
Plastic Fiber Optic Red VCSEL

DESCRIPTION

The IF-E100 is a high-speed red VCSEL (vertical cavity surface emitting laser) housed in a "connector-less" style plastic fiber optic package. The output spectrum of the IF-E100 is produced by a GaAlAs die that peaks at a wavelength of 670 nm, one of the optimal transmission windows of PMMA plastic optical fiber. The device package features an internal micro-lens and a precision-molded PBT housing to ensure efficient optical coupling into standard 1000 μm core plastic fiber cable.

APPLICATION HIGHLIGHTS

The fast transition times of the IF-E100 make it suitable for very high-speed digital data links. Link distances in excess of 100 meters at data rates of 1 Gbps are possible using the Eska Mega® 1000 μm core plastic fiber. The low electrical threshold and very fast bandwidth of this device make plastic optical fiber a design choice previously unavailable.

APPLICATIONS

- ➤ PC-to-Peripheral Data Links
- ➤ Motor Controller Triggering
- ➤ Giga-Bit Local Area Networks
- ➤ Medical Instruments
- Automotive Electronics
- ➤ Digitized Video
- ➤ Electronic Games
- ➤ Robotics Communications
- ➤ Isolation from Lightning and Voltage Transients

FEATURES

- ◆ No Optical Design Required
- ♦ Mates with Eska Mega® 1000 µm Core Jacketed Plastic Fiber Cable
- ◆ Internal Micro-lens for Efficient Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination and Connection
- ◆ Interference-Free Transmission from Light-Tight Housing
- ◆ Low Threshold Current
- ◆ Very Fast Transition Times
- ♦ Visible Light Output

MAXIMUM RATINGS

 $(T_A = 25^{\circ}C)$

Operating and Storage
Temperature Range
(T_{OP}, T_{STG}).....-40° to 85°C

Junction Temperature (T_J) 85°C

Soldering Temperature
(2 mm from case bottom)
(Ts) t≤5s240°C

 $(P_{TOT}) T_A = 25^{\circ}C \dots 100 \text{ mW}$ De-rate Above 25°C \dots 1.75 mW/°C

CHARACTERISTICS $(T_A=25^{\circ}C)$

Parameter	Symbol	Min.	Тур.	Max.	Unit
Peak Wavelength	$\lambda_{ ext{PEAK}}$	660	673	680	nm
Spectral Bandwidth (50% of I _{MAX})	Δλ	-	.2	.3	nm
Output Power Coupled into Plastic Fiber (1 mm core diameter). Lens to Fiber Distance ≤0.1 mm, 10 cm polished fiber, I _F =20 mA	$\Phi_{ ext{min}}$	1000 0	- -		μW dBm
Switching Times (10% to 90% and 90% to 10%) (R_L =47 Ω , I_F =prebiased above threshold)	t _r , t _f	-	-	1	ns
Operating Current	I _F	-	7.0	10.0	mA
Forward Voltage (I _F =20 mA)	V _f	2.0	2.1	2.2	V
Threshold Current	I_{TH}	1.5	3.0	4.0	mA
Threshold Voltage	V_{TH}	2.0	2.1	2.4	V
Slope Efficiency	η	.2	.3	.45	mW mA