
iniCAN-Observer

Features:

Ref.Nr.: 311-DS-30 / 07/99

data sheet

Memec Design Services
Memec Inicore AG
Mattenstrasse 6a,CH-2555 Brügg, Switzerland
Tel: ++41 32 374 32 00, Fax: ++41 32 374 32 01
E-mail: ask_us@inicore.ch
http://www.mds.ch.memec.com

• CAN Bus Analyser
• CAN 2.0B, 1Mbit/s (and faster)
• Structured Model Description (SD)
• Technology Independent

(ASIC and FPGA)
• Synthesisable VHDL Model
• Fully Synchronous Design
• Parallel Interfaces for Configuration and

Message Transfer
• Access to All Internal Status
• Error Reporting

CAN2.0B, originally developed for the European
car industry, is a fast, secure, and cost-effective data
bus for multi-master and real-time applications. In
addition to automotive applications, it is suitable as
a general data bus for industrial control functions.
Example applications of the CANbus are in the
service automation and textile machine industries.

INICORE created the structured VHDL CAN-Observ-
er model for simulation and synthesis for any target
technology. It can be interfaced via any type of mi-
croprocessor interface due to the parallel easy to
handle message interface. The core contains the com-
plete data link layer, including the framer, receive con-
trol, error handling, error reporting, and
synchronization. Further, special error handling fea-
tures are implemented to give best possible robustness
in case of local errors. Its structured core design and
flexible interface enables access to each internal status,
error counter, and frame reference.

INICORE delivered CAN cores for car manufacturers,
textile machines, service automation etc. Newer appli-
cations will also use CAN as a general bus medium in
smaller systems.

INICORE - the reliable Core and System Provider.
We provide high quality IP, design expertise and
leading edge silicon to the industry.

iniCAN-Observer

Config

CAN

Status,
error counters

RX msg

rx_rdy

RX

Fr
am

er

B
itS

yn
c

Bus

http://www.inicore.ch


Memec Design Services iniCAN-Observer data sheet
1 Overview The iniCAN-Observer core is design for data link layer observer with parallel interfaces
and event communication. Microprocessor specific interfaces must be built around the ini-
CAN-Observer, as well as message filters, interrupt controllers and status reporting cir-
cuits. The following picture shows all inputs and outputs:

1.1 Event
communication

For communicating events, the iniCAN core uses or produces always active ‘1’ pulses,
which are activated for only one clk cycle. In the inactive state, they remain low with
respect to the rising clk edge, so glitches may occur. For communicating over clock
domains, these events must be synchronized first!

The parameters tsetup, thold and tpd are technology dependent and must be determined
according to the choose technology.

can_config(18:0)

clk (> 8MHz)

reset_n

stop_ctrl(1:0)

int_events(6:0)

rx_data(63:0)

rx_id(28:0)

rx_dlc(3:0)

rx_rtr

rx_ide

rx_msg_rdy

stop_status(1:0)

can_rx_bus

iniCAN-Observer p
hy

si
ca

l l
ay

er
re

ce
iv

e 
bu

ff
er

st
at

u
s 

re
p

o
rt

clk

event input
tsetup thold

event

event output
tpd tpd
Ref.Nr.: 311-DS-30 Page 2 of 7



Memec Design Services iniCAN-Observer data sheet
2 IO description The following part lists the input and output ports of the iniCAN-Observer core and gives
a short overview of their functionality.

2.1 General
inputs

These pins are used to clock and initialize the whole iniCAN-Observer core. There are no
other clocks in this core.

