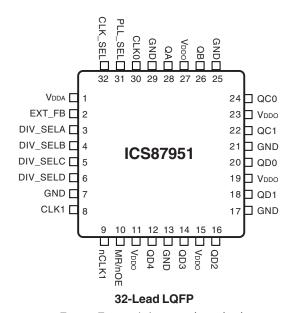


ICS87951

Low Skew, 1-TO-9

DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER

GENERAL DESCRIPTION


The ICS87951 is a low voltage, low skew 1-to-9 Differential-to-LVCMOS clock generator and a member of the HiPerClockS™ family of High Performance Clock Solutions from ICS. The ICS87951 has two selectable clock inputs. The

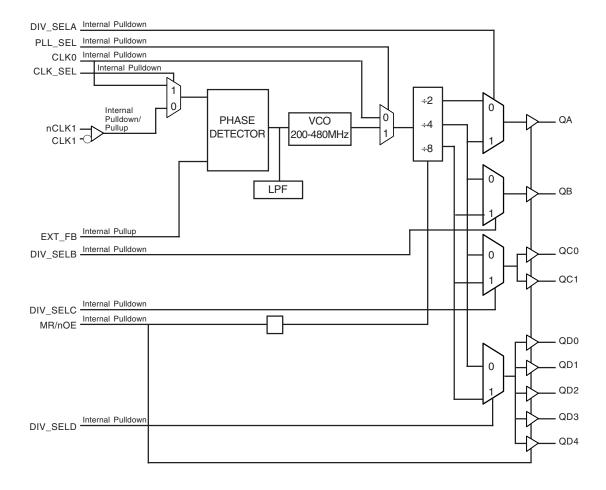
single ended clock input accepts LVCMOS or LVTTL input levels. The CLK1, nCLK1 pair can accept most standard differential input levels. With output frequencies up to 180MHz, the ICS87951 is targeted for high performance clock applications. Along with a fully integrated PLL, the ICS87951 contains frequency configurable outputs and an external feedback input for regenerating clocks with "zero delay".

FEATURES

- Fully integrated PLL
- 9 single ended 3.3V LVCMOS outputs
- Selectable single ended CLK0 or differential CLK1, nCLK1 inputs
- The single ended CLK0 input can accept the following input levels: LVCMOS or LVTTL input levels
- CLK1, nCLK1 supports the following input types: LVDS, LVPECL, LVHSTL, SSTL, HCSL
- Maximum output frequency up to 180MHz
- VCO range: 200MHz to 480MHz
- External feedback for "zero delay" clock regeneration
- Cycle-to-cycle jitter: ±100ps (typical)
- · Output skew: 375ps (maximum)
- PLL reference zero delay: 350ps window (maximum)
- · 3.3V operating supply
- 0°C to 70°C ambient operating temperature
- Pin compatible with the MPC951
- Industrial temperature information available upon request

PIN ASSIGNMENT

7mm x 7mm x 1.4mm package body
Y package
Top View


The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice.

ICS87951

Low Skew, 1-to-9
DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER

BLOCK DIAGRAM

ICS87951 Low Skew, 1-to-9 DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER

TABLE 1. PIN DESCRIPTIONS

Number	Name	Ty	уре	Description
1	$V_{\scriptscriptstyle DDA}$	Power		Analog supply pin. Connect to 3.3V.
2	EXT_FB	Input	Pullup	Feedback input to phase detector for regenerating clocks with "zero delay". LVCMOS / LVTTL interface levels.
3	DIV_SELA	Input	Pulldown	Selects divide value for Bank A output as described in Table 3D. LVCMOS / LVTTL interface levels.
4	DIV_SELB	Input	Pulldown	Selects divide value for Bank B output as described in Table 3D. LVCMOS / LVTTL interface levels.
5	DIV_SELC	Input	Pulldown	Selects divide value for Bank C outputs as described in Table 3D. LVCMOS / LVTTL interface levels.
6	DIV_SELD	Input	Pulldown	Selects divide value for Bank D outputs as described in Table 3D. LVCMOS / LVTTL interface levels.
7, 13, 17, 21, 25, 29	GND	Power		Power supply ground. Connect to ground.
8	CLK1	Input	Pullup	Non-inverting differential clock input.
9	nCLK1	Input	Pulldown	Inverting differential clock input.
10	MR/nOE	Input	Pulldown	Master reset and output enable. When LOW, outputs are enabled. When HIGH, outputs are disabled and dividers are reset. LVCMOS / LVTTL interface levels.
11, 15, 19, 23, 27	V _{DDO}	Power		Output supply pins. Connect to 3.3V.
12, 14, 16, 18, 20	QD4, QD3, QD2, QD1, QD0	Output		Bank D clock outputs. 7Ω typical output impedance. LVCMOS interface levels.
22, 24	QC1, QC0	Output		Bank C clock outputs. 7Ω typical output impedance. LVCMOS interface levels.
26	QB	Output		Bank B clock output. 7Ω typical output impedance. LVCMOS interface levels.
28	QA	Output		Bank A clock output. 7Ω typical output impedance. LVCMOS interface levels.
30	CLK0	Input	Pulldown	LVCMOS / LVTTL phase detector reference clock input.
31	PLL_SEL	Input	Pulldown	Selects between the PLL and the reference clock as the input to the dividers. When HIGH, selects PLL. When LOW, selects the reference clock.
32	CLK_SEL	Input	Pulldown	Clock select input. When HIGH, selects CLK0. When LOW, selects CLK1, nCLK1. LVCMOS / LVTTL interface levels.

NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

TABLE 2. PIN CHARACTERISTICS

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance				4	pF
C _{PD}	Power Dissipation Capacitance (per output)	V_{DDA} , $V_{DDO} = 3.47V$		TBD		pF
R _{PULLUP}	Input Pullup Resistor			51		ΚΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		ΚΩ

ICS87951

Low Skew, 1-to-9
DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER

TABLE 3A. OUTPUT CONTROL PIN FUNCTION TABLE

Inputs	Outputs					
MR/nOE	QA	QB	QC0 - QC1	QD0 - QD4		
1	HiZ	HiZ	HiZ	HiZ		
0	Enabled	Enabled	Enabled	Enabled		

TABLE 3B. OPERATING MODE FUNCTION TABLE

Inputs	Operating Mede		
PLL_SEL	Operating Mode		
0	Bypass		
1	PLL		

TABLE 3C. PLL INPUT FUNCTION TABLE

Inputs					
CLK_SEL	PLL Input				
0	CLK1, nCLK1				
1	CLK0				

TABLE 3D. PROGRAMMABLE OUTPUT FREQUENCY FUNCTION TABLE

	Inp	uts		Outputs			
DIV_SELA	DIV_SELB	DIV_SELC	DIV_SELD	QA	QB	QCx	QDx
0	0	0	0	VCO/2	VCO/4	VCO/4	VCO/4
0	0	0	1	VCO/2	VCO/4	VCO/4	VCO/8
0	0	1	0	VCO/2	VCO/4	VCO/8	VCO/4
0	0	1	1	VCO/2	VCO/4	VCO/8	VCO/8
0	1	0	0	VCO/2	VCO/8	VCO/4	VCO/4
0	1	0	1	VCO/2	VCO/8	VCO/4	VCO/8
0	1	1	0	VCO/2	VCO/8	VCO/8	VCO/4
0	1	1	1	VCO/2	VCO/8	VCO/8	VCO/8
1	0	0	0	VCO/4	VCO/4	VCO/4	VCO/4
1	0	0	1	VCO/4	VCO/4	VCO/4	VCO/8
1	0	1	0	VCO/4	VCO/4	VCO/8	VCO/4
1	0	1	1	VCO/4	VCO/4	VCO/8	VCO/8
1	1	0	0	VCO/4	VCO/8	VCO/4	VCO/4
1	1	0	1	VCO/4	VCO/8	VCO/4	VCO/8
1	1	1	0	VCO/4	VCO/8	VCO/8	VCO/4
1	1	1	1	VCO/4	VCO/8	VCO/8	VCO/8

ICS87951

Low Skew, 1-TO-9

DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{DDx} 4.6V

 $\begin{array}{lll} \text{Inputs, V}_{\text{I}} & -0.5 \text{V to V}_{\text{DDA}} + 0.5 \text{V} \\ \text{Outputs, V}_{\text{O}} & -0.5 \text{V to V}_{\text{DDO}} + 0.5 \text{V} \\ \text{Package Thermal Impedance, } \theta_{\text{JA}} & 42.1 ^{\circ} \text{C/W (0 Ifpm)} \\ \text{Storage Temperature, T}_{\text{STG}} & -65 ^{\circ} \text{C to } 150 ^{\circ} \text{C} \end{array}$

