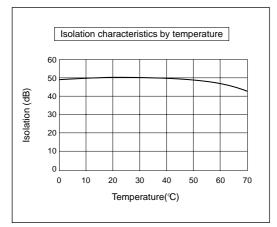
Applications

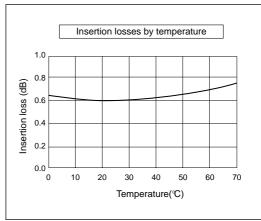
- Light sources for optical fiber communications
- Light sources for optical fiber amplifiers

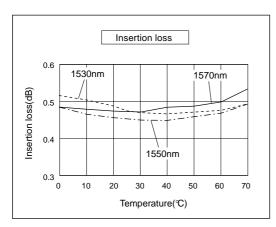
Shapes and Dimensions

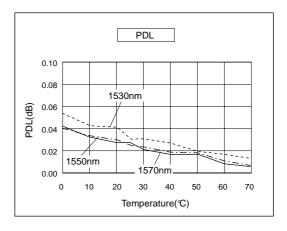


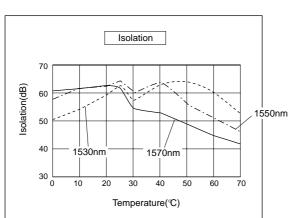

Specifications

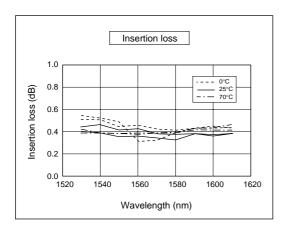

Code	Center wavelength (µm)	Isolation (dB)	Insertion loss (dB)	PDL (dB)	Return loss (dB)	PMD (PS)	Outer dimension (mm)
1155-PW-5EF-C	1.545		≤0.5 (Typical 0.4)				
I155-PW-5EF-L	1.588	≥50		≤0.1 (Typical 0.3) ≥55	≤0.05	ϕ 5
I155-PW-5EF-A	1.535		≤0.6 (Typical 0.5)				

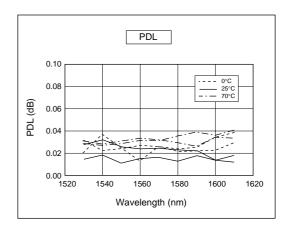

^{*}at center wave I ength and 23°C

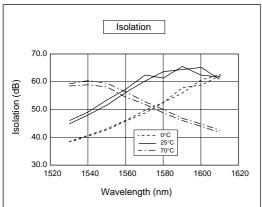

I155-PW-5EF-C

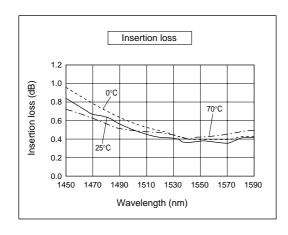


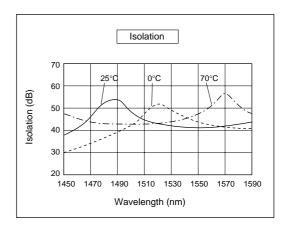




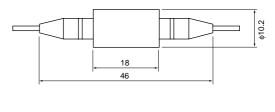




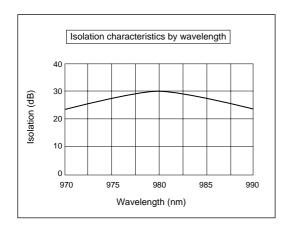

I155-PW-5EF-L

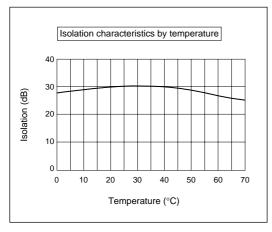


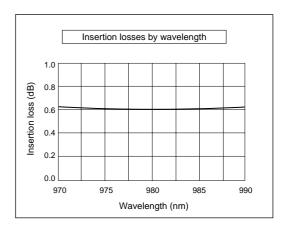
I155-PW-5EF-A

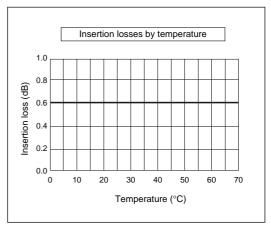


$0.98 \mu m$ In-Line Type


Shapes and Dimensions




[mm]


