

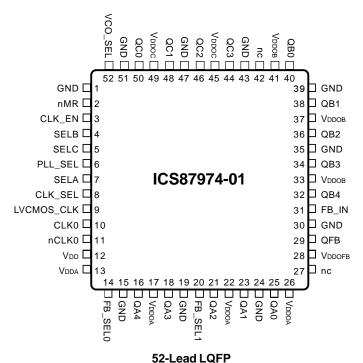
ICS87974-01

Low Skew, 1-TO-15,

DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

GENERAL DESCRIPTION

The ICS87974-01 is a low skew, low jitter 1-to-15 Differential-to-LVCMOS clock generator/zero delay buffer and is a member of the HiPerClockS family of High Performance Clock Solutions from ICS. The device has a fully integrated PLL and three


banks whose divider ratios can be independently controlled, providing output frequency relationships of 1:1, 2:1, 3:1, 3:2, 3:2:1. In addition, the external feedback connection provides for a wide selection of output-to-input frequency ratios. The LVCMOS_CLK and CLK0, nCLK0 pins allow for redundant clocking on the input and dynamically switching the PLL between two clock sources.

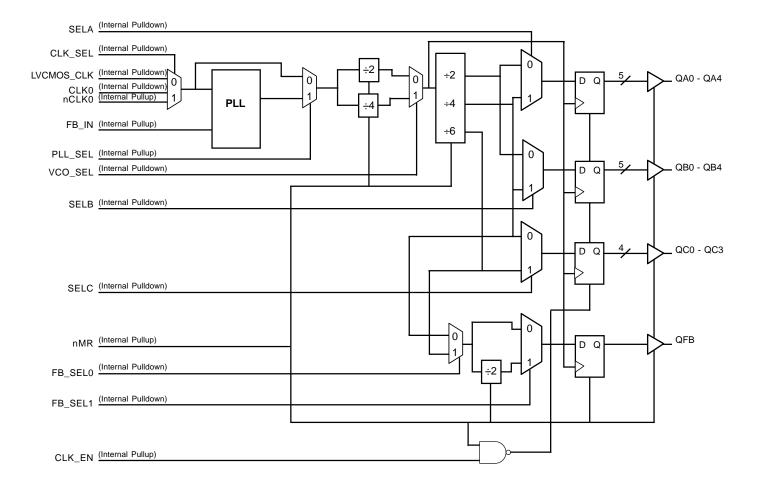
Guaranteed low jitter and output skew characteristics make the ICS87974-01 ideal for those applications demanding well defined performance and repeatability.

FEATURES

- · Fully integrated PLL
- 15 single ended 3.3V LVCMOS outputs
- Selectable LVCMOS_CLK or differential CLK0, nCLK0 inputs for redundant clock applications
- LVCMOS_CLK accepts LVCMOS or LVTTL input levels
- CLK0, nCLK0 pair can accept the following differential input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL
- Maximum output frequency up to 125MHz
- External feedback for "zero delay" clock regeneration
- Cycle-to-cycle jitter: ±100ps (typical)
- Output skew: 350ps (maximum)
- Bank skew: ±50ps (typical)
- · PLL reference zero delay: TBD
- · 3.3V operating supply
- 0°C to 70°C ambient operating temperature
- Industrial temperature information available upon request

PIN ASSIGNMENT

10mm x 10mm x 1.4mm package body
Y package
Top View


The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.

ICS87974-01

Low Skew, 1-to-15, DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

BLOCK DIAGRAM

ICS87974-01

Low Skew, 1-to-15, DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ту	/pe	Description
1, 15, 19, 24, 30, 35, 39, 43, 47, 51	GND	Power		Power supply ground. Connect to ground.
2	nMR	Input	Pullup	Master reset. When HIGH, outputs are enabled. When LOW, outputs are disabled and dividers are reset. LVCMOS / LVTTL interface levels.
3	CLK_EN	Input	Pullup	Clock enable. When LOW, all outputs except QFB are low.
4	SELB	Input	Pulldown	Selects divide value for Bank B output as described in Table 3. LVCMOS / LVTTL interface levels.
5	SELC	Input	Pulldown	Selects divide value for Bank C output as described in Table 3. LVCMOS / LVTTL interface levels.
6	PLL_SEL	Input	Pullup	Selects between the PLL and the reference clock as the input to the dividers. When HIGH, selects PLL. When LOW, selects the reference clock. LVCMOS / LVTTL interface levels.
7	SELA	Input	Pulldown	Selects divide value for Bank A output as described in Table 3. LVCMOS / LVTTL interface levels.
8	CLK_SEL	Input	Pulldown	Clock select input. LVCMOS / LVTTL interface levels.
9	LVCMOS_CLK	Input	Pulldown	Clock input. LVCMOS / LVTTL interface levels.
10	CLK0	Input	Pulldown	Non-inverting differential clock input.
11	nCLK0	Input	Pullup	Inverting differential clock input
27, 42	nc	Unused		No connect.
12	$V_{_{\mathrm{DD}}}$	Power		Positive supply pin. Connect to 3.3V.
13	$V_{\scriptscriptstyle DDA}$	Power		Analog supply pin. Connect to 3.3V.
14, 20	FB_SEL0, FB_SEL1	Input	Pulldown	Selects divide value for Bank feedback output as described in Table 3. LVCMOS / LVTTL interface levels.
16, 18, 21, 23, 25	QA4, QA3, QA2, QA1, QA0	Output		Bank A clock outputs. 7Ω typical output impedance. LVCMOS / LVTTL interface levels.
17, 22, 26	$V_{\scriptscriptstyle DDOA}$	Power		Output supply pins. Connect to 3.3V.
28	$V_{\scriptscriptstyle DDOFB}$	Power		Output supply pins. Connect to 3.3V.
29	QFB	Output		Clock output. LVCMOS / LVTTL interface levels.
31	FB_IN	Input	Pullup	Feedback input to phase detector for generating clocks with "zero delay". Connect to pin 29. LVCMOS / LVTTL interface levels.
32, 34, 36, 38, 40	QB4, QB3, QB2, QB1, QB0	Output		Bank B clock outputs. 7Ω typical output impedance. LVCMOS interface levels.
33, 37, 41	V_{DDOB}	Power		Output supply pins. Connect to 3.3V.
44, 46, 48, 50	QC3, QC2, QC1, QC0	Output		Bank C clock outputs. 7Ω typical output impedance. LVCMOS interface levels.
45, 49	V _{DDOC}	Power		Output supply pins. Connect to 3.3V.
52	VCO_SEL	Input	Pulldown	Selects VCO ÷ 4 when HIGH. Selects VCO ÷ 2 when LOW. LVCMOS / LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

ICS87974-01

Low Skew, 1-to-15, DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance				4	pF
R _{PULLUP}	Input Pullup Resistor			51		ΚΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		ΚΩ
C _{PD}	Power Dissipation Capacitance (per output)	$V_{DD,}V_{DDA}, *V_{DDOx} = 3.465V$			15	pF

^{*}NOTE: V_{DDOx} denotes V_{DDOA} , V_{DDOB} , V_{DDOC} , V_{DDOFB} .

TABLE 3A. OUTPUT CONTROL PIN FUNCTION TABLE

Inputs			Outputs		
nMR	CLK_EN	QA0 - QA4	QB0 - QB4	QC0 - QC3	QFB
0	Х	HiZ	HiZ	HiZ	HiZ
1	0	LOW	LOW	LOW	Enable
1	1	Enable	Enable	Enable	Enable

TABLE 3B. OPERATING MODE FUNCTION TABLE

Inputs	Operating Mede
PLL_SEL	Operating Mode
0	Bypass
1	PLL

TABLE 3C. PLL INPUT FUNCTION TABLE

Inputs				
CLK_SEL	PLL Input			
0	LVCMOS_CLK			
1	CLK0, nCLK0			

TABLE 3D. SELECT PIN FUNCTION TABLE

SELA	QAx	SELB	QBx	SELC	QCx
0	÷ 2	0	÷ 2	0	÷ 4
1	÷ 4	1	÷ 4	1	÷ 6

TABLE 3E. FB SELECT FUNCTION TABLE

Inp	Outputs	
FB_SEL0	FB_SEL1	QFB
0	0	÷ 4
0	1	÷ 6
1	0	÷ 8
1	1	÷ 12

TABLE 3F. VCO SELECT FUNCTION TABLE

Inputs				
VCO_SEL	fVCO			
0	VCO/2			
1	VCO/4			

ICS87974-01

Low Skew, 1-to-15,

DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DDx} 4.6V

 $\begin{array}{ll} \text{Inputs, V}_{\text{I}} & -0.5\text{V} \;\; \text{to V}_{\text{DD}} + 0.5\text{V} \\ \text{Outputs, V}_{\text{O}} & -0.5\text{V} \;\; \text{to V}_{\text{DDO}} + 0.5\text{V} \\ \text{Package Thermal Impedance, } \theta_{\text{JA}} & 73.2^{\circ}\text{C/W} \;\; \text{(0 lfpm)} \\ \text{Storage Temperature, T}_{\text{STG}} & -65^{\circ}\text{C} \;\; \text{to } 150^{\circ}\text{C} \\ \end{array}$