2.2 Configuration The configuration pins are used to set the bitrate, bit timing and output format. They’re
static inputs.

pin name type description

clk in system clock, at least 8MHz for 1 Mbit/s transmission speed

reset_n in asynchronous system reset, active low

pin name type description

bitrate[7:0] in defines the time quantum (TQ); one TQ is (bitrate + 1)/clk
e.g. for 1Mbit/s and 8MHz clk: bitrate = 0

tseg1[3:0] in (tseg + 1) = number of TQ in the first bit time segment:
tseg1 = 0 and tseg1 = 1 are not allowed!
e.g. for 1Mbit/s and 8MHz clk: tseg1 = 3

tseg2[2:0] in (tseg + 1) = number of TQ in the second bit time segment:
tseg2 = 0 is not allowed, tseg2 = 1 is only allowed for direct
sampling mode.
e.g. for 1Mbit/s and 8MHz clk: tseg2 = 2

sjw[1:0] in (sjw + 1) = sync jump width (TQ) in case of resynchronisation

sampling in defines the sampling mode of the incoming message:
‘0’ : direct sampling (1 point)
‘1’ : 3 point sampling with majority decision

edge_mode in defines, which edges on the incoming messages are used for
resyncronisation:
‘0’ : use only R-D edges
‘1’ : use R-D and D-R edges
Ref.Nr.: 311-DS-30 Page 3 of 7



Memec Design Services iniCAN-Observer data sheet
2.3 Start - stop
controlling

For controlling the iniCAN core, there are two event inputs for starting and user stop con-
trol and two outputs for start - stop status information.

2.4 Error
Reporting

For tracing the protocol, the following events are reported:

2.5 Receive data
signals

The following list contains all needed signals for receiving messages.

pin name type description

stop_ctrl
.clr_stop

in Event sets the iniCAN in the ‘run’ mode
After reset, the CAN will go in ‘run’ mode after synchroniza-
tion phase (default = ‘run’ mode).

stop_ctrl
.set_stop

in Event sets the iniCAN in the ‘stop’ mode, as soon the protocol
allows it (bus idle). So no protocol errors are generated when
the can is stopped.

stop_status
.want_stop

out ‘1’ means, that the iniCAN will stop as soon as possible (when
in bus idle)

stop_status
.grant_stop

out ‘1’ means, that the iniCAN is in the user stop mode.

pin name type description

int_events[6:0] out Error events are generated in following situations:
.crc_err : crc value doesn’t match
.form_err : format (delimiters etc.) is not correct
.ack_err : a received message was not acknowledged
.stuff_err: stuff error, e.g. while receiving an active error flag
.bit_err: when rx pin doesn’t equal (internal) tx pin
.frame_err: an error frame is generated after error cond.
.overload: when overload flag occurs

frame_ref out The whole internal framer status is available on the frame ref-
erence record. It contains the following signals:
.field[4:0] : actual message field (coding see below)
.bit_nr[6:0] : actual bit number in the message field
.rx_mode : active ‘1’ when in receive mode
.tx_mode : active ‘1’ when in transmit mode
.stuff_ind : active ‘1’ when a stuff bit is inserted
.remote_ind : the RTR bit, valid at the end of frame
.extended_ind : the IDE bit, valid at the end of rame
.rx_msg_valid : event for a successfully received message
.tx_msg_valid : not used for iniCAN-Observer

pin name type description

rx_msg_data
[63:0]

out The received data. The first data byte is represented in bits
[63:56], the second in [55:48] etc. In shorter messages, the
unused bits contain invalid data.

rx_id[28:0] out The received identifier. When a standard message is received,
the 11bit identifier is be placed in bits[28:18], bits[17:0] are ‘1’
Ref.Nr.: 311-DS-30 Page 4 of 7



Memec Design Services iniCAN-Observer data sheet
This figure shows schematically how messages are received:

rx_dlc[3:0] out The data length code. Values between 0 and 8 are valid and
determine, how many data bytes have been received. Wrong
values above 8 means that 8 data bytes are available!

frame_ref.
extended_ind

out The extended identifier bit is valid when rx_msg_valid = ‘1’
‘0’ : received standard frame
‘1’ : received extended frame

frame_ref.
remote_ind

out The remote indicate bit is valid when rx_msg_valid = ‘1’:
‘0’ : received data frame
‘1’ : received remote frame (rx_msg_data not valid)

rx_msg_valid out Event for communicating, that a new message has arrived. Use
it for storing the RTR, IDE, DLC, ID and DATA fields!

