

FEATURES

- Wide Vcc operaation voltage: 2.7V-3.6V
- Very low power consumption:
 Vcc = 3.0V 20mA(Max.)write current
 10mA(Max.) CMOS standby current
 1uA(Typ.) CMOS standby current
- High speed 70 ns access time.
- Input levels are CMOS compatible.
- Automatic power down when chip is deselected.
- Three state outputs.
- Fully static operation.
- Data retention supply voltage as low as 1.5V.
- Easy expansion with CE and OE options.

DESCRIPTION

The IM624000LL is a high performance, very low power CMOS Static Random Access Memory organized as 524,288 words by 8 bits and operates from an very low range of 2.7V to 3.6V supply voltage.

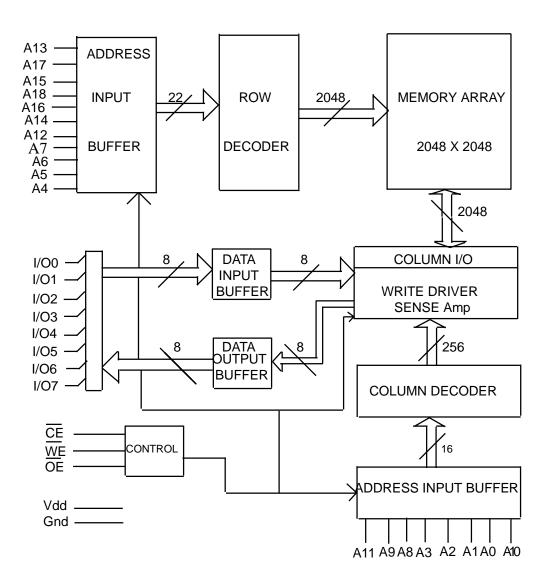
Advanced CMOS technology and circuit techniques provide both high speed and low power features with a typical CMOS standby current of 0.01uA and maximum access time of 70ns in 3V operation.

Easy memory expansion is provided by an active LOW chip enable (\overline{CE}) , and active LOW output enable (\overline{OE}) and three-state output drivers.

The IM624000LL has an automatic power down features, reducing the power consumption significantly when chip is deselected.

The IM624000LL is avaible in the JEDEC standard 32 pin Plastic TSOP and STSOP packages.

PIN CONFIGURATIONS TSOP PACKAGE


A11	1	3	32	ŌĒ
A9	2	(31	A10
A8	3	(30	CE
A1	4	2	29	1/07
WE	5	:	28	1/06
A17	6		27	I/O5
A15	7		26	I/O4
Vcc	8		25	I/O3
A18	9		24	GND
A16	10		23	1/02
A14	11		22	1/01
A12	12		21	I/O0
A7	13		20	A0
A6	14		19	A1
A5	15		18	A2
A4	16		17	А3

PIN NAMES

A0-A18	Address Input
CE	Chip Enable
WE	Write Enable
ŌĒ	Output Enable
I/O0-I/O7	Input/Output
Vcc	Power Supply
Gnd	Ground

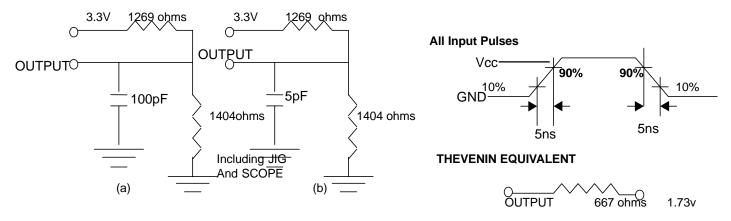
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Terminal Voltage with respesct to GND	0.5 to +6.0
Temperature under Bias	40 to +125 °C
Storage Temperature	60 to +150 °C
Power Dissipation	1.0 W
DC Output Current	20 mA

TRUTH TABLE

MODE	WE	CE	O E	I/O OPER ATION	Vcc CURRENT
Not selected	X	Н	X	High Z	I_{CCSB}, I_{CCSB1}
Output Disable	Н	L	Н	High Z	I_{cc}
Read	Н	L	L	D _{OUT}	I_{cc}
Write	L	L	X	$\mathrm{D_{IN}}$	I_{cc}


CAPACITANCE (TA = 25°C, f = 1.0 MHz)

SYM	BOL	PAR AM ETER	CONDITION	MAX.	UNIT
\mathbf{C}_{1}	IN	Input Capacitance	VIN = 0V	6	pF
C_{I}	DQ.	Input/Output Capacitance	VI/O = 0V	8	pF