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Table 4A. Power Supply DC Characteristics, $V_{DDA} = V_{DDO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DDA}	Analog Supply Voltage		3.135	3.3	3.465	٧
V _{DDO}	Output Supply Voltage		3.135	3.3	3.465	V
I _{DDA}	Analog Supply Current			10		mA
I _{DDO}	Output Supply Current			200		mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DDA} = V_{DDO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
		CLK0		2		V _{DD} + 0.3	V
V _{IH}	Input High Voltage	MR/nOE, DIV_SELx, PLL_SEL, CLK_SEL		2		V _{DD} + 0.3	V
		CLK0		-0.3		1.3	V
V _{IL}	Input Low Voltage	MR/nOE, DIV_SELx, PLL_SEL, CLK_SEL		-0.3		0.8	V
I _{IH}	Input High Current	MR/nOE, DIV_SELA, DIV_SELB, DIV_SELC, DIV_SELD	*V _{DDx} =V _{IN} =3.465V			120	μΑ
		CLK0, PLL_SEL, CLK_SEL	*V _{DDx} =V _{IN} =3.465V			5	μΑ
I _{IL}	Input Low Current	MR/nOE, DIV_SELA, DIV_SELB, DIV_SELC, DIV_SELD	V _{IN} = 0V, *V _{DDx} =3.465V	-5			μΑ
		CLK0, PLL_SEL, CLK_SEL	$V_{IN} = 0V, *V_{DDx} = 3.465V$	-120			μΑ
V _{OH}	Output High Voltage	e; NOTE 1		2.4			V
V _{OL}	Output Low Voltage	; NOTE 1				0.5	V

NOTE 1: Outputs terminated with 50 Ω to $\rm V_{DDO}/2.$

*NOTE: V_{DDx} denotes V_{DDA} and V_{DDO} .

Integrated Circuit Systems, Inc.

ICS87951

Low Skew, 1-TO-9

DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER

Table 4C. Differential DC Characteristics, $V_{DDA} = V_{DDO} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Input High Current	nCLK1	$^*V_{DDx} = V_{IN} = 3.465V$			150	μΑ
' ін	Imput riigii Current	CLK1	$^*V_{DDx} = V_{IN} = 3.465V$			5	μΑ
	Input Low Current	nCLK1	$V_{IN} = 0V, *V_{DDx} = 3.465V$	-5			μΑ
' _{IL}	Input Low Current	CLK1	$V_{IN} = 0V, *V_{DDx} = 3.465V$	-150			μΑ
V _{PP}	Peak-to-Peak Input	Voltage		0.15		1.3	V
V _{CMR}	Common Mode Inpu	ut Voltage; NOTE 1, 2		GND + 0.5		V _{DD} - 0.85	V

NOTE 1: Common mode voltage is defined as V_{IH}.

NOTE 2: For single ended applications, the maximum input voltage for CLK1 and nCLK1 is V_{nna}+ 0.3V.

*NOTE: $V_{\rm DDx}$ denotes $V_{\rm DDA}$ and $V_{\rm DDO}$.

Table 5. PLL Input Reference Characteristics, $V_{DDA} = V_{DDO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{REF}	Input Reference Frequency				100	MHz

Table 6. AC Characteristics, $V_{DDA} = V_{DDO} = 3.3V \pm 5\%$, Ta = 0°C to 70°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
			QA ÷2			180	MHz
f _{MAX}	Output Frequency		QA/QB ÷4			120	MHz
			QB ÷8			60	MHz
f _{vco}	PLL VCO Lock Rang	ge		200		480	MHz
	Propagation Delay,	CLK0; NOTE 1A			4.6		ns
tp _{LH}	Low to High	CLK1, nCLK1; NOTE 1B	PLL_SEL = 0V		4.8		ns
t(Ø)	Static Phase Offset; NOTE 2, 5		$\begin{aligned} \text{PLL_SEL} &= 3.3\text{V,} \\ \text{fREF} &= \text{TBD,} \\ \text{f}_{\text{VCO}} &= \text{TBD} \end{aligned}$	TBD - 175	TBD	TBD + 175	ps
tsk(o)	Output Skew; NOTE	4, 5				375	ps
tjit(cc)	Cycle-to-Cycle Jitter	; NOTE 5			± 100		ps
t_	PLL Lock Time; NOT	ΓE 5					mS
t _R	Output Rise Time		0.8 to 2V	0.1		1.0	ns
t _F	Output Fall Time		0.8 to 2V	0.1		1.0	ns
t _{PW}	Output Pulse Width			tcycle/2 - 100		tcycle/2 + 100	ps
t _{EN}	Output Enable Time					6	ns
t _{DIS}	Output Disable Time					7	ns

