ICS87016 # Low Skew, 1-to-16 DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR #### GENERAL DESCRIPTION The ICS87016 is a low skew 1:16 clock generator and is a member of the HiPerClockS family of High Performance Clock Solutions. The device has 4 banks of 4 outputs and each bank can be independently selected for ÷1 or ÷2 frequency opera- tion. Each bank also has its own power supply pins so that the banks can operate at the following different voltage levels: 3.3V, 2.5V, and 1.8V. The low impedance LVCMOS outputs are designed to drive 50Ω series or parallel terminated transmission lines. The divide select inputs, DIV_SELA:DIV_SELD, control the output frequency of each bank. The output banks can be independently selected for ÷1 or ÷2 operation. The bank enable inputs, CLK ENA:CLK END, support enabling and disabling each bank of outputs individually. The CLK_ENA:CLK_END circuitry has a synchronizer to prevent runt pulses when enabling or disabling the clock outputs. The master reset input, nMR/OE, resets the ÷1/÷2 flip flops and also controls the active and high impedance states of all outputs. This pin has an internal pull-up resistor and is normally used only for test purposes or in systems which use low power modes. The ICS87016 is characterized to operate with the core at 3.3V and the banks at 3.3V, 2.5V, or 1.8V. Guaranteed bank, output, and part-to-part skew characteristics make the 87016 ideal for those clock applications demanding well-defined performance and repeatability. #### **FEATURES** - 16 LVCMOS outputs (4 banks of 4 outputs) - Selectable differential CLK1, nCLK1 or LVCMOS clock input - CLK1, nCLK1 pair can accept the following differential input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL - · CLK0 supports the following input types: LVCMOS, LVTTL - Maximum output frequency: 250MHz - Independent bank control for ÷1 or ÷2 operation - · Independent bank voltage settings for 3.3V, 2.5V, or 1.8V operation - · Asynchronous clock enable/disable - · Output skew: 144ps (typical) - Bank skew: 32ps (typical) - · Part-to-part skew: TBD - 3.3V core, 3.3V, 2.5V, or 1.8V output operating supply - 0°C to 70°C ambient operating temperature - Industrial temperature information available upon request ## BLOCK DIAGRAM #### PIN ASSIGNMENT The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice. 87016AY ICS87016 Low Skew, 1-to-16 Differential-to-LVCMOS Clock Generator #### TABLE 1. PIN DESCRIPTIONS | Number | Name | Т | уре | Description | |---------------------------------------|-------------------------------|--------|----------|--| | 1, 48 | $V_{_{\mathrm{DD}}}$ | Power | | Positive supply pins. Connect to 3.3V. | | 2 | CLK0 | Input | Pulldown | LVCMOS / LVTTL clock input. | | 3 | DIV_SELA | Input | Pullup | Controls frequency division for Bank A outputs. LVCMOS / LVTTL interface levels. | | 4 | DIV_SELB | Input | Pullup | Controls frequency division for Bank B outputs LVCMOS / LVTTL interface levels | | 5 | DIV_SELC | Input | Pullup | Controls frequency division for Bank C outputs. LVCMOS / LVTTL interface levels. | | 6 | DIV_SELD | Input | Pullup | Controls frequency division for Bank D outputs. LVCMOS / LVTTL interface levels. | | 7 | CLK_ENA | Input | Pullup | Output enable for Bank A outputs. Active HIGH. If pin is LOW, outputs drive low. | | 8 | CLK_ENB | Input | Pullup | Output enable for Bank B outputs. Active HIGH. If pin is LOW, outputs drive low. | | 9 | CLK_ENC | Input | Pullup | Output enable for Bank C outputs. Active HIGH. If pin is LOW, outputs drive low. | | 10 | CLK_END | Input | Pullup | Output enable for Bank D outputs. Active HIGH. If pin is LOW, outputs drive low. | | 11 | nMR/OE | Input | Pullup | Master reset. When LOW, resets the ÷1/÷2 flip flops and sets the outputs to high impedance. LVCMOS / LVTTL interface levels. | | 12, 16, 20, 24,
28, 32, 36, 40, 44 | GND | Power | | Ground. | | 13, 15, 17, 19 | QD3, QD2,
QD1, QD0 | Output | | Bank D outputs. LVCMOS / LVTTL interface levels. | | 14, 18 | $V_{\tiny exttt{DDOD}}$ | Power | | Output Bank D supply pins. Connect to 3.3V, 2.5V or 1.8V. | | 21, 23, 25, 27 | QC3, QC2,
QC1, QC0 | Output | | Bank C outputs. LVCMOS / LVTTL interface levels. | | 22, 26 | $V_{\tiny DDOC}$ | Power | | Output Bank C supply pins. Connect to 3.3V, 2.5V or 1.8V. | | 29, 31, 33, 35 | QB3, QB2,
QB1, QB0 | Output | | Bank B outputs. LVCMOS / LVTTL interface levels. | | 30, 34 | $V_{\tiny extsf{DDOB}}$ | Power | | Output Bank B supply pins. Connect to 3.3V, 2.5V or 1.8V. | | 37, 39, 41, 43 | QA3, QA2,
QA1, QA0 | Output | | Bank A outputs. LVCMOS / LVTTL interface levels. | | 38, 42 | $V_{\scriptscriptstyle DDOA}$ | Power | | Output Bank A supply pins. Connect to 3.3V, 2.5V or 1.8V. | | 45 | CLK_SEL | Input | Pulldown | Clock select input. When HIGH, selects CLK1, nCLK1 inputs. When LOW, selects CLK0 input. LVCMOS / LVTTL interface levels. | | 46 | nCLK1 | Input | Pullup | Inverting differential clock input. | | 47 | CLK1 | Input | Pulldown | Non-inverting differential clock input. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. ICS87016 Low Skew, 1-to-16 Differential-to-LVCMOS Clock Generator #### TABLE 2. PIN CHARACTERISTICS | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------|--|---|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | | 4 | pF | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | ΚΩ | | | | V_{DD} , $V_{DDOx} = 3.465V$; NOTE 1 | | | TBD | pF | | C _{PD} | Power Dissipation Capacitance (per output) | $V_{DD} = 3.465, V_{DDOx} = 2.625V; NOTE 1$ | | | TBD | pF | | | (per output) | $V_{DD} = 3.465, V_{DDOx} = 1.89V; NOTE 1$ | | | TBD | pF | | R _{out} | Output Impedance | | | 7 | | Ω | NOTE 1: V_{DDOx} denotes V_{DDOA} , V_{DDOB} , V_{DDOC} , and V_{DDOD} . #### TABLE 3. FUNCTION TABLE | Inputs | | | Outputs | | | |--------|---------|----------|---------|--------------|--| | nMR/OE | CLK_ENx | DIV_SELx | Bank X | Qx frequency | | | 0 | X | Х | Hi Z | N/A | | | 1 | 1 | 0 | Active | fIN/2 | | | 1 | 1 | 1 | Active | fIN | | | 1 | 0 | Х | Low | N/A | | ### ICS87016 Low Skew, 1-to-16 DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{DDx} 4.6V $\begin{array}{ll} \text{Inputs, V}_{\text{I}} & -0.5\text{V to V}_{\text{DD}} + 0.5\text{V} \\ \text{Outputs, V}_{\text{O}} & -0.5\text{V to V}_{\text{DDO}} + 0.5\text{V} \\ \text{Package Thermal Impedance, } \theta_{\text{JA}} & 47.9^{\circ}\text{C/W (0 lfpm)} \\ \text{Storage Temperature, T}_{\text{STG}} & -65^{\circ}\text{C to } 150^{\circ}\text{C} \\ \end{array}$ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 4A. DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-------------------|-------------------------------|-----------------|---------|---------|---------|-------| | V _{DD} | Positive Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | | | | 3.135 | 3.3 | 3.465 | V | | V_{DDOx} | Output Supply Voltage; NOTE 1 | | 2.375 | 2.5 | 2.625 | V | | | | | 1.71 | 1.8 | 1.89 | V | | I _{DD} | Power Supply Current | | | 100 | | mA | | I _{DDOx} | Output Supply Current; NOTE 2 | | | 20 | | mA | NOTE 1: V_{DDOx} denotes V_{DDOA} , V_{DDOB} , V_{DDOC} , and V_{DDOD} . NOTE 2: I_{DDOx} denotes I_{DDOA} , I_{DDOB} , I_{DDOC} , and I_{DDOD} . Table 4B. LVCMOS DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0$ °C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------------|---|----------------------------------|---------|---------|-----------------------|-------| | V _{IH} | Input
High Voltage | DIV_SELA:DIV_SELD,
CLK_ENA:CLK_END,
nMR/OE, CLK_SEL | | 2 | | V _{DD} + 0.3 | V | | | | CLK0 | | 2 | | V _{DD} + 0.3 | V | | V _{IL} | Input
Low Voltage | DIV_SELA:DIV_SELD,
CLK_ENA:CLK_END,
nMR/OE, CLK_SEL | | -0.3 | | 0.8 | V | | | | CLK0 | | -0.3 | | 1.3 | V | | I _{IH} | Input
High Current | CLK_ENA:CLK_END,
DIV_SELA:DIV_SELD,
nMR/OE | $V_{DD} = V_{IN} = 3.465V$ | | | 5 | μΑ | | | _ | CLK0, CLK_SEL | $V_{DD} = V_{IN} = 3.465V$ | | | 150 | μΑ | | I _{IL} | Input
Low Current | CLK_ENA:CLK_END,
DIV_SELA:DIV_SELD,
nMR/OE | $V_{DD} = 3.465V, V_{IN} = 0V$ | -150 | | | μΑ | | | | CLK0, CLK_SEL | $V_{DD} = 3.465 V, V_{IN} = 0 V$ | -5 | | | μΑ | | | | | $V_{DDOx} = 3.465V; NOTE 2$ | 2.6 | | | V | | V _{OH} | Output High V | oltage; NOTE 1 | $V_{DDOx} = 2.625V; NOTE 2$ | 1.8 | | | V | | | | | $V_{DDOx} = 1.89V; NOTE 2$ | TBD | | | V | | V _{OL} | Output Low Vo | oltage; NOTE 1 | | | | 0.5 | V | | I _{OZL} | Output Tristate Current Low | | | | | TBD | μA | | I _{OZH} | Output Tristate | e Current High | | | | TBD | μΑ | NOTE 1: Outputs terminated with 50Ω to $V_{DDOX}/2$. See Parameter Measurement Information, Output Load Test Circuit. NOTE 2: V_{DDOx} denotes V_{DDOA} , V_{DDOB} , V_{DDOC} and V_{DDOD} . ### ICS87016 ## Low Skew, 1-to-16 DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR Table 4C. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$ | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-------------------------------|-------------|--------------------------------|-----------|---------|------------------------|-------| | | Innut High Current | nCLK1 | $V_{IN} = V_{DD} = 3.465V$ | | | 5 | μA | | I _{IH} | Input High Current | CLK1 | $V_{IN} = V_{DD} = 3.465V$ | | | 150 | μΑ | | | Input Low Current | nCLK1 | $V_{IN} = 0V, V_{DD} = 3.465V$ | -150 | | | μΑ | | I _{IL} | Input Low Current | CLK1 | $V_{IN} = 0V, V_{DD} = 3.465V$ | -5 | | | μΑ | | V _{PP} | Peak-to-Peak Input | Voltage | | 0.15 | | 1.3 | V | | V _{CMR} | Common Mode Inpo
NOTE 1, 2 | ut Voltage; | | GND + 0.5 | | V _{DD} - 0.85 | ٧ | NOTE 1: For single ended applications, the maximum input voltage for CLK1, nCLK1 is V_{pp} + 0.3V. NOTE 2: Common mode voltage is defined as V_{III}. Table 5A. AC Characteristics, $V_{DD} = V_{DDOx} = 3.3V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|------------------------------------|-------------------------|-----------------------------|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | | 250 | MHz | | | Propagation Delay, | CLK0; NOTE 1A | | | 3.8 | | ns | | tp _{LH} | Low to High | CLK1, nCLK1;
NOTE 1B | | | 3.8 | | ns | | tsk(b) | Bank Skew; NOTE 2 | 2, 7 | Measured on the Rising Edge | | 44 | | ps | | tsk(o) | Output Skew; NOTE | 3, 7 | Measured on the Rising Edge | | 124 | | ps | | tsk(w) | Multiple Frequency Skew; NOTE 4, 7 | | | | TBD | | ps | | tsk(pp) | Part-to-Part Skew; N | IOTE 5, 7 | | | TBD | | ps | | t _R | Output Rise Time; N | IOTE 6 | 30% to 70% @ 50MHz | 300 | | 800 | ps | | t _F | Output Fall Time; NOTE 6 | | 30% to 70% @ 50MHz | 300 | | 800 | ps | | odc | Output Duty Cycle | | | | 50 | | % | | t _{EN} | Output Enable Time; NOTE 6 | | | | TBD | | ns | | t _{DIS} | Output Disable Time | e; NOTE 6 | | | TBD | | ns | All parameters measured at 133.3MHz unless noted otherwise. NOTE 1A: Measured from the $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output. NOTE 1B: Measured from the differential input crossing point to $V_{DDOX}/2$ of the output. NOTE 2: Defined as skew within a bank with equal load conditions. NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOX}/2. NOTE 4: Defined as skew across banks of outputs switching in the same direction operating at different frequencies with the same supply voltages and equal load conditions. Measured at $V_{ppox}/2$. NOTE 5: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDOX}/2$. NOTE 6: These parameters are guaranteed by characterization. Not tested in production. NOTE 7: This parameter is defined in accordance with JEDEC Standard 65. # Integrated Circuit Systems, Inc. ## ICS87016 ## Low Skew, 1-to-16 DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR #### Table 5B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO_x} = 2.5V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|----------------------|-------------------------|-----------------------------|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | | 250 | MHz | | | Propagation Delay, | CLK0; NOTE 1A | | | 3.8 | | ns | | tp _{LH} | Low to High | CLK1, nCLK1;
NOTE 1B | | | 3.8 | | ns | | tsk(b) | Bank Skew; NOTE 2 | 2, 7 | Measured on the Rising Edge | | 40 | | ps | | tsk(o) | Output Skew; NOTE | 3, 7 | Measured on the Rising Edge | | 114 | | ps | | tsk(w) | Multiple Frequency | Skew; NOTE 4, 7 | | | TBD | | ps | | tsk(pp) | Part-to-Part Skew; N | IOTE 5, 7 | | | TBD | | ps | | t _R | Output Rise Time; N | IOTE 6 | 30% to 70% @ 50MHz | 300 | | 800 | ps | | t _F | Output Fall Time; No | OTE 6 | 30% to 70% @ 50MHz | 300 | | 800 | ps | | odc | Output Duty Cycle | | | | 50 | | % | | t _{EN} | Output Enable Time | ; NOTE 6 | | | TBD | | ns | | t _{DIS} | Output Disable Time | e; NOTE 6 | | | TBD | | ns | All parameters measured at 133.3MHz unless noted otherwise. NOTE 1A: Measured from the $\rm V_{DD}\!/2$ of the input to $\rm V_{DDOX}\!/2$ of the output. NOTE 1B: Measured from the differential input crossing point to $V_{DDOX}/2$ of the output. NOTE 2: Defined as skew within a bank with equal load conditions. NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOX}/2. NOTE 4: Defined as skew across banks of outputs switching in the same direction operating at different frequencies with the same supply voltages and equal load conditions. Measured at V_{DDOX}/2. NOTE 5: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at $V_{DDOX}/2$. NOTE 6: These parameters are guaranteed by characterization. Not tested in production. NOTE 7: This parameter is defined in accordance with JEDEC Standard 65. ## Integrated Circuit Systems, Inc. ## ICS87016 # Low Skew, 1-to-16 DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR #### Table 5C. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDOx} = 1.8V \pm 5\%$, Ta = 0°C to 70°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|----------------------------|-------------------------|-----------------------------|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | | 250 | MHz | | | Propagation Delay, | CLK0; NOTE 1A | | | 3.8 | | ns | | tp _{LH} | Low to High | CLK1, nCLK1;
NOTE 1B | | | 3.8 | | ns | | tsk(b) | Bank Skew; NOTE 2 | 2, 7 | Measured on the Rising Edge | | 32 | | ps | | tsk(o) | Output Skew; NOTE 3, 7 | | Measured on the Rising Edge | | 144 | | ps | | tsk(w) | Multiple Frequency | Skew; NOTE 4, 7 | | | TBD | | ps | | tsk(pp) | Part-to-Part Skew; N | IOTE 5, 7 | | | TBD | | ps | | t _R | Output Rise Time; N | IOTE 6 | 30% to 70% @ 50MHz | 300 | | 800 | ps | | t _F | Output Fall Time; NOTE 6 | | 30% to 70% @ 50MHz | 300 | | 800 | ps | | odc | Output Duty Cycle | | | | 50 | | % | | t _{EN} | Output Enable Time; NOTE 6 | | | | TBD | | ns | | t _{DIS} | Output Disable Time | e; NOTE 6 | | | TBD | | ns | All parameters measured at 133.3MHz unless noted otherwise. NOTE 1A: Measured from the $V_{DD}/2$ of the input to $V_{DDOX}/2$ of the output. NOTE 1B: Measured from the differential input crossing point to $V_{DDOX}/2$ of the output. NOTE 2: Defined as skew within a bank with equal load conditions. NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDOX}/2. NOTE 4: Defined as skew across banks of outputs switching in the same direction operating at different frequencies with the same supply voltages and equal load conditions. Measured at V_{ppox}/2. NOTE 5: Defined as skew between outputs on different devices operating a the same supply voltages and with equal load conditions. Using the same type of input on each device, the output is measured at V_DDOX/2. NOTE 6: These parameters are guaranteed by characterization. Not tested in production. NOTE 7: This parameter is defined in accordance with JEDEC Standard 65. ## ICS87016 Low Skew, 1-to-16 Differential-to-LVCMOS Clock Generator ## PARAMETER MEASUREMENT INFORMATION ## ICS87016 Low Skew, 1-to-16 DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR ## ICS87016 Low Skew, 1-to-16 Differential-to-LVCMOS Clock Generator ICS87016 Low Skew, 1-to-16 DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR ICS87016 Low Skew, 1-to-16 Differential-to-LVCMOS Clock Generator ## APPLICATION INFORMATION WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage V_REF = $V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and V_{DD} = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609. ICS87016 Low Skew, 1-to-16 Differential-to-LVCMOS Clock Generator ## RELIABILITY INFORMATION #### Table 6. $\theta_{\rm JA} \text{vs. Air Flow Table}$ ### $\boldsymbol{\theta}_{\text{JA}}$ by Velocity (Linear Feet per Minute) | | 0 | 200 | 500 | |--|----------|----------|----------| | Single-Layer PCB, JEDEC Standard Test Boards | 67.8°C/W | 55.9°C/W | 50.1°C/W | | Multi-Layer PCB, JEDEC Standard Test Boards | 47.9°C/W | 42.1°C/W | 39.4°C/W | NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs. #### TRANSISTOR COUNT The transistor count for ICS87016 is: 2034 ICS87016 Low Skew, 1-to-16 Differential-to-LVCMOS Clock Generator TABLE 7. PACKAGE DIMENSIONS | | JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS | | | | | | | |--------|---|------------|---------|--|--|--|--| | CVMDOL | | BBC | | | | | | | SYMBOL | MINIMUM | NOMINAL | MAXIMUM | | | | | | N | | 48 | | | | | | | Α | | | 1.60 | | | | | | A1 | 0.05 | | 0.15 | | | | | | A2 | 1.35 | 1.40 | 1.45 | | | | | | b | 0.17 | 0.22 | 0.27 | | | | | | С | 0.09 | | 0.20 | | | | | | D | | 9.00 BASIC | | | | | | | D1 | | 7.00 BASIC | | | | | | | D2 | | 5.50 Ref. | | | | | | | E | | 9.00 BASIC | | | | | | | E1 | | 7.00 BASIC | | | | | | | E2 | | 5.50 Ref. | | | | | | | е | | 0.50 BASIC | | | | | | | L | 0.45 | 0.60 | 0.75 | | | | | | θ | 0° | | 7° | | | | | | ccc | | | 0.08 | | | | | Reference Document: JEDEC Publication 95, MS-026 ## ICS87016 Low Skew, 1-to-16 Differential-to-LVCMOS Clock Generator #### TABLE 8. ORDERING INFORMATION | Part/Order Number | Marking | Package | Count | Temperature | |-------------------|------------|-------------------------------|--------------|-------------| | ICS87016AY | ICS87016AY | 48 Lead LQFP | 250 per tray | 0°C to 70°C | | ICS87016AYT | ICS87016AY | 48 Lead LQFP on Tape and Reel | 1000 | 0°C to 70°C | While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.