AC TEST CONDITION

AC Test Loads and Waveforms

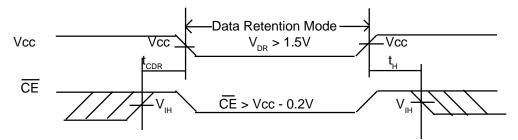
DC ELECTRICAL CHARACTERISTICS(TA=0 TO + 70°C)

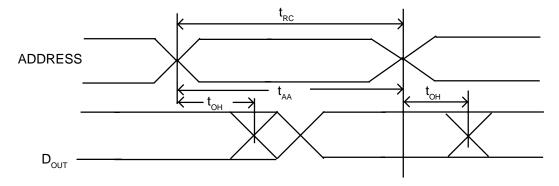
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
Guaranted Input Low Voltage	V _{LL}		-0.5		0.3Vcc	V
Guaranteed Input High Voltage	V _{IH}		2.0		Vcc+0.2	V
Input Leakage Current	I _L	Vcc=Max, V _{IN} =0V to Vcc			1	uA
Output Leakage Current	l _{OL}	Vcc=Max, CE=V _H , or OE=V _H , V _{VO} =0V to Vcc			1	uA
Output Low Voltage	V _{oL}	Vcc=Max, I _{OL} = 2mA			0.4	V
Output High Voltage	V _{OH}	Vcc=Max, I _{OH} =-1mA	2.4			V
Operating Power Supply Current	I _{cc}	CE=V _H OR I _{VO} =0mA			20	mA
Standby Power Supply Current	I _{CCSB}	CE=V _H OR I _{IO} =0mA			1	mA
Power Down Supply Current	L CCSB1	CE >Vcc-0.2V, V _H >Vcc-0.2V or V _H < 0.2V		1	12	uA

AC ELECTRICAL CHARACTERISTICS READ CYCLE

PARAMETER	DESCRIPTION	MIN.	TYP.	MAX.	UNITS
t _{RC}	Read Cycle Time	70			ns
t _{AA}	Address Access Time			70	ns
t _{ACS}	Chip Select Access Time			70	ns
t _{OE}	Output Enable to Output Valid			40	ns
t _{CLZ}	Chip Select to Output Low Z	10			ns
t _{oLZ}	Chip Enable to Output in Low Z	5			ns
t _{CHZ}	Chip Deselect To Output in High Z	0		30	ns
t _{oHZ}	Output Disable to output in High Z	0		25	ns
t _{OH}	Output Disable to Output Address Change	10			ns

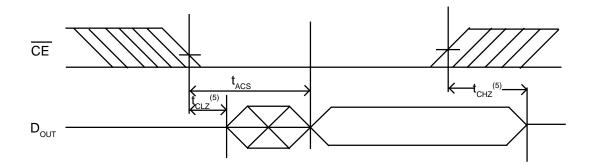
WRITE CYCLE


PARAMETER	DESCRIPTION	MIN.	TYP.	MAX.	UNIT
t _{wc}	Write Cycle Time	70			ns
t _{cw}	Chip Select to End of Write	70			ns
t _{AS}	Address Set up Time	0			ns
t _{AW}	Address Valid to End of Write	70			ns
t _{wP}	Write Pulse Width	50			ns
t _{wR}	Write Recovery Time	0			ns
t _{whz}	Write to Output in High Z	0		30	ns
t _{DW}	Data to Write Time Overlap	35			ns
t _{DH}	Data Hold From Write Time	0			ns
t _{oHZ}	Output Disable to Output In High Z	0		30	ns
t _{ow}	End of Write to Output Active	5			ns

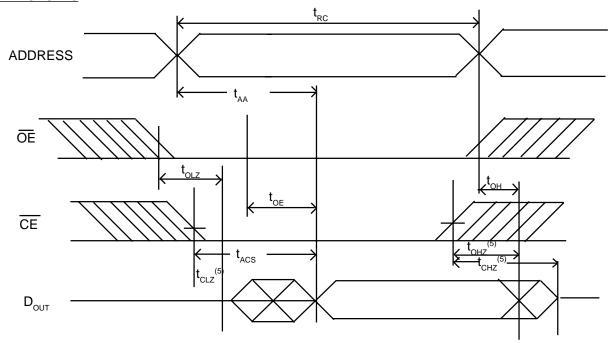

DATA RETENTION CHARACTERISTICS (TA = 0 to + 70°C)

SYMBOL	PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
V _{DR}	Vcc for Data Retention	CE > Vcc- 0.2V VIN>Vcc-0.2V or VIN<0.2V	1.5			V
CCDR	Data Retention Current	CE > Vcc- 0.2V VIN>Vcc-0.2V or VIN<0.2V		0.3	8	uA
t _{CDR}	Chip Deselect to Data Retention Time	See Retention Waveform	0			ns
t _R	Operation Recovery Time	See Retention Waveform	T _{RC}			ns