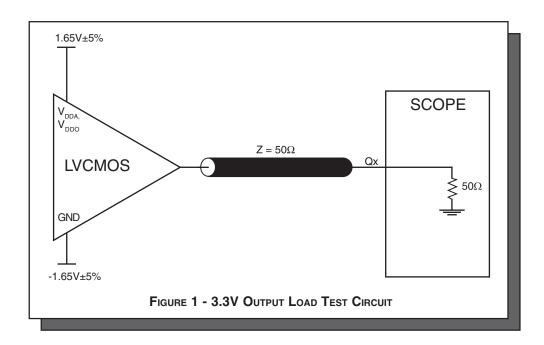
All parameters measured at f_{MAX} unless noted otherwise. NOTE 1A: Measured from the $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. NOTE 1B: Measured from the differential input crossing point to $V_{DDO}/2$ of the output.

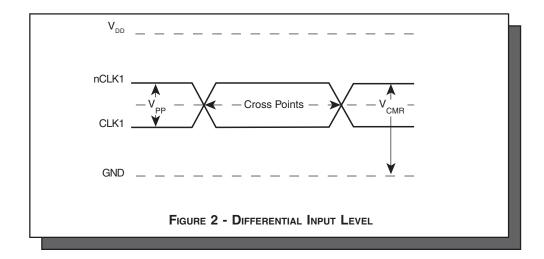
NOTE 2: Defined as the time difference between the input reference clock and the averaged feedback input signal,

when the PLL is locked and the input reference frequency is stable.

NOTE 3: Defined as skew within a bank of outputs at the same supply voltage and with equal load conditions.

NOTE 4: Defined as skew between outputs at the same supply voltage and with equal load conditions.

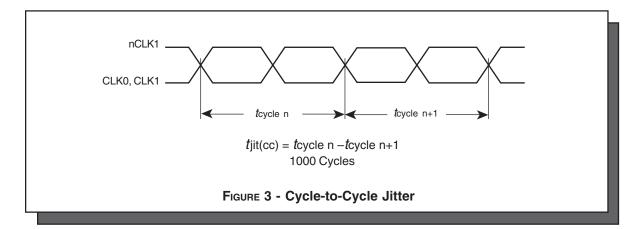

Measured at V_{DDO}/2.

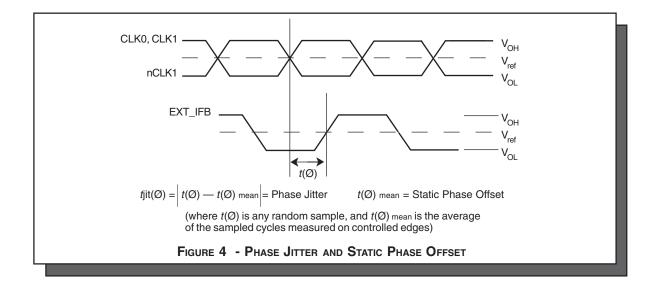

NOTE 5: This parameter is defined in accordance with JEDEC Standard 65.

