
155 Mbps Plastic Fiber Optic Red LED

APPLICATIONS

- ➤ PC-to-Peripheral Data Links
- ➤ Motor Controller Triggering
- ➤ Ethernet LANs
- ➤ Medical Instruments
- ➤ Automotive Electronics
- ➤ Digitized Video and HDTV
- ➤ Sonet/SDH Transmitters
- ➤ Robotics Communications
- ➤ Isolation from Lightning and Voltage Transients

DESCRIPTION

The IF-E99 is a very high-speed red LED housed in a "connector-less" style plastic fiber optic package. The output spectrum of the IF-E99 is produced by a GaAIAs die that peaks at a wavelength of 650 nm, one of the optimal transmission windows of PMMA plastic optical fiber. The device package features an internal micro-lens, and a precision-molded PBT housing ensures efficient optical coupling into standard 1000 μm core plastic fiber cable.

APPLICATION HIGHLIGHTS

The fast transition times of the IF-E99 make it suitable for high-speed digital data links. Link distances in excess of 75 meters at data rates of 155 Mbps are possible using standard 1000 μ m core plastic fiber and an IF-D98 photologic detector. The wide analog bandwidth permits direct modulation at RF frequencies exceeding 100 MHz. Drive circuit design for the IF-E99 requires good RF and digital design techniques, but is much simpler than required for laser diodes, making it a good low-cost solution in a variety of high frequency POF analog and digital applications.

FEATURES

- ◆ No Optical Design Required
- Mates with Standard 1000 μm Core Jacketed Plastic Fiber Cable
- ◆ Internal Micro-lens for Efficient Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination and Connection
- ◆ Interference-Free Transmission from Light-Tight Housing
- ◆ Excellent Linearity
- ◆ Visible Light Output

MAXIMUM RATINGS

 $(T_{\Lambda} = 25^{\circ}C)$

(1A-23 C)
Operating Temperature Range (TOP)0° to 60°C
Storage Temperature Range (TSTG)40° to 85°C
Junction Temperature (T $_{J})$ 85 $^{\circ}\text{C}$
$\begin{array}{ll} \text{Soldering Temperature} \\ \text{(2 mm from case bottom)} \\ \text{(T}_S) \ t \! \leq \! 5s \ \dots \dots 240^{\circ} C \end{array}$
Reverse Voltage (V_R)
Power Dissipation (P_{TOT}) $T_A = 25^{\circ}C$
De-rate Above 25°C1.33 mW/°C
Forward Current, DC (I_F)40 mA
Surge Current (I _{FSM})

CHARACTERISTICS $(T_A=25^{\circ}C, If=30 \text{ mA})$

<u>Parameter</u>	Symbol	Min.	Тур.	Max.	Unit
Peak Wavelength	λ_{PEAK}	640	650	660	nm
Spectral Bandwidth (50% of I _{MAX})	Δλ	-	10	-	nm
Output Power Coupled into Plastic Fiber	Φ	875	950	1050	μW
(1 mm core diameter). Lens to Fiber distance ≤ .1 mm, 1 meter SH44001 fiber,					
I _F =20 mA		58	2	.21	dBm
Switching Times (10% to 90% and 90% to 10%) (R_L =47 Ω , I_F =10 mA)	t _r , t _f	-	-	-	ns
Capacitance (V _F =0, F=1 MHz)	C ₀	-	10	-	pF
Forward Voltage (I _F =30 mA)	V _f	-	2.05	2.3	V
Cut off frequency	f_C	-	100	-	MHz

Notes:

^{1.} A bypass capacitor $(0.1~\mu F)$ is connected to the lead at a position within 2 mm from the lead end, and a 4.7 μF capacitor is also connected nearby the power supply line.

155 Mbps Plastic Fiber Optic Red LED

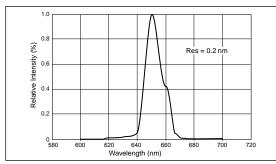


FIGURE 1. Relative intensity versus wavelength.

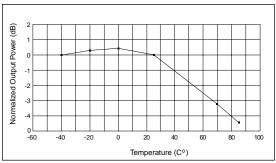


FIGURE 2. Optical Power output versus temperature (IF = 20mA)

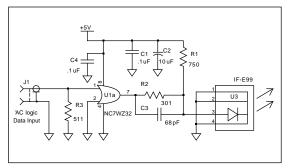


FIGURE 3. Typical interface circuit.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

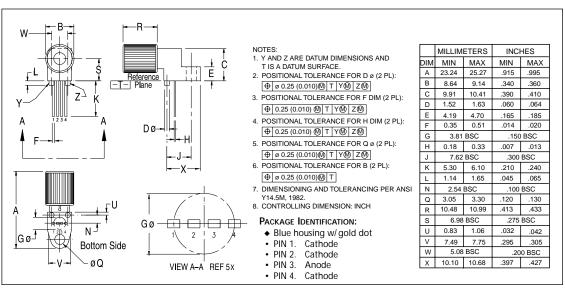


FIGURE 4. Case outline.