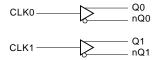


## ICS85222-01

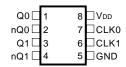
# DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL LVHSTL TRANSLATOR

## GENERAL DESCRIPTION




The ICS85222-01 is a Dual LVCMOS / LVTTL-to-Differential LVHSTL translator and a member of the HiPerClocks™ family of High Performance Clock Solutions from ICS. The ICS85222-01 has two single ended clock inputs. The single ended

clock input accepts LVCMOS or LVTTL input levels and translates them to LVHSTL levels. The small outline 8-pin SOIC package makes this device ideal for applications where space, high performance and low power are important.


#### **F**EATURES

- 2 differential LVHSTL outputs
- Selectable CLK0, CLK1 LVCMOS clock inputs
- CLK0 and CLK1 can accept the following input levels: LVCMOS or LVTTL
- Maximum output frequency: 350MHz (typical)
- Part-to-part skew: TBD
- Propagation delay: 1.4ns (typical)
- V<sub>OH</sub>: 1.4V (maximum)
- 3.3V operating supply voltage
- 0°C to 70°C ambient operating temperature
- Industrial temperature information available upon request

### **BLOCK DIAGRAM**



## PIN ASSIGNMENT



#### ICS85222-01

**8-Lead SOIC**3.90mm x 4.92mm x 1.37mm body package **M Package**Top View

The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.



# ICS85222-01

# DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL LVHSTL TRANSLATOR

#### TABLE 1. PIN DESCRIPTIONS

| Number | Name            | Туре   |        | Description                                        |
|--------|-----------------|--------|--------|----------------------------------------------------|
| 1, 2   | Q0, nQ0         | Output |        | Differential output pair. LVHSTL interface levels. |
| 3, 4   | Q1, nQ1         | Output |        | Differential output pair. LVHSTL interface levels. |
| 5      | GND             | Power  |        | Power supply ground.                               |
| 6      | CLK1            | Input  | Pullup | LVCMOS / LVTTL clock input.                        |
| 7      | CLK0            | Input  | Pullup | LVCMOS / LVTTL clock input.                        |
| 8      | V <sub>DD</sub> | Power  |        | Positive supply pin. Connect to 3.3V.              |

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

NOTE: Unused output pairs must be terminated.

TABLE 2. PIN CHARACTERISTICS

| Symbol                | Parameter               | Test Conditions | Minimum | Typical | Maximum | Units |
|-----------------------|-------------------------|-----------------|---------|---------|---------|-------|
| C <sub>IN</sub>       | Input Capacitance       |                 |         |         | 4       | рF    |
| R <sub>PULLUP</sub>   | Input Pullup Resistor   |                 |         | 51      |         | ΚΩ    |
| R <sub>PULLDOWN</sub> | Input Pulldown Resistor |                 |         | 51      |         | ΚΩ    |



# ICS85222-01

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL LVHSTL TRANSLATOR

#### ABSOLUTE MAXIMUM RATINGS

Supply Voltage,  $V_{DD}$  4.6V

 $\begin{array}{ll} \text{Inputs, V}_{\text{I}} & -0.5 \text{V to V}_{\text{DD}} + 0.5 \text{V} \\ \text{Outputs, V}_{\text{O}} & -0.5 \text{V to V}_{\text{DD}} + 0.5 \text{V} \\ \text{Package Thermal Impedance, } \theta_{\text{JA}} & 112.7^{\circ} \text{C/W (0 Ifpm)} \end{array}$ 

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 3A. Power Supply DC Characteristics,  $V_{DD} = 3.3V \pm 5\%$ ,  $T_A = 0$ °C to 70°C

| Symbol          | Parameter               | Test Conditions | Minimum | Typical | Maximum | Units |
|-----------------|-------------------------|-----------------|---------|---------|---------|-------|
| V <sub>DD</sub> | Positive Supply Voltage |                 | 3.135   | 3.3     | 3.465   | ٧     |
| I <sub>DD</sub> | Power Supply Current    |                 |         | 21      |         | mA    |

