

3.3V CMOS 18-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

IDT74LVCR16501A

FEATURES:

- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- $VCC = 3.3V \pm 0.3V$, Normal Range
- VCC = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVCR16501A:

- Balanced Output Drivers: ±12mA
- Low switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

DESCRIPTION:

The LVCR16501A 18-bit registered transceiver is built using advanced dual metal CMOS technology. This high-speed, low power, 18-bit registered bus transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes. Data flow in each direction is controlled by output-enable (OEAB and $\overline{\text{OEBA}}$), latch enable (LEAB and LEBA) and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. OEAB performs the output enable function on the B port. Data flow from B port to A port is similar but requires using $\overline{\text{OEBA}}$, LEBA and CLKBA. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The LVCR16501A has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been developed to drive $\pm 12mA$ at the designated thresholds.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system

FUNCTIONAL BLOCK DIAGRAM

EXTENDED COMMERCIAL TEMPERATURE RANGE

OCTOBER 1999

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol Parameter⁽¹⁾ Conditions Typ. Max. Unit

SSOP/ TSSOP/ TVSOP TOP VIEW

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter		Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V	Vcc = 2.3V to 2.7V		_	_	V
		Vcc = 2.7V to 3.6V	Vcc = 2.7V to 3.6V		_	_	1
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V	Vcc = 2.7V to 3.6V		_	0.8	1
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$Vcc = 0V$, $Vin or Vo \le 5.5V$		_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, lin = - 18mA		_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
Iccl Icch	Quiescent Power Supply Current	Vcc = 3.6V	V _{IN} = GND or V _{CC}	_	_	10	μA
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10]
ΔΙCC	Quiescent Power Supply Current Variation	One input at Vcc - 0. other inputs at Vcc or		_	_	500	μA

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	I _{OH} = -0.1mA	Vcc - 0.2	1	V
		Vcc = 2.3V	IOH = -4mA	1.9	_	
			IOH = -6mA	1.7	-	
		Vcc = 2.7V	IOH = -4mA	2.2	_	
			IOH = -8mA	2	_	
		Vcc = 3.0V	IOH = -6mA	2.4	-	
			IOH = - 12mA	2	-	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IOL = 4mA	_	0.4	
			IOL = 6mA	_	0.55	

OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

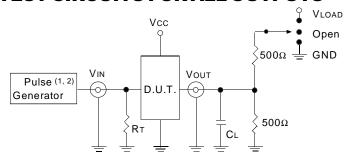
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per transceiver Outputs enabled	CL = 0pF, f = 10Mhz		pF
CPD	Power Dissipation Capacitance per transceiver Outputs disabled			pF

SWITCHING CHARACTERISTICS (1)

			Vcc = 2.7V		Vcc = 3.3V ± 0.3V		
Symbol		Parameter	Min.	Max.	Min.	Max.	Unit
tPHL	Propagation Delay		1.5	7	1.5	6	ns
tplh	Ax to Bx or Bx to Ax						
tphl	Propagation Delay		1.5	8	1.5	7	ns
tplh	LEBA to Ax, LEAB to Bx						
tphl	Propagation Delay		1.5	8	1.5	6.7	ns
tplh	CLKBA to Ax, CL	KAB to Bx					
tpzh	Output Enable Time		1.5	8.2	1.5	7.2	ns
tpzl	OEBA to Ax, OEA	AB to Bx					
tрнz	Output Disable Time		1.5	8	1.5	7	ns
tplz	OEBA to Ax, OEAB to Bx						
tsu	Set-up Time, HIG	H or LOW	2.5	_	2.5	_	ns
	Ax to CLKAB, Bx	to CLKBA					
tн	Hold Time, HIGH or LOW		0	_	0	_	ns
	Ax to CLKAB, Bx	to CLKBA					
tsu	Set-up Time	Clock	2.5	_	2.5	_	ns
	HIGH or LOW	LOW					
	Ax to LEAB,	Clock	2.5	_	2.5	_	ns
	Bx to LEBA	HIGH					
tн	Hold Time HIGH or LOW Ax to LEAB, Bx to LEBA		1.5	_	1.5	_	ns
tw	LEAB or LEBA Pulse Width HIGH		3	_	3		ns
tw	CLKAB or CLKBA Pulse Width HIGH or LOW		3	_	3	_	ns
tsk(o)	Output Skew ⁽²⁾					500	ps

NOTES:

^{1.} See test circuits and waveforms. TA = -40°C to + 85°C.


^{2.} Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS:

TEST CONDITIONS

6 2.7	6 2.7	2 x Vcc Vcc	V
	2.7	Vcc	٧
1.5	1.5	Vcc/2	٧
300	300	150	mV
300	300	150	mV
50	50	30	pF
	300 300	300 300 300 300	300 300 150 300 300 150

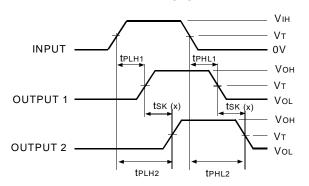
TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

LVC Link

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

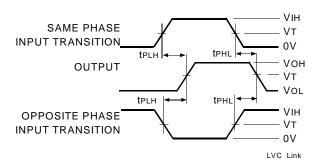

NOTES:

- 1. Pulse Generator for All Pulses: Rate ≤ 10MHz; tF ≤ 2.5ns; tR ≤ 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

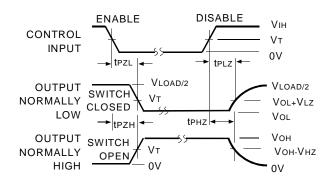
SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	LVC Link

OUTPUT SKEW - tsk (x)

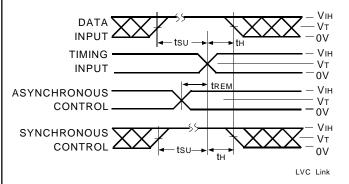

tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|

NOTES:


LVC Link

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

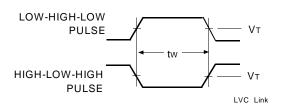
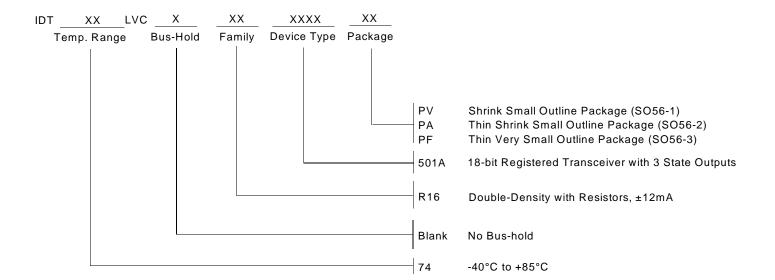

NOTE: LVC Link

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*