pin name type description

rx_CANbus

rx_msg_valid

a CAN msg is coming in

a valid msg is received

tx_CANbus of receiving nodes (not iniCAN-Observer)
acknowledge
Ref.Nr.: 311-DS-30 Page 5 of 7



Memec Design Services iniCAN-Observer data sheet
2.6 CANbus pins These pins represent the physical layer. Since the iniCAN-Observer is receive only, there
is only one pin available:

2.7 VHDL Entity Below you find the VHDL Entity and type definitions of the iniCAN-Observer top mod-
ule:

ENTITY can_obs IS
PORT
(
clk : IN t_bit;
reset_n : IN t_bit;
can_config : IN t_can_obs_config;
can_rx_bus : IN t_bit;
can_stop_ctrl : IN t_can_obs_stop_ctrl;
can_stop_status : OUT t_can_obs_stop_status;
can_rx_msg_data : OUT t_can_obs_msg_data;
can_rx_id : OUT t_can_obs_id;
can_rx_dlc : OUT t_can_obs_dlc;
can_int_events : OUT t_can_obs_int_events;
can_bit_sync : OUT t_bit;
can_frame_ref : OUT t_can_obs_frame_ref
);

END can_obs;

TYPE t_can_obs_config IS RECORD
sjw : t_can_obs_cfg_sjw;
bitrate : t_can_obs_cfg_bitrate;
tseg1 : t_can_obs_cfg_tseg1;
tseg2 : t_can_obs_cfg_tseg2;
sampling : t_bit;
edge_mode : t_bit;

END RECORD;

SUBTYPE t_can_obs_cfg_sjw IS t_bit_vector(1 DOWNTO 0);
SUBTYPE t_can_obs_cfg_bitrate IS t_bit_vector(7 DOWNTO 0);
SUBTYPE t_can_obs_cfg_tseg1 IS t_bit_vector(3 DOWNTO 0);
SUBTYPE t_can_obs_cfg_tseg2 IS t_bit_vector(2 DOWNTO 0);

TYPE t_can_obs_stop_ctrl IS RECORD
set_stop : t_bit;
clr_stop : t_bit;

END RECORD;

TYPE t_can_obs_stop_status IS RECORD
want_stop : t_bit;
grant_stop : t_bit;

END RECORD;

pin name type description

can_rx_bus in Receiver pin of CAN bus
D = low (‘0’)
R = high (‘1’)
Ref.Nr.: 311-DS-30 Page 6 of 7



Memec Design Services iniCAN-Observer data sheet
SUBTYPE t_can_obs_msg_data IS t_bit_vector(63 DOWNTO 0);
SUBTYPE t_can_obs_id IS t_bit_vector(28 DOWNTO 0);
SUBTYPE t_can_obs_dlc IS t_bit_vector_4;

TYPE t_can_obs_int_events IS RECORD
crc_err : t_bit;
form_err : t_bit;
ack_err : t_bit;
stuff_err : t_bit;
bit_err : t_bit;
frame_err : t_bit;
overload : t_bit;

END RECORD;

TYPE t_can_obs_frame_ref IS RECORD
rx_mode : t_bit;
tx_mode : t_bit;
field : t_can_obs_field;
bit_nr : t_can_obs_bit_nr;
stuff_ind : t_bit;
remote_ind : t_bit;
extended_ind : t_bit;
tx_msg_valid : t_bit;
rx_msg_valid : t_bit;

END RECORD;
Ref.Nr.: 311-DS-30 Page 7 of 7


	1 Overview
	1.1 Event communication
	2 IO description
	2.1 General inputs
	2.2 Configuration
	2.3 Start - stop controlling
	2.4 Error Reporting
	2.5 Receive data signals
	2.6 CANbus pins
	2.7 VHDL Entity

