

Fraunhofer Institut

Institut Mikroelektronische Schaltungen und Systeme

Low Power CMOS Image Sensor

Features

The IMS CIF-Camera is a versatile CMOS image sensor (fig. 1 for the chip photomicrograph). It features on-chip fixed-pattern-noise (FPN) cancellation, random pixel access, subregion readout, multiple integration, and low power dissipation (fig. 3 for reproduced images).

Fixed Pattern Noise Cancellation

The on-chip correlated-double-sampling (CDS) eliminates the superimposed fixed pattern noise (FPN) of the pixel array. Because of the advanced circuitry of the imager the FPN has been reduced to less than 2 mV or 60 dB below the maximum signal level. In addition, the CDS reduces offsets and low-frequency random noise.

Region Readout

Many applications, e.g. in automotive or machine vision, need only a small portion of the whole image to be read out. The IMS CIF-Camera is capable of multiple subregion readout. In full frame mode the regions of interest can be set. After this the subregions can be captured at a high frame rate. Because of this feature the image processing systems based on IMS CIF-Camera can operate at a higher speed than as systems processing full frames. The imager can capture up to 1000 frames/s at a resolution of 64 by 64 pixels. The size of the subregion window can be adjusted by a single pixel increment. Fig. 4 shows an image sequence of a rotating fan captured at 1000 frames/s.

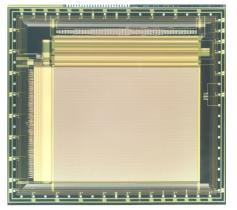


Fig. 1: Photomicrograph of the CIF format CMOS imager

Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme

Finkenstr. 61 D – 47057 Duisburg

Phone: +49 (0) 2 03 / 37 83-0 Fax: +49 (0) 2 03 / 37 83 23-266 Internet: http://www.ims.fhq.de

Contact: Michael Bollerott

Phone: +49 (0) 2 03 / 37 83-227 E-Mail: bollerot@ims.fhq.de

FhG-IMS reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. FhG-IMS cannot assume responsibility for any problems rising out of the use of these circuits.

High Dynamic Range

Numerous imager applications require a dynamic range of more than 60 – 70 dB due to nonuniform illumination or reflection of the objects. Camera systems that feature only a single exposure time can not capture the whole scene, because part of the image may be under- or overexposed. The IMS CIF-Camera is capable of carrying out multiple exposures at different exposure times defined by the user. This feature makes it feasible to take images with a dynamic range of more than 100 dB.

Low Power Dissipation

The IMS CIF-Camera has been fabricated in standard 1 µm CMOS technology. It is well suited for mobile and low power applications. It dissipates only 35 mW at 5 V power supply and 100 frames/s. CCD based imagers need at least 500 mW.

Summary

The IMS CIF-Camera is a versatile imager suitable for many applications. It features subregion readout, multiple exposure, and low power consumption.

For evaluation a demonstrator system is available. The camera system uses a RS422 interface compatible to the Matrox Pulsar Frame Grabber Board. Software for Windows NT for use with the demonstrator is also available.

Readout: progressive, rolling shutter

Total pixel count: 380 x 300 pixel

Readout pixels: max. 360 x 288 pixel (CIF-Format)

Fill factor: 30 % Pixel size: 17 x 17 μ m²

Chip area: 88 mm² in 1 µm CMOS

Supply voltage: $5 \text{ V} \pm 0.1 \text{ V}$ Power dissipation: 35 mWTypical pixel rate: 13.5 MHzMaximum pixel rate: 20 MHzTypical frame rate: 100 HzMaximum frame rate: 140 Hz

Max. frame rate for 64 x 64 pixel

subregion readout: 1000 Hz Dynamic range @ 30 ms integration time 60 dB

Max. signal-noise-ratio 52 dB Fixed-pattern-noise <2 mV

Minimum detectable Illumination

@ 30 ms integration time: 5.10^{-5} W/m²

Fig. 2: Technical Data

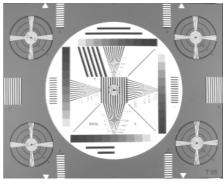


Fig. 3: Reproduced images from the CIF-Camera

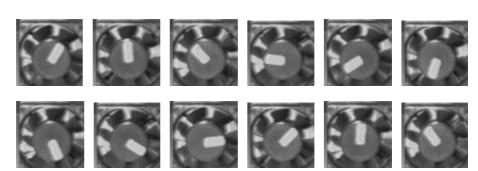


Fig. 4: High speed image sequence of a rotating fan