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = V_{DDOx} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		3.135	3.3	3.465	V
*V _{DDOx}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current			90		mA
I _{DDO}	Output Supply Current			10		mA
I _{DDA}	Analog Supply Current			290		mA

*NOTE: V_{DDOx} denotes V_{DDOA} , V_{DDOB} , V_{DDOC} , V_{DDOFB} .

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = V_{DDA} = V_{DDOx} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		0.8	V
I _{IH}	I loout High Current	FB_SEL0, FB_SEL1, SELA, SELB, SELC, CLK_SEL, VCO_SEL LVCMOS_CLK	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
		FB_IN, nMR, PLL_SEL, CLK_EN	$V_{DD} = V_{IN} = 3.465V$			5	μΑ
I	Input Low Current	FB_SEL0, FB_SEL1, SELA, SELB, SELC, CLK_SEL, VCO_SEL LVCMOS_CLK	$V_{IN} = 0V, V_{DD} = 3.465V$	-5			μΑ
		FB_IN, nMR, PLL_SEL, CLK_EN	ELK_EN				
V _{OH}	Output High Voltage; NOTE 1			2.4			V
V _{OL}	Output Low Voltage; NOTE 1					0.5	V
I _{OZL}	Output Tristate Curr	rent Low				TBD	μA
I _{OZH}	Output Tristate Curr	rent High				TBD	μA

NOTE 1: Outputs terminated with 50Ω to $V_{DDOx}/2$.

ICS87974-01

Low Skew, 1-TO-15,

DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

Table 4C. Differential DC Characteristics, $V_{DD} = V_{DDA} = V_{DDO_X} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	CLK0	$V_{DD} = V_{IN} = 3.465V$			150	μΑ
'IH		nCLK0	$V_{DD} = V_{IN} = 3.465V$			5	μΑ
,	Input Low Current	CLK0	$V_{IN} = 0V, V_{DD} = 3.465V$	-5			μA
' _{IL}		nCLK0	$V_{IN} = 0V, V_{DD} = 3.465V$	-150			μA
V_{pp}	Peak-to-Peak Input Voltage			0.15		1.3	V
V _{CMR}	Common Mode Input Voltage; NOTE 1, 2			GND + 0.5		V _{DD} -0.85	V

NOTE 1: Common mode voltage is defined as $V_{\rm IH}$.

NOTE 2: For single ended applications, the maximum input voltage for CLK0, nCLK0 is V_{nn} + 0.3V.

Table 5. AC Characteristics, $V_{DD} = V_{DDA} = V_{DDOx} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

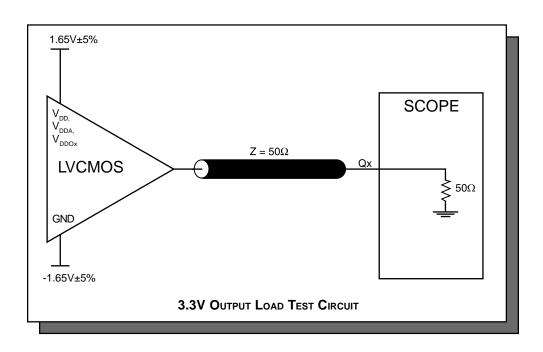
Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
			Qx ÷ 2, VCO ÷ 2			125	MHz
f _{MAX}	Output Frequency		Qx ÷ 4, VCO ÷ 2			63	MHz
			Qx ÷ 6, VCO ÷ 2			42	MHz
f _{vco}	PLL VCO Lock Range;	NOTE 5		200		700	MHz
tP _{LH}	Propagation Delay, Low to High; NOTE 1		$\begin{aligned} PLL_SEL &= 0V, \\ 0MHz &\leq f \leq MHz \end{aligned}$				ns
tP _{HL}	Propagation Delay, High to Low; NOTE 1		$PLL_SEL = 0V, \\ 0MHz \le f \le MHz$				ns
t(Ø)	PLL Reference Zero Delay; NOTE 2, 5		$PLL_SEL = 3.3V, fREF = TBD, f_{VCO} = TBD$	X - 150ps	TBD X	X + 150ps	ps
	Bank Skew; NOTE 3, 5	Bank A			±50		ps
tsk(b)		Bank B	Measured on rising edge at $V_{\tiny DDO}/2$		±50		ps
		Bank C			±50		ps
tsk(o)	Output Skew; NOTE 4,	5	Measured on rising edge at $V_{\tiny DDO}/2$			350	ps
tjit(cc)	Cycle-to-Cycle Jitter; N	OTE 5			±100		ps
t _L	PLL Lock Time					10	mS
t _R	Output Rise Time		20% to 80% @ 50MHz		450		ps
t _F	Output Fall Time		20% to 80% @ 50MHz		400		ps
t _{PW}	Output Pulse Width						ps
t _{EN}	Output Enable Time					10	ns
t _{DIS}	Output Disable Time					10	ns

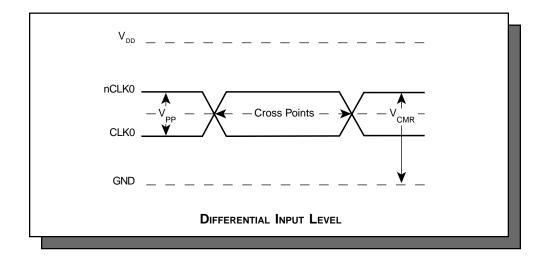
All parameters measured at f_{MAX} unless noted otherwise. NOTE 1: Measured from the $V_{DD}/2$ point of the input to the $V_{DDOx}/2$ of the output. NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback

input signal when the PLL is locked and the input reference frequency is stable.

NOTE 3: Defined as skew within a bank with equal load conditions.

NOTE 4: Defined as skew between outputs at the same supply voltage and with equal load conditions.

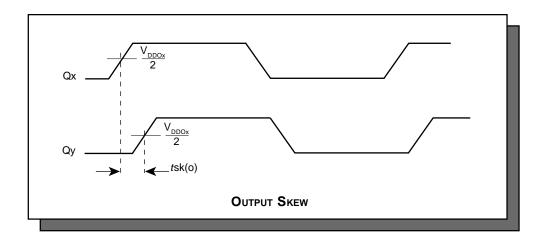

Measured at $V_{DDOx}/2$.