Table 3B. LVCMOS / LVTTL DC Characteristics,  $V_{DD} = 3.3V \pm 5\%$ ,  $T_A = 0$ °C to 70°C

| Symbol          | Parameter          |            | Test Conditions            | Minimum | Typical | Maximum               | Units |
|-----------------|--------------------|------------|----------------------------|---------|---------|-----------------------|-------|
| V <sub>IH</sub> | Input High Voltage | CLK0, CLK1 |                            | 2       |         | V <sub>DD</sub> + 0.3 | ٧     |
| V <sub>IL</sub> | Input Low Voltage  | CLK0, CLK1 |                            | -0.3    |         | 1.3                   | ٧     |
| I <sub>IH</sub> | Input High Current | CLK0, CLK1 | $V_{DD} = V_{IN} = 3.465V$ |         |         | 5                     | μΑ    |
| I               | Input Low Current  | CLK0, CLK1 | $V_{DD} = V_{IN} = 3.465V$ | -150    |         |                       | μA    |

Table 3C. LVHSTL DC Characteristics,  $V_{DD} = 3.3V \pm 5\%$ ,  $T_A = 0$ °C to 70°C

| Symbol             | Parameter                         | Test Conditions | Minimum                                                     | Typical | Maximum                                                     | Units |
|--------------------|-----------------------------------|-----------------|-------------------------------------------------------------|---------|-------------------------------------------------------------|-------|
| V <sub>OH</sub>    | Output High Voltage;<br>NOTE 1    |                 | 1                                                           |         | 1.4                                                         | V     |
| V <sub>OL</sub>    | Output Low Voltage;<br>NOTE 1     |                 | 0                                                           |         | 0.4                                                         | V     |
| V <sub>ox</sub>    | Output Crossover Voltage          |                 | 40% x (V <sub>OH</sub> -V <sub>OL</sub> ) + V <sub>OL</sub> |         | 60% x (V <sub>OH</sub> -V <sub>OL</sub> ) + V <sub>OL</sub> | V     |
| V <sub>SWING</sub> | Peak-to-Peak Output Voltage Swing |                 | 0.6                                                         |         | 1.1                                                         | V     |

NOTE 1: Outputs terminated with  $50\Omega$  to GND.



# ICS85222-01

# DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL LVHSTL TRANSLATOR

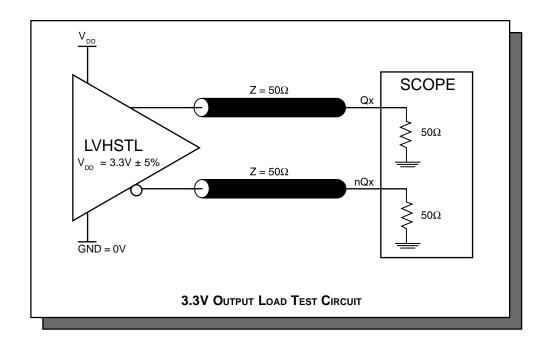
Table 4. AC Characteristics,  $V_{DD} = 3.3V \pm 5\%$ , TA = 0°C to 70°C

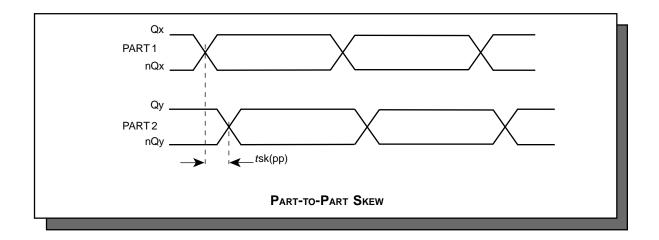
| Symbol           | Parameter                    | Test Conditions | Minimum | Typical | Maximum | Units |
|------------------|------------------------------|-----------------|---------|---------|---------|-------|
| f <sub>MAX</sub> | Output Frequency             |                 |         | 350     |         | MHz   |
| t <sub>PD</sub>  | Propagation Delay; NOTE 1    | f ≤ 350MHz      |         | 1.4     |         | ns    |
| tsk(pp)          | Part-to-Part Skew; NOTE 2, 3 |                 |         | TBD     |         | ps    |
| t <sub>R</sub>   | Output Rise Time             | 20% to 80%      |         | 350     |         | ps    |
| t <sub>F</sub>   | Output Fall Time             | 20% to 80%      |         | 350     |         | ps    |
| odc              | Output Duty Cycle            |                 |         | 50      |         | %     |

All parameters measured at f<sub>MAX</sub> unless noted otherwise.

NOTE 1: Measured from V<sub>DD</sub>/2 of the input to the differential output crossing point.

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

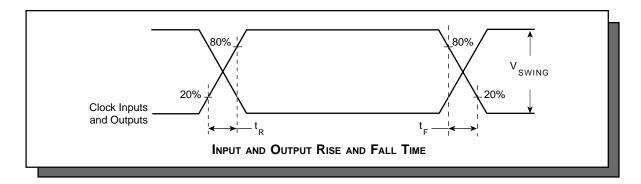

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

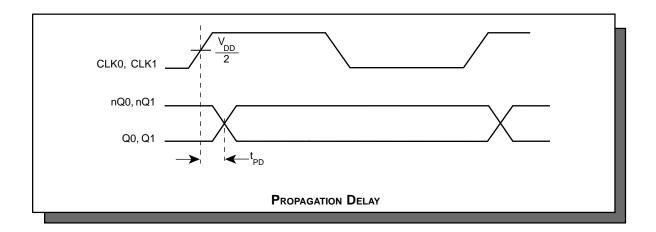


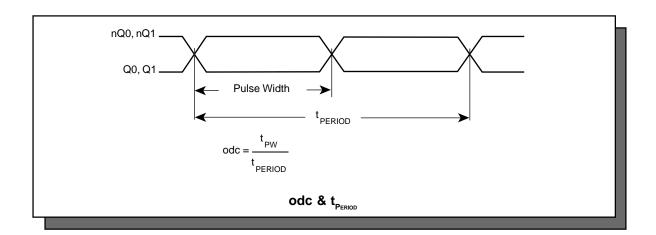

# ICS85222-01

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL LVHSTL TRANSLATOR

## PARAMETER MEASUREMENT INFORMATION




# ICS85222-01

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL LVHSTL TRANSLATOR









## ICS85222-01

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL LVHSTL TRANSLATOR

## Power Considerations

This section provides information on power dissipation and junction temperature for the ICS85222-01. Equations and example calculations are also provided.

#### 1. Power Dissipation.

The total power dissipation for the ICS85222-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for  $V_{DD} = 3.3V + 5\% = 3.465V$ , which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)<sub>MAX</sub> = V<sub>DD MAX</sub> \* I<sub>DD MAX</sub> = 3.465V \* 21mA = 72.8mW
- Power (outputs)<sub>MAX</sub> = 32.8mW/Loaded Output pair
   If all outputs are loaded, the total power is 2 \* 73.8mW = 147.6mW

Total Power  $_{MAX}$  (3.465V, with all outputs switching) = 72.8mW + 147.6mW = 220.4mW

#### 2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS $^{TM}$  devices is 125°C.

The equation for Tj is as follows: Tj =  $\theta_{JA}$  \* Pd\_total + T<sub>A</sub>

Tj = Junction Temperature

 $\theta_{JA}$  = Junction-to-Ambient Thermal Resistance

Pd\_total = Total device power dissipation (example calculation is in Section 1 above)

 $T_A = Ambient Temperature$ 

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance  $\theta_{\rm JA}$  must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 103.3°C/W per Table 5 below. Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}\text{C} + 0.220\text{W} * 103.3^{\circ}\text{C/W} = 92.7^{\circ}\text{C}$ . This is well below the limit of 125°C

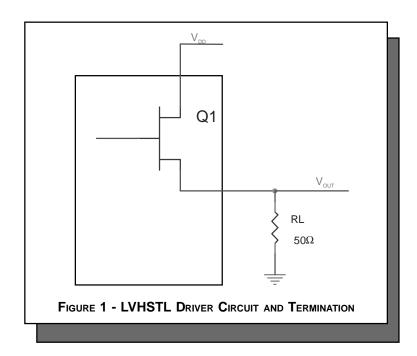
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer).

Table 5. Thermal Resistance  $\theta_{\text{JA}}$  for 8-Pin SOIC, Forced Convection

# 0 200 500 Single-Layer PCB, JEDEC Standard Test Boards 153.3°C/W 128.5°C/W 115.5°C/W Multi-Layer PCB, JEDEC Standard Test Boards 112.7°C/W 103.3°C/W 97.1°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

θ , by Velocity (Linear Feet per Minute)


ICS85222-01

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL LVHSTL TRANSLATOR

#### 3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVHSTL output driver circuit and termination are shown in Figure 1.



To calculate worst case power dissipation into the load, use the following equations which assume a  $50\Omega$  load.

Pd\_H is power dissipation when the output drives high.

Pd\_L is the power dissipation when the output drives low.

$$\begin{split} & Pd\_H = (V_{OH\_MIN}/R_{L}) * (V_{DD\_MAX} - V_{OH\_MIN}) \\ & Pd\_L = (V_{OL\_MAX}/R_{L}) * (V_{DD\_MAX} - V_{OL\_MAX}) \end{split}$$

Pd\_H = 
$$(1V/50\Omega) * (3.465V - 1V) = 49.3mW$$
  
Pd\_L =  $(0.4V/50\Omega) * (3.465V - 0.4V) = 24.52mW$ 

Total Power Dissipation per output pair = Pd\_H + Pd\_L = 73.8mW



ICS85222-01
DUAL LVCMOS / LVTTL-TODIFFERENTIAL LVHSTL TRANSLATOR

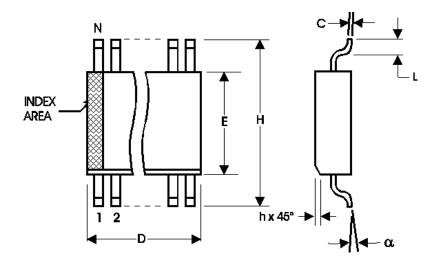
## RELIABILITY INFORMATION

Table 6.  $\theta_{_{\mathrm{JA}}}$ vs. Air Flow Table

## $\boldsymbol{\theta}_{\text{JA}}$ by Velocity (Linear Feet per Minute)

0200500Single-Layer PCB, JEDEC Standard Test Boards153.3°C/W128.5°C/W115.5°C/WMulti-Layer PCB, JEDEC Standard Test Boards112.7°C/W103.3°C/W97.1°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.


#### TRANSISTOR COUNT

The transistor count for ICS85222-01 is: 443

# ICS85222-01

DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL LVHSTL TRANSLATOR

#### PACKAGE OUTLINE - M SUFFIX



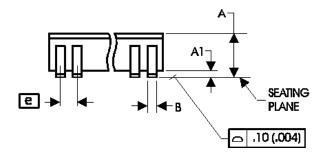



TABLE 7. PACKAGE DIMENSIONS

| SYMBOL  | Millin  | neters  |
|---------|---------|---------|
| STWIBOL | MINIMUM | MAXIMUM |
| N       |         | 8       |
| А       | 1.35    | 1.75    |
| A1      | 0.10    | 0.25    |
| В       | 0.33    | 0.51    |
| С       | 0.19    | 0.25    |
| D       | 4.80    | 5.00    |
| E       | 3.80    | 4.00    |
| е       | 1.27 [  | BASIC   |
| Н       | 5.80    | 6.20    |
| h       | 0.25    | 0.50    |
| L       | 0.40    | 1.27    |
| α       | 0°      | 8°      |

Reference Document: JEDEC Publication 95, MS-012



ICS85222-01

# DUAL LVCMOS / LVTTL-TO-DIFFERENTIAL LVHSTL TRANSLATOR

#### TABLE 8. ORDERING INFORMATION

| Part/Order Number | Marking | Package                      | Count       | Temperature |
|-------------------|---------|------------------------------|-------------|-------------|
| ICS85222AM-01     | 5222A01 | 8 lead SOIC                  | 96 per tube | 0°C to 70°C |
| ICS85222AM-01T    | 5222A01 | 8 lead SOIC on Tape and Reel | 2500        | 0°C to 70°C |

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.