IRF240SMD #### **MECHANICAL DATA** Dimensions in mm (inches) ## 0.89 (0.035) 3.70 (0.146) 3.41 (0.134) 3.41 (0.134) 3.41 (0.134) 1 3 3 (0.050) 11.58 (0.456) 11.28 (0.456) 11.28 (0.444) # N-CHANNEL POWER MOSFET V_{DSS} 200V $I_{D(cont)}$ 13.9A $R_{DS(on)}$ 0.180 Ω #### **FEATURES** - HERMETICALLY SEALED SURFACE MOUNT PACKAGE - SMALL FOOTPRINT EFFICIENT USE OF PCB SPACE. - SIMPLE DRIVE REQUIREMENTS - LIGHTWEIGHT - HIGH PACKING DENSITIES #### SMD1 PACKAGE Pad 1 – Gate Pad 2 – Drain Pad 3 - Source **Note:** IRFNxxx also available with pins 1 and 3 reversed. ## **ABSOLUTE MAXIMUM RATINGS** (T_{case} = 25°C unless otherwise stated) | $\overline{V_{GS}}$ | Gate – Source Voltage | ±20V | | | |---------------------|--|--------------|--|--| | I_D | Continuous Drain Current $(V_{GS} = 0, T_{case} = 25^{\circ}C)$ | 13.9A | | | | I_D | Continuous Drain Current (V _{GS} = 0 , T _{case} = 100°C) | 8.8A | | | | I _{DM} | Pulsed Drain Current ¹ | 56A | | | | P_{D} | Power Dissipation @ T _{case} = 25°C | 75W | | | | | Linear Derating Factor | 0.6W/°C | | | | E _{AS} | Single Pulse Avalanche Energy ² | 450mJ | | | | dv/dt | Peak Diode Recovery ³ | 5.0V/ns | | | | T_J , T_stg | Operating and Storage Temperature Range | −55 to 150°C | | | | T_L | Package Mounting Surface Temperature (for 5 sec) | 300°C | | | | $R_{ hetaJC}$ | Thermal Resistance Junction to Case | 1.67°C/W | | | | R _{θJ-PCB} | Thermal Resistance Junction to PCB (Typical) | 4°C/W | | | #### **Notes** - 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2% - 2) @ V_{DD} = 50V , L \geq 1.5mH , R_G = 25 Ω , Peak I_L = 22A , Starting T_J = 25°C - 3) @ $I_{SD} \le 13.9 A$, $di/dt \le 150 A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_J \le 150 ^{\circ} C$, SUGGESTED $R_G = 9.1 \Omega$ **Semelab plc.** Telephone +44(0)1455 556565. Fax +44(0)1455 552612. eprione +44(0)1455 556565. Fax +44(0) E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk ### **ELECTRICAL CHARACTERISTICS** (T_{amb} = 25°C unless otherwise stated) | | Parameter | Test Cond | itions | Min. | Тур. | Max. | Unit | | | |---------------------|---|------------------------------------|-------------------------|------------|------|--------|-----------|--|--| | | STATIC ELECTRICAL RATINGS | | | | | | _ | | | | BV _{DSS} | Drain – Source Breakdown Voltage | $V_{GS} = 0$ | I _D = 1mA | 200 | | | V | | | | ΔBV_{DSS} | Temperature Coefficient of | Reference to 25°C | | | 0.00 | | 1//00 | | | | ΔT_{J} | Breakdown Voltage | $I_D = 1mA$ | | | 0.29 | | V/°C | | | | R _{DS(on)} | Static Drain – Source On–State | V _{GS} = 10V | $I_{D} = 8.8A$ | | | 0.180 | Ω | | | | | Resistance ¹ | V _{GS} = 10V | I _D = 13.9A | | | 0.250 | | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}$ | I _D = 250μA | 2 | | 4 | V | | | | 9 _{fs} | Forward Transconductance ¹ | V _{DS} ≥ 15V | I _{DS} = 8.8A | 6.1 | | | S(\Omega) | | | | I _{DSS} | Zero Gate Voltage Drain Current | $V_{GS} = 0$ | $V_{DS} = 0.8BV_{DSS}$ | | | 25 | μΑ | | | | | | | T _J = 125°C | | | 250 | | | | | I _{GSS} | Forward Gate – Source Leakage | V _{GS} = 20V | | | | 100 | T | | | | I _{GSS} | Reverse Gate – Source Leakage | $V_{GS} = -20V$ | | | | -100 | nA | | | | | DYNAMIC CHARACTERISTICS | • | <u>'</u> | | | | .1 | | | | C _{iss} | Input Capacitance | V _{GS} = 0 | | | 1300 | | pF | | | | C _{oss} | Output Capacitance | $V_{DS} = 25V$ | | | 400 | | | | | | C _{rss} | Reverse Transfer Capacitance | f = 1MHz | | 130 | | | | | | | Qg | Total Gate Charge ¹ | V _{GS} = 10V | I _D = 13.9A | 32 | | 60 | nC | | | | | | $V_{DS} = 0.5BV_{DS}$ | s | 32 | | 60 | 110 | | | | Q _{gs} | Gate – Source Charge ¹ | I _D = 13.9A | | 2.2 | | 10.6 | nC | | | | Q _{gd} | Gate – Drain ("Miller") Charge ¹ | $V_{DS} = 0.5BV_{DS}$ | 14.2 | | 37.6 | | | | | | t _{d(on)} | Turn-On Delay Time | $V_{DD} = 100V$
$I_{D} = 13.9A$ | | | | 20 | ns | | | | t _r | Rise Time | | | | | 152 | | | | | t _{d(off)} | Turn-Off Delay Time | | | | | 58 | | | | | t _f | Fall Time | $R_G = 9.1\Omega$ | | | 67 | | | | | | | SOURCE – DRAIN DIODE CHARAC | TERISTICS | | | 1 | | | | | | I _S | Continuous Source Current | | | | | 13.9 | | | | | I _{SM} | Pulse Source Current ² | | | | | 56 | A | | | | V_{SD} | Diode Forward Voltage | I _S = 13.9A | $T_J = 25^{\circ}C$ | | | 1.5 | V | | | | | | $V_{GS} = 0$ | | | | 1.0 | | | | | t _{rr} | Reverse Recovery Time | $I_F = 13.9A$ | $T_J = 25^{\circ}C$ | | | 500 | ns | | | | Q_{rr} | Reverse Recovery Charge | $d_i / d_t \le 100A/\mu$ | s V _{DD} ≤ 50V | | | 5.3 | μC | | | | t _{on} | Forward Turn-On Time | | | Negligible | | | | | | | | PACKAGE CHARACTERISTICS | | | | | | | | | | L _D | Internal Drain Inductance (from centre of drain pad to die) | | | | 0.8 | | nH | | | | L _S | Internal Source Inductance (from centre | of source pad to end | | 2.8 | |] '''' | | | | #### **Notes** - 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2% - 2) Repetitive Rating Pulse width limited by maximum junction temperature. **Semelab plc.** Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk