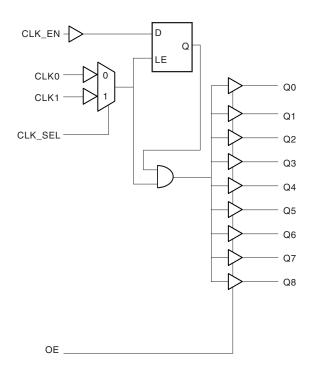


ICS83947

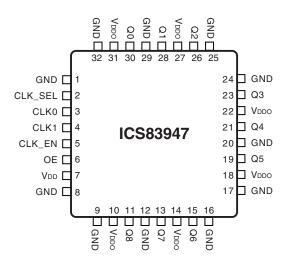
Low Skew, 1-to-9 LVCMOS FANOUT BUFFER

GENERAL DESCRIPTION

The ICS83947 is a low skew, 1-to-9 LVCMOS Fanout Buffer and a member of the HiPerClockSTM family of High Performance Clock Solutions from ICS. The low impedance LVCMOS outputs are designed to drive 50Ω series or parallel termi-


nated transmission lines. The effective fanout can be increased from 9 to 18 by utilizing the ability of the outputs to drive two series terminated lines.

Guaranteed output and part-to-part skew characteristics make the ICS83947 ideal for high performance, single ended applications that also require a limited output voltage.


FEATURES

- 9 LVCMOS outputs
- Selectable CLK0 and CLK1 can accept the following input levels: LVCMOS and LVTTL
- Maximum output frequency: 250MHz
- Output skew: 500ps (maximum)
- Part-to-part skew: 2ns (maximum)
- · 3.3V operating supply
- 0°C to 70°C ambient operating temperature
- · Industrial temperature information available upon request
- Pin compatible with the MPC947

BLOCK DIAGRAM

PIN ASSIGNMENT

32-Lead LQFP7mm x 7mm x 1.4mm package body **Y Package**Top View

The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.

ICS83947

Low Skew, 1-to-9 LVCMOS FANOUT BUFFER

TABLE 1. PIN DESCRIPTIONS

Number	Name	Туре		Description
1, 8, 9, 12, 16, 17, 20, 24, 25, 29, 32	GND	Power		Power supply ground. Connect to ground.
2	CLK_SEL	Input	Pullup	Clock select input. When HIGH, selects CLK1. When LOW, selects CLK0. LVCMOS / LVTTL interface levels.
3, 4	CLK0, CLK1	Input	Pullup	Reference clock inputs. LVCMOS / LVTTL interface levels.
5	CLK_EN	Input	Pullup	Clock enable. LVCMOS / LVTTL interface levels.
6	OE	Input	Pullup	Output enable.
7	V _{DD}	Power		Positive supply pin. Connect 3.3V.
10, 14, 18, 22, 27, 31	$V_{\scriptscriptstyle DDO}$	Power		Output supply pins. Connect 3.3V.
11, 13, 15, 19, 21, 23, 26, 28, 30	Q8, Q7, Q6, Q5, Q4, Q3, Q2, Q1, Q0	Output		Q0 thru Q8 clock outputs.

NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance				4	pF
C _{PD}	Power Dissipation Capacitance (per output)	V_{DD} , $V_{DDO} = 3.6V$				pF
R _{PULLUP}	Input Pullup Resistor			51		ΚΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		ΚΩ
R _{out}	Output Impedance			7		Ω

TABLE 3. OUTPUT ENABLE AND CLOCK ENABLE FUNCTION TABLE

Control Inputs		Output
OE	CLK_EN	Q0 thru Q8
0	X	Hi-Z
1	0	LOW
1	1	Follows CLK input

ICS83947

Low Skew, 1-to-9 LVCMOS FANOUT BUFFER

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DD} 4.6V

 $\begin{array}{ll} \text{Inputs, V}_{\text{I}} & -0.5 \text{V to V}_{\text{DD}} + 0.5 \text{ V} \\ \text{Outputs, V}_{\text{O}} & -0.5 \text{V to V}_{\text{DDO}} + 0.5 \text{V} \\ \text{Package Thermal Impedance, } \theta_{\text{JA}} & 47.9^{\circ}\text{C/W (0 lfpm)} \\ \text{Storage Temperature, Tstg} & -65^{\circ}\text{C to } 150^{\circ}\text{C} \end{array}$

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 0.3V$, $T_A = 0$ °C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Input Supply Voltage		3.0	3.3	3.6	V
V _{DDO}	Output Supply Voltage		3.0	3.3	3.6	V
I _{DD}	Input Supply Current			33		mA
I _{DDO}	Output Supply Current			8		mA

Table 4B. LVCMOS DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 0.3V$, $T_A = 0$ °C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V	Input High Voltage	CLK0, CLK1		2		V _{DD} + 0.3	V
V _{IH}	input night voltage	CLK_SEL, CLK_EN, OE		2		$V_{DD} + 0.3$	V
V	Input Low Voltage	CLK0, CLK1		-0.3		1.3	٧
V _{IL}	Input Low Voltage	CLK_SEL, CLK_EN, OE		-0.3		0.8	V
I _{IH}	Input High Current	CLK0, CLK1, CLK_SEL, OE, CLK_EN	$V_{DD} = V_{IN} = 3.6V$			5	μΑ
I _{IL}	Input Low Current	CLK0, CLK1, CLK_SEL, OE, CLK_EN	$V_{DD} = 3.6V, V_{IN} = 0V$	-150			μΑ
V _{OH}	Output High Voltage		I _{OH} = -20mA	2.5			V
V _{OL}	Output Low Voltage		I _{OL} = 20mA			0.4	V
I _{OZL}	Output Tristate Low Current					TBD	μΑ
I _{OZH}	Output Tristate High	Current				TBD	μΑ

ICS83947

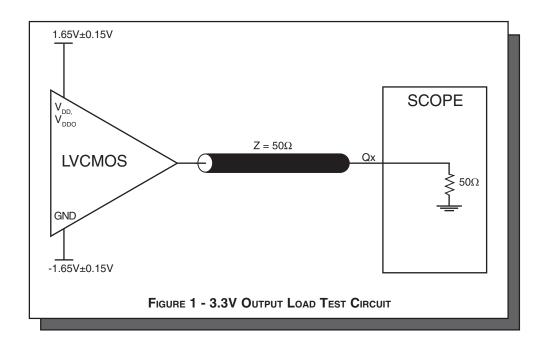
Low Skew, 1-to-9 LVCMOS FANOUT BUFFER

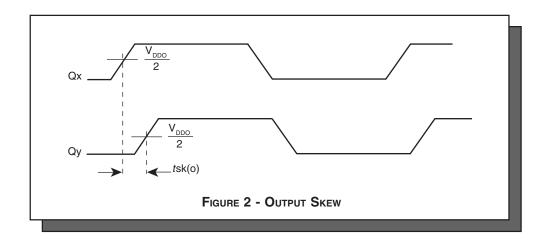
Table 5. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 0.3V$, $T_A = 0$ °C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				250	MHz
t _{pLH}	Propagation Delay, Low to High: NOTE 1	f ≤ 250MHZ		2.6		ns
t _{pHL}	Propagation Delay, High to Low: NOTE 1	f ≤ 250MHZ		2.6		ns
tsk(o)	Output Skew; NOTE 2, 5	Measured on rising edge @V _{DDO} /2			500	ps
tsk(pp)	Part-to-Part Skew; NOTE 3, 5	Measured on rising edge @V _{DDO} /2			2	ns
t _R	Output Rise Time	0.8V to 2.0V	0.2		1	ns
t _F	Output Fall Time	0.8V to 2.0V	0.2		1	ns
t _{PW}	Output Pulse Width		tCycle/2 - 800		tCycle/2 + 800	ps
t _{EN}	Output Enable Time; NOTE 4				11	ns
t _{DIS}	Output Disable Time; NOTE 4				11	ns
t _s	Clock Enable Setup Time			TBD		ns
t _s	Clock Enable Hold Time			TBD		ns

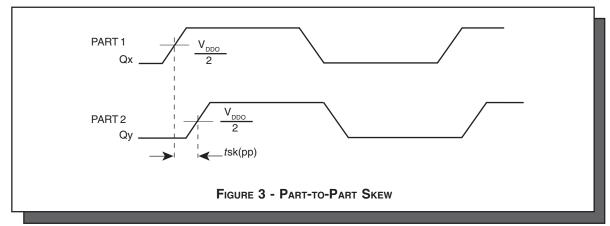
All parameters measured at f_{MAX} unless noted otherwise. NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.

