

Clock Generator for Power PC Designs with SDRAM and USB Support

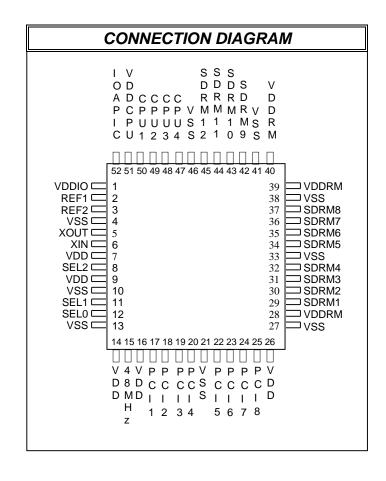
Preliminary Product Information

PRODUCT FEATURES

- Supports Pentium and Cyrix CPU's.
- 16 host clocks for additional SDRAM support.
- Optional common or mixed supply mode :

VDD = VDDRM = 3.3V, VDDCPU = VDDIO = 2.5V

VDD = 3.3V, VDDRM = VDDCPU = VDDIO = 2.5V


- < 250 pS skew on CPU and SDRM* buffers</p>
- < 350 pS skew on PCI buffers</p>
- Buffer output impedance < 20 ohm
- 52 Pin QFP package for minimum board space and easy layout

BLOCK DIAGRAM
XIN REF (1:2) XOUT REF VDDIO
S2 \longrightarrow PLL1 \longrightarrow B $\xrightarrow{/_4}$ CPU(1:4) S1 \longrightarrow S0 \longrightarrow B $\xrightarrow{/_4}$ SDRM(1:4) \longrightarrow VDDRM \longrightarrow B $\xrightarrow{/_4}$ SDRM(5:8) \longrightarrow B $\xrightarrow{/_4}$ SDRM(9:12)
$ \begin{array}{c c} -dly & B \neq_{8} \rightarrow PCI(1:8) \\ \hline PLL2 & \rightarrow 48MHz \end{array} $

FREQUENCY TABLE						
Sel2	Sel1	Sel0	CPU	PCI		
0	0	0	tristate	tristate		
0	0	1	75	a.32		
0	1	0	55	27.5		
0	1	1	75	37.5		
1	0	0	50	25		
1	0	1	60	30		
1	1	0	66.6	33.3		
1	1	1	test	test		

a.32 = Asynchronous PCI.

Tristate = All outputs tristate except XOUT.

Clock Generator for Power PC Designs with SDRAM and USB Support

Preliminary Product Information

PIN DESCRIPTION

Xin, Xout - These pins form an on-chip reference oscillator when connected to terminals of an external parallel resonant crystal (nominally 14.318 MHz). Xin may also serve as input for an externally generated reference signal.

Sel0, Sel1, and Sel2 - Standard frequency select inputs. These inputs have internal pull-ups.

CPU(1:4) - Low skew (<250 pS) clock outputs for host frequencies such as CPU, Chipset, Cache, etc... CPU1-CPU4 voltage level is controlled by VDDCPU. CPU buffers have 60 mA switching current at 3.3V.

SDRM(1:12) - Low skew (<250 pS) clock outputs for SDRAM. Voltage level is controlled by VDDRM. SDRM buffers have 60 mA switching current at 3.3V.

IOAPIC - Buffered output clock of the crystal. This buffer has 60 mA switching current at 3.3V. Voltage level is controlled by VDDIO.

PCI(1:8) - Low skew (<250pS) clock outputs for PCI frequencies. This buffer voltage level is controlled by VDD. All these outputs have 60 mA switching current at 3.3V.

REF(1:2) - Buffered output of on-chip reference. Outputs have 60mA switching current at 3.3V.

48MHz - Frequency output for USB.

VSS - Circuit ground.

VDD - Positive power supply.

VDDCPU - 3.3V/2.5V logic level control for CPU(1:4) outputs. Voltage cannot be greater than VDD.

VDDRM - 3.3V/2.5V logic level control for SDRM(1:12) outputs. Voltage cannot be greater than VDD.

VDDIO - 3.3V/2.5V logic level control for IOAPIC output. Voltage cannot be greater than VDD.

MAXIMUM RATINGS

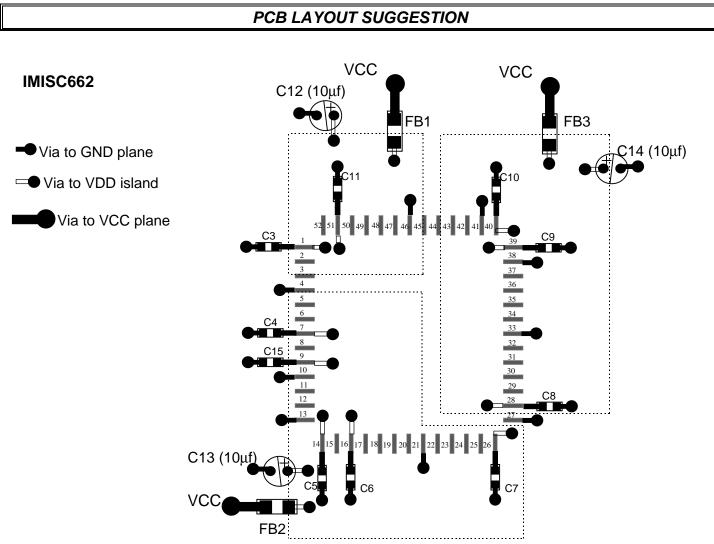
Voltage Relative to VSS: -0.3V
Voltage Relative to VDD: 0.3V
Storage Temperature: -65°C to +150°C
Ambient Temperature: -55°C to +125°C
Maximum Power Supply: 7V

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the range:

VSS<(Vin or Vout)<VDD

Unused inputs must always be tied to an appropriate logic voltage level (either VSS or VDD).

