

IRF240SMD

MECHANICAL DATA

Dimensions in mm (inches)

0.89 (0.035) 3.70 (0.146) 3.41 (0.134) 3.41 (0.134) 3.41 (0.134) 1 3 3 (0.050) 11.58 (0.456) 11.28 (0.456) 11.28 (0.444)

N-CHANNEL POWER MOSFET

 V_{DSS} 200V $I_{D(cont)}$ 13.9A $R_{DS(on)}$ 0.180 Ω

FEATURES

- HERMETICALLY SEALED SURFACE MOUNT PACKAGE
- SMALL FOOTPRINT EFFICIENT USE OF PCB SPACE.
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- HIGH PACKING DENSITIES

SMD1 PACKAGE

Pad 1 – Gate

Pad 2 – Drain

Pad 3 - Source

Note: IRFNxxx also available with pins 1 and 3 reversed.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{V_{GS}}$	Gate – Source Voltage	±20V		
I_D	Continuous Drain Current $(V_{GS} = 0, T_{case} = 25^{\circ}C)$	13.9A		
I_D	Continuous Drain Current (V _{GS} = 0 , T _{case} = 100°C)	8.8A		
I _{DM}	Pulsed Drain Current ¹	56A		
P_{D}	Power Dissipation @ T _{case} = 25°C	75W		
	Linear Derating Factor	0.6W/°C		
E _{AS}	Single Pulse Avalanche Energy ²	450mJ		
dv/dt	Peak Diode Recovery ³	5.0V/ns		
T_J , T_stg	Operating and Storage Temperature Range	−55 to 150°C		
T_L	Package Mounting Surface Temperature (for 5 sec)	300°C		
$R_{ hetaJC}$	Thermal Resistance Junction to Case	1.67°C/W		
R _{θJ-PCB}	Thermal Resistance Junction to PCB (Typical)	4°C/W		

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) @ V_{DD} = 50V , L \geq 1.5mH , R_G = 25 Ω , Peak I_L = 22A , Starting T_J = 25°C
- 3) @ $I_{SD} \le 13.9 A$, $di/dt \le 150 A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_J \le 150 ^{\circ} C$, SUGGESTED $R_G = 9.1 \Omega$

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

eprione +44(0)1455 556565. Fax +44(0)

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter	Test Cond	itions	Min.	Тур.	Max.	Unit		
	STATIC ELECTRICAL RATINGS						_		
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1mA	200			V		
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C			0.00		1//00		
ΔT_{J}	Breakdown Voltage	$I_D = 1mA$			0.29		V/°C		
R _{DS(on)}	Static Drain – Source On–State	V _{GS} = 10V	$I_{D} = 8.8A$			0.180	Ω		
	Resistance ¹	V _{GS} = 10V	I _D = 13.9A			0.250			
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2		4	V		
9 _{fs}	Forward Transconductance ¹	V _{DS} ≥ 15V	I _{DS} = 8.8A	6.1			S(\Omega)		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0$	$V_{DS} = 0.8BV_{DSS}$			25	μΑ		
			T _J = 125°C			250			
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V				100	T		
I _{GSS}	Reverse Gate – Source Leakage	$V_{GS} = -20V$				-100	nA		
	DYNAMIC CHARACTERISTICS	•	<u>'</u>				.1		
C _{iss}	Input Capacitance	V _{GS} = 0			1300		pF		
C _{oss}	Output Capacitance	$V_{DS} = 25V$			400				
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		130					
Qg	Total Gate Charge ¹	V _{GS} = 10V	I _D = 13.9A	32		60	nC		
		$V_{DS} = 0.5BV_{DS}$	s	32		60	110		
Q _{gs}	Gate – Source Charge ¹	I _D = 13.9A		2.2		10.6	nC		
Q _{gd}	Gate – Drain ("Miller") Charge ¹	$V_{DS} = 0.5BV_{DS}$	14.2		37.6				
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 100V$ $I_{D} = 13.9A$				20	ns		
t _r	Rise Time					152			
t _{d(off)}	Turn-Off Delay Time					58			
t _f	Fall Time	$R_G = 9.1\Omega$			67				
	SOURCE – DRAIN DIODE CHARAC	TERISTICS			1				
I _S	Continuous Source Current					13.9			
I _{SM}	Pulse Source Current ²					56	A		
V_{SD}	Diode Forward Voltage	I _S = 13.9A	$T_J = 25^{\circ}C$			1.5	V		
		$V_{GS} = 0$				1.0			
t _{rr}	Reverse Recovery Time	$I_F = 13.9A$	$T_J = 25^{\circ}C$			500	ns		
Q_{rr}	Reverse Recovery Charge	$d_i / d_t \le 100A/\mu$	s V _{DD} ≤ 50V			5.3	μC		
t _{on}	Forward Turn-On Time			Negligible					
	PACKAGE CHARACTERISTICS								
L _D	Internal Drain Inductance (from centre of drain pad to die)				0.8		nH		
L _S	Internal Source Inductance (from centre	of source pad to end		2.8] ''''			

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) Repetitive Rating Pulse width limited by maximum junction temperature.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk