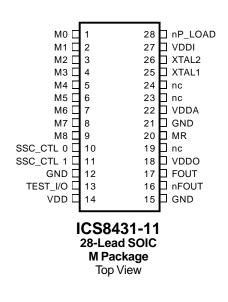


ICS8431-11 CLOCK SYNTHESIZER

GENERAL DESCRIPTION

The ICS8431-11 is a general purpose clock frequency synthesizer and a member of the HiPerClockS™ family of High Performance Clock Solutions from ICS. The VCO operates at a frequency range of 280MHz to 400MHz. The

output frequency can be programmed using the parallel interface, M0 thru M8, to the configuration logic. Spread spectrum clocking is programmed via the Power Up Latch inputs SSC_CTL0 and SSC_CTL1.


FEATURES

- Fully integrated PLL
- Differential 3.3V LVPECL output
- Programmable PLL loop divider for generating a variety of output frequencies.
- · Crystal oscillator interface
- Spread Spectrum Clocking (SSC) fixed at 1/2% modulation for environments requiring ultra low EMI
- Master reset for programming contents of the Power Up Latch
- LVTTL/LVCMOS control inputs
- PLL bypass modes supporting in-circuit testing and on-chip functional block characterization
- 3.3V supply voltage
- 28 lead SOIC
- 0°C to 70°C ambient operating temperature

BLOCK DIAGRAM

osc XTAL2 ÷ 16 PLL PHASE **DETECTOR** VCO ÷ N FOUT -nFOUT TEST I/O Power Up Configuration M0:M8 Logic Latch SSC_CTL0 SSC_CTL1 MR

PIN ASSIGNMENT

The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.

ICS8431-11 CLOCK SYNTHESIZER

FUNCTIONAL DESCRIPTION

The ICS8431-11 features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth. A 16MHz series-resonant, fundamental crystal is used as the input to the on-chip oscillator. The output of the oscillator is divided by 16 prior to the phase detector. With a 16MHz crystal this provides a 1MHz reference frequency. The VCO of the PLL operates over a range of 280 to 400MHz. The output of the loop divider is also applied to the phase detector.

The phase detector and the loop filter force the VCO output frequency to be M times the reference frequency by adjusting the VCO control voltage. Note that for some values of M (either too high or too low) the PLL will not achieve lock. The output of the VCO is scaled by a divider prior to being sent to the LVPECL output buffer. The divider provides a 50% output duty cycle.

The programmable features of the ICS8431-11 support four output operational modes and a programmable PLL loop divider. The four output operational modes are spread spectrum clocking (SSC), non-spread spectrum clock and two test modes and are controlled by the Power Up Latch. After power up the latch is disabled and the initial programmed values can only be overwritten by removing all power to the device or by asserting the master reset input, MR. A HIGH-to-LOW transition on MR latches new data into the Power Up Latch.

Programming the Spread Spectrum Clocking (SSC) feature is accomplished by configuring the internal Power Up Latch. The input to this latch is encoded by the SSC_CTL[1:0] pins which define all functional states after power is applied. Figure 1 shows the timing relationship of the latched SSC_CTL[1:0] in relationship to the PLL power-on condition.

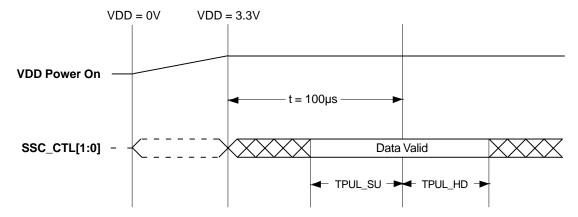


FIGURE 1. POWER-UP CONFIGURATION TIMING

Approximately 100µs after power is applied or a HIGH-to-LOW transistion on MR, the control bits SSC_CTL0 and SSC_CTL1 are latched. TPUL_SU is the time during which the data on the control bits is required to be valid before being latched. TPUL_HD is the time after the data is latched that the control bits are required to remain valid. The configuration latch can be overwritten by removing the power or by asserting MR and applying data to the inputs that meet the setup and hold time requirement during power-on or of the master rest input. The power-on setup and hold time requirements are defined in Figure 1. Table 3A, Control Input Function Table defined the valid commands for SSC_CTL[1:0] lines.

The PLL loop divider or M divider is programmed by using inputs M0 through M8. Normally upon system power-up the nP_LOAD input is held LOW until sometime after power becomes valid. On the LOW-to-HIGH transistion of nP_LOAD, the values present at M[8:0] are captured. The relationship between the VCO frequency, the crystal frequency and the loop counter/divider is defined as follows:

$$fVCO = \frac{fxtal}{16} \times M$$

The M count and the required values of M0:M8 for programming the VCO are shown in Table 3B, Programmable VCO Frequency Function Table. The frequency out is defined as follows:

$$fout = \frac{fVCO}{N} = \frac{fxtal}{16} \times \frac{M}{N}$$

For the ICS8431-11 N equals 2. Valid M values for which the PLL will achieve lock are defined as $280 \le M \le 400$.

ICS8431-11 CLOCK SYNTHESIZER

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	pe	Description
1 -9	M0-M8	Input		M divider inputs. Data latched on LOW-to-HIGH transistion of nP_LOAD input. LVCMOS / LVTTL pins interface levels.
10, 11	SSC CTL 0, SSC CTL 1	Input	Pullup	These LVCMOS / LVTTL pins are sampled during power-up to configure the SSC control.
12	GND	Power		Ground pin for core and test output.
13	TEST I/O	Input / Output		Programmed as input in PLL bypass mode.
14	VDD	Power		Power supply pin for core and test output.
15	GND	Power		Ground pin for output.
16, 17	nFOUT, FOUT	Output		These differential outputs are main output drivers for the synthesizer. They are compatible with terminated positive referenced LVPECL logic.
18	VDDO	Power		Power supply pin for output.
19, 23, 24	nc	Unused		No connection.
20	MR	Input	Pulldown	Reset M counter. Loads and latches data on SSC_CTL0, SSC_CTL1 into Power-Up latch.
21	GND	Power		PLL ground pin.
22	VDDA	Power		PLL power supply pin.
25, 26	XTAL1, XTAL2	Input		Crystal oscillator input.
27	VDDI	Power		Power supply pin for core.
28	nP_LOAD	Input	Pullup	M divider latch enable input. LVTTL / LVCMOS interface levels.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
CIN	Input Capacitance					pF
RPULLUP	Input Pullup Resistor			51		ΚΩ
RPULLDOWN	Input Pulldown Resistor			51		ΚΩ

TABLE 3A. SSC CONTROL INPUT FUNCTION TABLE

Inp	Inputs		SSC	Out	puts	Operational Modes
SSC_CTL1	SSC_CTL0	Source	330	FOUT, nFOUT	TEST_I/O	
0	0	Internal	Disabled	fXTAL ÷ 16 ÷ N	fXTAL ÷ 16 ÷ M	PLL bypass; Oscillator, oscillator, M and N dividers test mode. NOTE 1
0	1	PLL	Enabled	200MHz	Hi-Z	Default SSC; Modulation Factor = ½ Percent
1	0	External	Disabled	Test Clk	Input	PLL Bypass Mode, (1MHz ≤ Test Clk ≤ 200MHz)
1	1	PLL	Disabled	200MHz	Hi-Z	No SSC Modulation

NOTE 1: Used for in house debug and characterization.

TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE

VCO Frequency	M O	256	128	64	32	16	8	4	2	1
(MHz)	M Count	M8	M7	М6	M5	M4	М3	M2	M1	MO
250	250	0	1	1	1	1	1	0	1	0
251	251	0	1	1	1	1	1	0	1	1
252	252	0	1	1	1	1	1	1	0	0
253	253	0	1	1	1	1	1	1	0	1
•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•
498	498	1	1	1	1	1	0	0	1	0
499	499	1	1	1	1	1	0	0	1	1
500	500	1	1	1	1	1	0	1	0	0

ICS8431-11 **CLOCK SYNTHESIZER**

ABSOLUTE MAXIMUM RATINGS

Storage Temperature

Supply Voltage 4.6V

Inputs -0.5V to VDD + 0.5V Outputs -0.5V to VDDO + 0.5V 0°C to 70°C **Ambient Operating Temperature** -65°C to 150°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of product at these condition or any conditions beyond those listed in the DC Electrical Characteristics or AC Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

TABLE 4A. LVTTL, LVCMOS DC ELECTRICAL CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V±5%, TA = 0°C TO 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
VDDA, VDDO, VDD	Power Supply Voltage			3.135	3.3	3.465	V
VIH	Input High Voltage	M0:M8, SSC_CTL0, SSC_CTL1, TEST_I/O	3.135V ≤ VDD ≤ 3.465V	2		3.765	V
VIL	Input Low Voltage	M0:M8, SSC_CTL0, SSC_CTL1, TEST_I/O	3.135V ≤ VDD ≤ 3.465V	-0.3		0.8	V
IIH	Input High Current	M0:M8, SSC_CTL0, SSC_CTL1	VDD = VIN = 3.465V			50	μΑ
	TEST_I/O		VDD = VIN = 3.465V			50	μA
IIL	Input Low Current	M0:M8, SSC_CTL0, SSC_CTL1	VDD = 3.465V, VIN = 0V	-600			μΑ
	TEST_I/O		VDD = 3.465V, VIN = 0V	-50			μΑ

TABLE 4B. LVPECL DC ELECTRICAL CHARACTERISTICS, VDD = VDDA = VDDO = 3.3V±5%, TA = 0°C TO 70°C

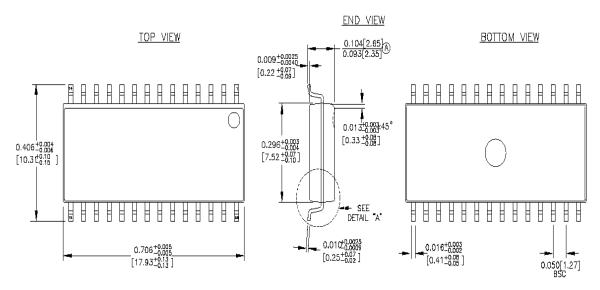
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
VOH	Output High Voltage; NOTE 1, 2	VDDx = 3.3V	2.1		2.2	V
VOL	Output Low Voltage; NOTE 1, 2	VDDx = 3.3V	1.4		1.5	V
VSWING	Peak-to-Peak Output Voltage Swing		600		800	V
IOH	Output High Current		16		18	mA
IOL	Output Low Current		2		4	mA

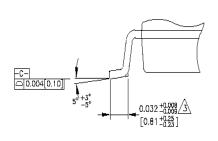
NOTE 1: These values are for VDDO equal to 3.3V. Output levels will vary 1:1 with VDDO.

NOTE 2: Output terminated with 50Ω to VDDO - 2V.

TABLE 5. CRYSTAL CHARACTERISTICS

Parameter	Test Conditions	Min	Тур	Max	Units
Crystal Cut	Mode of Oscillation				
Frequency Tolerance					ppm
Frequency Stability					ppm
Drive Level					μW
Equivalent Series Resistance (ESR)					Ω
Shunt Capacitiance					pF
Series Pin Inductance					nH
Aging					ppm


ICS8431-11 CLOCK SYNTHESIZER


Table 6. AC Electrical Characteristics, VDD = VDDA = VDDO = 3.3V±5%, TA = 0°C TO 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
tjit	Peak Jitter (Short Cycle); NOTE 1					50	ps
tDC	Output Duty Cycle;	NOTE 1		47		53	%
tR	Output Rise Time		20% to 80%	300		800	ps
tF	Output Fall Time		20% to 80%	300		800	ps
Fm	SSC Modulation Frequency			30		33.33	KHz
Fmf	SSC Modulation Factor			0.5			%
tLOCK	PLL Lock Time					TBD	μs
tPW	Input Pulse Width	nP_LOAD		TBD			ns
tS	Cotus Time	SSC_CTLx to MR		10			ns
IS	Setup Time	M to nP_LOAD		TBD			
tH	Hold Time	SSC_CTLx to MR		0			ns
1.17	Hold Time	M to nP_LOAD		TBD			
tPUL_SU	Configuration Latch Setup Time			10			ns
tPUL_HD	Configuration Latch	Hold Time		0			ns

NOTE 1: Spread spectrum clocking enabled.

PACKAGE OUTLINE AND DIMENSIONS - M SUFFIX

DETAIL "A"

NOTES:

- 1. DIMENSIONS ARE IN INCHES[MM],
 2. CONTROLLING DIMENSION: INCHES.
 3. DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS, EITHER OF WHICH SHALL NOT EXCEED 0.006[0.15] PER SIDE.
 4. MAXIMUM AND MINIMUM SPECIFICATIONS ARE
- INDICATED AS FOLLOWS: MAX

ICS8431-11 CLOCK SYNTHESIZER

ORDERING INFORMATION

Part/Order Number	Marking	Package	Count	Temperature
ICS8431AM-11	ICS8431AM-11	28 Lead SOIC		0°C to 70°C
ICS8431AM-11T	ICS8431AM-11	28 Lead SOIC on Tape and Reel		0°C to 70°C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.