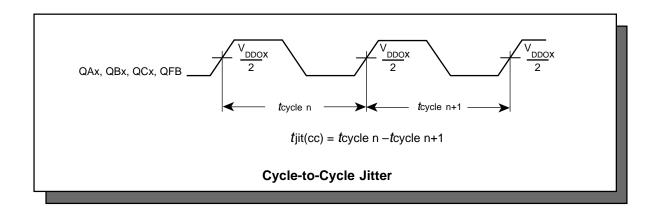

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

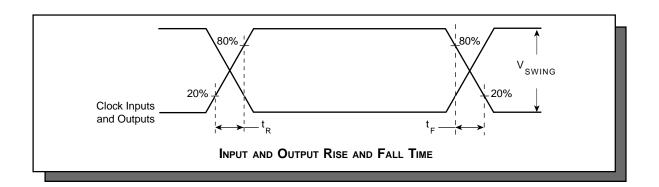
ICS87974-01

Low Skew, 1-to-15, DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

PARAMETER MEASUREMENT INFORMATION

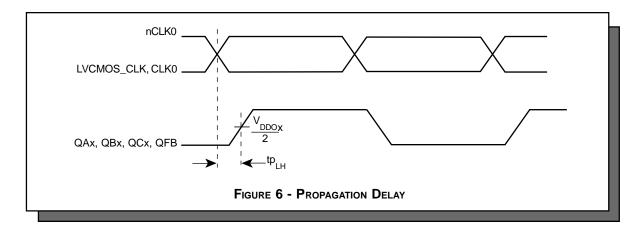


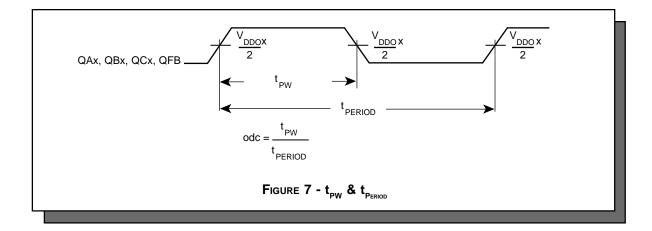




ICS87974-01

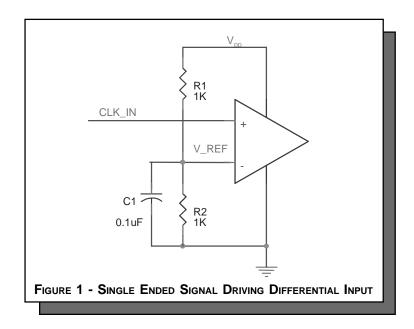
Low Skew, 1-to-15, DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR





ICS87974-01

Low Skew, 1-to-15, DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR



ICS87974-01

Low Skew, 1-to-15, DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

APPLICATION INFORMATION WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_REF should be 1.25V and R2/R1 = 0.609.

ICS87974-01

Low Skew, 1-TO-15,

DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

Power Supply Filtering Techniques

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS87974-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\rm DD},\,V_{\rm DDA},\,$ and $V_{\rm DDOx}$ should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 2 illustrates how a 10Ω resistor along with a $10\mu F$ and a $.01\mu F$ bypass capacitor should be connected to each $V_{\rm DDA}$ pin.

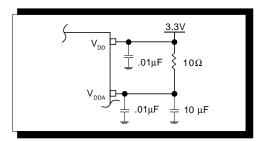


FIGURE 2 - POWER SUPPLY FILTERING

ICS87974-01 Low Skew, 1-to-15, DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

RELIABILITY INFORMATION

Table 6. $\theta_{_{JA}} \text{vs. Air Flow Table}$

$\boldsymbol{\theta}_{\text{JA}}$ by Velocity (Linear Feet per Minute)

	0	200	500
Single-Layer PCB, JEDEC Standard Test Boards	58.0°C/W	47.1°C/W	42.0°C/W
Multi-Layer PCB, JEDEC Standard Test Boards	42.3°C/W	36.4°C/W	34.0°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for ICS87974-01 is: 4225

ICS87974-01

Low Skew, 1-to-15, DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

PACKAGE OUTLINE - Y SUFFIX

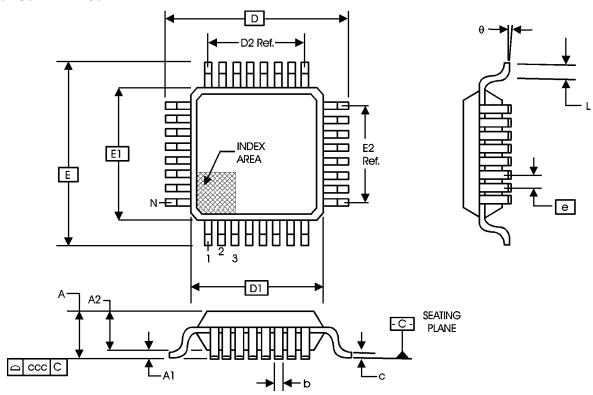


TABLE 7. PACKAGE DIMENSIONS

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS						
SYMBOL	BCC					
STWIBOL	MINIMUM	NOMINAL	MAXIMUM			
N	52					
A			1.60			
A1	0.05		0.15			
A2	1.35	1.40	1.45			
b	0.22	0.32	0.38			
b1	0.22	0.30	0.33			
D	12.00 BASIC					
D1	10.00 BASIC					
E	12.00 BASIC					
E1	10.00 BASIC					
е	0.65 BASIC					
ccc	0.45		0.10			
ddd			0.13			

Reference Document: JEDEC Publication 95, MS-026

ICS87974-01

Low Skew, 1-to-15, DIFFERENTIAL-TO-LVCMOS CLOCK GENERATOR

TABLE 8. ORDERING INFORMATION

Part/Order Number	Marking	Package	Count	Temperature
ICS87974AY-01	ICS87974AY-01	52 Lead LQFP	160 per tray	0°C to 70°C
ICS87974AY-01T	ICS87974AY-01	52 Lead LQFP on Tape and Reel	500	0°C to 70°C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.