Specifications

Code	Center wavelength (μm)	Isolation (dB)	Insertion loss (dB)	Return loss (dB)
198-PS-10EF	0.98	≥20 (typical 26)	≤0.8 (typical 0.6)	≥50
I98-PW-10EF	0.98	≥35 (typical 40)	≤1.2 (typical 0.8)	≥50

Optical Isolators for Visible and Near Infrared Rays

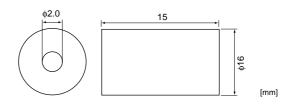
Outline

TOKIN is the first in the world to make practicable optical isolators in which dilute-magnetic semiconductors are used as Faraday rotators.

Applications

- Light sources for optical fiber communications
- Stabilized light sources for optical measurement
- Light sources for optical fiber amplifiers

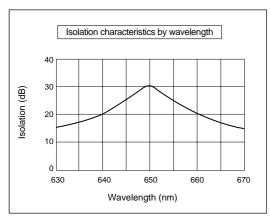
Features

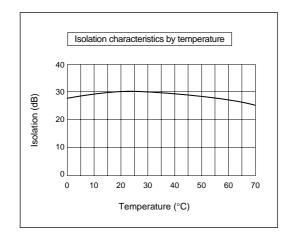

- Employ high-quality dilute-magnetic semiconductors
- These isolators can isolate light in a wide range from visible rays (bandwidth: 0.6–0.8 μm) to near infrared rays (bandwidth: 0.8 to 1.06 μm).
- Ultra-compact design (for $0.98 \mu m$).

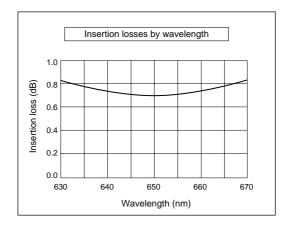
Free Space Type (Wavelength: $0.6~0.8\mu m$)

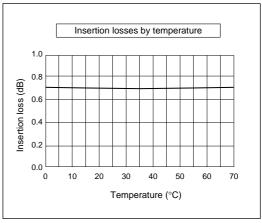
Shapes and Dimensions

• D65-SS-16E/D85-SP-16E

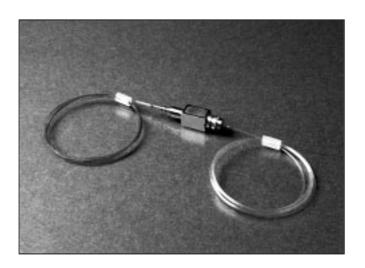



Specifications

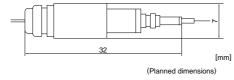

Codo	Center wavelength	Aperture diameter	Isolation	Insertion loss	Outer diameter
Code	(μm)	(mm)	(dB)	(dB)	(mm)
D65-SS-16E	0.65	φ 2.0	≥25	≤1.0	φ 16
D85-SP-16E	0.85	φ 2.0	≥25	≤1.0	φ 16

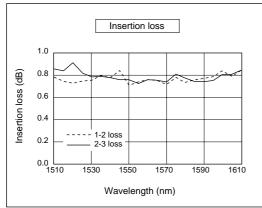

^{*}Ask about the availability of models that isolate other wavelengths.

