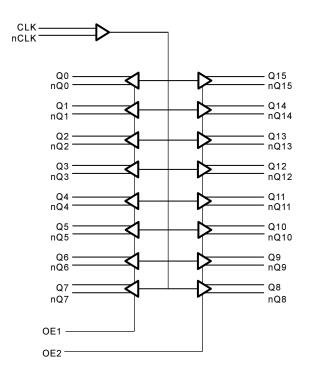
PRELIMINARY

ICS8516 Low Skew 1-to-16 LVDS CLOCK DISTRIBUTION CHIP

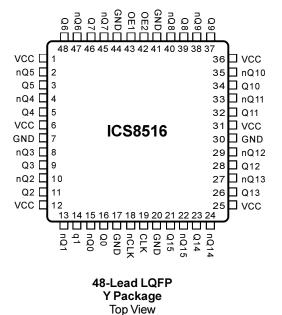
GENERAL DESCRIPTION

The ICS8516 is a low skew, high performance Clock Distribution Chip and a member of the HiPerClockS™ family of High Performance Clock Solutions from ICS. Utilizing Low Voltage Differential Signaling (LVDS) the ICS8516 pro-

vides a low power, low noise, point-to-point solution for distributing clock signals over controlled impedances of 100Ω .


The ICS8516 accepts any differential input levels and translates them to 3V LVDS output levels. Dual output enable inputs allow the ICS8516 to be used in a 1-to-16 or 1-to-8 input/output mode.

Guaranteed output and part-to-part skew specifications make the ICS8515 ideal for those applications demanding well defined performance and repeatability.


FEATURES

- 16 LVDS outputs
- Translates any differential input signal (PECL, HSTL, SSTL, DCM) to LVDS levels without external bias networks
- Translates any single-ended input signal to LVDS with resistor bias on nCLK input
- Translates single-ended input signal to inverted LVDS with resistor bias on CLK input
- Designed to meet or exceed the requirements of ANSITIA/ EIA-644
- · 200ps output skew
- LVCMOS / LVTTL control inputs
- Multiple output enable inputs for disabling unused outputs in reduced fanout applications
- · 3.3V operating supply
- 48 lead low-profile QFP(LQFP), 7mm x 7mm x 1.4mm package body, 0.5mm package lead pitch
- 0°C to 70°C ambient operating temperature

BLOCK DIAGRAM

PIN ASSIGNMENT

The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.

PRELIMINARY

ICS8516 Low Skew 1-to-16 LVDS CLOCK DISTRIBUTION CHIP

TABLE 1. PIN DESCRIPTIONS

Number	Name	Туре		Description
1, 7, 12, 25, 31, 36	VCC	Power		Power supply. Connect to 3.3V.
2, 3	nQ5, Q5	Output		Differential output pair. LVDS interface levels.
4, 5	nQ4, Q4	Output		Differential output pair. LVDS interface levels.
7, 17, 20 30, 41, 44	GND	Power		Power supply. Connect to ground.
8, 9	nQ3, Q3	Output		Differential output pair. LVDS interface levels.
10, 11	nQ2, Q2	Output		Differential output pair. LVDS interface levels.
13, 14	nQ1, Q1	Output		Differential output pair. LVDS interface levels.
15, 16	nQ0, Q0	Output		Differential output pair. LVDS interface levels.
18	nCLK	Input	Pullup	Inverting differential clock input.
19	CLK	Input	Pulldown	Non-inverting differential clock input.
21, 22	Q15, nQ15	Output		Differential output pair. LVDS interface levels.
23, 24	Q14, nQ14	Output		Differential output pair. LVDS interface levels.
26, 27	Q13, nQ13	Output		Differential output pair. LVDS interface levels.
28, 29	Q12, nQ12	Output		Differential output pair. LVDS interface levels.
32, 33	Q11, nQ11	Output		Differential output pair. LVDS interface levels.
34, 35	Q10, nQ10	Output		Differential output pair. LVDS interface levels.
37, 38	Q9, nQ9	Output		Differential output pair. LVDS interface levels.
39, 40	Q8, nQ8	Output		Differential output pair. LVDS interface levels.
42, 43	OE2, OE1	Input	Pullup	Output enable. OE2 controls outputs Q8, nQ8 thru Q15, nQ15; OE1 controls outputs Q0, nQ0 thru Q7, nQ7.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
CIN	Input Capacitance			TBD		pF
COUT	Output Capacitance			TBD		pF

TABLE 3A. CONTROL INPUTS FUNCTION TABLE

Inputs		Outputs				
OE1	OE2	Q0 thru Q7	nQ0 thru nQ7	Q8 thru Q15	nQ8 thru nQ15	
0	0	Hi Z	Hi Z	Hi Z	Hi Z	
1	0	ACTIVE	ACTIVE	Hi Z	Hi Z	
0	1	Hi Z	Hi Z	ACTIVE	ACTIVE	
1	1	ACTIVE	ACTIVE	ACTIVE	ACTIVE	

In the active mode the state of the output is a function of the CLK and nCLK inputs as described in Table 3B.

TABLE 3B. CLOCK INPUTS FUNCTION TABLE

Inputs		Outputs		Input to Output Mode	Polarity	
CLK	nCLK	Q0 thru Q15	nQ0 thru nQ15	input to Output Mode	Polarity	
0	1	LOW	HIGH	Differential to Differential	Non Inverting	
1	0	HIGH	LOW	Differential to Differential	Non Inverting	
0	Biased; NOTE 1	LOW	HIGH	Single Ended to Differential	Non Inverting	
1	Biased; NOTE 1	HIGH	LOW	Single Ended to Differential	Non Inverting	
Biased; NOTE 1	0	HIGH	LOW	Single Ended to Differential	Inverting	
Biased; NOTE 1	1	LOW	HIGH	Single Ended to Differential	Inverting	

NOTE 1: Single ended use requires that one of the differential inputs be biased. The voltage at the biased input sets the switch point for the single ended input. For LVCMOS and LVTTL levels the recommended input bias network is a resistor to VCC, a resistor of equal value to ground and a $0.1\mu F$ capacitor from the input to ground. The resulting switch point is approximately VCC/2 ± 300 mV.

PRELIMINARY

LOW SKEW 1-TO-16 LVDS CLOCK DISTRIBUTION CHIP

ABSOLUTE MAXIMUM RATINGS

Supply Voltage 4.6V

Inputs -0.5V to VDD + 0.5VOutputs -0.5V to VDDO + 0.5V

Ambient Operating Temperature 0°C to 70°C
Storage Temperature -65°C to 150°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of product at these condition or any conditions beyond those listed in the *DC Electrical Characteristics* or *AC Electrical Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

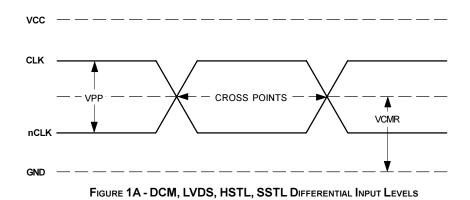
Table 4. DC Electrical Characteristics, VCC=3.3V±5%, Ta=0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
VTH	Differential Input High	Differential Input High Threshold Voltage				100	mV
VTL	Differential Input Low	Threshold Voltage		-100			mV
VPP	Peak-to-Peak Input Vo	oltage					V
VCMR	Common Mode Voltag	ge Range					V
IIH	Input High Current	CLK					μΑ
шп		nCLK, OE1, OE2					μΑ
	Input Low Current	CLK					μA
IIL		nCLK, OE1, OE2					μA
ICC	Operating Supply Cur	Operating Supply Current					mA
VOD	Differential Output Vol	Differential Output Voltage					mV
ΔVOD	VOD Magnitude Char	VOD Magnitude Change					mV
vos	Offset Voltage						V
ΔVOS	VOS Magnitude Char	VOS Magnitude Change					mV
IOZ	High Impedance Leak	age Current					μA

TABLE 5. AC ELECTRICAL CHARACTERISTICS, VCC=3.3V±5%, TA=0°C TO 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
fMAX	Maximum Input Frequency				400	MHz
tpLH	Propagation Delay, Low-to-High	0 < f ≤ 400MHz	1.9		2.9	ns
tpHL	Propagation Delay, High-to-Low	$0 < f \le 400MHz$	1.9		2.9	ns
tsk(o)	Output Skew; NOTE 2				200	ps
tsk(pp)	Part-to-Part Skew; NOTE 3				TBD	ps
tR	Output Rise Time		TBD		TBD	ps
tF	Output Fall Time		TBD		TBD	ps
tPW	Output Pulse Width		tCYCLE/2 - TBD	tCYCLE/2	tCYCLE/2 + TBD	ns
tEN	Output Enable Time				TBD	ns
tDIS	Output Disnable Time				TBD	ns
vox	Output Crossover Voltage		TBD		TBD	V

NOTE 1: All parameters measured at fMAX unless noted otherwise.


NOTE 2: Defined as skew across outputs at the same supply voltages and with equal load conditions. Measured from the differential input crossing point to the differential output crossing point.

NOTE 3: Defined as skew at different outputs on different devices operating at the same supply voltages and with equal load conditions. Measured from the differential input crossing point to the differential output crossing point.

ICS8516 Low Skew 1-to-16 LVDS CLOCK DISTRIBUTION CHIP

FIGURE 1A, 1B, 1C - INPUT CLOCK WAVEFORMS

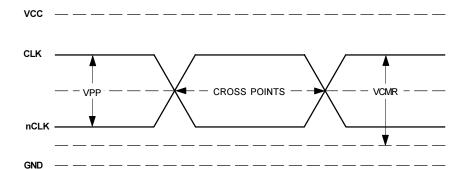
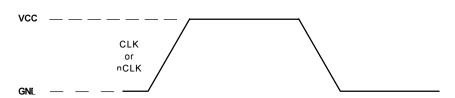
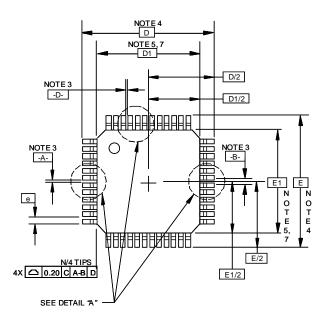
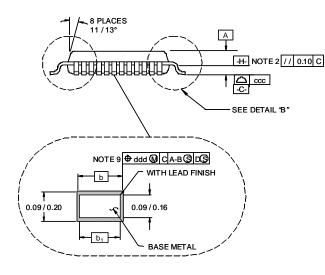
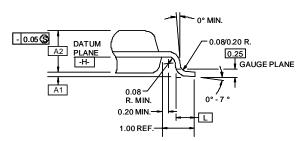


FIGURE 1B - LVPECL DIFFERENTIAL INPUT LEVEL


FIGURE 1C-LVCMOS AND LVTTL SINGLE ENDED INPUT LEVEL



ICS8516 Low Skew 1-to-16 LVDS CLock Distribution Chip

PACKAGE OUTLINE AND DIMENSIONS - Y SUFFIX

NOTES:

- ALL DIMENSIONS AND TOLERANCING CONFORM TO ANSI
 V14.6 1082
- DATUM PLANE -H- LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE.
- DATUMS A-B AND -D- TO BE DETERMINED AT CENTERLINE
 BETWEEN LEADS WHERE LEADS EXIT PLASTIC AT DATUM
 PLANE -H- .
- 4. TO BE DETERMINED AT SEATING PLACE -C-.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 6. "N" IS THE TOTAL NUMBER OF TERMINALS.
- THESE DIMENSIONS TO BE DETEREMINED AT DATUM PLANE -H-.
- 8. PACKAGE TOP DIMENSIONS ARE SMALLER THAN BOTTOM DIMENSIONS AND TOP OF PACKAGE WILL NOT OVERHANG BOTTOM OF PACKAGE.
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE 6 DIMENSION AT MAXIMUM MATERIAL CONDITION.
- CONTROLLING DIMENSION: MILLIMETER.
- 11. THIS OUTLINE CONFORMS TO JEDEC PUBLIBCATION 95 REGISTRATION MS-026, VARIATION BBC.
- A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE.

S Y M B O L	JE ALL DIME	N O T E		
-	MIN.	NOM.	MAX.	
Α			1.60	
A ₁	0.05		0.15	12
A ₂	1.35	1.40	1.45	
D		4		
D ₁		7, 8		
E		4		
E,	7.00 BSC.			7, 8
L	0.45	0.60	0.75	
N		48		
e				
b	0.17	0.22	0.27	9
b1	0.17	0.20	0.23	
ccc			0.08	
ddd			0.08	

ICS8516 Low Skew 1-to-16 LVDS CLOCK DISTRIBUTION CHIP

ORDERING INFORMATION

Part/Order Number Marking		Package	Count	Temperature
ICS8516DY	ICS8516DY	48 Lead LQFP	250 per tray	0°C to 70°C
ICS8516DYT	ICS8516DY	48 Lead LQFP on Tape and Reel	2000	0°C to 70°C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.