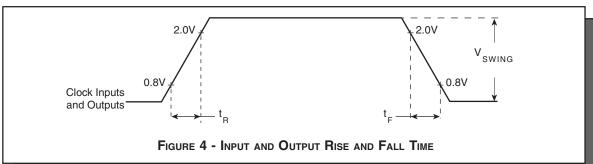
Measured at $V_{DDO}/2$. NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{DDO}/2$.

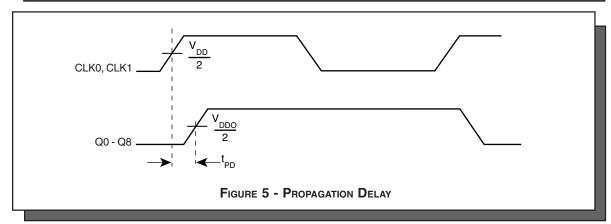

NOTE 4: These parameters are guaranteed by characterization. Not tested in production.

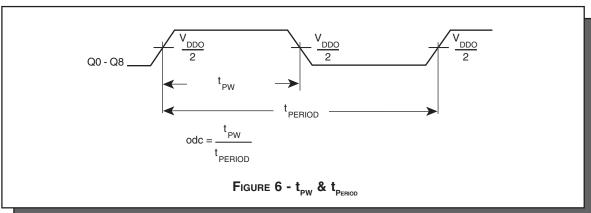

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

ICS83947 Low Skew, 1-to-9 LVCMOS FANOUT BUFFER


PARAMETER MEASUREMENT INFORMATION






ICS83947

Low Skew, 1-to-9 LVCMOS FANOUT BUFFER

Low Skew, 1-to-9
LVCMOS FANOUT BUFFER

RELIABILITY INFORMATION

Table 6. $\theta_{\rm JA} {\rm vs.}$ Air Flow Table

θ_{A} by Velocity (Linear Feet per Minute)

 O
 200
 500

 Single-Layer PCB, JEDEC Standard Test Boards
 67.8°C/W
 55.9°C/W
 50.1°C/W

 Multi-Layer PCB, JEDEC Standard Test Boards
 47.9°C/W
 42.1°C/W
 39.4°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for ICS83947 is: 1040

ICS83947

Low Skew, 1-to-9 LVCMOS FANOUT BUFFER

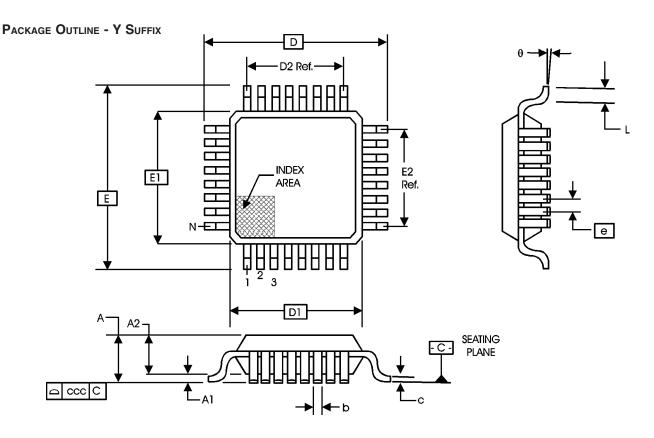


TABLE 7. PACKAGE DIMENSIONS

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS							
	ВВА						
SYMBOL	MINIMUM	MINIMUM NOMINAL					
N		32					
Α			1.60				
A 1	0.05		0.15				
A2	1.35	1.40	1.45				
b	0.30	0.37	0.45				
С	0.09	0.09 0.20					
D		9.00 BASIC					
D1		7.00 BASIC					
D2		5.60 Ref.					
E		9.00 BASIC					
E1		7.00 BASIC					
E2		5.60 Ref.					
е		0.80 BASIC					
L	0.45	0.60	0.75				
θ	0°		7°				
ссс			0.10				

Reference Document: JEDEC Publication 95, MS-026

ICS83947 Low Skew, 1-to-9 LVCMOS FANOUT BUFFER

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Count	Temperature
ICS83947AY	ICS83947AY	32 Lead LQFP	250 per tray	0°C to 70°C
ICS83947AYT	ICS83947AY	32 Lead LQFP on Tape and Reel	1000	0°C to 70°C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.