Clock Generator for Power PC Designs with SDRAM and USB Support Preliminary Product Information

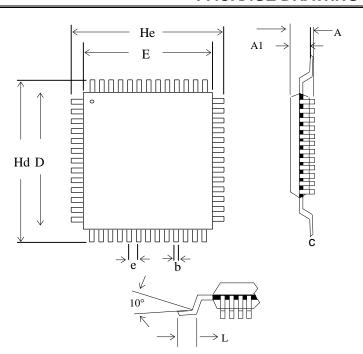

ELECTRICAL CHARACTERISTICS						
Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Input Low Voltage	VIL	-	-	0.8	Vdc	-
Input High Voltage	VIH	2.0	-	-	Vdc	-
Input Low, or High Current with Pull- up or Pull-down	IIL, IIH	-	-	5 <u>+</u> 50	μA	S0-S2 Inputs
Output Low Voltage IOL = 12mA	VOL	-	-	0.4	Vdc	All Outputs
Output High Voltage IOH = 12mA	VOH	2.4	-	-	Vdc	All Outputs
Tri-State leakage Current	loz	-	-	10	μΑ	All Outputs
Dynamic Supply Current	Icc	-	67	-	mA	CPU = 66.6 MHz, PCI = 33.3 Mhz No Load
Short Circuit Current	ISC	25	-	-	mA	1 output at a time - 30 seconds
$VDD = VDDCPU = VDDRM = 3.3V \pm 5\%$, $TA = 0$ °C to ± 70 °C						

SWITCHING CHARACTERISTICS						
Characteristic	Symbol	Min	Тур	Max	Units	Conditions
Output Rise (0.4V - 2.0V) and Fall (2.0V-0.4V) time	tTLH, tTHL	-	-	1.2	ns	15 pf Load CPU and PCI outputs
Output Duty Cycle	-	45	50	55	%	Measured at 1.5V
CPU to PCI Offset	tOFF	0	-	2	ns	15 pf Load Measured at 1.5V
Skew All CPU Output	tSKEW	-	-	250	ps	15 pf Load Measured at 1.5V
Skew All PCI Outputs	tSKEP	-	-	350	ps	15 pf Load Measured at 1.5V
ΔPeriod Cycles, CPU	ΔΡ	-	-	<u>+</u> 250	ps	-
Jitter Absolute, CPU	tjab	-	-	500	ps	-
$VDD = VDDCPU = VDDRM = 3.3V+5\%$, $TA = 0^{\circ}C$ to $+70^{\circ}C$						

Clock Generator for Power PC Designs with SDRAM and USB Support

Preliminary Product Information

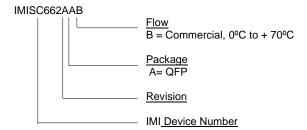
This is only a layout suggestion for best performance and lower EMI. The designer may choose a differnent approach such as using VDD traces instead of islands (dashed areas). Also, the designer may choose to use less than three beads. Regardless of which way the layout is implemented, Bypass caps: C3, C4, C5, C6, C7, C8, C9, C10, C11 and C15 (all 0.1 μF) should always be used and placed as close to their VDD pins as possible.


NOTES

- 1. POWER SUPPLY BYPASS CAPS (0.1UF) MUST BE POSITIONED AS CLOSE AS POSSIBLE TO VDD PINS TO BE EFFECTIVE.
- 2. BYPASS CAPS MUST BE LOW LEAKAGE SUCH AS MULTILAYER CERAMIC Z5U OR X7R MATERIAL WHICH ALSO RESULTS IN LOWER IMPEDANCE AT HIGH FREQUENCY.
- 3. FB: FERRITE BEAD

Clock Generator for Power PC Designs with SDRAM and USB Support Preliminary Product Information

PACKAGE DRAWING AND DIMENSIONS


52 PIN QFP OUTLINE DIMENSIONS						
		INCHES		МІІ	LIMETE	RS
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
Α	.075	.081	.087	1.90	2.05	2.20
A1	.056	.058	.060	1.43	1.48	1.53
D	.389	.393	.397	9.90	10.00	10.10
E	.389	.393	.397	9.90	10.00	10.10
b	.008	0.012	0.016	0.20	0.30	0.40
Hd	.537	.547	.557	13.65	13.90	14.15
He	.537	.547	.557	13.65	13.90	14.15
е		.025			.65	
L	.025	.031	.037	.65	.80	.95

ORDERING INFORMATION				
Part Number Package Type Production Flow				
IMISC662AAB	52 PIN QFP	Commercial, 0°C to +70°C		

<u>Note</u>: The ordering part number is formed by a combination of device number, device revision, package style, and screening as shown below.

Marking: Example: IMI

SC662AAB Date Code, Lot #