ICS87951

Low Skew, 1-to-9 DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER

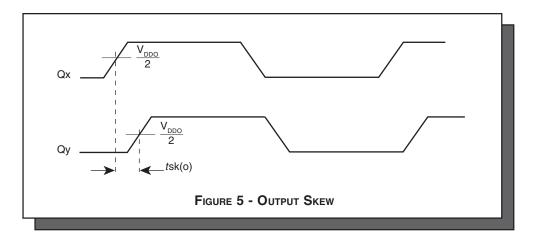
PARAMETER MEASUREMENT INFORMATION

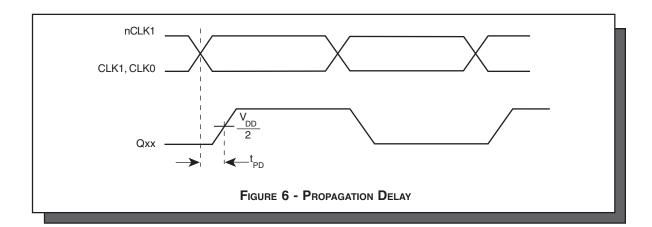


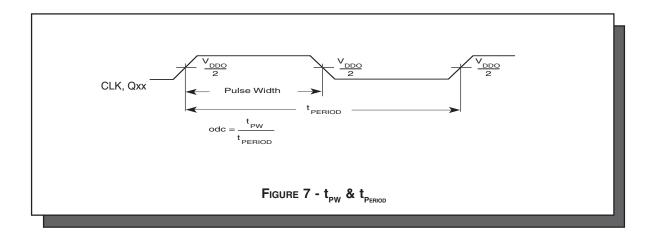


Integrated Circuit Systems, Inc.

ICS87951

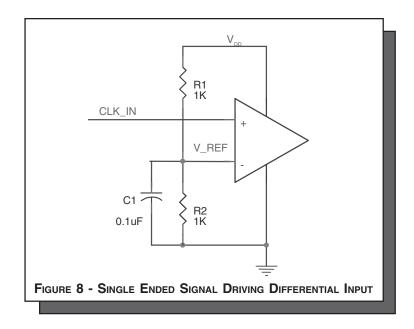

Low Skew, 1-to-9 DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER





ICS87951

Low Skew, 1-to-9 DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER



ICS87951

Low Skew, 1-to-9 DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER

APPLICATION INFORMATION WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS

Figure 8 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_{REF} should be 1.25V and R2/R1 = 0.609.

ICS87951

Low Skew, 1-to-9 DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER

Table 7. $\theta_{_{JA}} \text{vs. Air Flow Table}$

θ_{JA} by Velocity (Linear Feet per Minute)

200 500 Single-Layer PCB, JEDEC Standard Test Boards 67.8°C/W 55.9°C/W 50.1°C/W Multi-Layer PCB, JEDEC Standard Test Boards 47.9°C/W 42.1°C/W 39.4°C/W

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

TRANSISTOR COUNT

The transistor count for ICS87951 is: 2674

ICS87951

Low Skew, 1-to-9 DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER

PACKAGE OUTLINE - Y SUFFIX

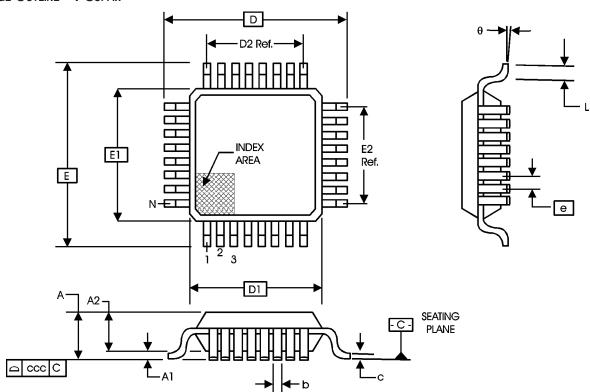


TABLE 8. PACKAGE DIMENSIONS

JEDEC VARIATION ALL DIMENSIONS IN MILLIMETERS						
CVMDOL	ВВА					
SYMBOL	MINIMUM	NOMINAL	MAXIMUM			
N		32				
Α			1.60			
A 1	0.05		0.15			
A2	1.35	1.40	1.45			
b	0.30	0.37	0.45			
С	0.09		0.20			
D		9.00 BASIC				
D1		7.00 BASIC				
D2		5.60 Ref.				
E		9.00 BASIC				
E1		7.00 BASIC				
E2		5.60 Ref.				
е	0.80 BASIC					
L	0.45 0.60 0.75					
θ	0°		7°			
ccc			0.10			

Reference Document: JEDEC Publication 95, MS-026

ICS87951

Low Skew, 1-to-9
DIFFERENTIAL-TO-LVCMOS ZERO DELAY BUFFER

TABLE 9. ORDERING INFORMATION

Part/Order Number	Marking	Package	Count	Temperature
ICS87951AY	ICS87951AY	32 Lead LQFP	250 per tray	0°C to 70°C
ICS87951AY-T	ICS87951AY	32 Lead LQFP on Tape and Reel	1000	0°C to 70°C

While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product for use in life support devices or critical medical instruments.