Plastic Fiber Optic Red VCSEL ## APPLICATIONS - ➤ PC-to-Peripheral Data Links - ➤ Motor Controller Triggering - ➤ Giga-Bit Local Area Networks - ➤ Medical Instruments - ➤ Low-Current Optical Sensors - ➤ Digitized Video - ➤ Electronic Games - ➤ Robotics Communications - ➤ Isolation from Lightning and Voltage Transients #### DESCRIPTION The IF-E101 is a high-speed red VCSEL (vertical cavity surface emitting laser) housed in an ST® optic device mount. The output spectrum of the IF-E101 is produced by a GaAlAs die that peaks at a wavelength of 670 nm, near one of the optimal transmission windows of PMMA plastic optical fiber. The internal active device features an internal micro-lens to ensure efficient optical coupling into standard 1000 µm core plastic fiber cable. ST® device mount is a low-profile nickel-plated die-cast zinc component. #### Application Highlights The fast transition times of the IF-E101 make it suitable for very high-speed digital data links. Link distances in excess of 100 meters at data rates of 1 Gbps are possible using the Eska Mega® 1000 µm core plastic fiber. The high launch power and low electrical input make sensor and high speed data possible that were previously unavailable. #### **FEATURES** - No Optical Design Required - ◆ Mates with Eska Mega® 1000 μm Core Jacketed Plastic Fiber Cable - Internal Micro-lens for Efficient Coupling - ◆ Inexpensive Plastic Connector Housing - ◆ Connector-Less Fiber Termination and Connection - Interference-Free Transmission from Light-Tight Housing - ◆ Low Threshold Current - Very Fast Transition Times - Visible Light Output ### MAXIMUM RATINGS $(T_{\Delta} = 25^{\circ}C)$ Operating and Storage Temperature Range $(T_{\mbox{OP}},T_{\mbox{STG}})$-40° to 85°C Junction Temperature (T_I)85°C/ Soldering Temperature (2 mm from case bottom) (T_S) t≤5s.....240°C Reverse Voltage (V_R)......3 V Power Dissipation $(P_{TOT}) T_A = 25 ^{\circ} C \dots 100 \text{ mW}$ De-rate Above 25°C1.75 mW/°C ## **CHARACTERISTICS** $(T_A=25^{\circ}C)$ | Parameter | Symbol | Min. | Тур. | Max. | Unit | |---|---------------------------------|-----------|--------|------|-----------| | Peak Wavelength | λ_{PEAK} | 660 | 673 | 680 | nm | | Spectral Bandwidth (50% of I _{MAX}) | Δλ | - | .2 | .3 | nm | | Output Power Coupled into Plastic Fiber (1 mm core diameter). Lens to Fiber Distance ≤0.1 mm, 10 cm polished fiber, I _F =20 mA | Φmin | 1000
0 | -
- | | μW
dBm | | Switching Times (10% to 90% and 90% to 10%) (R_L =47 Ω , I_F =prebiased above threshold) | t _r , t _f | - | - | 1 | ns | | Forward Voltage (I _F =20 mA) | V _f | 2.0 | 2.1 | 2.2 | V | | Operating Current | I _F | - | 7.0 | 10.0 | mA | | Threshold Current | I _{TH} | 1.5 | 3.0 | 4.0 | mA | | Threshold Voltage | V_{TH} | 2.0 | 2.1 | 2.4 | V |