

ISL9R3060G2, ISL9R3060P2

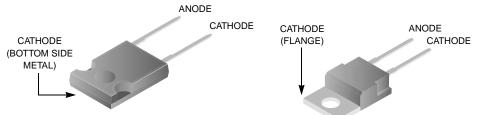
30A, 600V Stealth™ Diode

General Description

The ISL9R3060G2 and ISL9R3060P2 are Stealth™ diodes optimized for low loss performance in high frequency hard switched applications. The Stealth™ family exhibits low reverse recovery current (I_{RM(REC)}) and exceptionally soft recovery under typical operating conditions.

This device is intended for use as a free wheeling or boost diode in power supplies and other power switching applications. The low $I_{RM(REC)}$ and short t_a phase reduce loss in switching transistors. The soft recovery minimizes ringing, expanding the range of conditions under which the diode may be operated without the use of additional snubber circuitry. Consider using the Stealth $^{\rm TM}$ diode with an SMPS IGBT to provide the most efficient and highest power density design at lower cost.

Formerly developmental type TA49411.

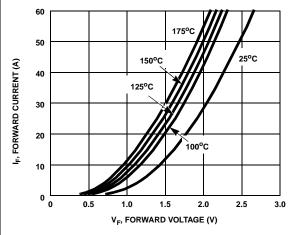

Features

• Soft Recovery t_b / t_a > 1.2
• Fast Recovery
Operating Temperature
Reverse Voltage
Avalanche Energy Rated

Applications

- · Switch Mode Power Supplies
- · Hard Switched PFC Boost Diode
- · UPS Free Wheeling Diode
- Motor Drive FWD
- SMPS FWD
- Snubber Diode

Package JEDEC STYLE TO-247 ANODE JEDEC TO-220AC K


Device Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{RRM}	Repetitive Peak Reverse Voltage	600	V
V_{RWM}	Working Peak Reverse Voltage	600	V
V _R	DC Blocking Voltage	600	V
I _{F(AV)}	Average Rectified Forward Current (T _C = 125°C)	30	Α
I _{FRM}	Repetitive Peak Surge Current (20kHz Square Wave)	70	Α
I _{FSM}	Nonrepetitive Peak Surge Current (Halfwave 1 Phase 60Hz)	325	Α
P _D	Power Dissipation	200	W
E _{AVL}	Avalanche Energy (1A, 40mH)	20	mJ
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to 175	°C
TL	Maximum Temperature for Soldering		
T_{PKG}	Leads at 0.063in (1.6mm) from Case for 10s	300	°C
	Package Body for 10s, See Techbrief TB334	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Packag	e Marki	ing and Ordering I	nformation					
R3060P2	Device Marking Device		Package	Tape Width	Tape Width		Quantity		
Symbol Parameter Test Conditions Min Typ Max United Symbol Parameter Test Conditions Min Typ Max United State Characteristics			ISL9R3060G2	TO-247	· '		-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R3060P2 ISL9R3060P2 7			TO-220AC	-			-	
$ \begin{array}{ c c c c c c c c } \hline Off State Characteristics & & & & & & & & & & & & & & & & & & &$	Electric	al Chai	racteristics T _C = 25°C	unless otherwise	e noted				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Symbol		Parameter	Test	Test Conditions		Тур	Max	Units
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Off State	Charact	eristics						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _R	Instantane	Instantaneous Reverse Current		T _C = 25°C	-	-	100	μΑ
$ \begin{array}{ c c c c c c c c } \hline V_F & & & & & & & & & & & & & & & & & & &$						-	-	1.0	mA
$ \begin{array}{ c c c c c c c c } \hline V_F & & & & & & & & & & & & & & & & & & &$	On State	Charact	eristics	•			•		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				I _E = 30A	T _C = 25°C	-	2.1	2.4	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		· ·	'		-	1.7	2.1	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							1	T	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CJ	Junction C	apacitance	$V_{R} = 10V, I_{F} = 0A$		-	120	-	pF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Switchin	g Charac	cteristics						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{rr} Reverse Recovery Time		$I_F = 1A$, $dI_F/dt = 100A/\mu s$, $V_R = 30V$		-	27	35	ns	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$I_F = 30A$, $dI_F/dt = 100A/\mu s$, $V_R = 30V$		•	36	45	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{rr}	Reverse R	ecovery Time	$dI_F/dt = 200A/\mu s$, - 2.9 -				-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{RM(REC)}	Maximum	Reverse Recovery Current					-	Α
S Softness Factor (t_b/t_a) $dI_F/dt = 200A/\mu s$, -1.9	Q_{RR}	Reverse R	ecovered Charge	$T_{R} = 390V, T_{C}$	-	55	-	nC	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{rr}	Reverse R	ecovery Time		$I_F = 30A$,			-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S	Softness F	actor (t _b /t _a)	·	-	1.9	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{RM(REC)}	Maximum	Reverse Recovery Current			-	6	-	Α
S Softness Factor (t_b/t_a) $dI_F/dt = 1000A/\mu s$, -1.25 - $V_R = 390V$, $T_C = 125^{\circ}C$ -21 - A $T_C = 125^{\circ}C$ -21 - B $T_C = 125^{\circ}C$ -21 -	Q _{RR}	Reverse R	ecovered Charge			-	450	-	nC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{rr}	Reverse R	ecovery Time	$dI_F/dt = 1000A/\mu s$,			60	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S	Softness F	actor (t _b /t _a)				1.25	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{RM(REC)}	Maximum	Reverse Recovery Current			21	-	Α	
Thermal Characteristics $R_{\theta JC} \text{Thermal Resistance Junction to Case} \qquad \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Reverse R	ecovered Charge	T _C = 125°C		730	-	nC	
$R_{\theta JC}$ Thermal Resistance Junction to Case 1.0 °C/Λ $R_{\theta JA}$ Thermal Resistance Junction to Ambient TO-247 - 30 °C/Λ	dl _M /dt	Maximum	di/dt during t _b	<u> </u>			800		A/µs
$R_{\theta JC}$ Thermal Resistance Junction to Case 1.0 °C/Λ $R_{\theta JA}$ Thermal Resistance Junction to Ambient TO-247 - 30 °C/Λ	Thermal	Characte	eristics				_		•
R _{θJA} Thermal Resistance Junction to Ambient TO-247 - 30 °C/		1		T		-	-	1.0	°C/W
000				t TO-247		-	-		°C/W
				t TO-220 -		-		°C/W	

Typical Performance Curves

0.1 100 200 300 400 500 60 V_R, REVERSE VOLTAGE (V)

150°C

125°C

100°C

75°C

25°C

5000

1000

100

IR, REVERSE CURRENT (µA)

Figure 1. Forward Current vs Forward Voltage

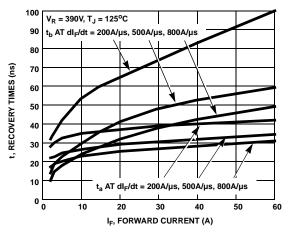


Figure 2. Reverse Current vs Reverse Voltage

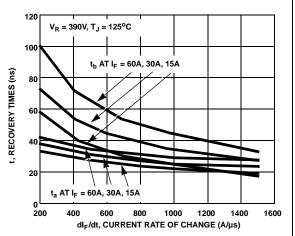


Figure 3. t_a and t_b Curves vs Forward Current

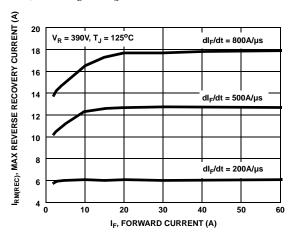


Figure 4. t_a and t_b Curves vs dl_F/dt

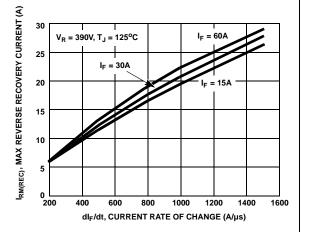
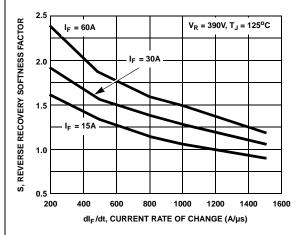