LOW Vcc DATA RETENTION WAVEFORM

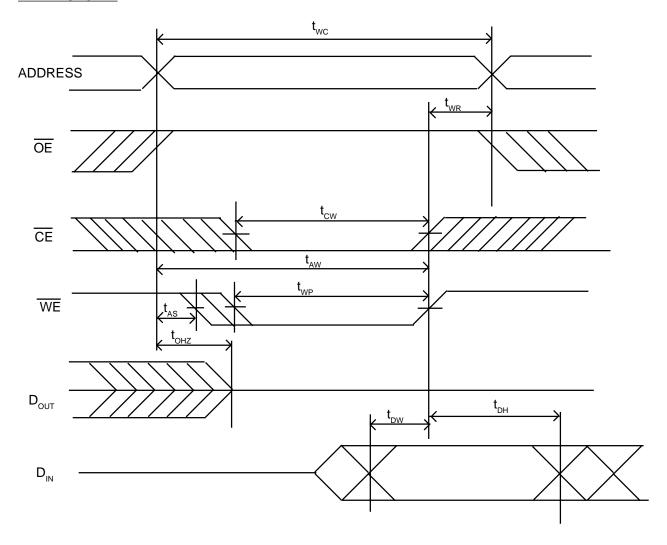


SWITCHING WAVEFORMS (READ CYCLE) READ CYCLE1



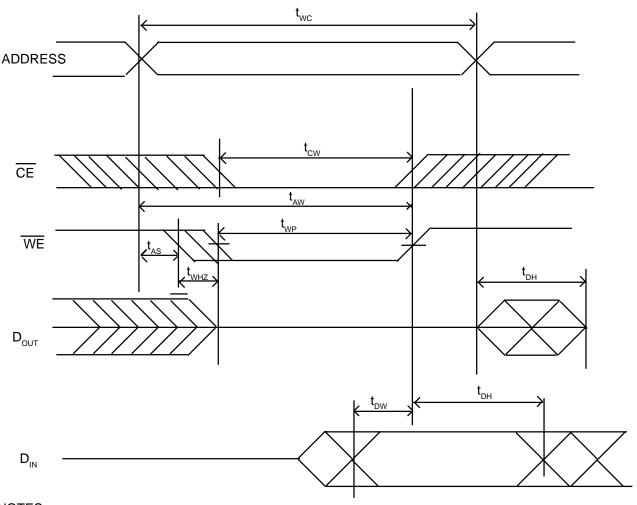
READ CYCLE2

READ CYCLE3



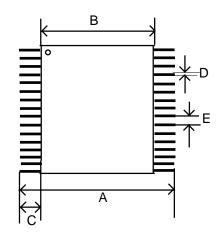
NOTES:

- WE is high for read Cycle.
 Device is continously selected when CE = V_{IL}
 Address valid prior to or coincident with CE transition low.
- 4. $\overrightarrow{OE} = V_{IL}$. 5. Transition is measured +500mV from steady state with $C_{L} = 5pF$.



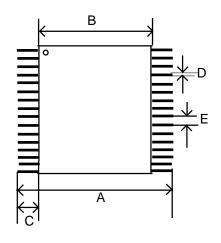
SWITCHING WAVEFORMS (WRITE CYCLE) WRITE CYCLE1 $^{(1)}$

WRITE CYCLE2



NOTES:

- 1. WE must be high during address transitions.
- 2. The internal write time of the memory is defined by the overlap of CE and WE low. All signals must be active to initiate a write and any one signal can terminate a write by going inactive. The data input setup and hold timing should be reference to the second transition edge of the signal taht terminates the write.
- 3. T_{WR} is measured from the earlier of CE and WE going high at the end off write cycle.
 4. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
- 5. If th $\overline{\text{CE}}$ low transition occurs simultaneously with the WE low transitions or after the $\overline{\text{WE}}$ transition, output remain in a high impedance state.
- 6. \overline{OE} is contiously low($\overline{OE} = V_{IL}$). 7. D_{OLIT} is the same phase of write data of this write cycle.
- 8. If CE is low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied.
- 9. T_{cw} is measured from the later of \overline{CE} going low to the end of write.
- 10.D_{OUT} is the read data of next address.



PACKAGE DIAGRAM

TOP VIEW (TSOP - 32)

DIMENSION IN INCHES	MIN.	MAX.
A B C D E	0.787 0.465 0.009 0.020 0.0315	0.795 0.469 0.011 0.024 0.0319

TOP VIEW (STSOP - 32)

DIMENSION IN INCHES	MIN.	MAX.
A B C D E	0.528 0.465 0.009 0.020 0.0315	0.536 0.469 0.011 0.004 0.0319
Е	0.0315	0.0319