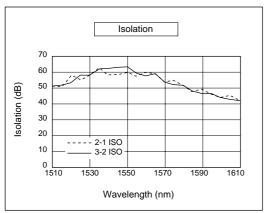
●0.65µm

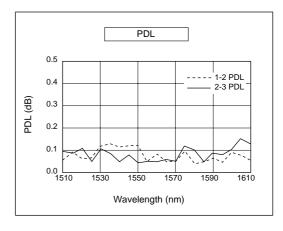


Optical Circulators

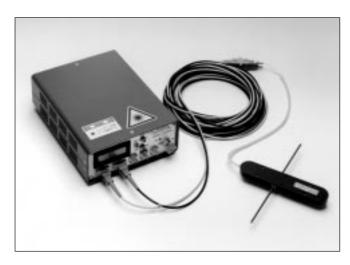

Features


- Low loss and high isolation
- High-reliability
- Compact (low profile) design


Specifications


Code	Center wavelength (μm)	Isolation (dB)	Insertion loss (dB)	PDL (dB)	Return loss (dB)
CLI-155-C	1.55	P2→P1≥40	$P_1 \rightarrow P_2 \leq 0.9$	$P_1 \rightarrow P_2 \leq 0.15$	>40
	1.00	P ₃ →P ₂ ≥40	P ₂ →P ₃ ≤0.9	P ₂ →P ₃ ≤0.15	≥40

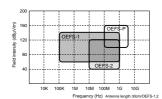
Shapes and Dimensions



Optical Electric Field Sensors

Applications

- Measuring EMC electric field strength and wave forms of radiation noises.
- Measuring electric field strength distribution in electric appliances.


Outline

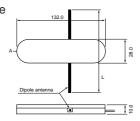
These new-type electric field sensors use optical waveguide sensor heads to convert changes in the strength of electric fields directly into changes in optical strength so as to detect signals.

Features

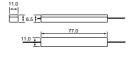
- Minimal use of metal parts (expect for metal rods) causes no disturbance in the electric field
- Small Sensor
 - *OEFS-1, OEFS-2
- Small Sensor with antenna inside
 - *OEFS-PT : Transmission type *OEFS-PR : Reflection type
- Non-inductive: No influence to electric field
- Wide-band/High speed response
- Available to measure with one extension-fiber code *OEFS-PR

Characteristics Chart of the Sensor

Specifications


Item		Specifications					
Mode		OEFS-1	OEFS-2	OEFS-PT	OEFS-PR NEW		
Sensitivity	(dBmV/m)	70~120 (BW 1kHz)	40~120 (BW 1kHz)	90~140 (BW 1kHz)	90~140 (BW 1kHz)		
Frequency	(Hz)	300K~1G	20M~1G	100M~2.5G	100M~2.5G		
Response	(ns)	1	1	1	1		
Output voltage	(dBmv)	≥30	≥70	≥30	≥30		
(Electric Field)	(dDIIIV)	$(100 \text{ dB}\mu\text{V/m})$	(100 dBμV/m)	(100 dB μ V/m)	(100 dBμV/m)		
Light source		LD	LD : YAG	LD	LD		

(mm)


Shapes and Dimensions

Sensor

● OEFS-1, OEFS-2 Type

OEFS-PT

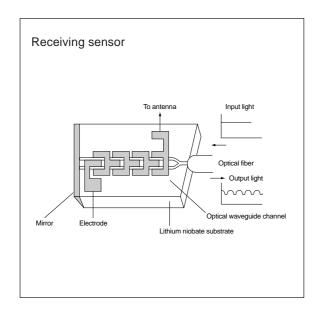
• OEFS-PR

(mm)

Optical Remote Antenna

Features

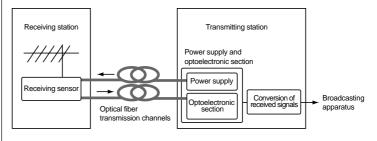
- No need to provide power supply for the receiving station in a duplex TV relay station.
- Not damaged by lightning.
- Significant reduction in maintenance work for receiving stations.


Outline

Optical remote antenna have been commercialized through joint development with NHK. These receivers modulate and transmit non-modulated light sent from a transmitting station to a duplex TV relay station, using radio waves being received. These are epoch-making radio-wave receiver-transmitters where highly sensitive optical modulators are used.