Figure 5. Maximum Reverse Recovery Current vs Forward Current

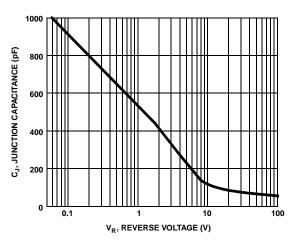
Figure 6. Maximum Reverse Recovery Current vs dl_F/dt

Typical Performance Curves (Continued)

1200
V_R = 390V, T_J = 125°C
I_F = 60A

V_R = 390V, T_J = 125°C
I_F = 60A

I_F = 30A


I_F = 15A

200
200
400
600
800
1000
1200
1400
1600

dI_F/dt, CURRENT RATE OF CHANGE (A/µs)

Figure 7. Reverse Recovery Softness Factor vs $\mathrm{dI}_{\mathrm{F}}/\mathrm{dt}$

Figure 8. Reverse Recovered Charge vs $\mathrm{dI}_{\mathrm{F}}/\mathrm{dt}$

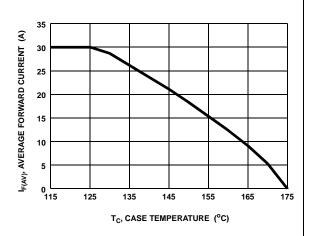


Figure 9. Junction Capacitance vs Reverse Voltage

Figure 10. DC Current Derating Curve

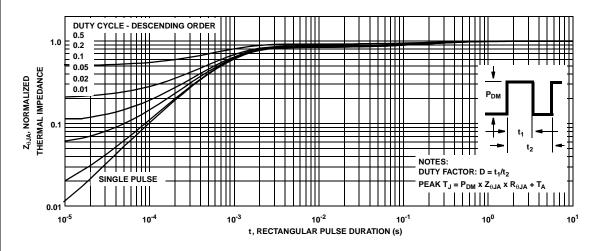
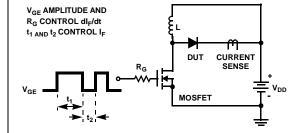



Figure 11. Normalized Maximum Transient Thermal Impedance

Test Circuit and Waveforms

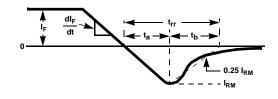


Figure 12. t_{rr} Test Circuit

Figure 13. t_{rr} Waveforms and Definitions

I = 1A
L = 40mH
R < 0.1Ω
V_{DD} = 50V
E_{AVL} = 1/2LI² [V_{R(AVL)}/(V_{R(AVL)} - V_{DD})]
Q₁ = IGBT (BV_{CES} > DUT V_{R(AVL)})

L
R
CURRENT
SENSE
V_{DD}
V_{DD}
V_{DD}

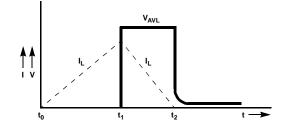


Figure 14. Avalanche Energy Test Circuit

Figure 15. Avalanche Current and Voltage Waveforms

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST ® SILENT SWITCHER® UHC™ ACEx™ MICROWIRE™ SMART START™ UltraFET® FASTr™ Bottomless™ OPTOLOGIC® VCX™ SPM™ CoolFET™ FRFET™ OPTOPLANAR™ GlobalOptoisolator™ STAR*POWER™ CROSSVOLT™ PACMAN™ DenseTrench™ GTO™ РОР™ Stealth™ SuperSOT™-3 DOME™ HiSeC™ Power247™ I²CTM SuperSOT™-6 EcoSPARK™ PowerTrench ® SuperSOT™-8 E²CMOSTM ISOPLANAR™ QFET™ QS™ SyncFET™ EnSigna™ LittleFET™ TinyLogic™ FACT™ MicroFET™ QT Optoelectronics™ FACT Quiet Series™ MicroPak™ TruTranslation™ Quiet Series™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H5