# Plastic Fiber Optic Red VCSEL



## APPLICATIONS

- ➤ PC-to-Peripheral Data Links
- ➤ Motor Controller Triggering
- ➤ Giga-Bit Local Area Networks
- ➤ Medical Instruments
- ➤ Low-Current Optical Sensors
- ➤ Digitized Video
- ➤ Electronic Games
- ➤ Robotics Communications
- ➤ Isolation from Lightning and Voltage Transients

#### DESCRIPTION

The IF-E101 is a high-speed red VCSEL (vertical cavity surface emitting laser) housed in an ST® optic device mount. The output spectrum of the IF-E101 is produced by a GaAlAs die that peaks at a wavelength of 670 nm, near one of the optimal transmission windows of PMMA plastic optical fiber. The internal active device features an internal micro-lens to ensure efficient optical coupling into standard 1000 µm core plastic fiber cable. ST® device mount is a low-profile nickel-plated die-cast zinc component.

#### Application Highlights

The fast transition times of the IF-E101 make it suitable for very high-speed digital data links. Link distances in excess of 100 meters at data rates of 1 Gbps are possible using the Eska Mega® 1000 µm core plastic fiber. The high launch power and low electrical input make sensor and high speed data possible that were previously unavailable.

#### **FEATURES**

- No Optical Design Required
- ◆ Mates with Eska Mega® 1000 μm Core Jacketed Plastic Fiber Cable
- Internal Micro-lens for Efficient Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination and Connection
- Interference-Free Transmission from Light-Tight Housing
- ◆ Low Threshold Current
- Very Fast Transition Times
- Visible Light Output

### MAXIMUM RATINGS

 $(T_{\Delta} = 25^{\circ}C)$ 

Operating and Storage Temperature Range  $(T_{\mbox{OP}},T_{\mbox{STG}})$ .....-40° to 85°C Junction Temperature (T<sub>I</sub>) ......85°C/

Soldering Temperature (2 mm from case bottom)

(T<sub>S</sub>) t≤5s.....240°C Reverse Voltage (V<sub>R</sub>)......3 V

Power Dissipation  $(P_{TOT}) T_A = 25 ^{\circ} C \dots 100 \text{ mW}$ 

De-rate Above 25°C .....1.75 mW/°C

## **CHARACTERISTICS** $(T_A=25^{\circ}C)$

| Parameter                                                                                                                                 | Symbol                          | Min.      | Тур.   | Max. | Unit      |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------|--------|------|-----------|
| Peak Wavelength                                                                                                                           | $\lambda_{PEAK}$                | 660       | 673    | 680  | nm        |
| Spectral Bandwidth (50% of I <sub>MAX</sub> )                                                                                             | Δλ                              | -         | .2     | .3   | nm        |
| Output Power Coupled into Plastic Fiber (1 mm core diameter). Lens to Fiber Distance ≤0.1 mm, 10 cm polished fiber, I <sub>F</sub> =20 mA | Φmin                            | 1000<br>0 | -<br>- |      | μW<br>dBm |
| Switching Times (10% to 90% and 90% to 10%) ( $R_L$ =47 $\Omega$ , $I_F$ =prebiased above threshold)                                      | t <sub>r</sub> , t <sub>f</sub> | -         | -      | 1    | ns        |
| Forward Voltage (I <sub>F</sub> =20 mA)                                                                                                   | V <sub>f</sub>                  | 2.0       | 2.1    | 2.2  | V         |
| Operating Current                                                                                                                         | I <sub>F</sub>                  | -         | 7.0    | 10.0 | mA        |
| Threshold Current                                                                                                                         | I <sub>TH</sub>                 | 1.5       | 3.0    | 4.0  | mA        |
| Threshold Voltage                                                                                                                         | $V_{TH}$                        | 2.0       | 2.1    | 2.4  | V         |