Optical fibers are used as transmission lines. This eliminates the necessity of providing power supplies for the receiving stations, and electrically isolates the transmitting stations from the receiving stations, bringing a substantial benefit in preventing the occurrence of damage due to lightning. Use of passive circuits only in the receiving station improves reliability and serviceability.

Applications


 Radio-wave transmission systems in FM, VHF and UHF bands.

For the receiver, a totally brand-new and originally developed optical modulator is used. The optical modulator, whose design is based on an optical waveguide Lithium niobate crystals and boasts high sensitivity and broad bandwidth, directly converts received signals into optical signals.

In addition, the introduction of a special electrode structure and a resonance circuit realizes high sensitivity.

Example: Optical remote antenna

Example of Standard Specifications (Radio Waves)

Item	Standard specifications
Transmission frequency	Specify one or two channels from among channels 1–12, or channels 13 –62.
Transmission distance	2,000m (maximum)
Fibers used	Single mode
Optical wavelength	Bandwidth : 1.3mm
Light source and optoelectronic section	
Light source	LD-excited YAG laser
Rated level of output optical signals	≤23dBm
Optical connector	FC-PC connector
RF output level	60dBmV±20 (variable by 10dB)
RF output impedance	50Ω TNC-J
CN ratio VHF band	Over 50dB
	(Receiver RF input level: $60dB\mu V$, Measurement frequency band: $6MHz$)
CN ratio UHF band	Over 50dB (Receiver RF input level: 65dB μ V, Measurement frequency band: 6MHz)
DP	±3°
DG	≤3%
Supervisory signal detection	Make contact
Operating temperature range	Operational temperature range where performance is guaranteed
	-10~+45°C (Working temperature range)
Power supply	AC 100V, 50/60Hz, 130W (room temperature)
Dimensions	Body: 149(H)×480(W)×350(D)mm Fan unit: 49(H)×480(W)×350(D)mm (Full projections excluded)
Weight	Body: approx. 10kg, Fan unit: approx. 2kg
Receiving sensor	
Optical connector	FC-PC connector
RF input level	60±20dBμV
RF input impedance	50Ω (N-J connector)
Dimensions	49 (H) x 480 (W) x 250 (D) mm (Full projection excluded)
Weight	Approx. 4kg

Precautions

- The names of the products and the specifications in this catalog are subject to change without notice for the sake of improvement. The manufacturer also reserves the right to discontinue any of these products. At the time of delivery, please ask for specification sheets to check the contents before use.
- Descriptions in this catalog regarding product characteristics and quality are based solely on discrete components. When using these components, be sure to check the specifications with the component in question mounted onto the products.
- The manufacturer's warranty will not cover any disadvantage or damage caused by improper use of the products that deviates from the characteristics, specifications, or conditions for use described in this catalog.
- The products in this catalog are intended for use in ordinary electronic products. If any of these products are to be used in special applications requiring extremely high reliability, where product detects might pose a safety risk, please consult your TOKIN sales representatives.
- Though the manufacturer has taken all possible precautions to ensure the quality and reliability of its products, improper use of products may result in bodily injury, fire, or similar accident. If you have any questions regarding the use of the products in question, please consult your TOKIN sales representatives.
- Please be advised that the manufacturer accepts no responsibility for any infraction by users of the manufacturer's products on third party or industrial copyrights. The manufacturer is responsible only when such infractions are attributable to the structural design of the product and its manufacturing process.
- Should any of these products come under the category of strategic goods or services (according to Japan's foreign trade and foreign exchange regulations), the sender must obtain an export license from the Japanese Government before said products can be exported outside Japan.
- This catalog is current as of September 1999.

For inquiry, please call Sales Promotion Department (JAPAN)
 Phone: 81-3-3402-6218 Fax: 81-3-3402-7617